1
|
Lu J, Ge P, Sawaya MR, Hughes MP, Boyer DR, Cao Q, Abskharon R, Cascio D, Tayeb-Fligelman E, Eisenberg DS. Cryo-EM structures of the D290V mutant of the hnRNPA2 low-complexity domain suggests how D290V affects phase separation and aggregation. J Biol Chem 2024; 300:105531. [PMID: 38072051 PMCID: PMC10844680 DOI: 10.1016/j.jbc.2023.105531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2) is a human ribonucleoprotein that transports RNA to designated locations for translation via its ability to phase separate. Its mutated form, D290V, is implicated in multisystem proteinopathy known to afflict two families, mainly with myopathy and Paget's disease of bone. Here, we investigate this mutant form of hnRNPA2 by determining cryo-EM structures of the recombinant D290V low complexity domain. We find that the mutant form of hnRNPA2 differs from the WT fibrils in four ways. In contrast to the WT fibrils, the PY-nuclear localization signals in the fibril cores of all three mutant polymorphs are less accessible to chaperones. Also, the mutant fibrils are more stable than WT fibrils as judged by phase separation, thermal stability, and energetic calculations. Similar to other pathogenic amyloids, the mutant fibrils are polymorphic. Thus, these structures offer evidence to explain how a D-to-V missense mutation diverts the assembly of reversible, functional amyloid-like fibrils into the assembly of pathogenic amyloid, and may shed light on analogous conversions occurring in other ribonucleoproteins that lead to neurological diseases such as amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
Affiliation(s)
- Jiahui Lu
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Peng Ge
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Michael R Sawaya
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Michael P Hughes
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David R Boyer
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Qin Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Romany Abskharon
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Duilio Cascio
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Einav Tayeb-Fligelman
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - David S Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA.
| |
Collapse
|
2
|
Role of Heterogeneous Nuclear Ribonucleoproteins in the Cancer-Immune Landscape. Int J Mol Sci 2023; 24:ijms24065086. [PMID: 36982162 PMCID: PMC10049280 DOI: 10.3390/ijms24065086] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer remains the second leading cause of death, accounting for approximately 20% of all fatalities. Evolving cancer cells and a dysregulated immune system create complex tumor environments that fuel tumor growth, metastasis, and resistance. Over the past decades, significant progress in deciphering cancer cell behavior and recognizing the immune system as a hallmark of tumorigenesis has been achieved. However, the underlying mechanisms controlling the evolving cancer-immune landscape remain mostly unexplored. Heterogeneous nuclear ribonuclear proteins (hnRNP), a highly conserved family of RNA-binding proteins, have vital roles in critical cellular processes, including transcription, post-transcriptional modifications, and translation. Dysregulation of hnRNP is a critical contributor to cancer development and resistance. HnRNP contribute to the diversity of tumor and immune-associated aberrant proteomes by controlling alternative splicing and translation. They can also promote cancer-associated gene expression by regulating transcription factors, binding to DNA directly, or promoting chromatin remodeling. HnRNP are emerging as newly recognized mRNA readers. Here, we review the roles of hnRNP as regulators of the cancer-immune landscape. Dissecting the molecular functions of hnRNP will provide a better understanding of cancer-immune biology and will impact the development of new approaches to control and treat cancer.
Collapse
|
3
|
Liu Y, Abula A, Xiao H, Guo H, Li T, Zheng L, Chen B, Nguyen HC, Ji X. Structural Insight Into hnRNP A2/B1 Homodimerization and DNA Recognition. J Mol Biol 2023; 435:167920. [PMID: 36528084 DOI: 10.1016/j.jmb.2022.167920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) has been identified as a nuclear DNA sensor. Upon viral infection, hnRNP A2/B1 recognizes pathogen-derived DNA as a homodimer, which is a prerequisite for its translocation to the cytoplasm to activate the interferon response. However, the DNA binding mechanism inducing hnRNP A2/B1 homodimerization is unknown. Here, we show the crystal structure of the RNA recognition motif (RRM) of hnRNP A2/B1 in complex with a U-shaped ssDNA, which mediates the formation of a newly observed protein dimer. Our biochemical assays and mutagenesis studies confirm that the hnRNP A2/B1 homodimer forms in solution by binding to pre-generated ssDNA or dsDNA with a U-shaped bulge. These results depict a potential functional state of hnRNP A2/B1 in antiviral immunity and other cellular processes.
