1
|
Xu B, Mountford SJ, Thompson PE, Edgington-Mitchell LE. Expanding the Library of Covalent Cysteine Cathepsin Probes Featuring Sulfoxonium Ylide Electrophiles. ACS OMEGA 2024; 9:43940-43947. [PMID: 39494001 PMCID: PMC11525741 DOI: 10.1021/acsomega.4c07604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Covalent activity-based probes are invaluable tools to monitor protease activity in vitro and in vivo. We recently discovered that dimethyl sulfoxonium ylides (SYs) bind selectively to cysteine cathepsin proteases in a mechanism-dependent manner. Herein, we present the synthetic routes and characterization of an expanded library of SY probes with a greater diversity in recognition sequences. The probes exhibit a range of potency and selectivity for the cathepsin family members. We also investigated the impact of fluorophore positioning on probes bearing P1 lysine. When sulfonated cyanine 5 was attached via the lysine side chain, the resulting probe was selective for cathepsin S. When attached to the α-amine, with the side chain amine either free or Boc-protected, the probes reacted with both cathepsin S and X. Bulk in the P1 position is thus well tolerated by cathepsin S but not cathepsin X. We examined the impact of Cy5 sulfonation on probe properties, demonstrating that unsulfonated probes exhibit greater cellular uptake, which affects their relative selectivity. Finally, we demonstrated that SY probes exhibit minimal labeling of cathepsin S in freshly prepared lysates, but this increases during the prolonged incubation of lysates. This work extends our understanding of SY probes and informs future probe development.
Collapse
Affiliation(s)
- Bangyan Xu
- Department
of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Simon J. Mountford
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Philip E. Thompson
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Laura E. Edgington-Mitchell
- Department
of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
2
|
Hintzen JCJ, Abujubara H, Tietze D, Tietze AA. The Complete Assessment of Small Molecule and Peptidomimetic Inhibitors of Sortase A Towards Antivirulence Treatment. Chemistry 2024; 30:e202401103. [PMID: 38716707 DOI: 10.1002/chem.202401103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 06/20/2024]
Abstract
This review covers the most recent advances in the development of inhibitors for the bacterial enzyme sortase A (SrtA). Sortase A (SrtA) is a critical virulence factor, present ubiquitously in Gram-positive bacteria of which many are pathogenic. Sortases are key enzymes regulating bacterial adherence to host cells, by anchoring extracellular matrix-binding proteins to the bacterial outer cell wall. By targeting virulence factors, effective treatment can be achieved, without inducing antibiotic resistance to the treatment. This is a potentially more sustainable, long-term approach to treating bacterial infections, including ones that display multiple resistance to current therapeutics. There are many promising approaches available for SrtA inhibition, some of which have the potential to advance into further clinical development, with peptidomimetic and in vivo active small molecules being among the most promising. There are currently no approved drugs on the market targeting SrtA, despite its promise, adding to the relevance of this review article, as it extends to the pharmaceutical industry additionally to academic researchers.
Collapse
Affiliation(s)
- Jordi C J Hintzen
- University of Gothenburg, Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, Kemigården 4, 412 96, Göteborg, Sweden
| | - Helal Abujubara
- University of Gothenburg, Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, Kemigården 4, 412 96, Göteborg, Sweden
| | - Daniel Tietze
- University of Gothenburg, Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, Kemigården 4, 412 96, Göteborg, Sweden
| | - Alesia A Tietze
- University of Gothenburg, Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, Kemigården 4, 412 96, Göteborg, Sweden
| |
Collapse
|
3
|
Barbour T, Cwiklinski K, Lalor R, Dalton JP, De Marco Verissimo C. The Zoonotic Helminth Parasite Fasciola hepatica: Virulence-Associated Cathepsin B and Cathepsin L Cysteine Peptidases Secreted by Infective Newly Excysted Juveniles (NEJ). Animals (Basel) 2021; 11:ani11123495. [PMID: 34944270 PMCID: PMC8698070 DOI: 10.3390/ani11123495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Fasciolosis, caused by the worm parasite Fasciola hepatica (liver fluke), is a global disease of farm animals and a neglected disease of humans. Infection arises from the ingestion of resistant metacercariae that contaminate vegetation. Within the intestine, the parasite excysts as an active larvae, the newly excysted juvenile (NEJ), that borrows through the intestinal wall to infect the host and migrates to the liver. NEJ release, tissue penetration and migration are facilitated by enzymes secreted by the parasite, namely, cathepsin B1 (FhCB1), cathepsin B2 (FhCB2), cathepsin B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these enzymes is growing, we have yet to understand why the parasites require all four of them to invade the host. In this study, we produced functional recombinant forms of these enzymes and demonstrated that they vary greatly in terms of activity, optimal pH and substrate specificity, suggesting that, combined, these enzymes provide the parasite with an efficient digestion system for different host tissues and molecules. We also identified several compounds that inhibited the activity of these enzymes, but did not affect the ability of the larvae to excyst or survive. However, this does not exclude these enzymes as targets for development of drugs or vaccines. Abstract Fasciolosis caused by Fasciola hepatica is a major global disease of livestock and an important neglected helminthiasis of humans. Infection arises when encysted metacercariae are ingested by the mammalian host. Within the intestine, the parasite excysts as a newly excysted juvenile (NEJ) that penetrates the intestinal wall and migrates to the liver. NEJ excystment and tissue penetration are facilitated by the secretion of cysteine peptidases, namely, cathepsin B1 (FhCB1), cathepsin B2 (FhCB2), cathepsin B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these peptidases is growing, we have yet to understand why multiple enzymes are required for parasite invasion. Here, we produced functional recombinant forms of these four peptidases and compared their physio-biochemical characteristics. Our studies show great variation of their pH optima for activity, substrate specificity and inhibitory profile. Carboxy-dipeptidase activity was exhibited exclusively by FhCB1. Our studies suggest that, combined, these peptidases create a powerful hydrolytic cocktail capable of digesting the various host tissues, cells and macromolecules. Although we found several inhibitors of these enzymes, they did not show potent inhibition of metacercarial excystment or NEJ viability in vitro. However, this does not exclude these peptidases as targets for future drug or vaccine development.
Collapse
Affiliation(s)
- Tara Barbour
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
| | - Krystyna Cwiklinski
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - John Pius Dalton
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - Carolina De Marco Verissimo
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
- Correspondence:
| |
Collapse
|
4
|
Peptides and Peptidomimetics as Inhibitors of Enzymes Involved in Fibrillar Collagen Degradation. MATERIALS 2021; 14:ma14123217. [PMID: 34200889 PMCID: PMC8230458 DOI: 10.3390/ma14123217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
Collagen fibres degradation is a complex process involving a variety of enzymes. Fibrillar collagens, namely type I, II, and III, are the most widely spread collagens in human body, e.g., they are responsible for tissue fibrillar structure and skin elasticity. Nevertheless, the hyperactivity of fibrotic process and collagen accumulation results with joints, bone, heart, lungs, kidneys or liver fibroses. Per contra, dysfunctional collagen turnover and its increased degradation leads to wound healing disruption, skin photoaging, and loss of firmness and elasticity. In this review we described the main enzymes participating in collagen degradation pathway, paying particular attention to enzymes degrading fibrillar collagen. Therefore, collagenases (MMP-1, -8, and -13), elastases, and cathepsins, together with their peptide and peptidomimetic inhibitors, are reviewed. This information, related to the design and synthesis of new inhibitors based on peptide structure, can be relevant for future research in the fields of chemistry, biology, medicine, and cosmeceuticals.
