1
|
Erichsen L, Thimm C, Bohndorf M, Rahman MS, Wruck W, Adjaye J. Activation of the Renin–Angiotensin System Disrupts the Cytoskeletal Architecture of Human Urine-Derived Podocytes. Cells 2022; 11:cells11071095. [PMID: 35406662 PMCID: PMC8997628 DOI: 10.3390/cells11071095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
High blood pressure is one of the major public health problems that causes severe disorders in several tissues including the human kidney. One of the most important signaling pathways associated with the regulation of blood pressure is the renin–angiotensin system (RAS), with its main mediator angiotensin II (ANGII). Elevated levels of circulating and intracellular ANGII and aldosterone lead to pro-fibrotic, -inflammatory, and -hypertrophic milieu that causes remodeling and dysfunction in cardiovascular and renal tissues. Furthermore, ANGII has been recognized as a major risk factor for the induction of apoptosis in podocytes, ultimately leading to chronic kidney disease (CKD). In the past, disease modeling of kidney-associated diseases was extremely difficult, as the derivation of kidney originated cells is very challenging. Here we describe a differentiation protocol for reproducible differentiation of sine oculis homeobox homolog 2 (SIX2)-positive urine-derived renal progenitor cells (UdRPCs) into podocytes bearing typical cellular processes. The UdRPCs-derived podocytes show the activation of the renin–angiotensin system by being responsive to ANGII stimulation. Our data reveal the ANGII-dependent downregulation of nephrin (NPHS1) and synaptopodin (SYNPO), resulting in the disruption of the podocyte cytoskeletal architecture, as shown by immunofluorescence-based detection of α-Actinin. Furthermore, we show that the cytoskeletal disruption is mainly mediated through angiotensin II receptor type 1 (AGTR1) signaling and can be rescued by AGTR1 inhibition with the selective, competitive angiotensin II receptor type 1 antagonist, losartan. In the present manuscript we confirm and propose UdRPCs differentiated to podocytes as a unique cell type useful for studying nephrogenesis and associated diseases. Furthermore, the responsiveness of UdRPCs-derived podocytes to ANGII implies potential applications in nephrotoxicity studies and drug screening.
Collapse
|
2
|
Ubiquitination of TLR3 by TRIM3 signals its ESCRT-mediated trafficking to the endolysosomes for innate antiviral response. Proc Natl Acad Sci U S A 2020; 117:23707-23716. [PMID: 32878999 DOI: 10.1073/pnas.2002472117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Trafficking of toll-like receptor 3 (TLR3) from the endoplasmic reticulum (ER) to endolysosomes and its subsequent proteolytic cleavage are required for it to sense viral double-stranded RNA (dsRNA) and trigger antiviral response, yet the underlying mechanisms remain enigmatic. We show that the E3 ubiquitin ligase TRIM3 is mainly located in the Golgi apparatus and transported to the early endosomes upon stimulation with the dsRNA analog poly(I:C). TRIM3 mediates K63-linked polyubiquitination of TLR3 at K831, which is enhanced following poly(I:C) stimulation. The polyubiquitinated TLR3 is recognized and sorted by the ESCRT (endosomal sorting complex required for transport) complexes to endolysosomes. Deficiency of TRIM3 impairs TLR3 trafficking from the Golgi apparatus to endosomes and its subsequent activation. Trim3 -/- cells and mice express lower levels of antiviral genes and show lower levels of inflammatory response following poly(I:C) but not lipopolysaccharide (LPS) stimulation. These findings suggest that TRIM3-mediated polyubiquitination of TLR3 represents a feedback-positive regulatory mechanism for TLR3-mediated innate immune and inflammatory responses.
Collapse
|
3
|
Fu H, Yang H, Zhang X, Wang B, Mao J, Li X, Wang M, Zhang B, Sun Z, Qian H, Xu W. Exosomal TRIM3 is a novel marker and therapy target for gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:162. [PMID: 30031392 PMCID: PMC6054744 DOI: 10.1186/s13046-018-0825-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
Background Exosomes are critically involved in cancer development and progression. The exosomal contents have been suggested as ideal cancer biomarkers. In this study, we investigated the expression of exosomal proteins in the serum of gastric cancer patients and their roles in gastric cancer. Methods The proteomic profile of exosomes from the serum of gastric cancer patients was detected by using LC-MS/MS. The expression of TRIM3 in exosomes from the serum of gastric cancer patients and healthy controls was assessed by ELISA and western blot. Immunohistochemistry was used to detect TRIM3 expression in gastric cancer tissues and their matching adjacent tissues. The growth and migration abilities of gastric cancer cells with TRIM3 overexpression or knockdown in vitro were evaluated by colony formation assay and transwell migration assay. The effects of TRIM3 overexpression or knockdown on gastric cancer growth and metastasis in vivo were investigated by using subcutaneous xenograft tumor and peritoneal metastasis mouse model. The effects of TRIM3-overexpressing exosomes on gastric cancer growth and metastasis in vitro and in vivo were also evaluated. Results We found that the expression levels of TRIM3 mRNA and protein were decreased in gastric cancer tissues compared to the matched control tissues. In addition, the levels of TRIM3 protein in the serum exosomes of gastric cancer patients were lower than that in healthy controls. We demonstrated that TRIM3 overexpression reduced while TRIM3 knockdown promoted the growth and metastasis of gastric cancer in vitro and in vivo through the regulation of stem cell factors and EMT regulators. Moreover, exosomes-mediated delivery of TRIM3 protein could suppress gastric cancer growth and metastasis in vitro and in vivo. Conclusions Taken together, our findings suggest that exosomal TRIM3 may serve as a biomarker for gastric cancer diagnosis and the delivery of TRIM3 by exosomes may provide a new avenue for gastric cancer therapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0825-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hailong Fu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Center for Clinical Laboratory, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huan Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Bo Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jiahui Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Xia Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Mei Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Bin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Zixuan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