Collapse
Affiliation(s)
- Yue Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Abudureyimu Abula
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China; School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Haonan Xiao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Tinghan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Le Zheng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Biqing Chen
- Research Center of Chinese Medicine/Central Laboratory, Jiangsu Province Hospital of Chinese Medicine/ the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Henry C Nguyen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, People's Republic of China.
| |
Collapse
|
4
|
Thibault PA, Ganesan A, Kalyaanamoorthy S, Clarke JPWE, Salapa HE, Levin MC. hnRNP A/B Proteins: An Encyclopedic Assessment of Their Roles in Homeostasis and Disease. BIOLOGY 2021; 10:biology10080712. [PMID: 34439945 PMCID: PMC8389229 DOI: 10.3390/biology10080712] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
The hnRNP A/B family of proteins is canonically central to cellular RNA metabolism, but due to their highly conserved nature, the functional differences between hnRNP A1, A2/B1, A0, and A3 are often overlooked. In this review, we explore and identify the shared and disparate homeostatic and disease-related functions of the hnRNP A/B family proteins, highlighting areas where the proteins have not been clearly differentiated. Herein, we provide a comprehensive assembly of the literature on these proteins. We find that there are critical gaps in our grasp of A/B proteins' alternative splice isoforms, structures, regulation, and tissue and cell-type-specific functions, and propose that future mechanistic research integrating multiple A/B proteins will significantly improve our understanding of how this essential protein family contributes to cell homeostasis and disease.
Collapse
Affiliation(s)
- Patricia A. Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Aravindhan Ganesan
- ArGan’s Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Subha Kalyaanamoorthy
- Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Joseph-Patrick W. E. Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hannah E. Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Michael C. Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
5
|
Liu Y, Shi SL. The roles of hnRNP A2/B1 in RNA biology and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1612. [PMID: 32588964 DOI: 10.1002/wrna.1612] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein hnRNPA2/B1 is a member of the hnRNPs family and is widely expressed in various tissues. hnRNPA2/B1 recognizes and binds specific RNA substrates and DNA motifs and is involved in the transcription, splicing processing, transport, stability, and translation regulation of a variety of RNA molecules and in regulating the expression of a large number of genes. hnRNPA2/B1 is also involved in telomere maintenance and DNA repair, while its expression changes and mutations are involved in the development of various tumors and neurodegenerative and autoimmune diseases. This paper reviews the role and mechanism of hnRNPA2/B1 in RNA metabolism, tumors, and neurodegenerative and autoimmune diseases. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Yu Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Song-Lin Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Wang J, Yu H, Yili A, Gao Y, Hao L, Aisa HA, Liu S. Identification of hub genes and potential molecular mechanisms of chickpea isoflavones on MCF-7 breast cancer cells by integrated bioinformatics analysis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:86. [PMID: 32175379 DOI: 10.21037/atm.2019.12.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Chickpea isoflavones have been demonstrated to play an inhibitory role in breast cancer cells. In this study, we aimed to explore the mechanism of chickpea isoflavones inhibiting the formation and development of breast carcinoma through the integration of wet and dry experiments. Methods Chickpea isoflavones were added to the MCF-7 cells for 48 hours, and the subsequent morphological changes of cells were observed using an inverted microscope, while apoptosis was quantified by flow cytometry. The mRNA and LncRNA expression profiles were detected by RNA-sequencing (RNA-Seq) technology. The protein-protein interaction (PPI) network was constructed from the STRINGdb database. To identify the co-expressed long non-coding RNA and messenger RNA (lncRNA-mRNA) pairs, Pearson's correlation coefficients were calculated based on the expression value between every differentially expressed lncRNA and mRNA pair. The hub gene expression was verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and survival analysis results were provided by The Human Protein Atlas website. Results Microscopic observation and flow cytometry results confirmed that chickpea isoflavones with a final concentration of 32.8 µg/mL could cause apoptosis of the MCF-7 cells. Transcriptome results showed that a total of 1,094 mRNAs and 378 lncRNAs were differentially expressed in isoflavone-treated cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed that inhibition of cell proliferation was mainly due to the up-regulation of genes in the apoptosis signaling pathway and the down-regulation of genes in mRNA splicing pathway. The co-expressed genes of the top 10 down-regulated lncRNAs were mainly heterogeneous nuclear ribonucleoproteins (HNRNP) family genes, which interacted with apoptosis-related genes through ubiquitin C (UBC). The abnormal expression of 11 hub genes (degree >10) of PPI networks were beneficial to improve the overall survival time of breast cancer patients. Conclusions Our results reveal a potential mechanism for chickpea isoflavones to inhibit MCF-7 breast cancer cell proliferation and provide a reference for the development of new anti-cancer drugs used in breast cancer.