Collapse
|
5
|
PAR2, Keratinocytes, and Cathepsin S Mediate the Sensory Effects of Ciguatoxins Responsible for Ciguatera Poisoning. J Invest Dermatol 2020; 141:648-658.e3. [PMID: 32800876 DOI: 10.1016/j.jid.2020.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/14/2023]
Abstract
Ciguatera fish poisoning is caused by the consumption of fish contaminated with ciguatoxins (CTXs). The most distressing symptoms are cutaneous sensory disturbances, including cold dysesthesia and itch. CTXs are neurotoxins known to activate voltage-gated sodium channels, but no specific treatment exists. Peptidergic neurons have been critically involved in ciguatera fish poisoning sensory disturbances. Protease-activated receptor-2 (PAR2) is an itch- and pain-related G protein‒coupled receptor whose activation leads to a calcium-dependent neuropeptide release. In this study, we studied the role of voltage-gated sodium channels, PAR2, and the PAR2 agonist cathepsin S in the cytosolic calcium increase and subsequent release of the neuropeptide substance P elicited by Pacific CTX-2 (P-CTX-2) in rat sensory neurons and human epidermal keratinocytes. In sensory neurons, the P-CTX-2‒evoked calcium response was driven by voltage-gated sodium channels and PAR2-dependent mechanisms. In keratinocytes, P-CTX-2 also induced voltage-gated sodium channels and PAR2-dependent marked calcium response. In the cocultured cells, P-CTX-2 significantly increased cathepsin S activity, and cathepsin S and PAR2 antagonists almost abolished P-CTX-2‒elicited substance P release. Keratinocytes synergistically favored the induced substance P release. Our results demonstrate that the sensory effects of CTXs involve the cathepsin S-PAR2 pathway and are potentiated by their direct action on nonexcitable keratinocytes through the same pathway.
Collapse
|
6
|
Mountford SJ, Anderson BM, Xu B, Tay ESV, Szabo M, Hoang ML, Diao J, Aurelio L, Campden RI, Lindström E, Sloan EK, Yates RM, Bunnett NW, Thompson PE, Edgington-Mitchell LE. Application of a Sulfoxonium Ylide Electrophile to Generate Cathepsin X-Selective Activity-Based Probes. ACS Chem Biol 2020; 15:718-727. [PMID: 32022538 DOI: 10.1021/acschembio.9b00961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cathepsin X/Z/P is cysteine cathepsin with unique carboxypeptidase activity. Its expression is associated with cancer and neurodegenerative diseases, although its roles during normal physiology are still poorly understood. Advances in our understanding of its function have been hindered by a lack of available tools that can specifically measure the proteolytic activity of cathepsin X. We present a series of activity-based probes that incorporate a sulfoxonium ylide warhead, which exhibit improved specificity for cathepsin X compared to previously reported probes. We apply these probes to detect cathepsin X activity in cell and tissue lysates, in live cells and in vivo, and to localize active cathepsin X in mouse tissues by microscopy. Finally, we utilize an improved method to generate chloromethylketones, necessary intermediates for synthesis of acyloxymethylketones probes, by way of sulfoxonium ylide intermediates. In conclusion, the probes presented in this study will be valuable for investigating cathepsin X pathophysiology.
Collapse
Affiliation(s)
- Simon J. Mountford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bethany M. Anderson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bangyan Xu
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Elean S. V. Tay
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Monika Szabo
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - My-Linh Hoang
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jiayin Diao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Luigi Aurelio
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Rhiannon I. Campden
- Snyder Institute for Chronic Disease and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | - Erica K. Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robin M. Yates
- Snyder Institute for Chronic Disease and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Nigel W. Bunnett
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department of Craniofacial Biology, New York University College of Dentistry, New York, New York 10010, United States
- Department of Pharmacology and Experimental Therapeutics, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Philip E. Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Laura E. Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York 10010, United States
| |
Collapse
|
7
|
Klinngam W, Janga SR, Lee C, Ju Y, Yarber F, Shah M, Guo H, Wang D, MacKay JA, Edman MC, Hamm-Alvarez SF. Inhibition of Cathepsin S Reduces Lacrimal Gland Inflammation and Increases Tear Flow in a Mouse Model of Sjögren's Syndrome. Sci Rep 2019; 9:9559. [PMID: 31267034 PMCID: PMC6606642 DOI: 10.1038/s41598-019-45966-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022] Open
Abstract
Cathepsin S (CTSS) is highly increased in Sjögren's syndrome (SS) patients tears and in tears and lacrimal glands (LG) of male non-obese diabetic (NOD) mice, a murine model of SS. To explore CTSS's utility as a therapeutic target for mitigating ocular manifestations of SS in sites where CTSS is increased in disease, the tears and the LG (systemically), the peptide-based inhibitor, Z-FL-COCHO (Z-FL), was administered to 14-15 week male NOD mice. Systemic intraperitoneal (i.p.) injection for 2 weeks significantly reduced CTSS activity in tears, LG and spleen, significantly reduced total lymphocytic infiltration into LG, reduced CD3+ and CD68+ cell abundance within lymphocytic infiltrates, and significantly increased stimulated tear secretion. Topical administration of Z-FL to a different cohort of 14-15 week male NOD mice for 6 weeks significantly reduced only tear CTSS while not affecting LG and spleen CTSS and attenuated the disease-progression related reduction of basal tear secretion, while not significantly impacting lymphocytic infiltration of the LG. These findings suggest that CTSS inhibitors administered either topically or systemically can mitigate aspects of the ocular manifestations of SS.