4
|
Schreiber J, Végh MJ, Dawitz J, Kroon T, Loos M, Labonté D, Li KW, Van Nierop P, Van Diepen MT, De Zeeuw CI, Kneussel M, Meredith RM, Smit AB, Van Kesteren RE. Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels. J Cell Biol 2015; 211:569-86. [PMID: 26527743 PMCID: PMC4639863 DOI: 10.1083/jcb.201506048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022] Open
Abstract
TRIM3 regulates synaptic γ-actin levels. TRIM3-deficient mice consequently have higher hippocampal spine densities, increased long-term potentiation, and enhanced contextual fear memory consolidation, indicating that temporal control of ACTG1 levels by TRIM3 is required to constrain hippocampal plasticity within physiological boundaries. Synaptic plasticity requires remodeling of the actin cytoskeleton. Although two actin isoforms, β- and γ-actin, are expressed in dendritic spines, the specific contribution of γ-actin in the expression of synaptic plasticity is unknown. We show that synaptic γ-actin levels are regulated by the E3 ubiquitin ligase TRIM3. TRIM3 protein and Actg1 transcript are colocalized in messenger ribonucleoprotein granules responsible for the dendritic targeting of messenger RNAs. TRIM3 polyubiquitylates γ-actin, most likely cotranslationally at synaptic sites. Trim3−/− mice consequently have increased levels of γ-actin at hippocampal synapses, resulting in higher spine densities, increased long-term potentiation, and enhanced short-term contextual fear memory consolidation. Interestingly, hippocampal deletion of Actg1 caused an increase in long-term fear memory. Collectively, our findings suggest that temporal control of γ-actin levels by TRIM3 is required to regulate the timing of hippocampal plasticity. We propose a model in which TRIM3 regulates synaptic γ-actin turnover and actin filament stability and thus forms a transient inhibitory constraint on the expression of hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Joerg Schreiber
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Marlene J Végh
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Julia Dawitz
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Tim Kroon
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Maarten Loos
- Sylics (Synaptologics BV), 1008 BA Amsterdam, Netherlands
| | - Dorthe Labonté
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Pim Van Nierop
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Michiel T Van Diepen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, Netherlands Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science, 1105 BA Amsterdam, Netherlands
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Rhiannon M Meredith
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Ronald E Van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
5
|
Chao J, Zhang XF, Pan QZ, Zhao JJ, Jiang SS, Wang Y, Zhang JH, Xia JC. Decreased expression of TRIM3 is associated with poor prognosis in patients with primary hepatocellular carcinoma. Med Oncol 2014; 31:102. [PMID: 24994609 DOI: 10.1007/s12032-014-0102-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023]
Abstract
Tripartite motif-containing 3 (TRIM3) is a member of the tripartite motif (TRIM) protein family and is reported to be involved in the pathogenesis of various cancers. The role of TRIM3 in hepatocellular carcinoma (HCC) is unknown; thus, the goal of this study was to explore the expression level and prognostic value of TRIM3 in HCC. The expression level of TRIM3 in HCC surgically resected tumors and corresponding nontumorous samples was detected by real-time quantitative RT-PCR, Western blotting, and immunohistochemistry. The correlation between TRIM3 expression level and the clinicopathological features and prognosis of HCC patients was also analyzed. We observed that TRIM3 expression was remarkably decreased in tumor tissue samples from HCC patients, relative to matched nontumorous tissue samples, at the mRNA (p = 0.018) and protein level (p = 0.02). Similarly, immunohistochemical analysis showed that 53.4 % of samples had low TRIM3 protein expression. Clinicopathological analysis revealed that low TRIM3 expression was significantly correlated with tumor size (p = 0.034), histological grade (p < 0.001), serum AFP (p = 0.025), and TNM stage (p = 0.021). Furthermore, Kaplan-Meier survival analysis revealed that low TRIM3 expression was associated with poor survival in HCC patients. Finally, our multivariate Cox regression analysis showed that TRIM3 expression was an independent prognostic factor for overall survival of HCC patients. In conclusion, this study suggests that TRIM3 may play a significant role in HCC progression and acts as a valuable prognostic marker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Jie Chao
- Department of Epidemiology and Health Statistics, Guangdong Key Laboratory of Molecular Epidemiology, Guangdong Pharmaceutical University, 280 Waihuan Road East, Guangzhou, 510010, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Labonté D, Thies E, Pechmann Y, Groffen AJ, Verhage M, Smit AB, van Kesteren RE, Kneussel M. TRIM3 regulates the motility of the kinesin motor protein KIF21B. PLoS One 2013; 8:e75603. [PMID: 24086586 PMCID: PMC3782429 DOI: 10.1371/journal.pone.0075603] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/15/2013] [Indexed: 01/01/2023] Open
Abstract
Kinesin superfamily proteins (KIFs) are molecular motors that transport cellular cargo along the microtubule cytoskeleton. KIF21B is a neuronal kinesin that is highly enriched in dendrites. The regulation and specificity of microtubule transport involves the binding of motors to individual cargo adapters and accessory proteins. Moreover, posttranslational modifications of either the motor protein, their cargos or tubulin regulate motility, cargo recognition and the binding or unloading of cargos. Here we show that the ubiquitin E3 ligase TRIM3, also known as BERP, interacts with KIF21B via its RBCC domain. TRIM3 is found at intracellular and Golgi-derived vesicles and co-localizes with the KIF21B motor in neurons. Trim3 gene deletion in mice and TRIM3 overexpression in cultured neurons both suggested that the E3-ligase function of TRIM3 is not involved in KIF21B degradation, however TRIM3 depletion reduces the motility of the motor. Together, our data suggest that TRIM3 is a regulator in the modulation of KIF21B motor function.
