1
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
2
|
Manickasamy MK, Sajeev A, BharathwajChetty B, Alqahtani MS, Abbas M, Hegde M, Aswani BS, Shakibaei M, Sethi G, Kunnumakkara AB. Exploring the nexus of nuclear receptors in hematological malignancies. Cell Mol Life Sci 2024; 81:78. [PMID: 38334807 PMCID: PMC10858172 DOI: 10.1007/s00018-023-05085-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 12/03/2023] [Indexed: 02/10/2024]
Abstract
Hematological malignancies (HM) represent a subset of neoplasms affecting the blood, bone marrow, and lymphatic systems, categorized primarily into leukemia, lymphoma, and multiple myeloma. Their prognosis varies considerably, with a frequent risk of relapse despite ongoing treatments. While contemporary therapeutic strategies have extended overall patient survival, they do not offer cures for advanced stages and often lead to challenges such as acquisition of drug resistance, recurrence, and severe side effects. The need for innovative therapeutic targets is vital to elevate both survival rates and patients' quality of life. Recent research has pivoted towards nuclear receptors (NRs) due to their role in modulating tumor cell characteristics including uncontrolled proliferation, differentiation, apoptosis evasion, invasion and migration. Existing evidence emphasizes NRs' critical role in HM. The regulation of NR expression through agonists, antagonists, or selective modulators, contingent upon their levels, offers promising clinical implications in HM management. Moreover, several anticancer agents targeting NRs have been approved by the Food and Drug Administration (FDA). This review highlights the integral function of NRs in HM's pathophysiology and the potential benefits of therapeutically targeting these receptors, suggesting a prospective avenue for more efficient therapeutic interventions against HM.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Department of Human-Anatomy, Musculoskeletal Research Group and Tumor Biology, Institute of Anatomy, Ludwig-Maximilian-University, 80336, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
3
|
Homeostatic Regulation of Glucocorticoid Receptor Activity by Hypoxia-Inducible Factor 1: From Physiology to Clinic. Cells 2021; 10:cells10123441. [PMID: 34943949 PMCID: PMC8699886 DOI: 10.3390/cells10123441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs) represent a well-known class of lipophilic steroid hormones biosynthesised, with a circadian rhythm, by the adrenal glands in humans and by the inter-renal tissue in teleost fish (e.g., zebrafish). GCs play a key role in the regulation of numerous physiological processes, including inflammation, glucose, lipid, protein metabolism and stress response. This is achieved through binding to their cognate receptor, GR, which functions as a ligand-activated transcription factor. Due to their potent anti-inflammatory and immune-suppressive action, synthetic GCs are broadly used for treating pathological disorders that are very often linked to hypoxia (e.g., rheumatoid arthritis, inflammatory, allergic, infectious, and autoimmune diseases, among others) as well as to prevent graft rejections and against immune system malignancies. However, due to the presence of adverse effects and GC resistance their therapeutic benefits are limited in patients chronically treated with steroids. For this reason, understanding how to fine-tune GR activity is crucial in the search for novel therapeutic strategies aimed at reducing GC-related side effects and effectively restoring homeostasis. Recent research has uncovered novel mechanisms that inhibit GR function, thereby causing glucocorticoid resistance, and has produced some surprising new findings. In this review we analyse these mechanisms and focus on the crosstalk between GR and HIF signalling. Indeed, its comprehension may provide new routes to develop novel therapeutic targets for effectively treating immune and inflammatory response and to simultaneously facilitate the development of innovative GCs with a better benefits-risk ratio.
Collapse
|
4
|
Kokkinopoulou I, Diakoumi A, Moutsatsou P. Glucocorticoid Receptor Signaling in Diabetes. Int J Mol Sci 2021; 22:ijms222011173. [PMID: 34681832 PMCID: PMC8537243 DOI: 10.3390/ijms222011173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Stress and depression increase the risk of Type 2 Diabetes (T2D) development. Evidence demonstrates that the Glucocorticoid (GC) negative feedback is impaired (GC resistance) in T2D patients resulting in Hypothalamic-Pituitary-Adrenal (HPA) axis hyperactivity and hypercortisolism. High GCs, in turn, activate multiple aspects of glucose homeostasis in peripheral tissues leading to hyperglycemia. Elucidation of the underlying molecular mechanisms revealed that Glucocorticoid Receptor (GR) mediates the GC-induced dysregulation of glucose production, uptake and insulin signaling in GC-sensitive peripheral tissues, such as liver, skeletal muscle, adipose tissue, and pancreas. In contrast to increased GR peripheral sensitivity, an impaired GR signaling in Peripheral Blood Mononuclear Cells (PBMCs) of T2D patients, associated with hyperglycemia, hyperlipidemia, and increased inflammation, has been shown. Given that GR changes in immune cells parallel those in brain, the above data implicate that a reduced brain GR function may be the biological link among stress, HPA hyperactivity, hypercortisolism and hyperglycemia. GR polymorphisms have also been associated with metabolic disturbances in T2D while dysregulation of micro-RNAs—known to target GR mRNA—has been described. Collectively, GR has a crucial role in T2D, acting in a cell-type and context-specific manner, leading to either GC sensitivity or GC resistance. Selective modulation of GR signaling in T2D therapy warrants further investigation.
Collapse
|
5
|
Mehterov N, Kazakova M, Sbirkov Y, Vladimirov B, Belev N, Yaneva G, Todorova K, Hayrabedyan S, Sarafian V. Alternative RNA Splicing-The Trojan Horse of Cancer Cells in Chemotherapy. Genes (Basel) 2021; 12:genes12071085. [PMID: 34356101 PMCID: PMC8306420 DOI: 10.3390/genes12071085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Almost all transcribed human genes undergo alternative RNA splicing, which increases the diversity of the coding and non-coding cellular landscape. The resultant gene products might have distinctly different and, in some cases, even opposite functions. Therefore, the abnormal regulation of alternative splicing plays a crucial role in malignant transformation, development, and progression, a fact supported by the distinct splicing profiles identified in both healthy and tumor cells. Drug resistance, resulting in treatment failure, still remains a major challenge for current cancer therapy. Furthermore, tumor cells often take advantage of aberrant RNA splicing to overcome the toxicity of the administered chemotherapeutic agents. Thus, deciphering the alternative RNA splicing variants in tumor cells would provide opportunities for designing novel therapeutics combating cancer more efficiently. In the present review, we provide a comprehensive outline of the recent findings in alternative splicing in the most common neoplasms, including lung, breast, prostate, head and neck, glioma, colon, and blood malignancies. Molecular mechanisms developed by cancer cells to promote oncogenesis as well as to evade anticancer drug treatment and the subsequent chemotherapy failure are also discussed. Taken together, these findings offer novel opportunities for future studies and the development of targeted therapy for cancer-specific splicing variants.
Collapse
Affiliation(s)
- Nikolay Mehterov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Boyan Vladimirov
- Department of Maxillofacial Surgery, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Nikolay Belev
- Medical Simulation and Training Center, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Galina Yaneva
- Department of Biology, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Krassimira Todorova
- Laboratory of Reproductive OMICs Technologies, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.T.); (S.H.)
| | - Soren Hayrabedyan
- Laboratory of Reproductive OMICs Technologies, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.T.); (S.H.)
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: ; Tel.: +359-882-512-952
| |
Collapse
|
6
|
Aravilli RK, Vikram SL, Kohila V. The Functional Impact of Alternative Splicing and Single Nucleotide Polymorphisms in Rheumatoid Arthritis. Curr Pharm Biotechnol 2021; 22:1014-1029. [PMID: 33001009 DOI: 10.2174/1389201021666201001142416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Advances in genomics and proteomics aid the identification of genes associated with various diseases. Genome-Wide Association Studies (GWAS) have identified multiple loci as risk alleles for susceptibility to Rheumatoid Arthritis (RA). A bisection of RA risk can be attributed to genetic factors. Over 100 associated genetic loci that encompass immune regulatory factors have been found to be linked with RA. Aberrant Single Nucleotide Polymorphisms (SNPs) and alternative splicing mechanisms in such loci induce RA. These aberrations are viewed as potential therapeutic targets due to their association with a multitude of diseases. This review presents a few imperious genes whose alterations can cause severe bone deformities culminating in RA.
Collapse
Affiliation(s)
- R Kowshik Aravilli
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | - S Laveen Vikram
- Department of Computer Science and Engineering, Alagappa University, Karaikudi, India
| | - V Kohila
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| |
Collapse
|
7
|
Ji H, Li Y, Liu Z, Tang M, Zou L, Su F, Zhang Y, Zhang J, Li H, Li L, Ai B, Ma J, Wang L, Liu M, Xiao F. Quantitative Evaluation of the Transcriptional Activity of Steroid Hormone Receptor Mutants and Variants Using a Single Vector With Two Reporters and a Receptor Expression Cassette. Front Endocrinol (Lausanne) 2020; 11:167. [PMID: 32296391 PMCID: PMC7137763 DOI: 10.3389/fendo.2020.00167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/10/2020] [Indexed: 11/13/2022] Open
Abstract
Although the rapid development of high-throughput sequencing has led to the identification of a large number of truncated or mutated steroid hormone receptor (SHR) variants, their clinical relevance remains to be defined. A platform for functional analysis of these SHR variants in cells would be instrumental for better assessing their impact on normal physiology and SHR-associated diseases. Here we have developed a new reporter system that allows rapid and accurate assessment of the transcriptional activity of SHR variants in cells. The reporter is a single construct containing a firefly luciferase reporter gene, whose expression is under the control of a promoter with multiple steroid hormone responsive elements, and a Renilla luciferase reporter gene, that is constitutively expressed under the control of an internal ribosome entry site (IRES) and is not regulated by steroid hormones. The corresponding SHR (wildtype or mutant/variant) is also expressed from the same construct. Using this improved reporter system, we revealed a large spectrum of transactivation activities within a set of previously identified mutations and variations of the androgen receptor (AR), the estrogen receptor α (ERα) and the glucocorticoid receptor (GR). This novel reporter system enables functional analysis of SHR mutants and variants in physiological and pathological settings, offering valuable preclinical, or diagnostic information for the understanding and treatment of associated diseases.