Collapse
Affiliation(s)
- Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Srikanth R Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Changrim Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Frances Yarber
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mihir Shah
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Dandan Wang
- Anatomic and Clinical Pathology, Los Angeles County + University of Southern California Medical Center, Los Angeles, CA, 90033, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA.,Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA. .,Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
8
|
de Mingo Pulido Á, de Gregorio E, Chandra S, Colell A, Morales A, Kronenberg M, Marí M. Differential Role of Cathepsins S and B In Hepatic APC-Mediated NKT Cell Activation and Cytokine Secretion. Front Immunol 2018. [PMID: 29541077 PMCID: PMC5836516 DOI: 10.3389/fimmu.2018.00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Natural killer T (NKT) cells exhibit a specific tissue distribution, displaying the liver the highest NKT/conventional T cell ratio. Upon antigen stimulation, NKT cells secrete Th1 cytokines, including interferon γ (IFNγ), and Th2 cytokines, including IL-4 that recruit and activate other innate immune cells to exacerbate inflammatory responses in the liver. Cysteine cathepsins control hepatic inflammation by regulating κB-dependent gene expression. However, the contribution of cysteine cathepsins other than Cathepsin S to NKT cell activation has remained largely unexplored. Here we report that cysteine cathepsins, cathepsin B (CTSB) and cathepsin S (CTSS), regulate different aspects of NKT cell activation. Inhibition of CTSB or CTSS reduced hepatic NKT cell expansion in a mouse model after LPS challenge. By contrast, only CTSS inhibition reduced IFNγ and IL-4 secretion after in vivo α-GalCer administration. Accordingly, in vitro studies reveal that only CTSS was able to control α-GalCer-dependent loading in antigen-presenting cells (APCs), probably due to altered endolysosomal protein degradation. In summary, our study discloses the participation of cysteine cathepsins, CTSB and CTSS, in the activation of NKT cells in vivo and in vitro.
Collapse
Affiliation(s)
- Álvaro de Mingo Pulido
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Shilpi Chandra
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Montserrat Marí
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
9
|
Increased cathepsin S in Prdm1 -/- dendritic cells alters the T FH cell repertoire and contributes to lupus. Nat Immunol 2017; 18:1016-1024. [PMID: 28692065 PMCID: PMC5568473 DOI: 10.1038/ni.3793] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
Aberrant population expansion of follicular helper T cells (TFH cells) occurs in patients with lupus. An unanswered question is whether an altered repertoire of T cell antigen receptors (TCRs) is associated with such expansion. Here we found that the transcription factor Blimp-1 (encoded by Prdm1) repressed expression of the gene encoding cathepsin S (Ctss), a cysteine protease that cleaves invariant chains and produces antigenic peptides for loading onto major histocompatibility complex (MHC) class II molecules. The increased CTSS expression in dendritic cells (DCs) from female mice with dendritic cell-specific conditional knockout of Prdm1 (CKO mice) altered the presentation of antigen to CD4+ T cells. Analysis of complementarity-determining region 3 (CDR3) regions containing the β-chain variable region (Vβ) demonstrated a more diverse repertoire of TFH cells from female CKO mice than of those from wild-type mice. In vivo treatment of CKO mice with a CTSS inhibitor abolished the lupus-related phenotype and reduced the diversity of the TFH cell TCR repertoire. Thus, Blimp-1 deficiency in DCs led to loss of appropriate regulation of Ctss expression in female mice and thereby modulated antigen presentation and the TFH cell repertoire to contribute to autoimmunity.
Collapse
|
10
|
de Mingo Á, de Gregorio E, Moles A, Tarrats N, Tutusaus A, Colell A, Fernandez-Checa JC, Morales A, Marí M. Cysteine cathepsins control hepatic NF-κB-dependent inflammation via sirtuin-1 regulation. Cell Death Dis 2016; 7:e2464. [PMID: 27831566 PMCID: PMC5260902 DOI: 10.1038/cddis.2016.368] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022]
Abstract
Sirtuin-1 (SIRT1) regulates hepatic metabolism but its contribution to NF-κB-dependent inflammation has been overlooked. Cysteine cathepsins (Cathepsin B or S, CTSB/S) execute specific functions in physiological processes, such as protein degradation, having SIRT1 as a substrate. We investigated the roles of CTSB/S and SIRT1 in the regulation of hepatic inflammation using primary parenchymal and non-parenchymal hepatic cell types and cell lines. In all cells analyzed, CTSB/S inhibition reduces nuclear p65-NF-κB and κB-dependent gene expression after LPS or TNF through enhanced SIRT1 expression. Accordingly, SIRT1 silencing was sufficient to enhance inflammatory gene expression. Importantly, in a dietary mouse model of non-alcoholic steatohepatitis, or in healthy and fibrotic mice after LPS challenge, cathepsins as well as NF-κB-dependent gene expression are activated. Consistent with the prominent role of cathepsin/SIRT1, cysteine cathepsin inhibition limits NF-κB-dependent hepatic inflammation through the regulation of SIRT1 in all in vivo settings, providing a novel anti-inflammatory therapeutic target in liver disease.
Collapse
Affiliation(s)
- Álvaro de Mingo
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Anna Moles
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Núria Tarrats
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain.,Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC/IDIBAPS, Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Fsn0503h antibody-mediated blockade of cathepsin S as a potential therapeutic strategy for the treatment of solid tumors. Biochimie 2015; 108:101-7. [DOI: 10.1016/j.biochi.2014.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/27/2014] [Indexed: 01/20/2023]
|
12
|
Peripheral role of cathepsin S in Th1 cell-dependent transition of nerve injury-induced acute pain to a chronic pain state. J Neurosci 2014; 34:3013-22. [PMID: 24553941 DOI: 10.1523/jneurosci.3681-13.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There is increasing evidence that CD4(+) T-cell-dependent responses are associated with the maintenance of neuropathic pain. However, little is known about the precise mechanism(s) underlying the activation of CD4(+) T-cells. We herein show that inhibition of cathepsin S (CatS) activity, either through genetic deletion or via a pharmacological inhibitor, Z-Phe-Leu-COCHO (Z-FL), significantly attenuated the maintenance of tactile allodynia, splenic hypertrophy, increased number of splenic CD4(+) T-cells and the final cleavage step of the MHC class II-associated invariant chain following peripheral nerve injury. It was also noted that splenectomy significantly attenuated the peripheral nerve injury-induced tactile allodynia, whereas the adoptive transfer of splenic CD4(+) T-cells from neuropathic wild-type mice significantly increased the pain level of splenectomized wild-type or CatS(-/-) mice. Furthermore, CatS deficiency or Z-FL treatment also significantly inhibited the infiltration of CD4(+) T-cells that expressed interferon-γ (IFN-γ) in the dorsal spinal cord. Signal transducer and activator of transcription 1, a molecule downstream of IFN-γ receptor activation, was activated exclusively in microglia 7 d after peripheral nerve injury. Moreover, CatS deficiency, Z-FL treatment, or splenectomy significantly attenuated the proliferation of microglia 14 d after peripheral nerve injury. These results show a peripheral pivotal role of CatS in the development of neuropathic pain through the antigen-specific activation of CD4(+) T-cells. After activation, CD4(+) T-cells infiltrate into the dorsal spinal cord and secrete IFN-γ to reactivate microglia, which contribute to the transition of acute pain to a chronic pain state.