Collapse
Affiliation(s)
- Dorthe Labonté
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Edda Thies
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yvonne Pechmann
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander J. Groffen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Matthijs Verhage
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Ronald E. van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
7
|
Zhang X, Zhao H, Chen Y, Liu C, Meng K, Yang P, Wang Y, Wang G, Yao B. Characterization and biological function analysis of the trim3a gene from zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2012; 32:621-628. [PMID: 22300786 DOI: 10.1016/j.fsi.2011.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 12/12/2011] [Accepted: 12/12/2011] [Indexed: 05/31/2023]
Abstract
The biological significance of tripartite motif (TRIM) proteins is increasingly being appreciated due to their roles in a broad range of biological processes that associated with innate immunity. In this study, we have described the structural and functional analysis of TRIM3a from zebrafish. Annotation of domain architectures found that the TRIM3a fulfills the TRIM-NHL rule of domain composition with a Filamin/ABP280 domain and NHL repeats at its C-terminal region. In addition, the mRNA expression level of TRIM3a was the highest in brain, and with a relatively higher level in spleen, liver, and gill. A strong expression starting at 36 h post fertilization (hpf) was observed by real-time PCR and could be detected in brain by in situ hybridization, suggesting that TRIM3a protein might play an important role in brain development in zebrafish. Considering that TRIM3a has a RING finger domain, we expressed and purified the TRIM3a protein and performed ubiquitylation assays, our results showed that TRIM3a underwent self-polyubiquitylation in combination with E1, UbcH5c, biotin-ubiquitin in vitro. Meanwhile, TRIM3a-R without the RING domain was expressed and purified as well, in vitro ubiquitylation assays showed that the self-ubiquitylation of TRIM3a was dependent on its RING domain, suggesting that TRIM3a might function as a RING finger E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Xinshang Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fukumoto M, Sekimoto T, Yoneda Y. Proteomic analysis of importin α-interacting proteins in adult mouse brain. Cell Struct Funct 2011; 36:57-67. [PMID: 21307607 DOI: 10.1247/csf.10026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Many transport factors, such as importins and exportins, have been identified, and the molecular mechanisms underlying nucleocytoplasmic transport have been characterized. The specific molecules that are carried by each transport factor and the temporal profiles that characterize the movements of various proteins into or out of the nucleus, however, have yet to be elucidated. Here, we used a proteomic approach to identify molecules that are transported into the nuclei of adult mouse brain cells via importin α5. We identified 48 proteins in total, among which we chose seven to characterize more extensively: acidic (leucine-rich) nuclear phosphoprotein 32 family member A (Anp32a), far upstream element binding protein 1 (FUBP1), thyroid hormone receptor β1 (TRβ1), transaldolase 1, CDC42 effector protein 4 (CDC42-ep4), Coronin 1B, and brain-specific creatine kinase (CK-B). Analyses using green fluorescent protein (GFP)-fused proteins showed that Anp32a, FUBP1, and TRβ1 were localized in the nucleus, whereas transaldolase 1, CDC42-ep4, CK-B, and Coronin 1B were distributed in both the cytoplasm and nucleus. Using a digitonin-permeabilized in vitro transport assay, we demonstrated that, with the exception of CK-B, these proteins were transported into the nucleus by importin α5 together with importin β and Ran. Further, we found that leptomycin B (LMB) treatment increased nuclear CK-B-GFP signals, suggesting that CK-B enters the nucleus and is then exported in a CRM1-dependent manner. Thus, we identified a comprehensive set of candidate proteins that are transported into the nucleus in a manner dependent on importin α5, which enhances our understanding of nucleocytoplasmic signaling in neural cells.
Collapse
Affiliation(s)
- Masahiro Fukumoto
- Department of Frontier Biosciences, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
9
|
Khazaei MR, Bunk EC, Hillje AL, Jahn HM, Riegler EM, Knoblich JA, Young P, Schwamborn JC. The E3-ubiquitin ligase TRIM2 regulates neuronal polarization. J Neurochem 2010; 117:29-37. [DOI: 10.1111/j.1471-4159.2010.06971.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Identification of BERP (brain-expressed RING finger protein) as a p53 target gene that modulates seizure susceptibility through interacting with GABA(A) receptors. Proc Natl Acad Sci U S A 2010; 107:11883-8. [PMID: 20543135 DOI: 10.1073/pnas.1006529107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p53 is a central player in responses to cellular stresses and a major tumor suppressor. The identification of unique molecules within the p53 signaling network can reveal functions of this important transcription factor. Here, we show that brain-expressed RING finger protein (BERP) is a gene whose expression is up-regulated in a p53-dependent manner in human cells and in mice. We generated BERP-deficient mice by gene targeting and demonstrated that they exhibit increased resistance to pentylenetetrazol-induced seizures. Electrophysiological and biochemical studies of cultured cortical neurons of BERP-deficient mice showed a decrease in the amplitude of GABA(A) receptor (GABA(A)R)-mediated miniature inhibitory postsynaptic currents as well as reduced surface protein expression of GABA(A)Rs containing the gamma2-subunit. However, BERP deficiency did not decrease GABA(A)Rgamma2 mRNA levels, raising the possibility that BERP may act at a posttranscriptional level to regulate the intracellular trafficking of GABA(A)Rs. Our results indicate that BERP is a unique p53-regulated gene and suggest a role for p53 within the central nervous system.
Collapse
|
11
|
Hung AY, Sung CC, Brito IL, Sheng M. Degradation of postsynaptic scaffold GKAP and regulation of dendritic spine morphology by the TRIM3 ubiquitin ligase in rat hippocampal neurons. PLoS One 2010; 5:e9842. [PMID: 20352094 PMCID: PMC2844417 DOI: 10.1371/journal.pone.0009842] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 03/02/2010] [Indexed: 12/05/2022] Open
Abstract
Changes in neuronal activity modify the structure of dendritic spines and alter the function and protein composition of synapses. Regulated degradation of postsynaptic density (PSD) proteins by the ubiquitin-proteasome system is believed to play an important role in activity-dependent synaptic remodeling. Stimulating neuronal activity in vitro and in vivo induces the ubiquitination and degradation of GKAP/SAPAP and Shank, major scaffold proteins of the PSD. However, the specific ubiquitin ligases that regulate postsynaptic protein composition have not been identified. Here we identify the RING finger-containing protein TRIM3 as a specific E3 ubiquitin ligase for the PSD scaffold GKAP/SAPAP1. Present in PSD fractions from rat brain, TRIM3 stimulates ubiquitination and proteasome-dependent degradation of GKAP, and induces the loss of GKAP and associated scaffold Shank1 from postsynaptic sites. Suppression of endogenous TRIM3 by RNA interference (RNAi) results in increased accumulation of GKAP and Shank1 at synapses, as well as enlargement of dendritic spine heads. RNAi of TRIM3 also prevented the loss of GKAP induced by synaptic activity. Thus, TRIM3 is a novel E3 ligase that mediates activity-dependent turnover of PSD scaffold proteins and is a negative regulator of dendritic spine morphology.