Collapse
MESH Headings
- Animals
- Biological Assay/methods
- COS Cells
- Cells, Cultured
- Chlorocebus aethiops
- Cloning, Molecular/methods
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/physiology
- Gene Expression Regulation/drug effects
- Genes, Reporter/drug effects
- Genetic Vectors/genetics
- HEK293 Cells
- Hep G2 Cells
- Hormones/pharmacology
- Humans
- Luciferases, Firefly/genetics
- Mutant Proteins/physiology
- Mutation
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Receptors, Androgen/genetics
- Receptors, Androgen/physiology
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/physiology
- Transcriptional Activation/drug effects
- Transcriptional Activation/genetics
- Transfection/methods
Collapse
Affiliation(s)
- Huimin Ji
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Li
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commissions, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Min Tang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lihui Zou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commissions, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Su
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaqun Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Junhua Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commissions, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hexin Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Li
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Ai
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center for Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- State Key Lab of Molecular Oncology, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commissions, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Probing Dominant Negative Behavior of Glucocorticoid Receptor β through a Hybrid Structural and Biochemical Approach. Mol Cell Biol 2018; 38:MCB.00453-17. [PMID: 29437838 DOI: 10.1128/mcb.00453-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/30/2018] [Indexed: 11/20/2022] Open
Abstract
Glucocorticoid receptor β (GRβ) is associated with glucocorticoid resistance via dominant negative regulation of GRα. To better understand how GRβ functions as a dominant negative inhibitor of GRα at a molecular level, we determined the crystal structure of the ligand binding domain of GRβ complexed with the antagonist RU-486. The structure reveals that GRβ binds RU-486 in the same ligand binding pocket as GRα, and the unique C-terminal amino acids of GRβ are mostly disordered. Binding energy analysis suggests that these C-terminal residues of GRβ do not contribute to RU-486 binding. Intriguingly, the GRβ/RU-486 complex binds corepressor peptide with affinity similar to that of a GRα/RU-486 complex, despite the lack of helix 12. Our biophysical and biochemical analyses reveal that in the presence of RU-486, GRβ is found in a conformation that favors corepressor binding, potentially antagonizing GRα function. This study thus presents an unexpected molecular mechanism by which GRβ could repress transcription.
Collapse
|
9
|
Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Steininger A, Arzt E. Regulatory and Mechanistic Actions of Glucocorticoids on T and Inflammatory Cells. Front Endocrinol (Lausanne) 2018; 9:235. [PMID: 29867767 PMCID: PMC5964134 DOI: 10.3389/fendo.2018.00235] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Glucocorticoids (GCs) play an important role in regulating the inflammatory and immune response and have been used since decades to treat various inflammatory and autoimmune disorders. Fine-tuning the glucocorticoid receptor (GR) activity is instrumental in the search for novel therapeutic strategies aimed to reduce pathological signaling and restoring homeostasis. Despite the primary anti-inflammatory actions of GCs, there are studies suggesting that under certain conditions GCs may also exert pro-inflammatory responses. For these reasons the understanding of the GR basic mechanisms of action on different immune cells in the periphery (e.g., macrophages, dendritic cells, neutrophils, and T cells) and in the brain (microglia) contexts, that we review in this chapter, is a continuous matter of interest and may reveal novel therapeutic targets for the treatment of immune and inflammatory response.
Collapse
Affiliation(s)
- Ana C. Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Maia L. Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Romina Paula Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Anja Steininger
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Eduardo Arzt,
| |
Collapse
|
10
|
Preciado-Martínez E, García-Ruíz G, Flores-Espinosa P, Bermejo-Martínez L, Espejel-Nuñez A, Estrada-Gutiérrez G, Razo-Aguilera G, Granados-Cepeda M, Helguera-Repetto AC, Irles C, Zaga-Clavellina V. Progesterone suppresses the lipopolysaccharide-induced pro-inflammatory response in primary mononuclear cells isolated from human placental blood. Immunol Invest 2017; 47:181-195. [PMID: 29236553 DOI: 10.1080/08820139.2017.1413112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Progesterone is an essential hormone that induces deep immune adaptations favoring pregnancy maintenance. We aimed at evaluating the effects of progesterone on the synthesis of pro- and anti-inflammatory cytokines by mononuclear cells isolated from human placental blood stimulated with lipopolysaccharide, emulating an infection-inflammation environment. Mononuclear cells isolated form human placental blood were obtained from nine women undergoing elective cesarean delivery at term (not in labor), isolated by density gradient sedimentation, cultured and co-stimulated with lipopolysaccharide (500 ng/ml) from Escherichia coli in the presence or not of progesterone (0.01, 0.1, or 1.0 µM) for 24 h. Culture supernatants were assayed for pro-inflammatory (IL-1β, TNFα, IL-6), anti-inflammatory (IL-10) cytokines, chemokines (IL-8, MIP-1α) and total MMP-9 by ELISA. In comparison with basal conditions, lipopolysaccharide treatment induced IL-1β, TNFα, IL-6, IL-8, MIP-1α, and MMP-9 synthesis. lipopolysaccharide co-treatment with progesterone significantly decreased the bacterial endotoxin-induced IL-1β, TNF-α, IL-6, IL-8, and MIP-1α secretion. In contrast, co-treatment with progesterone increased the level of IL-10 secreted to the culture medium. The present results support the concept that progesterone can modulate--partially--the inflammatory response of professional immune cells isolated from placental blood. Therefore, progesterone might be part of the natural compensatory mechanism that limits the cytotoxic effects associated with an intrauterine infection process during gestation.
Collapse
Affiliation(s)
- E Preciado-Martínez
- a Inmunobiochemistry Branch , Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" , México City , México.,b Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México , Estado de México , México
| | - G García-Ruíz
- a Inmunobiochemistry Branch , Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" , México City , México.,b Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México , Estado de México , México
| | - P Flores-Espinosa
- a Inmunobiochemistry Branch , Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" , México City , México
| | - L Bermejo-Martínez
- a Inmunobiochemistry Branch , Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" , México City , México
| | - A Espejel-Nuñez
- a Inmunobiochemistry Branch , Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" , México City , México
| | - G Estrada-Gutiérrez
- a Inmunobiochemistry Branch , Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" , México City , México
| | - G Razo-Aguilera
- c Human Genetic and Genomic Branch , Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" , México City , México
| | - M Granados-Cepeda
- d Neonatology Branch , Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" , México City , México
| | - A C Helguera-Repetto
- a Inmunobiochemistry Branch , Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" , México City , México
| | - C Irles
- e Physiology and Cellular Development Branch , Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" , México City , México
| | - V Zaga-Clavellina
- a Inmunobiochemistry Branch , Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" , México City , México
| |
Collapse
|
11
|
Dendoncker K, Libert C. Glucocorticoid resistance as a major drive in sepsis pathology. Cytokine Growth Factor Rev 2017; 35:85-96. [DOI: 10.1016/j.cytogfr.2017.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 01/07/2023]
|
12
|
Chatzopoulou A, Schoonheim PJ, Torraca V, Meijer AH, Spaink HP, Schaaf MJM. Functional analysis reveals no transcriptional role for the glucocorticoid receptor β-isoform in zebrafish. Mol Cell Endocrinol 2017; 447:61-70. [PMID: 28242321 DOI: 10.1016/j.mce.2017.02.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/30/2017] [Accepted: 02/23/2017] [Indexed: 01/08/2023]
Abstract
In humans, two splice variants of the glucocorticoid receptor (GR) exist: the canonical α-isoform, and the β-isoform, which has been shown to have a dominant-negative effect on hGRα. Previously, we have established the occurrence of a GR β-isoform in zebrafish, and in the present study we have investigated the functional role of the zebrafish GRβ (zGRβ). Reporter assays in COS-1 cells demonstrated a dominant-negative effect of zGRβ but no such effect was observed in zebrafish PAC2 cells using induction of the fk506 binding protein 5 (fkbp5) gene as readout. Subsequently, we generated a transgenic fish line with inducible expression of zGRβ. Transcriptome analysis suggested transcriptional regulation of genes by zGRβ in this line, but further validation failed to confirm this role. Based on these results, its low expression level and its poor evolutionary conservation, we suggest that the zebrafish GR β-isoform does not have a functional role in transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Vincenzo Torraca
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
| | | | - Herman P Spaink
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
| | - Marcel J M Schaaf
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands.
| |
Collapse
|
13
|
Chu W, Wei W, Han H, Gao Y, Liu K, Tian Y, Jiang Z, Zhang L, Chen J. Muscle-specific downregulation of GR levels inhibits adipogenesis in porcine intramuscular adipocyte tissue. Sci Rep 2017; 7:510. [PMID: 28360421 PMCID: PMC5428816 DOI: 10.1038/s41598-017-00615-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/06/2017] [Indexed: 12/26/2022] Open
Abstract
Intramuscular adipose is conducive to good pork quality, whereas subcutaneous adipose is considered as waste in pig production. So uncovering the regulation differences between these two adiposes is helpful to tissue-specific control of fat deposition. In this study, we found the sensitivity to glucocorticoids (GCs) was lower in intramuscular adipocytes (IMA) compared with subcutaneous adipocytes (SA). Comparison of glucocorticoid receptor (GR) revealed that IMA had lower GR level which contributed to its reduced GCs sensitivity. Higher methylation levels of GR promotor 1-C and 1-H were detected in IMA compared with SA. GR expression decrease was also found in adipocytes when treated with muscle conditioned medium (MCM) in vitro, which resulted in significant inhibition of adipocytes proliferation and differentiation. Since abundant myostatin (MSTN) was detected in MCM by ELISA assay, we further investigated the effect of this myokine on adipocytes. MSTN treatment suppressed adipocytes GR expression, cell proliferation and differentiation, which mimicked the effects of MCM. The methylation levels of GR promotor 1-C and 1-H were also elevated after MSTN treatment. Our study reveals the role of GR in muscle fiber inhibition on intramuscular adipocytes, and identifies myostatin as a muscle-derived modulator for adipose GR level.