Collapse
|
13
|
Cox JM, Troutt JS, Knierman MD, Siegel RW, Qian YW, Ackermann BL, Konrad RJ. Determination of cathepsin S abundance and activity in human plasma and implications for clinical investigation. Anal Biochem 2012; 430:130-7. [PMID: 22922382 DOI: 10.1016/j.ab.2012.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/16/2012] [Accepted: 08/16/2012] [Indexed: 11/24/2022]
Abstract
There is strong experimental evidence associating cathepsin S with the pathogenesis of atherosclerosis, with emerging data to support its role in diseases such as abdominal aortic aneurysm, obesity, and type 2 diabetes. To further our understanding of cathepsin S, we have developed a novel sandwich immunoassay to measure the mature form of cathepsin S in plasma (mean values from 12 healthy donors of 53±17ng/ml, range=39-102). We also developed a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay to measure in vitro cathepsin S activity to compare activity levels with the protein mass levels determined by enzyme-linked immunosorbent assay (ELISA). Interestingly, we observed that only 0.4 to 1.1% of circulating cathepsin S was enzymatically active. We subsequently demonstrated that the attenuated activity we observed resulted from binding between cathepsin S and its endogenous inhibitor cystatin C in plasma. These data were obtained through immunoprecipitation coupled with either Western blotting analysis or in-gel tryptic digestion and LC-MS/MS characterization of Coomassie-stained gel bands. Although many laboratories have explored the relationship between cathepsin S and cystatin C, this is the first study to demonstrate their association in human circulation, a finding that could prove to be important in furthering our understanding of cathepsin S biology.
Collapse
Affiliation(s)
- Jennifer M Cox
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Fan Q, Wang X, Zhang H, Li C, Fan J, Xu J. Silencing cathepsin S gene expression inhibits growth, invasion and angiogenesis of human hepatocellular carcinoma in vitro. Biochem Biophys Res Commun 2012; 425:703-10. [PMID: 22796222 DOI: 10.1016/j.bbrc.2012.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/05/2012] [Indexed: 12/12/2022]
Abstract
Cathepsin S (Cat S) plays an important role in tumor invasion and metastasis by its ability to degrade extracellular matrix (ECM). Our previous study suggested there could be a potential association between Cat S and hepatocellular carcinoma (HCC) metastasis. The present study was designed to determine the role of Cat S in HCC cell growth, invasion and angiogenesis, using RNA interference technology. Small interfering RNA (siRNA) sequences for the Cat S gene were synthesized and transfected into human HCC cell line MHCC97-H. The Cat S gene targeted siRNA-mediated knockdown of Cat S expression, leading to potent suppression of MHCC97-H cell proliferation, invasion and angiogenesis. These data suggest that Cat S might be a potential target for HCC therapy.
Collapse
Affiliation(s)
- Qi Fan
- Department of Hepatobiliary and Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | | | | | | | | | | |
Collapse
|
15
|
Zall A, Bensinger D, Schmidt B. Oxidative Homologation of Aldehydes to α-Ketoaldehydes by using Iodoform, o-Iodoxybenzoic Acid, and Dimethyl Sulfoxide. European J Org Chem 2012. [DOI: 10.1002/ejoc.201101835] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Howe N, Ceruso M, Spink E, Malthouse JPG. pH stability of the stromelysin-1 catalytic domain and its mechanism of interaction with a glyoxal inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1814:1394-1403. [PMID: 21782982 DOI: 10.1016/j.bbapap.2011.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 05/31/2023]
Abstract
The stromelysin-1 catalytic domain(83-247) (SCD) is stable for at least 16 h at pHs 6.0-8.4. At pHs 5.0 and 9.0 there is exponential irreversible denaturation with half lives of 38 and 68 min respectively. At pHs 4.5 and 10.0 irreversible denaturation is biphasic. At 25°C, C-terminal truncation of stromelysin-1 decreases the stability of the stromelysin-1 catalytic domain at pH values >8.4 and <6.0. We describe the conversion of the carboxylate group of (βR)-β-[[[(1S)-1-[[[(1S)-2-Methoxy-1-phenylethyl]amino]carbonyl]-2,2-dimethylpropyl]amino]carbonyl]-2-methyl-[1,1'-biphenyl]-4-hexanoic acid (UK-370106-COOH) a potent inhibitor of the metalloprotease stromelysin-1 to a glyoxal group (UK-370106-CO(13)CHO). At pH 5.5-6.5 the glyoxal inhibitor is a potent inhibitor of stromelysin-1 (K(i)=~1μM). The aldehyde carbon of the glyoxal inhibitor was enriched with carbon-13 and using carbon-13 NMR we show that the glyoxal aldehyde carbon is fully hydrated when it is in aqueous solutions (90.4ppm) and also when it is bound to SCD (~92.0ppm). We conclude that the hemiacetal hydroxyl groups of the glyoxal inhibitor are not ionised when the glyoxal inhibitor is bound to SCD. The free enzyme pK(a) values associated with inhibitor binding were 5.9 and 6.2. The formation and breakdown of the signal at ~92ppm due to the bound UK-370106-CO(13)CHO inhibitor depends on pK(a) values of 5.8 and 7.8 respectively. No strong hydrogen bonds are present in free SCD or in SCD-inhibitor complexes. We conclude that the inhibitor glyoxal group is not directly coordinated to the catalytic zinc atom of SCD.
Collapse
Affiliation(s)
- Nicole Howe
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | | | | | | |
Collapse
|
17
|
Martino S, Tiribuzi R, Ciraci E, Makrypidi G, D'Angelo F, di Girolamo I, Gritti A, de Angelis GMC, Papaccio G, Sampaolesi M, Berardi AC, Datti A, Orlacchio A. Coordinated involvement of cathepsins S, D and cystatin C in the commitment of hematopoietic stem cells to dendritic cells. Int J Biochem Cell Biol 2011; 43:775-83. [PMID: 21315176 DOI: 10.1016/j.biocel.2011.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/29/2011] [Accepted: 02/01/2011] [Indexed: 02/02/2023]
Abstract
The identity of biochemical players which underpin the commitment of CD34(+) hematopoietic stem cells to immunogenic or tolerogenic dendritic cells is largely unknown. To explore this issue, we employed a previously established cell-based system amenable to shift dendritic cell differentiation from the immunogenic into the tolerogenic pathway upon supplementation with a conventional cytokine cocktail containing thrombopoietin (TPO) and IL-16. We show that stringent regulation of cathepsins S and D, two proteases involved in antigen presentation, is crucial to engage cell commitment to either route. In response to TPO+IL-16-dependent signaling, both cathepsins undergo earlier maturation and down-regulation. Additionally, cystatin C orchestrates cathepsin S expression through a tight but reversible interaction that, based on a screen of adult stem cells from disparate origins, CD14(+) cells, primary fibroblasts and the MCF7 cell line, appears unique to CD34(+) stem cells from peripheral and cord blood. As shown by CD4(+) T cell proliferation in mixed-lymphocyte reactions, cell commitment to either pathway is disrupted upon cathepsin knockdown by RNAi. Surprisingly, similar effects were also observed upon gene overexpression, which prompts atypically accelerated maturation of cathepsins S and D in cells of the immunogenic pathway, similar to the tolerogenic route. Furthermore, RNAi studies revealed that cystatin C is a proteolytic target of cathepsin D and has a direct, causal impact on cell differentiation. Together, these findings uncover a novel biochemical cluster that is subject to time-controlled and rigorously balanced expression to mediate specific stem cell commitment at the crossroads towards tolerance or immunity.