Collapse
Affiliation(s)
- Albert Y. Hung
- Departments of Brain and Cognitive Sciences and Biology, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Clifford C. Sung
- Departments of Brain and Cognitive Sciences and Biology, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ilana L. Brito
- Departments of Brain and Cognitive Sciences and Biology, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Morgan Sheng
- Departments of Brain and Cognitive Sciences and Biology, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Dai S, Wang Z, Pan X, Wang W, Chen X, Ren H, Hao C, Han B, Chen N. Functional analysis of promoter mutations in the ACTN4 and SYNPO genes in focal segmental glomerulosclerosis. Nephrol Dial Transplant 2009; 25:824-35. [PMID: 19666657 DOI: 10.1093/ndt/gfp394] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND To investigate the promoter mutations of ACTN4 and SYNPO genes in patients with idiopathic focal segmental glomerulosclerosis (FSGS), and to provide functional analysis of these mutations in the role of FSGS occurrence. METHODS The study consisted of 82 Chinese idiopathic FSGS patients (55 patients had nephrotic syndrome: NS) and 90 healthy individuals. Genomic DNA extracted from peripheral leukocytes of patients of healthy individuals were used to analyse the ACTN4 and SYNPO gene promoter mutations by polymerase chain reaction (PCR) and direct sequencing. Mutations were matched with GenBank and TRANSFAC software database (www.genometix.de; www.gene-regulation.com). A dual luciferase assay system was used to analyse the effects of mutations based on PGL3-Basic vector, pRL-SV40 vector, a PC12 cell line and podocytes in vitro. Kidney alpha-actinin-4 and synaptopodin expression of mutated patients and genomic DNA of their parents were investigated. RESULTS The study detected the ACTN4 gene promoter 1-34C>T, 1-590delA and (1-1044delT)+(1-797T>C)+(1-769A>G) heterozygous mutations in three patients, respectively, and the SYNPO gene promoter 1-24G>A and 1-851C>T heterozygous mutations in two patients, respectively (with adenine of translation start site ATG naming +1). The same mutations were not found in the control group of 90 healthy people. Excepting one patient with an ACTN4 gene promoter mutation who inherited her parents' 1-1044delT and 1-797T>C mutated chromosome, respectively, the same mutations were not found in patients' parents. Alpha-actinin-4 and synaptopodin protein expression are reduced in mutated patients' kidneys. Dual luciferase assays show that compared to the normal group (with the exception of the 1-1044delT group), luciferase activity in mutated groups decreased for the most part. (1-1044delT)+(1-797T>C)+(1-769A>G) mutations are associated with poor clinical outcomes, and patients with these mutations progress to end-stage renal failure. CONCLUSION The study detected heterozygous mutations in the promoters of the ACTN4 and SYNPO genes in patients with idiopathic FSGS. These mutations affected gene transcription in vitro and may affect protein translation in vivo. So we presumed that the ACTN4 and SYNPO promoter mutations might also contribute to pathophysiology of idiopathic FSGS.
Collapse
Affiliation(s)
- Shengchuan Dai
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mosesson Y, Chetrit D, Schley L, Berghoff J, Ziv T, Carvalho S, Milanezi F, Admon A, Schmitt F, Ehrlich M, Yarden Y. Monoubiquitinylation regulates endosomal localization of Lst2, a negative regulator of EGF receptor signaling. Dev Cell 2009; 16:687-98. [PMID: 19460345 PMCID: PMC3356849 DOI: 10.1016/j.devcel.2009.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 03/02/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
Genetic screens performed in worms identified major regulators of the epidermal growth factor receptor (EGFR) pathway, including the ubiquitin ligase Cbl/SLI-1. Here we focus on the less-characterized Lst2 protein and confirm suppression of MAPK signals. Unexpectedly, human Lst2, a monoubiquitinylated phosphoprotein, does not localize to endosomes, despite an intrinsic phosphoinositol-binding FYVE domain. By constructing an ubiquitinylation-defective mutant and an ubiquitin fusion, we conclude that endosomal localization of Lst2, along with an ability to divert incoming EGFR molecules to degradation in lysosomes, is regulated by ubiquitinylation/deubiquitinylation cycles. Consistent with bifurcating roles, Lst2 physically binds Trim3/BERP, which interacts with Hrs and a complex that biases cargo recycling. These results establish an ubiquitin-based endosomal switch of receptor sorting, functionally equivalent to the mechanism inactivating Hrs via monoubiquitinylation.
Collapse
Affiliation(s)
- Yaron Mosesson
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Chetrit
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Leehee Schley
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Janina Berghoff
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Ziv
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Silvia Carvalho
- IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-465, Portugal
| | - Fernanda Milanezi
- IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-465, Portugal
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Fernando Schmitt
- IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-465, Portugal
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yosef Yarden
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
14
|
Boulay JL, Stiefel U, Taylor E, Dolder B, Merlo A, Hirth F. Loss of heterozygosity of TRIM3 in malignant gliomas. BMC Cancer 2009; 9:71. [PMID: 19250537 PMCID: PMC2653542 DOI: 10.1186/1471-2407-9-71] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 02/27/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Malignant gliomas are frequent primary brain tumors associated with poor prognosis and very limited response to conventional chemo- and radio-therapies. Besides sharing common growth features with other types of solid tumors, gliomas are highly invasive into adjacent brain tissue, which renders them particularly aggressive and their surgical resection inefficient. Therefore, insights into glioma formation are of fundamental interest in order to provide novel molecular targets for diagnostic purposes and potential anti-cancer drugs. Human Tripartite motif protein 3 (TRIM3) encodes a structural homolog of Drosophila brain tumor (brat) implicated in progenitor cell proliferation control and cancer stem cell suppression. TRIM3 is located within the loss of allelic heterozygosity (LOH) hotspot of chromosome segment 11p15.5, indicating a potential role in tumor suppression. METHODS Here we analyze 70 primary human gliomas of all types and grades and report somatic deletion mapping as well as single nucleotide polymorphism analysis together with quantitative real-time PCR of chromosome segment 11p15.5. RESULTS Our analysis identifies LOH in 17 cases (24%) of primary human glioma which defines a common 130 kb-wide interval within the TRIM3 locus as a minimal area of loss. We further detect altered genomic dosage of TRIM3 in two glioma cases with LOH at 11p15.5, indicating homozygous deletions of TRIM3. CONCLUSION Loss of heterozygosity of chromosome segment 11p15.5 in malignant gliomas suggests TRIM3 as a candidate brain tumor suppressor gene.