Collapse
Affiliation(s)
- Weiwei Chu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China.,Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, P.R. China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Haiyin Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Ying Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Kaiqing Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Ye Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zaohang Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| |
Collapse
|
14
|
Bustamante AC, Aiello AE, Galea S, Ratanatharathorn A, Noronha C, Wildman DE, Uddin M. Glucocorticoid receptor DNA methylation, childhood maltreatment and major depression. J Affect Disord 2016; 206:181-188. [PMID: 27475889 PMCID: PMC5077661 DOI: 10.1016/j.jad.2016.07.038] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/30/2016] [Accepted: 07/16/2016] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Altered DNA methylation (DNAm) levels of hypothalamic-pituitary-adrenal (HPA) axis genes has been associated with exposure to childhood maltreatment (CM) and depression; however, it is unknown whether CM and depression have joint and potentially interacting effects on the glucocorticoid receptor (NR3C1) DNAm. We investigated the impact of CM and lifetime major depressive disorder (MDD) on NR3C1 DNAm and gene expression (GE) in 147 adult participants from the Detroit Neighborhood Health Study. METHODS NR3C1 promoter region DNAm was assessed via pyrosequencing using whole blood-derived DNA. Quantitative RT-PCR assays measured GE from leukocyte-derived RNA. Linear regression models were used to examine the relationship among CM, MDD, and DNAm. RESULTS Both CM and MDD were significant predictors of NR3C1 DNAm: CM was associated with an increase in DNAm in an EGR1 transcription factor binding site (TFBS), whereas MDD was associated with a decrease in DNAm downstream of the TFBS. No significant CM-MDD interactions were observed. CM alone was associated with significantly lower NR3C1 GE. LIMITATIONS Our report of CM is a retrospective self-report of abuse, which may introduce recall bias. DNAm was measured in whole blood and may not reflect brain-derived DNAm levels. CONCLUSIONS CM and MDD are both associated with altered DNAm levels in the NR3C1 promoter region, however the location and direction of effects differ between the two exposures, and the functional effects, as measured by GE, appear to be limited to CM exposure alone. CM exposure may be biologically embedded in this key HPA axis gene.
Collapse
Affiliation(s)
- Angela C Bustamante
- Neuroscience Program University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Allison E Aiello
- Department of Epidemiology, University of North Carolina, Gillings School of Global Public Health, Chapel Hill, NC 27599 USA
| | - Sandro Galea
- Boston University, School of Public Health, Boston, MA 02118, USA
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Carol Noronha
- Wayne State University, Detroit, Michigan, 48201, USA
| | - Derek E Wildman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Monica Uddin
- Neuroscience Program University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| |
Collapse
|
15
|
Dibas A, Yorio T. Glucocorticoid therapy and ocular hypertension. Eur J Pharmacol 2016; 787:57-71. [PMID: 27388141 PMCID: PMC5014726 DOI: 10.1016/j.ejphar.2016.06.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022]
Abstract
The projected number of people who will develop age-related macular degeneration in estimated at 2020 is 196 million and is expected to reach 288 million in 2040. Also, the number of people with Diabetic retinopathy will grow from 126.6 million in 2010 to 191.0 million by 2030. In addition, it is estimated that there are 2.3 million people suffering from uveitis worldwide. Because of the anti-inflammatory properties of glucocorticoids (GCs), they are often used topically and/or intravitreally to treat ocular inflammation conditions or edema associated with macular degeneration and diabetic retinopathy. Unfortunately, ocular GC therapy can lead to severe side effects. Serious and sometimes irreversible eye damage can occur as a result of the development of GC-induced ocular hypertension causing secondary open-angle glaucoma. According to the world health organization, glaucoma is the second leading cause of blindness in the world and it is estimated that 80 million will suffer from glaucoma by 2020. In the current review, mechanisms of GC-induced damage in ocular tissue, GC-resistance, and enhancing GC therapy will be discussed.
Collapse
Affiliation(s)
- Adnan Dibas
- North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX, USA.
| | - Thomas Yorio
- North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
16
|
Zhang XW, Li Y, Liu JJ, Liu X, Wang ZL, Hu B. Glucocorticoid receptor subunit gene expression in parotid gland and adenomas. Otolaryngol Head Neck Surg 2016; 135:849-52. [PMID: 17141072 DOI: 10.1016/j.otohns.2006.05.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: The present study was undertaken to investigate the expressions of glucocorticoid receptor-α (GR-α) and -β (GR-β) messenger RNA (mRNA) in normal parotid and adenoma tissues. STUDY DESIGN AND SETTING: Eighteen pleomorphic adenomas of the parotid gland and 12 parotid gland tissues adjacent to adenomas were studied by using real-time fluorescent quantitative reverse-transcription polymerase chain reaction method. RESULTS: The expression of both GR-α and GR-β mRNA in parotid adenoma were higher than that in normal parotid glands ( P < 0.001), the GR-α/GR-β ratios in parotid adenoma were lower than that in normal parotid glands ( P < 0.001), and there were no differences of both GR-α and GR-β mRNA as well as GR-α/GR-β ratios in male and female ( P > 0.05). CONCLUSION AND SIGNIFICANCE: Our results showed that the mRNA expression of both GR-α and GR-β were detectable in all studied specimens. The mRNA levels of these 2 GRs were higher, whereas the GR-α/GR-β ratios were lower in adenomas tissues than that in the parotid gland; no differences of these 2 GRs as well as GR-α/GR-β ratios were found between sexes. These data indicate that the relationship between the expressions of GRs and the clinical significance in parotid adenomas need further and profound investigation.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, PR China.
| | | | | | | | | | | |
Collapse
|
17
|
Chu W, Wei W, Yu S, Han H, Shi X, Sun W, Gao Y, Zhang L, Chen J. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene. Biochem Biophys Res Commun 2016; 472:68-74. [PMID: 26896766 DOI: 10.1016/j.bbrc.2016.02.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 12/15/2022]
Abstract
Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes.
Collapse
Affiliation(s)
- Weiwei Chu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shigang Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haiyin Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoli Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenxing Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; College of Public Health, Nantong University, Nantong 226019, PR China
| | - Ying Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
18
|
Duque EDA, Munhoz CD. The Pro-inflammatory Effects of Glucocorticoids in the Brain. Front Endocrinol (Lausanne) 2016; 7:78. [PMID: 27445981 PMCID: PMC4923130 DOI: 10.3389/fendo.2016.00078] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/17/2016] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein-protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain.
Collapse
Affiliation(s)
- Erica de Almeida Duque
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carolina Demarchi Munhoz,
| |
Collapse
|
19
|
Abstract
Endogenous glucocorticoids regulate a variety of physiologic processes and are crucial to the systemic stress response. Glucocorticoid receptors are expressed throughout the body, but there is considerable heterogeneity in glucocorticoid sensitivity and induced biological responses across tissues. The immunoregulatory properties of glucocorticoids are exploited in the clinic for the treatment of inflammatory and autoimmune disorders as well as certain hematological malignancies, but adverse side effects hamper prolonged use. Fully understanding the molecular events that shape the physiologic effects of glucocorticoid treatment will provide insight into optimal glucocorticoid therapies, reliable assessment of glucocorticoid sensitivity in patients, and may advance the development of novel GR agonists that exert immunosuppressive effects while avoiding harmful side effects. In this review, we provide an overview of mechanisms that affect glucocorticoid specificity and sensitivity in health and disease, focusing on the distinct isoforms of the glucocorticoid receptor and their unique regulatory and functional properties.
Collapse
Affiliation(s)
- Derek W Cain
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
20
|
Krieger S, Sorrells SF, Nickerson M, Pace TWW. Mechanistic insights into corticosteroids in multiple sclerosis: war horse or chameleon? Clin Neurol Neurosurg 2014; 119:6-16. [PMID: 24635918 DOI: 10.1016/j.clineuro.2013.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/19/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Relapse management is a crucial component of multiple sclerosis (MS) care. High-dose corticosteroids (CSs) are used to dampen inflammation, which is thought to hasten the recovery of MS relapse. A diversity of mechanisms drive the heterogeneous clinical response to exogenous CSs in patients with MS. Preclinical research is beginning to provide important insights into how CSs work, both in terms of intended and unintended effects. In this article we discuss cellular, systemic, and clinical characteristics that might contribute to intended and unintended CS effects when utilizing supraphysiological doses in clinical practice. The goal of this article is to consider recent insights about CS mechanisms of action in the context of MS. METHODS We reviewed relevant preclinical and clinical studies on the desirable and undesirable effects of high-dose corticosteroids used in MS care. RESULTS Preclinical studies reviewed suggest that corticosteroids may act in unpredictable ways in the context of autoimmune conditions. The precise timing, dosage, duration, cellular exposure, and background CS milieu likely contribute to their clinical heterogeneity. CONCLUSION It is difficult to predict when patients will respond favorably to CSs, both in terms of therapeutic response and tolerability profile. There are specific cellular, systemic, and clinical characteristics that might merit further consideration when utilizing CSs in clinical practice, and these should be explored in a translational setting.
Collapse
Affiliation(s)
- Stephen Krieger
- Corinne Goldsmith Dickinson Center for MS, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shawn F Sorrells
- Department of Neurosurgery, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| | | | - Thaddeus W W Pace
- College of Nursing and College of Medicine (Department of Psychiatry), University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
21
|
Corticosteroid resistance in sepsis is influenced by microRNA-124--induced downregulation of glucocorticoid receptor-α. Crit Care Med 2012; 40:2745-53. [PMID: 22846781 DOI: 10.1097/ccm.0b013e31825b8ebc] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Acquired glucocorticoid resistance frequently complicates the therapy of sepsis. It leads to an exaggerated proinflammatory response and has been related to altered expression profiles of glucocorticoid receptor isoforms glucocorticoid receptor-α (mediating anti-inflammatory effects) and glucocorticoid receptor-β (acting as a dominant negative inhibitor). We investigated the impact of glucocorticoid receptor isoforms on glucocorticoid effects in human T-cells. We hypothesized that 1) changes of the ratio of glucocorticoid receptor isoforms impact glucocorticoid resistance and 2) glucocorticoid receptor-α expression is controlled by microRNA-mediated gene silencing. DESIGN Laboratory-based study. SETTING University research laboratory. SUBJECTS AND PATIENTS Healthy volunteers, sepsis patients. METHODS First, T-cells from healthy volunteers (native and CD3/CD28-stimulated cells with or without addition of hydrocortisone) were analyzed for the expression of glucocorticoid receptor-isoforms by quantitative polymerase chain reaction. Additionally, effects of gene silencing of glucocorticoid receptor-β by siRNA transfection were determined. Secondly, microRNA-mediated silencing was evaluated by cloning of a glucocorticoid receptor-α-specific 3'-untranslated-region reporter construct and subsequent transfection experiments in cell cultures. Effects of miRNA transfection on glucocorticoid receptor-α expression were analyzed in Jurkat T-cells and in T-cells from healthy volunteers (quantitative polymerase chain reaction and Western blotting). Finally, expression of glucocorticoid receptor-α, glucocorticoid receptor-β, and miR-124 was tested in T-cells of sepsis patients (n=24). MEASUREMENTS AND MAIN RESULTS Stimulation of T-cells induced a significant upregulation of glucocorticoid receptor-α (not glucocorticoid receptor-β) thereby possibly rendering T-cells more sensitive to glucocorticoids; this T-cell response was hindered by hydrocortisone. Silencing of glucocorticoid receptor-β doubled the inhibitory effects of glucocorticoids on interleukin-2 production. MicroRNA-124 was proved to specifically downregulate glucocorticoid receptor-α. Furthermore, a glucocorticoid-induced three-fold upregulation of microRNA-124 was found. T-cells of sepsis patients exhibited slightly decreased glucocorticoid receptor-α and slightly increased miR-124 expression levels, whereas glucocorticoid receptor-β expression was two-fold upregulated (p<.01) and exhibited a remarkable interindividual variability. CONCLUSIONS Glucocorticoid treatment induces expression of miR-124, which downregulates glucocorticoid receptor-α thereby limiting anti-inflammatory effects of glucocorticoids. Steroid treatment might aggravate glucocorticoid resistance in patients with high glucocorticoid receptor-β levels.