Collapse
Affiliation(s)
- Sabata Martino
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shenoy RT, Sivaraman J. Structural basis for reversible and irreversible inhibition of human cathepsin L by their respective dipeptidyl glyoxal and diazomethylketone inhibitors. J Struct Biol 2011; 173:14-9. [DOI: 10.1016/j.jsb.2010.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 11/28/2022]
|
19
|
Murphy DJ, Walker B, Ryan CA, Martin SL. The inhibitor profiling of the caspase family of proteases using substrate-derived peptide glyoxals. Biochem Biophys Res Commun 2010; 402:483-8. [PMID: 20955686 DOI: 10.1016/j.bbrc.2010.10.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 10/13/2010] [Indexed: 11/30/2022]
Abstract
A series of substrate-based α-keto-β-aldehyde (glyoxal) sequences have been synthesised and evaluated as inhibitors of the caspase family of cysteine proteases. A number of potent inhibitor sequences have been identified. For example, a palmitic acid containing sequence pal-Tyr-Val-Ala-Asp-glyoxal was demonstrated to be an extremely effective inhibitor of caspase-1, inhibiting not only the action of the protease against synthetic fluorogenic substrates (K(i)=0.3 nM) but also blocking its processing of pro-interleukin-1beta (pro-IL-1β). In addition, the peptide Ac-Asp-Glu-Val-Asp-glyoxal, which is based on the consensus cleavage sequence for caspase-3, is a potent inhibitor of this protease (K(i)=0.26 nM) yet only functions as a comparatively modest inhibitor of caspase-1 (K(i)=451 nM). Potent inhibitor sequences were also identified for caspases-6 and -8. However, the degree of discrimination between the family members is limited. The ability of Ac-Asp-Glu-Val-Asp-glyoxal to block caspase-3 like activity in whole cells and to delay the development of apoptosis was assessed. When tested against caspase-3 like activity in cell lysates, Ac-Asp-Glu-Val-Asp-glyoxal displayed effective inhibition similar to that observed against recombinant caspase-3. Treatment of whole cells with this potent caspase-3 inhibitor was however, not sufficient to significantly stall the development of apoptosis in-vitro.
Collapse
Affiliation(s)
- Diarmaid J Murphy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | | | | |
Collapse
|
20
|
Gillet L, Roger S, Besson P, Lecaille F, Gore J, Bougnoux P, Lalmanach G, Le Guennec JY. Voltage-gated Sodium Channel Activity Promotes Cysteine Cathepsin-dependent Invasiveness and Colony Growth of Human Cancer Cells. J Biol Chem 2009; 284:8680-91. [PMID: 19176528 DOI: 10.1074/jbc.m806891200] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated sodium channels (Na(V)) are functionally expressed in highly metastatic cancer cells derived from nonexcitable epithelial tissues (breast, prostate, lung, and cervix). MDA-MB-231 breast cancer cells express functional sodium channel complexes, consisting of Na(V)1.5 and associated auxiliary beta-subunits, that are responsible for a sustained inward sodium current at the membrane potential. Although these channels do not regulate cellular multiplication or migration, their inhibition by the specific blocker tetrodotoxin impairs both the extracellular gelatinolytic activity (monitored with DQ-gelatin) and cell invasiveness leading to the attenuation of colony growth and cell spreading in three-dimensional Matrigel-composed matrices. MDA-MB-231 cells express functional cysteine cathepsins, which we found play a predominant role ( approximately 65%) in cancer invasiveness. Matrigel invasion is significantly decreased in the presence of specific inhibitors of cathepsins B and S (CA-074 and Z-FL-COCHO, respectively), and co-application of tetrodotoxin does not further reduce cell invasion. This suggests that cathepsins B and S are involved in invasiveness and that their proteolytic activity partly depends on Na(V) function. Inhibiting Na(V) has no consequence for cathepsins at the transcription, translation, and secretion levels. However, Na(V) activity leads to an intracellular alkalinization and a perimembrane acidification favorable for the extracellular activity of these acidic proteases. We propose that Na(v) enhance the invasiveness of cancer cells by favoring the pH-dependent activity of cysteine cathepsins. This general mechanism could lead to the identification of new targets allowing the therapeutic prevention of metastases.
Collapse
Affiliation(s)
- Ludovic Gillet
- INSERM U921, Nutrition, Croissance et Cancer, and INSERM U618, Protéases et Vectorisation Pulmonaires, Université François Rabelais, FacultédeMédecine, 37032 Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Soualhine H, Deghmane AE, Sun J, Mak K, Talal A, Av-Gay Y, Hmama Z. Mycobacterium bovis bacillus Calmette-Guérin secreting active cathepsin S stimulates expression of mature MHC class II molecules and antigen presentation in human macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 179:5137-45. [PMID: 17911599 DOI: 10.4049/jimmunol.179.8.5137] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A successful Th cell response to bacterial infections is induced by mature MHC class II molecules presenting specific Ag peptides on the surface of macrophages. In recent studies, we demonstrated that infection with the conventional vaccine Mycobacterium bovis bacillus Calmette-Guérin (BCG) specifically blocks the surface export of mature class II molecules in human macrophages by a mechanism dependent on inhibition of cathepsin S (Cat S) expression. The present study examined class II expression in macrophages infected with a rBCG strain engineered to express and secrete biologically active human Cat S (rBCG-hcs). Cat S activity was completely restored in cells ingesting rBCG-hcs, which secreted substantial levels of Cat S intracellularly. Thus, infection with rBCG-hcs, but not parental BCG, restored surface expression of mature MHC class II molecules in response to IFN-gamma, presumably as result of MHC class II invariant chain degradation dependent on active Cat S secreted by the bacterium. These events correlated with increased class II-directed presentation of mycobacterial Ag85B to a specific CD4(+) T cell hybridoma by rBCG-hcs-infected macrophages. Consistent with these findings, rBCG-hcs was found to accelerate the fusion of its phagosome with lysosomes, a process that optimizes Ag processing in infected macrophages. These data demonstrated that intracellular restoration of Cat S activity improves the capacity of BCG-infected macrophages to stimulate CD4(+) Th cells. Given that Th cells play a major role in protection against tuberculosis, rBCG-hcs would be a valuable tuberculosis vaccine candidate.