Collapse
Affiliation(s)
- Jean-Louis Boulay
- Department of Biomedicine, University Hospital, CH-4031 Basel, Switzerland
| | - Urs Stiefel
- Institute of Zoology and Biocenter, University of Basel, CH-4056 Basel, Switzerland
| | - Elisabeth Taylor
- Department of Biomedicine, University Hospital, CH-4031 Basel, Switzerland
| | - Béatrice Dolder
- Department of Biomedicine, University Hospital, CH-4031 Basel, Switzerland
| | - Adrian Merlo
- Department of Biomedicine, University Hospital, CH-4031 Basel, Switzerland
| | - Frank Hirth
- Institute of Zoology and Biocenter, University of Basel, CH-4056 Basel, Switzerland
- MRC Centre for Neurodegeneration Research, King's College London, London, SE5 8AF, UK
| |
Collapse
|
15
|
Kikuchi S, Honda K, Tsuda H, Hiraoka N, Imoto I, Kosuge T, Umaki T, Onozato K, Shitashige M, Yamaguchi U, Ono M, Tsuchida A, Aoki T, Inazawa J, Hirohashi S, Yamada T. Expression and Gene Amplification of Actinin-4 in Invasive Ductal Carcinoma of the Pancreas. Clin Cancer Res 2008; 14:5348-56. [DOI: 10.1158/1078-0432.ccr-08-0075] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Talior-Volodarsky I, Randhawa VK, Zaid H, Klip A. Alpha-actinin-4 is selectively required for insulin-induced GLUT4 translocation. J Biol Chem 2008; 283:25115-25123. [PMID: 18617516 DOI: 10.1074/jbc.m801750200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Insulin induces GLUT4 translocation to the muscle cell surface. Using differential amino acid labeling and mass spectrometry, we observed insulin-dependent co-precipitation of actinin-4 (ACTN4) with GLUT4 (Foster, L. J., Rudich, A., Talior, I., Patel, N., Huang, X., Furtado, L. M., Bilan, P. J., Mann, M., and Klip, A. (2006) J. Proteome Res. 5, 64-75). ACTN4 links F-actin to membrane proteins, and actin dynamics are essential for GLUT4 translocation. We hypothesized that ACTN4 may contribute to insulin-regulated GLUT4 traffic. In L6 muscle cells insulin, but not platelet-derived growth factor, increased co-precipitation of ACTN4 with GLUT4. Small interfering RNA-mediated ACTN4 knockdown abolished the gain in surface-exposed GLUT4 elicited by insulin but not by platelet-derived growth factor, membrane depolarization, or mitochondrial uncoupling. In contrast, knockdown of alpha-actinin-1 (ACTN1) did not prevent GLUT4 translocation by insulin. GLUT4 colocalized with ACTN4 along the insulin-induced cortical actin mesh and ACTN4 knockdown prevented GLUT4-actin colocalization without impeding actin remodeling or Akt phosphorylation, maintaining GLUT4 in a tight perinuclear location. We propose that ACTN4 contributes to GLUT4 traffic, likely by tethering GLUT4 vesicles to the cortical actin cytoskeleton.
Collapse
Affiliation(s)
| | - Varinder K Randhawa
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hilal Zaid
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8
| | - Amira Klip
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
17
|
Hara T, Honda K, Shitashige M, Ono M, Matsuyama H, Naito K, Hirohashi S, Yamada T. Mass Spectrometry Analysis of the Native Protein Complex Containing Actinin-4 in Prostate Cancer Cells. Mol Cell Proteomics 2007; 6:479-91. [PMID: 17151021 DOI: 10.1074/mcp.m600129-mcp200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actinin-4 was originally identified as an actin-binding protein associated with cell motility and cancer invasion and metastasis. However, actinin-4 forms complexes with a large number of different partner proteins and is speculated to have several distinct functions depending on its partner. The level of actinin-4 expression was found to be significantly lower in prostate cancer cells than in non-cancerous basal cells, and restoration of actinin-4 expression inhibited cell proliferation by prostate cancer cell line 22RV1. Immunoprecipitation and mass spectrometry analysis revealed that actinin-4 forms native complexes with several partner proteins in 22RV1 cells, including with beta/gamma-actin, calmodulin, the clathrin heavy chain, non-muscular myosin heavy chain, heterogeneous nuclear ribonucleoprotein A1, and Ras-GTPase-activating protein SH3 domain-binding protein. Clathrin is a coat protein that covers the internalized membrane pit that forms during early endocytosis. We found that other clathrin-related and unrelated cargo proteins, including dynamin, adaptin-delta, beta subunit of neuronal adaptin-like protein, and p47A, also interact with actinin-4. Immunofluorescence microscopy revealed that dynamin and clathrin co-localized with actinin-4 at the sites of membrane ruffling, and transfection of actinin-4 cDNA facilitated the transport of transferrin into perinuclear endosomes. Endocytosis terminates signaling evoked by cell surface receptors and regulates the recycling of receptors and ligands. We identified a panel of proteins whose expression and/or subcellular localization was regulated by actinin-4 by performing organelle fractionation and ICAT-LC-MS/MS. The decreased expression of actinin-4 protein in prostate cancer cells may cause aberrations in the intracellular trafficking of various cell surface molecules and contribute to carcinogenesis.