Collapse
|
22
|
Glucocorticoid receptor-beta up-regulation and steroid resistance induction by IL-17 and IL-23 cytokine stimulation in peripheral mononuclear cells. J Clin Immunol 2012; 33:466-78. [PMID: 23160983 DOI: 10.1007/s10875-012-9828-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/17/2012] [Indexed: 12/18/2022]
Abstract
PURPOSE Most asthmatic patients have well controlled symptoms with regular treatment, but some require much higher doses of inhaled and oral corticosteroids, or in rare cases fail to respond; these patients may present Th-17 cell infiltration and associated cytokines (IL-17A and -F) in the airways, sputum and peripheral blood. Because glucocorticoid receptor-beta (GR-beta) is associated with corticosteroid resistance, we investigated whether Th-17 associated cytokines induce steroid insensitivity in PBMCs via GR-beta up-regulation. METHODS GR-alpha, GR-beta, GILZ and IL-6 expression were analyzed in PBMCs stimulated with IL-2/IL-4, IL-17A/IL-17F and IL-23 cytokines by quantitative RT-PCR. Dexamethasone-inhibition of PHA-induced proliferation and Dexamethasone-induced apoptosis were determined by either (3)H-thymidine or CFSE-labelled cells and by Annexin-V staining and flow cytometry. RESULTS IL-17 and IL-23 cytokines significantly increased GR-beta expression. IL-2/IL-4 significantly decreased GR-alpha expression without affecting GR-beta. IL17, IL-23 and IL2 + 4 stimulations significantly hampered Dexamethasone-inhibition of proliferation (Dex EC(50) for: IL-17A + F = 251 nM; IL-23 = 435 nM; IL2 + 4 = 950 nM; Medium = 90 nM). IL2 + 4 and IL17A + F but not IL-23, significantly hampered Dexamethasone-induced apoptosis (1400 and 320 nM Dex, respectively). Dexamethasone's trans-activation of GILZ and trans-repression of NF-kB-driven IL-6 expression were both inhibited by IL2 + 4; IL17 + IL23 antagonized Dex trans-repression in PBMC from asthmatics. CONCLUSIONS GR-beta up-regulation by IL-17/IL-23 cytokines is associated with induced steroid insensitivity in PBMCs, observed as diminished Dexamethasone's effects on cell proliferation, apoptosis and gene regulation. Steroid resistance induced by IL-2/IL-4 was associated with decreased GR-alpha expression. This study supports the possibility that Th-17 lymphocytes and associated cytokines play a role in the mechanism of steroid hypo-responsiveness in severe asthmatics.
Collapse
|
23
|
An YH, Hong SL, Han DH, Lee CH, Min YG, Rhee CS. Expression of the cysteinyl leukotriene 1 receptor and glucocorticoid receptor-β in nasal polyps. Eur Arch Otorhinolaryngol 2012; 270:1373-8. [PMID: 23124618 DOI: 10.1007/s00405-012-2239-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/18/2012] [Indexed: 12/01/2022]
Abstract
The objective of this study was to analyze the expression of cysteinyl leukotriene 1 (CysLT1) receptor and glucocorticoid receptors (GRs) in nasal polyps, and to evaluate the relationship between the expression of CysLT1 receptors and that of GRs. Nasal polyps were taken from 32 patients of chronic rhinosinusitis with nasal polyposis. Samples of middle turbinate from seven healthy subjects were used as controls. Specimens were immunohistochemically stained for CysLT1 receptor, GR-α and GR-β receptor, and were quantified in the unit area of the tissues. Numbers of CysLT1 receptor-positive cells were much increased in nasal polyps than in middle turbinate (281 ± 67 vs. 157 ± 85 cells/mm(2), P = .01). There was no significant difference in the numbers of GR-α positive cells between nasal polyps and normal turbinate mucosa. GR-β positive cells were increased in nasal polyps as compared to normal turbinate mucosa (36 ± 8 vs. 19 ± 7 cells/mm(2), P = .03). A significant relationship was found between the expression of CysLT1 receptor and GR-β in nasal polyps (R = .525, P = .04), whereas there was no significant relationship between the expression of CysLT1 receptor and GR-α in nasal polyps. Our study shows that CysLT1 receptor expression predominates on GR-β over-expressed polyps. This may suggest the additional effect of CysLT1 receptor antagonist for the treatment of nasal polyposis resistant to steroid alone.
Collapse
Affiliation(s)
- Yong-Hwi An
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul 110-744, Korea.
| | | | | | | | | | | |
Collapse
|
24
|
Melarangi T, Zhuang J, Lin K, Rockliffe N, Bosanquet AG, Oates M, Slupsky JR, Pettitt AR. Glucocorticoid resistance in chronic lymphocytic leukaemia is associated with a failure of upregulated Bim/Bcl-2 complexes to activate Bax and Bak. Cell Death Dis 2012; 3:e372. [PMID: 22898870 PMCID: PMC3434667 DOI: 10.1038/cddis.2012.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glucocorticoids (GCs) represent an important component of modern treatment regimens for fludarabine-refractory or TP53-defective chronic lymphocytic leukemia (CLL). However, GC therapy is not effective in all patients. The molecular mechanisms responsible for GC-induced apoptosis and resistance were therefore investigated in primary malignant cells obtained from a cohort of 46 patients with CLL. Dexamethasone-induced apoptosis was unaffected by p53 dysfunction and more pronounced in cases with unmutated IGHV genes. Cross-resistance was observed between dexamethasone and other GCs but not fludarabine, indicating non-identical resistance mechanisms. GC treatment resulted in the upregulation of Bim mRNA and protein, but to comparable levels in both GC-resistant and sensitive cells. Pre-incubation with Bim siRNAs reduced GC-induced upregulation of Bim protein and conferred resistance to GC-induced apoptosis in previously GC-sensitive cells. GC-induced upregulation of Bim was associated with the activation of Bax and Bak in GC-sensitive but not -resistant CLL samples. Co-immunoprecipitation experiments showed that Bim does not interact directly with Bax or Bak, but is almost exclusively bound to Bcl-2 regardless of GC treatment. Taken together, these findings suggest that the GC-induced killing of CLL cells results from the indirect activation of Bax and Bak by upregulated Bim/Bcl-2 complexes, and that GC resistance results from the failure of such activation to occur.
Collapse
Affiliation(s)
- T Melarangi
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Gross KL, Oakley RH, Scoltock AB, Jewell CM, Cidlowski JA. Glucocorticoid receptor alpha isoform-selective regulation of antiapoptotic genes in osteosarcoma cells: a new mechanism for glucocorticoid resistance. Mol Endocrinol 2011; 25:1087-99. [PMID: 21527497 DOI: 10.1210/me.2010-0051] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids regulate a variety of physiological processes and are commonly used to treat disorders of inflammation, autoimmune diseases, and cancer. Glucocorticoid action is predominantly mediated through the classic glucocorticoid receptor (GR)α isoform. Recent data suggest that the mature GRα mRNA is translated into multiple N-terminal isoforms that have distinct biochemical properties and gene regulatory profiles. Interestingly, osteosarcoma cells stably expressing the GRα-D translational isoform are unique in that they are resistant to glucocorticoid-induced apoptosis. In this study, we investigate whether GRα isoform-specific differences in the regulation of antiapoptotic genes contribute to this resistant phenotype. We now show that GRα-D, unlike the other receptor isoforms, does not inhibit the activity of a nuclear factor κB (NF-κB)-responsive reporter gene and does not efficiently repress either the transcription or protein production of the antiapoptotic genes Bcl-xL, cellular inhibitor of apoptosis protein 1, and survivin. The inability of GRα-D to down-regulate the expression of these genes appears to be associated with a diminished interaction between GRα-D and NF-κB that is observed in cells, but not in vitro, and likely reflects the sequestration of GRα-D in the nucleus. Deletion of the GRα N-terminal amino acids 98-335 also results in a nuclear resident GR, which fails to interact with NF-κB in cells and promote apoptosis in response to glucocorticoids. These data suggest that the N-terminal translational isoforms of GRα selectively regulate antiapoptotic genes and that the GRα-D isoform may contribute to the resistance of certain cancer cells to glucocorticoid-induced apoptosis.