Collapse
Affiliation(s)
- Hafid Soualhine
- Division of Infectious Diseases, Department of Medicine, University of British Columbia and Vancouver Costal Health Institute, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Malthouse JPG. 13C- and 1H-NMR studies of oxyanion and tetrahedral intermediate stabilization by the serine proteinases: optimizing inhibitor warhead specificity and potency by studying the inhibition of the serine proteinases by peptide-derived chloromethane and glyoxal inhibitors. Biochem Soc Trans 2007; 35:566-70. [PMID: 17511653 DOI: 10.1042/bst0350566] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Catalysis by the serine proteinases proceeds via a tetrahedral intermediate whose oxyanion is stabilized by hydrogen-bonding in the oxyanion hole. There have been extensive (13)C-NMR studies of oxyanion and tetrahedral intermediate stabilization in trypsin, subtilisin and chymotrypsin using substrate-derived chloromethane inhibitors. One of the limitations of these inhibitors is that they irreversibly alkylate the active-site histidine residue which results in the oxyanion not being in the optimal position in the oxyanion hole. Substrate-derived glyoxal inhibitors are reversible inhibitors which, if they form tetrahedral adducts in the same way as substrates form tetrahedral intermediates, will overcome this limitation. Therefore we have synthesized (13)C-enriched substrate-derived glyoxal inhibitors which have allowed us to use (13)C-NMR and (1)H-NMR to determine how they interact with proteinases. It is hoped that these studies will help in the design of specific and highly potent warheads for serine proteinase inhibitors.
Collapse
Affiliation(s)
- J P G Malthouse
- UCD School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
23
|
Taleb S, Cancello R, Clément K, Lacasa D. Cathepsin s promotes human preadipocyte differentiation: possible involvement of fibronectin degradation. Endocrinology 2006; 147:4950-9. [PMID: 16825321 DOI: 10.1210/en.2006-0386] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously showed that the cysteine protease cathepsin S (CTSS), known to degrade several components of the extracellular matrix (ECM), is produced by human adipose cells and increased in obesity. Because ECM remodeling is a key process associated with adipogenesis, this prompted us to assess the potential role of CTSS to promote preadipocyte differentiation. Kinetic studies in primary human preadipocytes revealed a modest increase in CTSS gene expression and secretion at the end of differentiation. CTSS activity was maximal in preadipocyte culture medium but decreased thereafter, fitting with increased release of the CTSS endogenous inhibitor, cystatin C, during differentiation. Inhibition of CTSS activity by an exogenous-specific inhibitor added along the differentiation, resulted in a 2-fold reduction of lipid content and expression of adipocyte markers in differentiated cells. Conversely, the treatment of preadipocytes with human recombinant CTSS increased adipogenesis. Moreover, CTSS supplementation in preadipocyte media markedly reduced the fibronectin network, a key preadipocyte-ECM component, the decrease of which is required for adipogenesis. Using immunohistochemistry on serial sections of adipose tissue of obese subjects, we showed that adipose cells staining positive for CTSS are mainly located in the vicinity of fibrosis regions containing fibronectin. Herein we propose that CTSS may promote human adipogenesis, at least in part, by degrading fibronectin in the early steps of differentiation. Taken together, these results indicate that CTSS released locally by preadipocytes promotes adipogenesis, suggesting a possible contribution of this protease to fat mass expansion in obesity.
Collapse
Affiliation(s)
- Soraya Taleb
- Institut National de la Santé et de la Recherche Médicale, Unité 755, Department of Nutrition, Hôtel-Dieu, Place du parvis Notre-Dame, 75004 Paris, France
| | | | | | | |
Collapse
|
24
|
Zeng J, Dunlop R, Rodgers K, Davies M. Evidence for inactivation of cysteine proteases by reactive carbonyls via glycation of active site thiols. Biochem J 2006; 398:197-206. [PMID: 16671891 PMCID: PMC1550308 DOI: 10.1042/bj20060019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hyperglycaemia, triose phosphate decomposition and oxidation reactions generate reactive aldehydes in vivo. These compounds react non-enzymatically with protein side chains and N-terminal amino groups to give adducts and cross-links, and hence modified proteins. Previous studies have shown that free or protein-bound carbonyls inactivate glyceraldehyde-3-phosphate dehydrogenase with concomitant loss of thiol groups [Morgan, Dean and Davies (2002) Arch. Biochem. Biophys. 403, 259-269]. It was therefore hypothesized that modification of lysosomal cysteine proteases (and the structurally related enzyme papain) by free and protein-bound carbonyls may modulate the activity of these components of the cellular proteolytic machinery responsible for the removal of modified proteins and thereby contribute to a decreased removal of modified proteins from cells. It is shown that MGX (methylglyoxal), GO (glyoxal) and glycolaldehyde, but not hydroxyacetone and glucose, inhibit catB (cathepsin B), catL (cathepsin L) and catS (cathepsin S) activity in macrophage cell lysates, in a concentration-dependent manner. Protein-bound carbonyls produced similar inhibition with both cell lysates and intact macrophage cells. Inhibition was also observed with papain, with this paralleled by loss of the active site cysteine residue and formation of the adduct species S-carboxymethylcysteine, from GO, in a concentration-dependent manner. Inhibition of autolysis of papain by MGX, along with cross-link formation, was detected by SDS/PAGE. Treatment of papain and catS with the dialdehyde o-phthalaldehyde resulted in enzyme inactivation and an intra-molecular active site cysteine-lysine cross-link. These results demonstrate that reactive aldehydes inhibit cysteine proteases by modification of the active site cysteine residue. This process may contribute to the accumulation of modified proteins in tissues of people with diabetes and age-related pathologies, including atherosclerosis, cataract and Alzheimer's disease.
Collapse
Affiliation(s)
- Jingmin Zeng
- *The Heart Research Institute, 145 Missenden Road, Sydney, NSW 2050, Australia
| | - Rachael A. Dunlop
- *The Heart Research Institute, 145 Missenden Road, Sydney, NSW 2050, Australia
| | - Kenneth J. Rodgers
- *The Heart Research Institute, 145 Missenden Road, Sydney, NSW 2050, Australia
| | - Michael J. Davies
- *The Heart Research Institute, 145 Missenden Road, Sydney, NSW 2050, Australia
- †Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
25
|
Sendide K, Deghmane AE, Pechkovsky D, Av-Gay Y, Talal A, Hmama Z. Mycobacterium bovis BCG attenuates surface expression of mature class II molecules through IL-10-dependent inhibition of cathepsin S. THE JOURNAL OF IMMUNOLOGY 2005; 175:5324-32. [PMID: 16210638 DOI: 10.4049/jimmunol.175.8.5324] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have previously shown that macrophage infection with Mycobacterium tuberculosis and M. bovis bacillus Calmette-Guérin (BCG) partially inhibits MHC class II surface expression in response to IFN-gamma. The present study examined the nature of class II molecules that do in fact reach the surface of infected cells. Immunostaining with specific Abs that discriminate between mature and immature class II populations showed a predominance of invariant chain (Ii)-associated class II molecules at the surface of BCG-infected cells suggesting that mycobacteria specifically block the surface export of peptide-loaded class II molecules. This phenotype was due to inhibition of IFN-gamma-induced cathepsin S (Cat S) expression in infected cells and the subsequent intracellular accumulation of alphabeta class II dimers associated with the Cat S substrate Ii p10 fragment. In contrast, infection with BCG was shown to induce secretion of IL-10, and addition of blocking anti-IL-10 Abs to cell cultures restored both expression of active Cat S and export of mature class II molecules to the surface of infected cells. Consistent with these findings, expression of mature class II molecules was also restored in cells infected with BCG and transfected with active recombinant Cat S. Thus, M. bovis BCG exploits IL-10 induction to inhibit Cat S-dependent processing of Ii in human macrophages. This effect results in inhibition of peptide loading of class II molecules and in reduced presentation of mycobacterial peptides to CD4(+) T cells. This ability may represent an effective mycobacterial strategy for eluding immune surveillance and persisting in the host.