Collapse
Affiliation(s)
- Tomohiko Hara
- Chemotherapy Division and Cancer Proteomics Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Durham JT, Brand OM, Arnold M, Reynolds JG, Muthukumar L, Weiler H, Richardson JA, Naya FJ. Myospryn Is a Direct Transcriptional Target for MEF2A That Encodes a Striated Muscle, α-Actinin-interacting, Costamere-localized Protein. J Biol Chem 2006; 281:6841-9. [PMID: 16407236 DOI: 10.1074/jbc.m510499200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The full repertoire of proteins that comprise the striated muscle Z-disc and peripheral structures, such as the costamere, have yet to be discovered. Recent studies suggest that this elaborate protein network, which acts as a structural and signaling center for striated muscle, harbors factors that function as mechanosensors to ensure coordinated contractile activity. Mutations in genes whose products reside in this region often result in skeletal and cardio myopathies, demonstrating the importance of this macromolecular complex in muscle structure and function. Here, we describe the characterization of a direct, downstream target gene for the MEF2A transcription factor encoding a large, muscle-specific protein that localizes to the costamere in striated muscle. This gene, called myospryn, was identified by microarray analysis as a transcript down-regulated in MEF2A knock-out mice. MEF2A knock-out mice develop cardiac failure during the perinatal period with mutant hearts exhibiting several cardiac abnormalities including myofibrillar disarray. Myospryn is the mouse ortholog of a partial human cDNA of unknown function named cardiomyopathy-associated gene 5 (CMYA5). Myospryn is expressed as a single, large transcript of approximately 12 kilobases in adult heart and skeletal muscle with an open reading frame of 3739 amino acids. This protein, belonging to the tripartite motif superfamily of proteins, contains a B-box coiled-coil (BBC), two fibronectin type III (FN3) repeats, and SPRY domains and interacts with the sarcomeric Z-disc protein, alpha-actinin-2. Our findings demonstrate that myospryn functions directly downstream of MEF2A at the costamere in striated muscle potentially playing a role in myofibrillogenesis.
Collapse
Affiliation(s)
- Jennifer T Durham
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Goffart S, Franko A, Clemen CS, Wiesner RJ. α-Actinin 4 and BAT1 interaction with the Cytochrome c promoter upon skeletal muscle differentiation. Curr Genet 2005; 49:125-35. [PMID: 16331456 DOI: 10.1007/s00294-005-0043-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/24/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
To identify common regulatory features of nuclear genes encoding mitochondrial proteins we searched for regulatory elements in the Cytochrome c promoter during skeletal muscle differentiation in cell culture. A consensus element with the sequence GCTGCCGCAC-(N4-20)-GGSCGYGGG was found in both rat Cyt c and coxIV promoters. This new sequence element with yet undescribed function, but high abundance in promoters of nuclear genes encoding mitochondrial proteins available from the databases, showed a striking change in protein binding in electromobility shift assays when myoblasts were compared to myotubes. Proteins involved in the observed protein-DNA complexes were isolated from myotubes and identified by MALDI-TOF as BAT1, a DEAD-box protein of yet unknown function, heat shock protein HSP84, and alpha-actinin 4, a non-muscle isoform of the structural protein alpha-actinin. alpha-actinin 4 was found to be preferentially localized in the nucleus upon induction of myogenesis, suggesting a signaling function during muscle differentiation. In conclusion, the analyzed sequence motif may be a new candidate for common regulatory elements specific for nuclear encoded mitochondrial genes, and alpha-actinin 4 may be involved in their regulation.
Collapse
Affiliation(s)
- Steffi Goffart
- Institute of Vegetative Physiology, Medical Faculty, University of Köln, Germany.
| | | | | | | |
Collapse
|
20
|
Abstract
The myosin family of actin filament-based molecular motors consists of at least 20 structurally and functionally distinct classes. The human genome contains nearly 40 myosin genes, encoding 12 of these classes. Myosins have been implicated in a variety of intracellular functions, including cell migration and adhesion; intracellular transport and localization of organelles and macromolecules; signal transduction; and tumor suppression. In this review, recent insights into the remarkable diversity in the mechanochemical and functional properties associated with this family of molecular motors are discussed.
Collapse
Affiliation(s)
- Mira Krendel
- Department of Molecular Biology, Yale University, New Haven, CN, USA.
| | | |
Collapse
|
21
|
van Diepen MT, Spencer GE, van Minnen J, Gouwenberg Y, Bouwman J, Smit AB, van Kesteren RE. The molluscan RING-finger protein L-TRIM is essential for neuronal outgrowth. Mol Cell Neurosci 2005; 29:74-81. [PMID: 15866048 DOI: 10.1016/j.mcn.2005.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Accepted: 01/17/2005] [Indexed: 01/23/2023] Open
Abstract
The tripartite motif proteins TRIM-2 and TRIM-3 have been put forward as putative organizers of neuronal outgrowth and structural plasticity. Here, we identified a molluscan orthologue of TRIM-2/3, named L-TRIM, which is up-regulated during in vitro neurite outgrowth of central neurons. In adult animals, L-Trim mRNA is ubiquitously expressed at low levels in the central nervous system and in peripheral tissues. Central nervous system expression of L-Trim mRNA is increased during postnatal brain development and during in vitro and in vivo neuronal regeneration. In vitro double-stranded RNA knock-down of L-Trim mRNA resulted in a >70% inhibition of neurite outgrowth. Together, our data establish a crucial role for L-TRIM in developmental neurite outgrowth and functional neuronal regeneration and indicate that TRIM-2/3 family members may have evolutionary conserved functions in neuronal differentiation.
Collapse
Affiliation(s)
- M T van Diepen
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Institute of Neuroscience, Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Yan Q, Sun W, Kujala P, Lotfi Y, Vida TA, Bean AJ. CART: an Hrs/actinin-4/BERP/myosin V protein complex required for efficient receptor recycling. Mol Biol Cell 2005; 16:2470-82. [PMID: 15772161 PMCID: PMC1087250 DOI: 10.1091/mbc.e04-11-1014] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Altering the number of surface receptors can rapidly modulate cellular responses to extracellular signals. Some receptors, like the transferrin receptor (TfR), are constitutively internalized and recycled to the plasma membrane. Other receptors, like the epidermal growth factor receptor (EGFR), are internalized after ligand binding and then ultimately degraded in the lysosome. Routing internalized receptors to different destinations suggests that distinct molecular mechanisms may direct their movement. Here, we report that the endosome-associated protein hrs is a subunit of a protein complex containing actinin-4, BERP, and myosin V that is necessary for efficient TfR recycling but not for EGFR degradation. The hrs/actinin-4/BERP/myosin V (CART [cytoskeleton-associated recycling or transport]) complex assembles in a linear manner and interrupting binding of any member to its neighbor produces an inhibition of transferrin recycling rate. Disrupting the CART complex results in shunting receptors to a slower recycling pathway that involves the recycling endosome. The novel CART complex may provide a molecular mechanism for the actin-dependence of rapid recycling of constitutively recycled plasma membrane receptors.