Collapse
Affiliation(s)
- Jia Wang
- College of Animal Science, Jilin University, Changchun 130062, China.,Xinjiang Tefeng Pharmaceutical Company, Ltd., Urumqi 830054, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Abulimit Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yanhua Gao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun 130062, China.,Five-Star Animal Health Pharmaceutical Factory of Jilin Province, Changchun 130062, China
| |
Collapse
|
7
|
Han J, Tang FM, Pu D, Xu D, Wang T, Li W. Mechanisms Underlying Regulation of Cell Cycle and Apoptosis by hnRNP B1 in Human Lung Adenocarcinoma A549 Cells. TUMORI JOURNAL 2018. [DOI: 10.1177/1430.15824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Juan Han
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Feng-ming Tang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Dan Pu
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Dan Xu
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Tao Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Weimin Li
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
8
|
Meredith EK, Balas MM, Sindy K, Haislop K, Johnson AM. An RNA matchmaker protein regulates the activity of the long noncoding RNA HOTAIR. RNA (NEW YORK, N.Y.) 2016; 22:995-1010. [PMID: 27146324 PMCID: PMC4911922 DOI: 10.1261/rna.055830.115] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/06/2016] [Indexed: 05/19/2023]
Abstract
The human long noncoding RNA (lncRNA) HOTAIR acts in trans to recruit the Polycomb repressive complex 2 (PRC2) to the HOXD gene cluster and to promote gene silencing during development. In breast cancers, overexpression of HOTAIR increases metastatic potential via the repression of many additional genes. It has remained unclear what factors determine HOTAIR-dependent PRC2 activity at specific genomic loci, particularly when high levels of HOTAIR result in aberrant gene silencing. To identify additional proteins that contribute to the specific action of HOTAIR, we performed a quantitative proteomic analysis of the HOTAIR interactome. We found that the most specific interaction was between HOTAIR and the heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, a member of a family of proteins involved in nascent mRNA processing and RNA matchmaking. Our data suggest that A2/B1 are key contributors to HOTAIR-mediated chromatin regulation in breast cancer cells: A2/B1 knockdown reduces HOTAIR-dependent breast cancer cell invasion and decreases PRC2 activity at the majority of HOTAIR-dependent loci. We found that the B1 isoform, which differs from A2 by 12 additional amino acids, binds with highest specificity to HOTAIR. B1 also binds chromatin and associates preferentially with RNA transcripts of HOTAIR gene targets. We furthermore demonstrate a direct RNA-RNA interaction between HOTAIR and a target transcript that is enhanced by B1 binding. Together, these results suggest a model in which B1 matches HOTAIR with transcripts of target genes on chromatin, leading to repression by PRC2.
Collapse
Affiliation(s)
- Emily K Meredith
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Maggie M Balas
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Karla Sindy
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Krystal Haislop
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Aaron M Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
9
|
Casas-Vila N, Scheibe M, Freiwald A, Kappei D, Butter F. Identification of TTAGGG-binding proteins in Neurospora crassa, a fungus with vertebrate-like telomere repeats. BMC Genomics 2015; 16:965. [PMID: 26577093 PMCID: PMC4650311 DOI: 10.1186/s12864-015-2158-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/27/2015] [Indexed: 11/23/2022] Open
Abstract
Background To date, telomere research in fungi has mainly focused on Saccharomyces cerevisiae and Schizosaccharomyces pombe, despite the fact that both yeasts have degenerated telomeric repeats in contrast to the canonical TTAGGG motif found in vertebrates and also several other fungi. Results Using label-free quantitative proteomics, we here investigate the telosome of Neurospora crassa, a fungus with canonical telomeric repeats. We show that at least six of the candidates detected in our screen are direct TTAGGG-repeat binding proteins. While three of the direct interactors (NCU03416 [ncTbf1], NCU01991 [ncTbf2] and NCU02182 [ncTay1]) feature the known myb/homeobox DNA interaction domain also found in the vertebrate telomeric factors, we additionally show that a zinc-finger protein (NCU07846) and two proteins without any annotated DNA-binding domain (NCU02644 and NCU05718) are also direct double-strand TTAGGG binders. We further find two single-strand binders (NCU02404 [ncGbp2] and NCU07735 [ncTcg1]). Conclusion By quantitative label-free interactomics we identify TTAGGG-binding proteins in Neurospora crassa, suggesting candidates for telomeric factors that are supported by phylogenomic comparison with yeast species. Intriguingly, homologs in yeast species with degenerated telomeric repeats are also TTAGGG-binding proteins, e.g. in S. cerevisiae Tbf1 recognizes the TTAGGG motif found in its subtelomeres. However, there is also a subset of proteins that is not conserved. While a rudimentary core TTAGGG-recognition machinery may be conserved across yeast species, our data suggests Neurospora as an emerging model organism with unique features. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2158-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Núria Casas-Vila
- Quantitative Proteomics, Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128, Mainz, Germany
| | - Marion Scheibe
- Quantitative Proteomics, Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128, Mainz, Germany
| | - Anja Freiwald
- Quantitative Proteomics, Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128, Mainz, Germany
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, 117599, Singapore, Singapore
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128, Mainz, Germany.