Collapse
Affiliation(s)
- Katherine L Gross
- Molecular Endocrinology Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
27
|
Differential expression of glucocorticoid receptor transcripts in major depressive disorder is not epigenetically programmed. Psychoneuroendocrinology 2010; 35:544-56. [PMID: 19782477 DOI: 10.1016/j.psyneuen.2009.09.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 01/17/2023]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis is one of the most consistent findings in major depressive disorder (MDD). Impaired HPA feedback may be due to the lower glucocorticoid receptor (GR) or mineralocorticoid receptor (MR) levels in the forebrain. GR levels are transcriptionally controlled by multiple untranslated alternative first exons, each with its own promoter providing a mechanism for tissue-specific fine-tuning of GR levels. Recently epigenetic methylation of these GR promoters was shown to modulate hippocampal GR levels. Here we investigate in post-mortem brain tissues whether in MDD HPA axis hyperactivity may be due to epigenetic modulation of GR transcript variants. Levels of GRalpha, GRbeta and GR-P transcripts were homogeneous throughout the limbic system, with GRalpha being the most abundant (83%), followed by GR-P (5-6%) while GRbeta was barely detectable (0.02%). Among the alternative first exons, 1B and 1C were the most active, while 1E and 1J showed the lowest expression and transcript 1F expressed intermediate levels of about 1%. In MDD, total GR levels were unaltered, although GRalpha was decreased in the amygdala and cingulate gyrus (p<0.05); transcripts containing exons 1B, 1C and 1F were lower, and 1D and1J were increased in some regions. NGFI-A, a transcription factor of exon 1F was down-regulated in the hippocampus of MDD patients; concomitantly exon 1F expression was reduced. Bisulphite sequencing of the alternative promoters showed low methylation levels in both MDD and control brains. Promoter 1F was uniformly unmethylated, suggesting that reduced 1F transcript levels are not linked to promoter methylation but to the observed dearth of NGFI-A. Previous studies showed high methylation levels in the 1F promoter, associated with childhood abuse. Provided our donors were not abused, our results suggest that the pathomechanism of MDD is similar but nevertheless distinct from that of abuse victims, explaining the clinical similarity of both conditions and that susceptibility to depression may be either predisposed by early trauma or developed independent of such a condition. However, this should be further confirmed in dedicated studies in larger cohorts.
Collapse
|
28
|
Smith LK, Cidlowski JA. Glucocorticoid-induced apoptosis of healthy and malignant lymphocytes. PROGRESS IN BRAIN RESEARCH 2010; 182:1-30. [PMID: 20541659 DOI: 10.1016/s0079-6123(10)82001-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glucocorticoids exert a wide range of physiological effects, including the induction of apoptosis in lymphocytes. The progression of glucocorticoid-induced apoptosis is a multi-component process requiring contributions from both genomic and cytoplasmic signaling events. There is significant evidence indicating that the transactivation activity of the glucocorticoid receptor is required for the initiation of glucocorticoid-induced apoptosis. However, the rapid cytoplasmic effects of glucocorticoids may also contribute to the glucocorticoid-induced apoptosis-signaling pathway. Endogenous glucocorticoids shape the T-cell repertoire through both the induction of apoptosis by neglect during thymocyte maturation and the antagonism of T-cell receptor (TCR)-induced apoptosis during positive selection. Owing to their ability to induce apoptosis in lymphocytes, synthetic glucocorticoids are widely used in the treatment of haematological malignancies. Glucocorticoid chemotherapy is limited, however, by the emergence of glucocorticoid resistance. The development of novel therapies designed to overcome glucocorticoid resistance will dramatically improve the efficacy of glucocorticoid therapy in the treatment of haematological malignancies.
Collapse
Affiliation(s)
- Lindsay K Smith
- Molecular Endocrinology Group, Laboratory of Signal Transduction, NIEHS, NIH, DHHS, Research Triangle Park, NC, USA
| | | |
Collapse
|
29
|
Dempsey NC, Leoni F, Ireland HE, Hoyle C, Williams JHH. Differential heat shock protein localization in chronic lymphocytic leukemia. J Leukoc Biol 2009; 87:467-76. [PMID: 20007907 DOI: 10.1189/jlb.0709502] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mechanisms behind carcinogenesis and resistance of tumor cells to treatment regimes remain elusive. The major stress proteins Hsp72, Hsp90, and Hsp27 are credible candidates to provide this resistance, as their overexpression in many cancer types is well documented. In addition to being present inside tumor cells, where they confer resistance to apoptosis, Hsp72, in particular, is presented externally, embedded in the cell membrane of cancer cells. This study aimed to investigate the localization of Hsp72, Hsp90, and Hsp27 in leukocytes from patients with CLL and age-matched control subjects. CLL patients were found to express significantly higher levels of iHsp90 (CLL=2463 MFI; control=748 MFI) and iHsp27 (CLL=2190 MFI; control=1031 MFI) in lymphocytes than that expressed by lymphocytes from control subjects. Furthermore, expression of iHsp90 was shown to be related to stage of disease, and expression of iHsp27 correlated with levels of active caspase-3. Patients were found to express very high levels or very low levels of sHsp72 and iHsp72 in CD5(+)/CD19(+) cells, although surface and intracellular datasets did not correlate. Levels of extracellular Hsp72 circulating in the serum were found to correlate with internal levels of Hsp72 and were also found to be significantly lower in patients receiving corticosteroid treatment than in patients not receiving corticosteroid treatment. Finally, analysis of the number of circulating Tregs revealed significantly elevated numbers in CLL patients compared with control subjects.
Collapse
Affiliation(s)
- Nina C Dempsey
- Chester Centre for Stress Research, University of Chester, Chester, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Kino T, Su YA, Chrousos GP. Human glucocorticoid receptor isoform beta: recent understanding of its potential implications in physiology and pathophysiology. Cell Mol Life Sci 2009; 66:3435-48. [PMID: 19633971 PMCID: PMC2796272 DOI: 10.1007/s00018-009-0098-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/16/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
The human glucocorticoid receptor (GR) gene expresses two splicing isoforms alpha and beta through alternative use of specific exons 9alpha and 9beta. In contrast to the classic receptor GRalpha, which mediates most of the known actions of glucocorticoids, the functions of GRbeta have been largely unexplored. Owing to newly developed methods, for example microarrays and the jellyfish fluorescence proteins, we and others have recently revealed novel functions of GRbeta. Indeed, this enigmatic GR isoform influences positively and negatively the transcriptional activity of large subsets of genes, most of which are not responsive to glucocorticoids, in addition to its well-known dominant negative effect against GRalpha-mediated transcriptional activity. A recent report suggested that the "ligand-binding domain" of GRbeta is active, forming a functional ligand-binding pocket associated with the synthetic compound RU 486. In this review, we discuss the functions of GRbeta, its mechanisms of action, and its pathologic implications.
Collapse
Affiliation(s)
- Tomoshige Kino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, Clinical Research Center, Rm. 1E-3140, 10 Center Drive MSC 1109, Bethesda, MD 20892-1109, USA.
| | | | | |
Collapse
|
31
|
van der Vaart M, Schaaf MJ. Naturally occurring C-terminal splice variants of nuclear receptors. NUCLEAR RECEPTOR SIGNALING 2009; 7:e007. [PMID: 19636396 PMCID: PMC2716050 DOI: 10.1621/nrs.07007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/27/2009] [Indexed: 12/17/2022]
Abstract
Alternative mRNA splicing in the region encoding the C-terminus of nuclear receptors results in receptor variants lacking the entire ligand-binding domain (LBD), or a part of it, and instead contain a sequence of splice variant-specific C-terminal amino acids. A total of thirteen such splice variants have been shown to occur in vertebrates, and at least nine occur in humans. None of these receptor variants appear to be able to bind endogenous ligands and to induce transcription on promoters containing the response element for the respective canonical receptor variant. Interestingly, ten of these C-terminal splice variants have been shown to display dominant-negative activity on the transactivational properties of their canonical equivalent. Research on most of these splice variants has been limited, and the dominant-negative effect of these receptor variants has only been demonstrated in reporter assays in vitro, using transiently transfected receptors and reporter constructs. Therefore, the in vivo function and relevance of most C-terminal splice variants remains unclear. By reviewing the literature on the human glucocorticoid receptor beta-isoform (hGRbeta), we show that the dominant-negative effect of hGRbeta is well established using more physiologically relevant readouts. The hGR beta-isoform may alter gene transcription independent from the canonical receptor and increased hGRbeta levels correlate with glucocorticoid resistance and the occurrence of several immune-related diseases. Thus, available data suggests that C-terminal splice variants of nuclear receptors act as dominant-negative inhibitors of receptor-mediated signaling in vivo, and that aberrant expression of these isoforms may be involved in the pathogenesis of a variety of diseases.
Collapse
Affiliation(s)
| | - Marcel J.M. Schaaf
- Molecular Cell Biology, Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
| |
Collapse
|
32
|
Piotrowska H, Jagodzinski PP. Glucocorticoid receptor alpha and beta variant expression is associated with ASF/SF2 splicing factor upregulation in HT-29 colon cancer and MCF-7 breast carcinoma cells. Arch Med Res 2009; 40:156-62. [PMID: 19427965 DOI: 10.1016/j.arcmed.2009.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 01/26/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Transcriptional activity of NF-kappaB is inhibited by the liganded glucocorticoid receptor (GR), which exists mainly in two splice variants as functional GRalpha and nonfunctional GRbeta. We investigated the effect of 5-aza-2'-deoxycytidine (5-dAzaC), trichostatin A (TSA), and sodium butyrate (NaBu) on GRalpha,GRbeta and ASF/SF2 splicing factor expression in HT-29 colon and MCF-7 breast carcinoma cells. METHODS HT-29 and MCF-7 cells were cultured in the absence or in the presence of 5-dAzaC, TSA, and NaBu, followed by RNA and protein isolation. The transcript and protein levels of GRalpha, GRbeta ASF/SF2 were determined by reverse transcription, real-time quantitative PCR and Western blot analysis. RESULTS We found that 5-dAzaC, TSA, and NaBu lead to an increase in GRalpha and ASF/SF2 transcript levels and a decrease in GRbeta transcript levels in HT-29 and MCF-7 cells. The 5-dAzaC, TSA, and NaBu resulted in increased GRalpha and ASF/SF2 protein levels and GRbeta protein downregulation in HT-29 cells. The most increased GRalpha protein expression in MCF-7 cells was observed with NaBu. However, all of these compounds inhibited GRbeta protein expression in MCF-7 cells. The MCF-7 cells treated with NaBu demonstrated a remarkable increase in ASF/SF2 protein expression. CONCLUSIONS Because NF-kappaB is considered to be a factor in the augmentation of malignant properties of cells, treatment of tumors with 5-dAzaC, TSA, and NaBu may provide a novel approach to the enhancement of therapeutic effects of glucocorticoids in epithelial carcinomas.