Collapse
Affiliation(s)
- Khalid Sendide
- Department of Medicine, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Djurdjevic-Pahl A, Hewage C, Malthouse JPG. Ionisations within a subtilisin-glyoxal inhibitor complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:33-41. [PMID: 15848134 DOI: 10.1016/j.bbapap.2005.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 02/03/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Z-Ala-Pro-Phe-glyoxal (where Z is benzyloxycarbonyl) has been shown to be a competitive inhibitor of subtilisin with a K(i)=2.3+/-0.2 microM at pH 7.0 and 25 degrees C. Using Z-Ala-Pro-[2-(13)C]Phe-glyoxal we have detected a signal at 107.3 ppm by (13)C NMR, which we assign to the tetrahedral adduct formed between the hydroxy group of serine-195 and the (13)C-enriched keto-carbon of the inhibitor. The chemical shift of this signal is pH independent from pH 4.2 to 7.0 and we conclude that the oxyanion pK(a)<3. This is the first observation of oxyanion formation in a reversible subtilisin-inhibitor complex. The inhibitor is bound as a hemiketal which is in slow exchange with the free inhibitor. Inhibitor binding depends on a pK(a) of approximately 6.5 in the free enzyme and on a pK(a)<3.0 when the inhibitor is bound to subtilisin. Protonation of the oxyanion promotes the disassociation of the inhibitor. We show that oxyanion formation cannot be rate limiting during catalysis and that subtilisin stabilises the oxyanion by at least 45.1 kJ mol(-1). We conclude that if the energy required for oxyanion stabilisation is utilised as binding energy in drug design it should make a significant contribution to inhibitor potency.
Collapse
Affiliation(s)
- Aleksandra Djurdjevic-Pahl
- Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, Department of Biochemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
27
|
Urbich C, Heeschen C, Aicher A, Sasaki KI, Bruhl T, Farhadi MR, Vajkoczy P, Hofmann WK, Peters C, Pennacchio LA, Abolmaali ND, Chavakis E, Reinheckel T, Zeiher AM, Dimmeler S. Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat Med 2005; 11:206-13. [PMID: 15665831 DOI: 10.1038/nm1182] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2004] [Accepted: 12/16/2004] [Indexed: 01/20/2023]
Abstract
Infusion of endothelial progenitor cells (EPC), but not of mature endothelial cells, promotes neovascularization after ischemia. We performed gene expression profiling of EPC and endothelial cells to identify genes that might be important for the neovascularization capacity of EPC. Notably, the protease cathepsin L (CathL) was highly expressed in EPC as opposed to endothelial cells and was essential for matrix degradation and invasion by EPC in vitro. CathL-deficient mice showed impaired functional recovery following hind limb ischemia, supporting the concept of a crucial role for CathL in postnatal neovascularization. Infused CathL-deficient progenitor cells neither homed to sites of ischemia nor augmented neovascularization. Forced expression of CathL in mature endothelial cells considerably enhanced their invasive activity and sufficed to confer their capacity for neovascularization in vivo. We concluded that CathL has a critical role in the integration of circulating EPC into ischemic tissue and is required for EPC-mediated neovascularization.
Collapse
Affiliation(s)
- Carmen Urbich
- Molecular Cardiology, Department of Internal Medicine III, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Deaton DN, Kumar S. Cathepsin K Inhibitors: Their Potential as Anti-Osteoporosis Agents. PROGRESS IN MEDICINAL CHEMISTRY 2004; 42:245-375. [PMID: 15003723 DOI: 10.1016/s0079-6468(04)42006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- David N Deaton
- Medicinal Chemistry Department, GlaxoSmithKline Inc., 5 Moore Drive, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
29
|
Lecaille F, Kaleta J, Brömme D. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 2002; 102:4459-88. [PMID: 12475197 DOI: 10.1021/cr0101656] [Citation(s) in RCA: 406] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabien Lecaille
- Mount Sinai School of Medicine, Department of Human Genetics, Fifth Avenue at 100th Street, New York, New York 10029, USA
| | | | | |
Collapse
|
30
|
Lowther J, Djurdjevic-Pahl A, Hewage C, Malthouse JPG. A 13C-NMR study of the inhibition of papain by a dipeptide-glyoxal inhibitor. Biochem J 2002; 366:983-7. [PMID: 12061892 PMCID: PMC1222827 DOI: 10.1042/bj20020499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2002] [Revised: 05/29/2002] [Accepted: 06/12/2002] [Indexed: 11/17/2022]
Abstract
Z-Phe-Ala-glyoxal (where Z is benzyloxycarbonyl) has been synthesized and shown to be a competitive inhibitor of papain with a K(i)=3.30+/-0.25 nM. (13)C-NMR has been used to show that in aqueous media, Z-Phe-[2-(13)C]Ala-glyoxal gives signals at 207.7 p.p.m. and 96.3 p.p.m. showing that both the alpha-keto carbon and its hydrate are present. When this inhibitor is bound to papain a single signal at 209.7 p.p.m. is observed due to the (13)C-enriched carbon. This demonstrates that the glyoxal alpha-keto carbon is not hydrated when it is bound to papain and that it does not form a thiohemiketal with the thiol group of Cys-25. Z-Phe-[1-(13)C]Ala-glyoxal has also been synthesized and its aldehyde carbon is fully hydrated in aqueous solution giving signals at 88.7 p.p.m. and 90.2 p.p.m. when the alpha-keto carbon and its hydrate are present respectively. When this inhibitor is bound to papain a single signal at 71.04 p.p.m. was observed due to the (13)C-enriched carbon showing that the (13)C-enriched aldehyde carbon forms a thiohemiacetal with Cys-25.