| |
Collapse
|
10
|
Mizuno H, Honda M, Shirasaki T, Yamashita T, Yamashita T, Mizukoshi E, Kaneko S. Heterogeneous nuclear ribonucleoprotein A2/B1 in association with hTERT is a potential biomarker for hepatocellular carcinoma. Liver Int 2012; 32:1146-55. [PMID: 22372738 DOI: 10.1111/j.1478-3231.2012.02778.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 02/02/2012] [Indexed: 01/06/2023]
Abstract
BACKGROUND The heterogeneous nature of hepatocellular carcinoma (HCC) and the lack of appropriate biomarkers have hampered patient prognosis and treatment stratification. To identify a new prognostic biomarker that is related to human telomerase reverse transcriptase (hTERT) in HCC, we employed a unique proteomics approach using liquid chromatograph-mass spectrometry/mass spectrometry (LC-MS/MS) after gel filtration purification of liver tissue. METHODS Protein lysates from HCC and cirrhotic liver tissue were subjected to gel filtration using high performance liquid chromatography. The telomerase complex was identified at a molecular mass of 350 kDa in parallel with telomerase activity. These fractionated lysates of 350 kDa were analyzed by LC-MS/MS. The relation of the identified marker and prognosis was statistically examined in surgically resected HCC patients. RESULTS We identified 24 differentially expressed proteins in HCC. One of these proteins, heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1), was further analyzed by immunoprecipitation assay using tissue and cell line samples and found to interact with hTERT. Moreover small interfering RNA against hnRNP A2/B1 suppressed telomerase activity, and immunohistochemical examination showed that the enhanced nuclear and cytoplasmic hnRNP A2/B1 expression in HCC was significantly associated with histological grade of tumor differentiation and microvascular invasion of HCC. Furthermore, survival analysis of 74 HCC patients who received curative surgical treatment showed that hnRNP A2/B1 expression is an independent prognostic factor for patient survival. CONCLUSIONS Heterogeneous nuclear ribonucleoprotein A2/B1, an hTERT-associated protein, is a potential prognostic biomarker for HCC patients and might be a therapeutic target of HCC.
Collapse
Affiliation(s)
- Hideki Mizuno
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 2011; 24:2343-64. [PMID: 21041405 DOI: 10.1101/gad.1973010] [Citation(s) in RCA: 639] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alternative splicing of mRNA precursors is a nearly ubiquitous and extremely flexible point of gene control in humans. It provides cells with the opportunity to create protein isoforms of differing, even opposing, functions from a single gene. Cancer cells often take advantage of this flexibility to produce proteins that promote growth and survival. Many of the isoforms produced in this manner are developmentally regulated and are preferentially re-expressed in tumors. Emerging insights into this process indicate that pathways that are frequently deregulated in cancer often play important roles in promoting aberrant splicing, which in turn contributes to all aspects of tumor biology.