Collapse
Affiliation(s)
- Hanna Piotrowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
33
|
Gross KL, Lu NZ, Cidlowski JA. Molecular mechanisms regulating glucocorticoid sensitivity and resistance. Mol Cell Endocrinol 2009; 300:7-16. [PMID: 19000736 PMCID: PMC2674248 DOI: 10.1016/j.mce.2008.10.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 02/07/2023]
Abstract
Glucocorticoid receptor agonists are mainstays in the treatment of various malignancies of hematological origin. Glucocorticoids are included in therapeutic regimens for their ability to stimulate intracellular signal transduction cascades that culminate in alterations in the rate of transcription of genes involved in cell cycle progression and programmed cell death. Unfortunately, subpopulations of patients undergoing systemic glucocorticoid therapy for these diseases are or become insensitive to glucocorticoid-induced cell death, a phenomenon recognized as glucocorticoid resistance. Multiple factors contributing to glucocorticoid resistance have been identified. Here we summarize several of these mechanisms and describe the processes involved in generating a host of glucocorticoid receptor isoforms from one gene. The potential role of glucocorticoid receptor isoforms in determining cellular responsiveness to glucocorticoids is emphasized.
Collapse
Affiliation(s)
| | | | - John A. Cidlowski
- Corresponding Author. Mailing address: National Institute of Environmental Health Sciences, P.O. Box 12233, MD F3-07, Research Triangle Park, NC 27709, Phone: 919-541-1564. Fax: 919-541-1367. E-mail:
| |
Collapse
|
34
|
A novel method for monitoring glucocorticoid-induced changes of the glucocorticoid receptor in kidney transplant recipients. Transpl Immunol 2009; 20:249-52. [DOI: 10.1016/j.trim.2008.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 11/23/2022]
|
35
|
Schaaf MJM, Chatzopoulou A, Spaink HP. The zebrafish as a model system for glucocorticoid receptor research. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:75-82. [PMID: 19168143 DOI: 10.1016/j.cbpa.2008.12.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/24/2008] [Accepted: 12/25/2008] [Indexed: 11/26/2022]
Abstract
Glucocorticoids regulate a plethora of physiological processes, and are widely used clinically as anti-inflammatory drugs. Their effects are mediated by the glucocorticoid receptor (GR), a ligand-activated transcription factor. Currently, zebrafish embryos are being developed into a model system for GR research, since they are easy to manipulate genetically and their phenotype can easily be visualized because of their transparent bodies. In addition, the zebrafish GR gene shows a relatively high level of similarity with its human equivalent. First, both the zebrafish and the human genome contain only a single gene encoding the GR. In all other fish species studied thus far, two GR genes have been found. Second, the zebrafish contains a C-terminal GR splice variant with high similarity to the human GRbeta, which has been shown to be a dominant-negative inhibitor of the canonical GRalpha and may be involved in glucocorticoid resistance. Thus, zebrafish embryos are potentially a useful model system for glucocorticoid receptor research, but currently only a limited number of tools is available. In this review, we discuss which tools are available and which need to be developed, in order to exploit the full potential of the zebrafish as a model system for GR research.
Collapse
Affiliation(s)
- M J M Schaaf
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, The Netherlands.
| | | | | |
Collapse
|
36
|
Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 2009; 101:127-248. [PMID: 19055945 DOI: 10.1016/s0065-230x(08)00406-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of hematopoietic malignancies owing to their ability to induce apoptosis of these cancerous cells. Whereas some types of lymphoma and leukemia respond well to this drug, others are resistant. Also, GC-resistance gradually develops upon repeated treatments ultimately leading to refractory relapsed disease. Understanding the mechanisms regulating GC-induced apoptosis is therefore uttermost important for designing novel treatment strategies that overcome GC-resistance. This review discusses updated data describing the complex regulation of the cell's susceptibility to apoptosis triggered by GCs. We address both the genomic and nongenomic effects involved in promoting the apoptotic signals as well as the resistance mechanisms opposing these signals. Eventually we address potential strategies of clinical relevance that sensitize GC-resistant lymphoma and leukemia cells to this drug. The major target is the nongenomic signal transduction machinery where the interplay between protein kinases determines the cell fate. Shifting the balance of the kinome towards a state where Glycogen synthase kinase 3alpha (GSK3alpha) is kept active, favors an apoptotic response. Accumulating data show that it is possible to therapeutically modulate GC-resistance in patients, thereby improving the response to GC therapy.
Collapse
|
37
|
Schaaf MJM, Champagne D, van Laanen IHC, van Wijk DCWA, Meijer AH, Meijer OC, Spaink HP, Richardson MK. Discovery of a functional glucocorticoid receptor beta-isoform in zebrafish. Endocrinology 2008; 149:1591-9. [PMID: 18096659 DOI: 10.1210/en.2007-1364] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In humans, two glucocorticoid receptor (GR) splice variants exist: GRalpha and GRbeta, which are identical between amino acids 1-727 and then diverge. Whereas GRalpha (the canonical GR) acts as a ligand-activated transcription factor, GRbeta does not bind traditional glucocorticoid agonists, lacks GRalpha's transactivational activity, and acts as a dominant-negative inhibitor of GRalpha. It has been suggested that this receptor isoform is involved in the induction of glucocorticoid resistance in asthma patients. Unfortunately, a GR beta-isoform has been detected in only humans, and therefore, an animal model for studies on this isoform is lacking. In the present study, we demonstrate that in zebrafish a GR isoform exists that diverges from the canonical zebrafish GR at the same position as human GRbeta from human GRalpha. The zebrafish GR beta-isoform acts as a dominant-negative inhibitor in reporter assays, and the extent of inhibition and the effective GRalpha/GRbeta ratio is similar to studies performed with the human GR isoforms. In addition, the subcellular localization of zebrafish GRbeta is similar to its human equivalent. Finally, expression levels of GRalpha and GRbeta were determined in adult zebrafish tissues and at several developmental stages. Both receptor isoforms were detected throughout the body, and GRbeta mRNA levels were relatively low compared with GRalpha mRNA levels, as in humans. Thus, for the first time, a GR beta-isoform has been identified in a nonhuman animal species, shedding new light on the relevance of this GR splice variant and providing a versatile animal model for studies on the GR system.
Collapse
Affiliation(s)
- Marcel J M Schaaf
- Department of Molecular Cell Biology, Institute of Biology, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Meyers JA, Taverna J, Chaves J, Makkinje A, Lerner A. Phosphodiesterase 4 inhibitors augment levels of glucocorticoid receptor in B cell chronic lymphocytic leukemia but not in normal circulating hematopoietic cells. Clin Cancer Res 2007; 13:4920-7. [PMID: 17699872 PMCID: PMC2656255 DOI: 10.1158/1078-0432.ccr-07-0276] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Type 4 cyclic AMP (cAMP) phosphodiesterase (PDE4) inhibitors, a class of compounds in clinical development that activate cAMP-mediated signaling by inhibiting cAMP catabolism, offer a feasible means by which to potentiate glucocorticoid-mediated apoptosis in lymphoid malignancies such as B-cell chronic lymphocytic leukemia (B-CLL). In this study, we show that PDE4 inhibitors up-regulate glucocorticoid receptor (GRalpha) transcript levels in B-CLL cells but not T-CLL cells or Sezary cells or normal circulating T cells, B cells, monocytes, or neutrophils. Because GRalpha transcript half-life does not vary in CLL cells treated with the prototypic PDE4 inhibitor rolipram, the 4-fold increase in GRalpha mRNA levels observed within 4 h of rolipram treatment seems to result from an increase in GRalpha transcription. Rolipram treatment increases levels of transcripts derived from the 1A3 promoter to a greater extent than the 1B promoter. Treatment of B-CLL cells with two other PDE4 inhibitors currently in clinical development also augments GR transcript levels and glucocorticoid-mediated apoptosis. Washout studies show that simultaneous treatment with both drug classes irreversibly augments apoptosis over the same time frame that GR up-regulation occurs. Although treatment of B-CLL cells with glucocorticoids reduces basal GRalpha transcript levels in a dose-related manner, cotreatment with rolipram maintained GRalpha transcript levels above baseline. Our results suggest that as a result of their unusual sensitivity to PDE4 inhibitor-mediated up-regulation of GRalpha expression, treatment of B-CLL patients with combined PDE4 inhibitor/glucocorticoid therapy may be of therapeutic benefit in this disease.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors
- Aminopyridines/pharmacology
- Apoptosis/drug effects
- Benzamides/pharmacology
- Carboxylic Acids/pharmacology
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Cyclohexanecarboxylic Acids
- Cyclopropanes/pharmacology
- Dexamethasone/pharmacology
- Gene Expression Regulation, Leukemic/drug effects
- Hematopoietic System/chemistry
- Hematopoietic System/cytology
- Hematopoietic System/drug effects
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Nitriles/pharmacology
- Phosphodiesterase Inhibitors/pharmacology
- Receptors, Glucocorticoid/analysis
- Receptors, Glucocorticoid/drug effects
- Receptors, Glucocorticoid/genetics
- Rolipram/pharmacology
Collapse
Affiliation(s)
- John A. Meyers
- Evans Department of Medicine, Section of Hematology and Oncology, Boston Medical Center
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - Josephine Taverna
- Evans Department of Medicine, Section of Hematology and Oncology, Boston Medical Center
| | - Jorge Chaves
- Evans Department of Medicine, Section of Hematology and Oncology, Boston Medical Center
| | - Anthony Makkinje
- Evans Department of Medicine, Section of Hematology and Oncology, Boston Medical Center
| | - Adam Lerner
- Evans Department of Medicine, Section of Hematology and Oncology, Boston Medical Center
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
39
|
Piotrowska H, Jagodzinski PP. Trichostatin A, sodium butyrate, and 5-aza-2′-deoxycytidine alter the expression of glucocorticoid receptor α and β isoforms in Hut-78 T- and Raji B-lymphoma cell lines. Biomed Pharmacother 2007; 61:451-4. [PMID: 17498915 DOI: 10.1016/j.biopha.2007.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022] Open
Abstract
The glucocorticoid receptor (GR) is mainly expressed as nine-exon alternatively spliced variants, encoding functional GRalpha and nonfunctional GRbeta. Overexpression of GRbeta splice variant was found in glucocorticoid-resistant patients with some autoimmune diseases and hematological malignancies. Employing reverse transcription, real-time quantitative PCR, and western blot analysis, we determined an effect of trichostatin A (TSA), sodium butyrate (NaBu) and 5-aza-2'-deoxycytidine (5-dAzaC) on GRalpha and GRbeta expression in Hut-78 T- and Raji B-lymphoma cell lines. We found that TSA, NaBu, and 5-dAzaC significantly increase the expression of GRalpha transcript and protein, whereas GRbeta transcript and protein expression was profoundly decreased in Hut-78 T- and Raji B- lymphoma cell lines. Our observation suggests that changes of epigenetic milieu inside cells may alter the expression of GRalpha and GRbeta isoforms.