Collapse
Affiliation(s)
- Qing Yan
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
23
|
Kimura F, Suzu S, Nakamura Y, Nakata Y, Yamada M, Kuwada N, Matsumura T, Yamashita T, Ikeda T, Sato K, Motoyoshi K. Cloning and characterization of a novel RING-B-box-coiled-coil protein with apoptotic function. J Biol Chem 2003; 278:25046-25054. [PMID: 12692137 DOI: 10.1074/jbc.m303438200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel RING-B-box-coiled-coil (RBCC) protein (MAIR for macrophage-derived apoptosis-inducing RBCC protein) that consists of an N-terminal RING finger, followed by a B-box zinc finger, a coiled-coil domain, and a B30.2 domain. MAIR mRNA was expressed widely in mouse tissues and was induced by macrophage colony-stimulating factor in murine peritoneal and bone marrow macrophages. MAIR protein initially showed a granular distribution predominantly in the cytoplasm. The addition of zinc to transfectants containing MAIR cDNA as part of a heavy metal-inducible vector caused apoptosis of the cells characterized by cell fragmentation; a reduction in mitochondrial membrane potential; activation of caspase-7, -8, and -9, but not caspase-3; and DNA degradation. We also found that the RING finger and coiled-coil domains were required for MAIR activity by analysis with deletion mutants.
Collapse
Affiliation(s)
- Fumihiko Kimura
- Third Department of Internal Medicine, National Defense Medical College, Namiki, Tokorozawa, Saitama 359-8513, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Robson F, Costa MM, Hepworth SR, Vizir I, Piñeiro M, Reeves PH, Putterill J, Coupland G. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:619-31. [PMID: 11851908 DOI: 10.1046/j.1365-313x.2001.01163.x] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
CONSTANS promotes flowering of Arabidopsis in response to long-day conditions. We show that CONSTANS is a member of an Arabidopsis gene family that comprises 16 other members. The CO-Like proteins encoded by these genes contain two segments of homology: a zinc finger containing region near their amino terminus and a CCT (CO, CO-Like, TOC1) domain near their carboxy terminus. Analysis of seven classical co mutant alleles demonstrated that the mutations all occur within either the zinc finger region or the CCT domain, confirming that the two regions of homology are important for CO function. The zinc fingers are most similar to those of B-boxes, which act as protein-protein interaction domains in several transcription factors described in animals. Segments of CO protein containing the CCT domain localize GFP to the nucleus, but one mutation that affects the CCT domain delays flowering without affecting the nuclear localization function, suggesting that this domain has additional functions. All eight co alleles, including one recovered by pollen irradiation in which DNA encoding both B-boxes is deleted, are shown to be semidominant. This dominance appears to be largely due to a reduction in CO dosage in the heterozygous plants. However, some alleles may also actively delay flowering, because overexpression from the CaMV 35S promoter of the co-3 allele, that has a mutation in the second B-box, delayed flowering of wild-type plants. The significance of these observations for the role of CO in the control of flowering time is discussed.
Collapse
Affiliation(s)
- F Robson
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Li Y, Chin LS, Weigel C, Li L. Spring, a novel RING finger protein that regulates synaptic vesicle exocytosis. J Biol Chem 2001; 276:40824-33. [PMID: 11524423 DOI: 10.1074/jbc.m106141200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synaptosome-associated protein of 25 kDa (SNAP-25) interacts with syntaxin 1 and vesicle-associated membrane protein 2 (VAMP2) to form a ternary soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex that is essential for synaptic vesicle exocytosis. We report a novel RING finger protein, Spring, that specifically interacts with SNAP-25. Spring is exclusively expressed in brain and is concentrated at synapses. The association of Spring with SNAP-25 abolishes the ability of SNAP-25 to interact with syntaxin 1 and VAMP2 and prevents the assembly of the SNARE complex. Overexpression of Spring or its SNAP-25-interacting domain reduces Ca(2+)-dependent exocytosis from PC12 cells. These results indicate that Spring may act as a regulator of synaptic vesicle exocytosis by controlling the availability of SNAP-25 for the SNARE complex formation.
Collapse
Affiliation(s)
- Y Li
- Department of Pharmacology and Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
26
|
Abstract
PML is a component of a multiprotein complex, termed nuclear bodies, and the PML protein was originally discovered in patients suffering from acute promyelocytic leukaemia (APL). APL is associated with a reciprocal chromosomal translocation of chromosomes 15 and 17, which results in a fusion protein comprising PML and the retinoic acid receptor alpha. The PML genomic locus is approximately 35 kb and is subdivided into nine exons. A large number of alternative spliced transcripts are synthesized from the PML gene, resulting in a variety of PML proteins ranging in molecular weight from 48-97 kDa. In this review we summarize the data on the known PML isoforms and splice variants and present a new unifying nomenclature. Although, the function/s of the PML variants are unclear, all PML isoforms contain an identical N-terminal region, suggesting that these sequences are indispensable for function, but differ in their C-terminal sequences. The N-terminal region harbours a RING-finger, two B-boxes and a predicted alpha-helical Coiled-Coil domain, that together form the RBCC/TRIM motif found in a large family of proteins. In PML this motif is essential for PML nuclear body formation in vivo and PML-homo and hetero interactions conferring growth suppressor, apoptotic and anti-viral activities. In APL oligomerization mediated by the RBCC/TRIM motif is essential for the transformation potential of the PML-RARalpha fusion protein.