Collapse
Affiliation(s)
- Jonathan Lowther
- Department of Biochemistry and Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | | | | | | |
Collapse
|
31
|
Scott CJ, McDowell A, Martin SL, Lynas JF, Vandenbroeck K, Walker B. Irreversible inhibition of the bacterial cysteine protease-transpeptidase sortase (SrtA) by substrate-derived affinity labels. Biochem J 2002; 366:953-8. [PMID: 12069686 PMCID: PMC1222829 DOI: 10.1042/bj20020602] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Revised: 06/05/2002] [Accepted: 06/17/2002] [Indexed: 11/17/2022]
Abstract
We report on the first synthesis, kinetic evaluation and application of novel substrate-derived inhibitors against the Staphylococcus aureus cysteine protease-transpeptidase, sortase (staphylococcal surface protein sorting A, SrtA). The peptidyl-diazomethane and peptidyl-chloromethane analogues, Cbz (benzyloxycarbonyl)-Leu-Pro-Ala-Thr-CHN(2) (I) and Cbz-Leu-Pro-Ala-Thr-CH(2)Cl (II) respectively were found to act as time-dependent irreversible inhibitors of recombinant sortase (SrtA(DeltaN)). The peptidyl-chloromethane analogue (II) was the most powerful with an inhibitor specificity constant (k(i)/K(i)) of 5.3x10(4) M(-1).min(-1), approx. 2-fold greater than that determined for the peptidyl-diazomethane (I). Additionally, using Western-blot analysis, we have been able to demonstrate that a biotinylated version of the peptidyl-diazomethane analogue, biotin-Ahx (aminohexanoyl)-Leu-Pro-Ala-Thr-CHN(2) (III), can be used as an affinity label to detect the presence of wild-type SrtA in crude cell lysates prepared from S. aureus.
Collapse
Affiliation(s)
- Christopher J Scott
- Biomolecular Sciences Group, School of Pharmacy, The Queen's University of Belfast, Northern Ireland, UK
| | | | | | | | | | | |
Collapse
|
32
|
Djurdjevic-Pahl A, Hewage C, Malthouse JPG. 13C-NMR study of the inhibition of delta-chymotrypsin by a tripeptide-glyoxal inhibitor. Biochem J 2002; 362:339-47. [PMID: 11853541 PMCID: PMC1222393 DOI: 10.1042/0264-6021:3620339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new inhibitor, Z-Ala-Pro-Phe-glyoxal (where Z is benzyloxycarbonyl),has been synthesized and shown to be a competitive inhibitor of delta-chymotrypsin, with a K(i) of 25+/-8 nM at pH 7.0 and 25 degrees C. Z-Ala-Pro-[1-(13)C]Phe-glyoxal and Z-Ala-Pro-[2-(13)C]Phe-glyoxal have been synthesized, and (13)C-NMR has been used to determine how they interact with delta-chymotrypsin. Using Z-Ala-Pro-[2-(13)C]Phe-glyoxal we have detected a signal at 100.7 p.p.m. which we assign to the tetrahedral adduct formed between the hydroxy group of Ser-195 and the (13)C-enriched keto-carbon of the inhibitor. This signal is in a pH-dependent slow exchange with a signal at 107.6 p.p.m. which depends on a pK(a) of approximately 4.5, which we assign to oxyanion formation. Thus we are the first to detect an oxyanion pK(a) in a reversible chymotrypsin-inhibitor complex. A smaller titration shift of 100.7 p.p.m. to 103.9 p.p.m. with a pK(a) of approximately 5.3 is also detected due to a rapid exchange process. This pK(a) is also detected with the Z-Ala-Pro-[1-(13)C]Phe-glyoxal inhibitor and gives a larger titration shift of 91.4 p.p.m. to 97.3 p.p.m., which we assign to the ionization of the hydrated aldehyde hydroxy groups of the enzyme-bound inhibitor. Protonation of the oxyanion in the oxyanion hole decreases the binding efficiency of the inhibitor. From this decrease in binding efficiency we estimate that oxyanion binding in the oxyanion hole reduces the oxyanion pK(a) by 1.3 pK(a) units. We calculate that the pK(a)s of the oxyanions of the hemiketal and hydrated aldehyde moieties of the glyoxal inhibitor are both lowered by 6.4-6.9 pK(a) units on binding to chymotrypsin. Therefore we conclude that oxyanion binding in the oxyanion hole has only a minor role in decreasing the oxyanion pK(a). We also investigate how the inhibitor breaks down at alkaline pH, and how it breaks down at neutral pH in the presence of chymotrypsin.
Collapse
Affiliation(s)
- Aleksandra Djurdjevic-Pahl
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | | | | |
Collapse
|
33
|
Lynas JF, Martin SL, Walker B. Synthesis and kinetic evaluation of peptide alpha-keto-beta-aldehyde-based inhibitors of trypsin-like serine proteases. J Pharm Pharmacol 2001; 53:473-80. [PMID: 11341363 DOI: 10.1211/0022357011775767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
New, synthetic peptide analogues bearing a C-terminal basic alpha-keto-beta-aldehyde moiety were prepared as novel inhibitors of the trypsin-like serine proteases. The compounds, Ac-Leu-Leu-Arg-COCHO, Ac-Arg-Gln-Arg-COCHO and Boc-Val-Leu-Lys-COCHO were evaluated kinetically against trypsin and three other trypsin-like serine proteases, tryptase, plasmin and thrombin, all of which are implicated as mediators of important disease processes. Results illustrate that alpha-keto-beta-aldehydes are potent inhibitors, with similar potency to comparable peptide aldehydes, and intriguingly, appearto act, in some instances, by a novel mechanism of action. Ac-Leu-Leu-Arg-COCHO, an analogue of the natural product leupeptin, is a potent, tight-binding inhibitor of trypsin (Ki(final) = 1.9 microM), plasmin (Ki(final) = 4.9 microM) and tryptase (Ki(final) = 1.2 microM) and an irreversible inactivator of thrombin (k2nd 4,500 M(-1).min(-1)). Boc-Val-Leu-Lys-COCHO was found to be a tight-binding inhibitor of its target protease plasmin (Ki(final) = 3.1 microM) and was inactive against thrombin. Ac-Arg-Gln-Arg-COCHO was a slow-binding inhibitor of tryptase (Ki(final) = 1.6 microM) and also irreversibly inactivated trypsin (k2nd = 8,920 M(-1) min(-1)). Peptides or peptidomimetics with a C-terminal basic alpha-keto-beta-aldehyde function thus provide a useful new molecular template for the development of new therapeutic agents against a wide range of disorders, such as coagulopathies and asthma, which may be mediated by the aberrant activity of trypsin-like serine proteases.
Collapse
Affiliation(s)
- J F Lynas
- Division of Biomedicinal Chemistry, School of Pharmacy, Medical Biology Centre, The Queen's University of Belfast, Northern Ireland.
| | | | | |
Collapse
|