Collapse
Affiliation(s)
- H Piotrowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland
| | | |
Collapse
|
40
|
Zhang XW, Li Y, Wang ZL, Li P. Glucocorticoid receptor subunit gene expression in thyroid gland and adenomas. Acta Oncol 2007; 45:1073-8. [PMID: 17118842 DOI: 10.1080/02841860600602961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The present study was undertaken to investigate whether the glucocorticoid receptor -alpha (GR-alpha) and -beta (GR-beta) mRNA may be expressed in thyroid gland. Ten normal thyroid gland and 14 follicular adenomas were studied using a real-time fluorescent quantitative RT-PCR (FQ-RT-PCR) method. The results demonstrated that there was a lower expression of GR-alpha mRNA (x10(6) GR-alpha cDNA copies/microg total RNA) in thyroid adenoma (1.27+/-0.26) than that in normal thyroid gland (3.53+/-1.22) (p < 0.001). The expression of GR-beta mRNA was lower in all the thyroid tissues. Of note, there was a significant difference in GR-beta mRNA expression (x10(4) GR-beta cDNA copies/microg total RNA) between thyroid adenoma (80.8+/-13.9) and thyroid gland (1.78+/-0.59) (p < 0.001). The GR-alpha/GR-beta ratios in thyroid adenoma and normal thyroid gland were 1.67+/-0.68 and 207.57+/-84.41 respectively (p < 0.001). These results revealed, for the first time, that both GR-alpha and GR-beta mRNA expression were detectable in both thyroid gland and adenomas tissues. We therefore conclude that down-regulation of GR-alpha and up-regulation of GR-beta mRNA expression may play an important role in the thyroid adenomas.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China.
| | | | | | | |
Collapse
|
41
|
Lewis-Tuffin LJ, Jewell CM, Bienstock RJ, Collins JB, Cidlowski JA. Human glucocorticoid receptor beta binds RU-486 and is transcriptionally active. Mol Cell Biol 2007; 27:2266-82. [PMID: 17242213 PMCID: PMC1820503 DOI: 10.1128/mcb.01439-06] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human glucocorticoid receptor (hGR) is expressed as two alternately spliced C-terminal isoforms, alpha and beta. In contrast to the canonical hGRalpha, hGRbeta is a nucleus-localized orphan receptor thought not to bind ligand and not to affect gene transcription other than by acting as a dominant negative to hGRalpha. Here we used confocal microscopy to examine the cellular localization of transiently expressed fluorescent protein-tagged hGRbeta in COS-1 and U-2 OS cells. Surprisingly, yellow fluorescent protein (YFP)-hGRbeta was predominantly located in the cytoplasm and translocated to the nucleus following application of the glucocorticoid antagonist RU-486. This effect of RU-486 was confirmed with transiently expressed wild-type hGRbeta. Confocal microscopy of coexpressed YFP-hGRbeta and cyan fluorescent protein-hGRalpha in COS-1 cells indicated that the receptors move into the nucleus independently. Using a ligand binding assay, we confirmed that hGRbeta bound RU-486 but not the hGRalpha ligand dexamethasone. Examination of the cellular localization of YFP-hGRbeta in response to a series of 57 related compounds indicated that RU-486 is thus far the only identified ligand that interacts with hGRbeta. The selective interaction of RU-486 with hGRbeta was also supported by molecular modeling and computational docking studies. Interestingly, microarray analysis indicates that hGRbeta, expressed in the absence of hGRalpha, can regulate gene expression and furthermore that occupation of hGRbeta with the antagonist RU-486 diminishes that capacity despite the lack of helix 12 in the ligand binding domain.
Collapse
Affiliation(s)
- Laura J Lewis-Tuffin
- Laboratory of Signal Transduciton, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
42
|
McMaster A, Ray DW. Modelling the glucocorticoid receptor and producing therapeutic agents with anti-inflammatory effects but reduced side-effects. Exp Physiol 2006; 92:299-309. [PMID: 17138619 DOI: 10.1113/expphysiol.2006.036194] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucocorticoid hormones exert a wide spectrum of metabolic and immunological effects. They are synthesized from a cholesterol precursor and are structurally related to the other steroid hormones, progesterone, aldosterone and oestrogen. They act through the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily. The GR is an intracellular receptor; the hydrophobic ligand accesses its receptor by diffusion across the plasma membrane. The ligand-activated GR translocates to the nucleus to regulate expression of its target genes. The GR, in common with the rest of the receptor family, can be functionally divided into an N-terminal transcription activation domain, a central DNA binding domain and a C-terminal ligand binding domain, which also includes a second transactivation domain. Although synthetic glucocorticoids are the most potent anti-inflammatory agents known, their use is limited owing to the range and severity of their side-effects. The structure of the ligand binding domain of the glucocorticoid receptor has now been solved, and a series of studies has shown that even subtle changes to the ligand structure alter the final conformation of the ligand-receptor complex, with consequences for further protein recruitment and for the function of the receptor. This, coupled with the successful development of selective oestrogen receptor agonists, has led to concerted efforts to find selective GR ligands, with preserved beneficial anti-inflammatory activity, but reduced side-effect profile. Current efforts have identified several useful tool compounds, and further molecules are in development in several pharmaceutical companies.
Collapse
Affiliation(s)
- Andrew McMaster
- Endocrine Sciences Research Group, Room 3-903, Stopford Building, University of Manchester, Manchester M13 9PT, UK.
| | | |
Collapse
|
43
|
Tome ME, Johnson DBF, Samulitis BK, Dorr RT, Briehl MM. Glucose 6-phosphate dehydrogenase overexpression models glucose deprivation and sensitizes lymphoma cells to apoptosis. Antioxid Redox Signal 2006; 8:1315-27. [PMID: 16910779 DOI: 10.1089/ars.2006.8.1315] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucocorticoids are one component of combined treatment regimens for many types of lymphoma due to their ability to induce apoptosis in lymphoid cells. In WEHI7.2 murine thymic lymphoma cells, altering catalase and glutathione peroxidase activity by transfection or the use of chemical agents modulates the ability of glucocorticoids to induce apoptosis. This suggests that the oxidative stress response is important in determining the glucocorticoid sensitivity of the cells. For glutathione peroxidase and catalase to detoxify reactive oxygen species (ROS), reducing equivalents in the form of nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) are ultimately required. The major source of NADPH in the cell is glucose 6-phosphate dehydrogenase (G6PDH). Therefore, we created G6PDH-overexpressing WEHI7.2 variants to test whether G6PDH activity is a key determinant of glucocorticoid sensitivity in WEHI7.2 cells. G6PDH-overexpressing WEHI7.2 cells were more sensitive to oxidative stress and glucocorticoids. The G6PDH-overexpressing WEHI7.2 variants appeared similar to cells undergoing glucose deprivation with decreased adenosine triphosphate (ATP) synthesis by the mitochondria and increased basal levels of ROS. Overexpression of G6PDH also sensitized the cells to other standard lymphoma chemotherapeutics including cyclophosphamide, doxorubicin, and vincristine. The decreased ATP and elevated ROS due to G6PDH overexpression may be key factors in increasing the sensitivity of the WEHI7.2 cells to lymphoma chemotherapeutics.
Collapse
Affiliation(s)
- Margaret E Tome
- Department of Pathology, University of Arizona, Tucson, 85724, USA
| | | | | | | | | |
Collapse
|
44
|
Lewis-Tuffin LJ, Cidlowski JA. The Physiology of Human Glucocorticoid Receptor beta (hGRbeta) and Glucocorticoid Resistance. Ann N Y Acad Sci 2006; 1069:1-9. [PMID: 16855130 DOI: 10.1196/annals.1351.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of glucocorticoid (GC) resistance is a serious problem that complicates the treatment of immune-related diseases, such as asthma, ulcerative colitis, and hematologic cancers. hGRalpha and hGRbeta are two isoforms of the human glucocorticoid receptor, which differ in the structural composition of the carboxy-terminal end of the ligand-binding domain and therefore in their ability to bind glucocorticoid ligand and in their physiological function. hGRalpha is the classically functional GR, while hGRbeta seems to act mainly as a dominant negative to the function of hGRalpha. Because of the ability of hGRbeta to antagonize the action of hGRalpha, it has been hypothesized that changes in the expression of hGRbeta may underlie the development of glucocorticoid resistance. In this article we review what is known about the expression and physiological action of hGRbeta in normal cells and tissue as well as in several disease states. Taken together, the evidence suggests that the ratio of hGRalpha:hGRbeta expression is indeed critical to the glucocorticoid responsiveness of various cells. This ratio can be altered by changing the expression level of hGRalpha, hGRbeta, or both receptors simultaneously. Higher ratios correlate with glucocorticoid sensitivity, while lower ratios correlate with glucocorticoid resistance. Thus hGRbeta can be an important modulator of glucocorticoid responsiveness.