Collapse
Affiliation(s)
- K Jensen
- Centre for Structural Biology, Imperial College of Science, Technology and Medicine, Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
27
|
Ohkawa N, Kokura K, Matsu-Ura T, Obinata T, Konishi Y, Tamura TA. Molecular cloning and characterization of neural activity-related RING finger protein (NARF): a new member of the RBCC family is a candidate for the partner of myosin V. J Neurochem 2001; 78:75-87. [PMID: 11432975 DOI: 10.1046/j.1471-4159.2001.00373.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activity-dependent synaptic plasticity has been thought to be a cellular basis of memory and learning. The late phase of long-term potentiation (L-LTP), distinct from the early phase, lasts for up to 6 h and requires de novo synthesis of mRNA and protein. Many LTP-related genes are enhanced in the hippocampus during pentyrenetetrazol (PTZ)- and kainate (KA)-mediated neural activation. In this study, mice were administered intraperitoneal injections of PTZ 10 times, once every 48 h, and showed an increase in seizure indexes. Genes related to plasticity were efficiently induced in the mouse hippocampus. We used a PCR-based cDNA subtraction method to isolate genes that are expressed in the hippocampus of repeatedly PTZ-treated mice. One of these genes, neural activity-related RING finger protein (NARF), encodes a new protein containing a RING finger, B-box zinc finger, coiled-coil (RBCC domain) and beta-propeller (NHL) domain, and is predominantly expressed in the brain, especially in the hippocampus. In addition, KA up-regulated the expression of NARF mRNA in the hippocampus. This increase correlated with the activity of the NMDA receptor. By analysis using GFP-fused NARF, the protein was found to localize in the cytoplasm. Enhanced green fluorescent protein-fused NARF was also localized in the neurites and growth cones in neuronal differentiated P19 cells. The C-terminal beta-propeller domain of NARF interacts with myosin V, which is one of the most abundant myosin isoforms in neurons. The NARF protein increases in hippocampal and cerebellar neurons after PTZ-induced seizure. These observations indicated that NARF expression is enhanced by seizure-related neural activities, and NARF may contribute to the alteration of neural cellular mechanisms along with myosin V.
Collapse
Affiliation(s)
- N Ohkawa
- Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Zapata JM, Pawlowski K, Haas E, Ware CF, Godzik A, Reed JC. A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains. J Biol Chem 2001; 276:24242-52. [PMID: 11279055 DOI: 10.1074/jbc.m100354200] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified three new tumor necrosis factor-receptor associated factor (TRAF) domain-containing proteins in humans using bioinformatics approaches, including: MUL, the product of the causative gene in Mulibrey Nanism syndrome; USP7 (HAUSP), an ubiquitin protease; and SPOP, a POZ domain-containing protein. Unlike classical TRAF family proteins involved in TNF family receptor (TNFR) signaling, the TRAF domains (TDs) of MUL, USP7, and SPOP are located near the NH(2) termini or central region of these proteins, rather than carboxyl end. MUL and USP7 are capable of binding in vitro via their TDs to all of the previously identified TRAF family proteins (TRAF1, TRAF2, TRAF3, TRAF4, TRAF5, and TRAF6), whereas the TD of SPOP interacts weakly with TRAF1 and TRAF6 only. The TD of MUL also interacted with itself, whereas the TDs of USP7 and SPOP did not self-associate. Analysis of various MUL and USP7 mutants by transient transfection assays indicated that the TDs of these proteins are necessary and sufficient for suppressing NF-kappaB induction by TRAF2 and TRAF6 as well as certain TRAF-binding TNF family receptors. In contrast, the TD of SPOP did not inhibit NF-kappaB induction. Immunofluorescence confocal microscopy indicated that MUL localizes to cytosolic bodies, with targeting to these structures mediated by a RBCC tripartite domain within the MUL protein. USP7 localized predominantly to the nucleus, in a TD-dependent manner. Data base searches revealed multiple proteins containing TDs homologous to those found in MUL, USP7, and SPOP throughout eukaryotes, including yeast, protists, plants, invertebrates, and mammals, suggesting that this branch of the TD family arose from an ancient gene. We propose the moniker TEFs (TD-encompassing factors) for this large family of proteins.
Collapse
Affiliation(s)
- J M Zapata
- Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
29
|
El-Husseini AE, Fretier P, Vincent SR. Cloning and characterization of a gene (RNF22) encoding a novel brain expressed ring finger protein (BERP) that maps to human chromosome 11p15.5. Genomics 2001; 71:363-7. [PMID: 11170753 DOI: 10.1006/geno.2000.6452] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently identified a novel RING finger protein expressed in the rat brain, which associates with myosin V and alpha-actinin-4. Here we have cloned and characterized the orthologous human BERP cDNA and gene (HGMW-approved symbol RNF22). The human BERP protein is encoded by 11 exons ranging in size from 71 to 733 bp, and fluorescence in situ hybridization shows that the BERP gene maps to chromosome 11p15.5, 3' to the FE65 gene. The human BERP protein is 98% identical to the rat and mouse proteins, and we have identified a highly conserved potential orthologue in Caenorhabditis elegans. BERP belongs to the RING finger-B-box-coiled coil (RBCC) subgroup of RING finger proteins, and a cluster of these RBCC protein genes is present in chromosome 11p15. Chromosome region 11p15 is thought to harbor tumor suppressor genes, and deletions of this region occur frequently in several types of human cancers. These observations indicate that BERP may be a novel tumor suppressor gene.
Collapse
Affiliation(s)
- A E El-Husseini
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | |
Collapse
|
30
|
Arama E, Dickman D, Kimchie Z, Shearn A, Lev Z. Mutations in the beta-propeller domain of the Drosophila brain tumor (brat) protein induce neoplasm in the larval brain. Oncogene 2000; 19:3706-16. [PMID: 10949924 DOI: 10.1038/sj.onc.1203706] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inactivation of both alleles of the fruit fly D. melanogaster brain tumor (brat) gene results in the production of a tumor-like neoplasm in the larval brain, and lethality in the larval third instar and pupal stages. We cloned the brat gene from a transposon-tagged allele and identified its gene product. brat encodes for an 1037 amino acid protein with an N-terminal B-boxl zinc finger followed by a B-box2 zinc finger, a coiled-coil domain, and a C-terminal beta-propeller domain with six blades. All these motifs are known to mediate protein-protein interactions. Sequence analysis of four brat alleles revealed that all of them are mutated at the beta-propeller domain. The clustering of mutations in this domain strongly suggests that it has a crucial role in the normal function of Brat, and defines a novel protein motif involved in tumor suppression activity. The brat gene is expressed in the embryonic central and peripheral nervous systems including the embryonic brain. In third instar larva brat expression was detected in the larval central nervous system including the brain and the ventral ganglion, in two glands - the ring gland and the salivary gland, and in parts of the foregut - the gastric caecae and the proventriculus. A second brat-like gene was found in D. melanogaster, and homologs were identified in the nematode, mouse, rat, and human. Accumulated data suggests that Brat may regulate proliferation and differentiation by secretion/transport-mediated processes.
Collapse
Affiliation(s)
- E Arama
- Department of Biology, Technion-Israel Institute of Technology, Haifa
| | | | | | | | | |
Collapse
|