Collapse
Affiliation(s)
- Laura J Lewis-Tuffin
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
45
|
Lauten M, Schrauder A, Kardinal C, Harbott J, Welte K, Schlegelberger B, Schrappe M, von Neuhoff N. Unsupervised proteome analysis of human leukaemia cells identifies the Valosin-containing protein as a putative marker for glucocorticoid resistance. Leukemia 2006; 20:820-6. [PMID: 16541142 DOI: 10.1038/sj.leu.2404162] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The response to initial glucocorticoid therapy in childhood acute lymphoblastic leukaemia (ALL) reliably predicts the response to multiagent chemotherapy. Patients resistant to glucocorticoids (prednisone poor responders (PPR)) have a poorer event-free survival compared to glucocorticoid-sensitive patients (prednisone good responders (PGR)). A case-control study was performed to investigate differential protein expression in leukaemic blasts from PGR and PPR childhood ALL patients. Two-dimensional gel electrophoresis (2-DE) was used for an unsupervised screening and surface enhanced laser desorption/ionisation-time of flight mass spectrometry (SELDI-TOF MS) for the characterisation of protein spots. In difference maps of average gels for the proteomes of each responder group, differentially expressed proteins were identified after tryptic digestion and spotting onto H4-SELDI-TOF-MS chips. Proteins overexpressed in PPR were Catalase, RING finger protein 22 alpha, Valosin-containing protein (VCP) and a G-protein-coupled receptor. Proteins overexpressed in PGR were protein kinase C and malate dehydrogenase. Valosin-containing protein was chosen for validation and quantification by Western blot analysis in a second case-control group of ALL patients. In this second independent cohort, median VCP expression (P25-P75) was 0.15 (0.11-0.28) in PGR and 0.34 (0.14-0.99) in PPR patients (P = 0.04). We conclude that high VCP expression is associated with poor prednisone response in childhood ALL patients.
Collapse
Affiliation(s)
- M Lauten
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Haematology and Oncology, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Koga Y, Matsuzaki A, Suminoe A, Hattori H, Kanemitsu S, Hara T. Differential mRNA expression of glucocorticoid receptor alpha and beta is associated with glucocorticoid sensitivity of acute lymphoblastic leukemia in children. Pediatr Blood Cancer 2005; 45:121-7. [PMID: 15704223 DOI: 10.1002/pbc.20308] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Sensitivity of leukemic blasts to glucocorticoid is one of the important prognostic factors for pediatric acute lymphoblastic leukemia (ALL). Alternative splicing of the glucocorticoid receptor (GR) gene results in several isoforms. We examined an association of the expression pattern of GR isoforms in leukemic blasts with their sensitivity to glucocorticoid in childhood ALL. PROCEDURES The relative mRNA expression of GRalpha, GRbeta, GRgamma, and GR-P was determined in leukemic blasts of 23 childhood ALL at initial presentation and of 14 ALL cell lines by quantitative RT-PCR. Glucocorticoid-sensitivity of leukemic blasts was determined by counting apoptotic cells with flow cytometry after 6-hr incubation with prednisolone (PSL). RESULTS The relative expression of GRalpha mRNA was significantly higher in blasts of B-precursor ALL than those of others (13.6 vs. 2.24, P = 0.015), while those of GRalpha, GRbeta, and GRgamma showed no difference. GRbeta/GRalpha ratios were significantly lower in B-precursor ALL than others (0.80 vs. 4.64, P = 0.035). The proportions of apoptotic cells after PSL exposure were inversely correlated with the GRbeta/GRalpha ratios in ALL cell lines (r = -0.612, P = 0.020). PSL administration induced apoptosis efficiently in leukemic blasts with low GRbeta/GRalpha ratios compared with those of high ratios (cell lines: 4.93% vs. 1.90%, P = 0.013, primary leukemia: 11.7% vs. 3.6%, P = 0.037). CONCLUSIONS The amounts of GR isoform mRNA in leukemic blasts were closely correlated with sensitivity to glucocorticoid exposure. The mRNA expression pattern of GR isoforms at initial presentation may provide valuable information for prognosis in children with newly diagnosed ALL.
Collapse
MESH Headings
- Adolescent
- Antineoplastic Agents, Hormonal/pharmacology
- Child
- Child, Preschool
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/immunology
- Female
- Glucocorticoids/pharmacology
- Humans
- Infant
- Male
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Prognosis
- Protein Isoforms
- RNA, Messenger/metabolism
- RNA, Neoplasm/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/immunology
- Receptors, Glucocorticoid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Statistics, Nonparametric
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Lee CK, Lee EY, Cho YS, Moon KA, Yoo B, Moon HB. Increased expression of glucocorticoid receptor beta messenger RNA in patients with ankylosing spondylitis. Korean J Intern Med 2005; 20:146-51. [PMID: 16134770 PMCID: PMC3891384 DOI: 10.3904/kjim.2005.20.2.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Glucocorticoids have been known to be less effective for treating ankylosing spondylitis (AS) patients than for treating rheumatoid arthritis (RA) patients. To elucidate the mechanisms underlying this phenomenon, we evaluated whether the glucocorticoid receptor (GR) beta expression of the peripheral blood mononuclear cells (PBMCs) in patients with AS is increased compared with patients with RA. METHODS PBMCs were isolated from the subjects of 3 study groups: the healthy controls (n=25), the RA patients (n=25), and the AS patients (n=25). All the subjects had never taken corticosteroids and the patients with RA or AS were newly diagnosed. The expression of GR beta messenger RNA (mRNA) was determined by reverse transcription of the total RNA, and this was followed by semi-quantitative polymerase chain reaction analysis (RT-PCR). RESULTS The level of GR alpha mRNA expression was not different among three groups. GR beta mRNA expression of the AS patients (2.02 [range: 0.99-7.21], median [25th-75th percentiles]) was enhanced compared with that of the controls (0.78 [range: 0.43-1.62]) and the RA patients (0.98 [range: 0.79-1.18]). The level of GR beta mRNA expression was not related to the inflammatory markers or the disease activity score 28 for the RA patients, and it was not related to the Bath ankylosing spondylitis disease activity index for the AS patients. CONCLUSION The expression of GR beta mRNA, which is a dominant negative regulator for the glucocorticoid response, was increased in AS patients. The results suggest that the increased expression of GR beta mRNA may be related to the ineffectiveness of glucocorticoids for the treatment of AS.
Collapse
Affiliation(s)
- Chang-Keun Lee
- Division of Allergy and Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Young Lee
- Division of Allergy and Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You-Sook Cho
- Division of Allergy and Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Keun Ae Moon
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bin Yoo
- Division of Allergy and Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Bom Moon
- Division of Allergy and Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Malchoff CD, Malchoff DM. Glucocorticoid resistance and hypersensitivity. Endocrinol Metab Clin North Am 2005; 34:315-26, viii. [PMID: 15850844 DOI: 10.1016/j.ecl.2005.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This article emphasizes the disorders caused by mutations and polymorphisms of the alpha form of the glucocorticoid receptor. These disorders usually present with increased circulating cortisol concentrations and must be distinguished from Cushing's syndrome, because the therapies are markedly different. The other disorders present with clinical features limited to a specific organ system. Although they illustrate important physiologic and pathophysiologic principles, they usually are not confused with Cushing's syndrome.
Collapse
Affiliation(s)
- Carl D Malchoff
- Division of Endocrinology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | |
Collapse
|
49
|
Abstract
Inhaled and intranasal glucocorticoids are the most common and effective drugs for controlling symptoms and airway inflammation in respiratory diseases such as asthma, allergic rhinitis, and nasal polyposis. The last few years have seen a growing understanding of the mechanisms of glucocorticoid action and, in particular, the receptor that mediates glucocorticoid actions, the glucocorticoid receptor (GR). In this revision we present an update on the GR gene, the expression and regulation of its gene products, namely GRalpha and GRbeta, as well as their alterations in pathological states. GRalpha is responsible for the induction and repression of target genes, it is expressed in virtually all human cells and tissues, and its expression is known to be downregulated by glucocorticoids. GRbeta has been found to act as a dominant negative inhibitor of GRalpha-mediated transactivation in in vitro studies with transfected cells, but it does not appear to have a significant inhibitory effect on GRalpha-mediated transrepression. In addition, for most tissues the expression of GRbeta, at least at the mRNA level, is extremely low compared with that of GRalpha. Some pro-inflammatory cytokines appear to upregulate the expression of GRbeta, and increased GRbeta expression has been reported in diseases associated with glucocorticoid resistance or insensitivity, such as bronchial asthma, nasal polyposis, and ulcerative colitis. However, the possible role of GRbeta in modulating glucocorticoid sensitivity and/or resistance in vivo has been highly debated and it is not yet clear.
Collapse
Affiliation(s)
- L Pujols
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | |
Collapse
|
50
|
Tome ME, Lutz NW, Briehl MM. Overexpression of catalase or Bcl-2 alters glucose and energy metabolism concomitant with dexamethasone resistance. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1693:57-72. [PMID: 15276325 DOI: 10.1016/j.bbamcr.2004.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 05/06/2004] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
Abstract
Glucocorticoids induce apoptosis in lymphocytes by causing the release of cytochrome c into the cytosol; however, the events in the signaling phase between translocation of the steroid-receptor complex to the nucleus and the release of cytochrome c have not been elucidated. Previously, we found that, in response to steroid treatment, WEHI7.2 mouse thymic lymphoma cells overexpressing catalase (CAT38) show delayed apoptosis (delayed cytochrome c release) compared to the parental cells, while Bcl-2 overexpressing cells (Hb12) are protected from steroid-induced apoptosis. In lymphocytes, glucocorticoid treatment decreases glucose uptake. Both glucose deprivation and the attendant ATP drop are known inducers of apoptosis. Therefore, we used (31)P and (1)H NMR spectroscopy to compare metabolic profiles of WEHI7.2, CAT38 and Hb12 cells in the presence and absence of dexamethasone to determine: (1) whether glucocorticoid effects on glucose metabolism contribute to the mechanism of steroid-induced apoptosis; and (2) whether catalase or Bcl-2 overexpression altered metabolism thereby providing a mechanism of steroid resistance. Loss of mitochondrial hexokinase activity was correlated to the induction of apoptosis in WEHI7.2 and CAT38 cells. CAT38 and Hb12 cells have an altered basal metabolism which includes increases in hexokinase activity, lactate production when subcultured into new medium, use of mitochondria for ATP production and potentially increased glutaminolysis. These data suggest that: (1) glucocorticoid effects on glucose metabolism may contribute to the mechanism of steroid-induced lymphocyte apoptosis; and (2) the altered metabolism seen in catalase and Bcl-2 overexpressing cells may contribute to both the steroid resistance and increased tumorigenicity of these variants.
Collapse
Affiliation(s)
- Margaret E Tome
- Department of Pathology, University of Arizona, P.O. Box 245043, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|