Collapse
Affiliation(s)
- Charles J David
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
12
|
Hung T, Chang HY. Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol 2010; 7:582-5. [PMID: 20930520 DOI: 10.4161/rna.7.5.13216] [Citation(s) in RCA: 450] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are pervasively transcribed and critical regulators of the epigenome[1, 2]. These long, polyadenylated RNAs do not code for proteins, but function directly as RNAs, recruiting chromatin modifiers to mediate transcriptional changes in processes ranging from X-inactivation (XIST) to imprinting (H19)[3]. The recent discovery that lncRNA HOTAIR can link chromatin changes to cancer metastasis[4] furthers the relevance of lncRNAs to human disease. Here, we discuss lncRNAs as regulatory modules and explore the implications for disease pathogenesis. Although large-scale analyses of mammalian transcriptomes have revealed that more than 50% of transcripts have no protein coding potential[2, 5, 6], the functions of these putative transcripts are largely unknown. A subset of these noncoding transcripts are termed long noncoding RNAs (lncRNAs), based on an arbitrary minimum length of 200 nucleotides. LncRNAs are roughly classified based on their position relative to protein-coding genes: intergenic (between genes), intragenic/intronic (within genes), and antisense[2]. Initial efforts to characterize these molecules demonstrated that they function in cis, regulating their immediate genomic neighbors. Examples include AIR, XIST, and Kcnq1ot (reviewed in [1, 7, 8]), which recruit chromatin modifying complexes to silence adjacent sites. The scope of lncRNAs in gene regulation was advanced with the finding that lncRNA HOTAIR exhibited trans regulatory capacities. HOTAIR is transcribed at the intersection of opposing chromatin domains in the HOXC locus, but targets Polycomb Repressive Complex 2 (PRC2) to silence 40 kilobases of HOXD[9], a locus involved in developmental patterning. A subsequent study revealed that HOTAIR is overexpressed in approximately one quarter of human breast cancers, directing PRC2 to approximately 800 ectopic sites in the genome, which leads to histone H3 lysine 27 trimethylation and changes in gene expression[4]. The impacts of lncRNA-mediated chromatin changes are noteworthy: not only did HOTAIR drive metastasis in a mouse model, but HOTAIR expression in human breast cancer was found to be an independent prognostic marker for death and metastasis[4]. The fact that HOTAIR drives chromatin reprogramming genome-wide suggests that long-range regulation by lncRNAs may be a widespread mechanism. This is supported by a study showing that > 20% of tested lncRNAs are bound by PRC2 and other chromatin modifiers[10]. Furthermore, this is an underestimate of the total RNAs involved in chromatin modification, as PRC2 target genes also transcribe smaller 50-200 nt RNAs that interact with SUZ12 to mediate gene repression[11]. These findings provoke questions regarding the initial triggers for HOTAIR overexpression and whether understanding of lncRNA mechanics may have clinical relevance.
Collapse
Affiliation(s)
- Tiffany Hung
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
13
|
Huang PR, Hung SC, Wang TCV. Telomeric DNA-binding activities of heterogeneous nuclear ribonucleoprotein A3 in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1164-74. [PMID: 20600361 DOI: 10.1016/j.bbamcr.2010.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/07/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
Abstract
Telomeres are dynamic DNA-protein complexes that protect the ends of linear chromosome. Telomere-binding proteins play crucial role in the maintenance of telomeres. HnRNP A3 has been shown recently to bind specifically to single-stranded telomeric DNA in vitro, although its in vivo telomere function remains unknown. In this study, the DNA-binding properties of hnRNP A3 in vitro as well as its putative role of telomere maintenance in vivo were investigated. The minimal sequence for hnRNP A3 binding to DNA was determined as an undecamer with the following consensus sequence 5'-[T/C]AG[G/T]NN[T/C]AG[G/T]N-3'. Confocal microscopy and chromatin-immunoprecipitation (ChIP) analyses showed that hnRNP A3 is associated with telomere in vivo. Knocking-down the expression of hnRNP A3 had no effect on telomere length maintenance and did not affect cell proliferation. In contrast, overexpression of hnRNP A3 resulted in the production of steady-state short telomeres in OECM1 cells. These results suggest that hnRNP A3 is associated with telomere in vivo and acts as a negative regulator of telomere length maintenance.
Collapse
Affiliation(s)
- Pei-Rong Huang
- Department of Molecular and Cellular Biology, Chang Gung University, Tao-Yuan. Taiwan
| | | | | |
Collapse
|
14
|
Liu Y, Gao Y, Wu Y, Wu Y, Wang H, Zhang C. Histochemical mapping of hnRNP A2/B1 in rat brain after ischemia-reperfusion insults. J Histochem Cytochem 2010; 58:695-705. [PMID: 20421594 DOI: 10.1369/jhc.2010.955021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebral ischemia-reperfusion (I/R) insults result in neuronal cell death, brain tissue loss, and severe neurological deficits. However, the underlying mechanism is still not fully understood. Heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 belongs to a family of RNA-binding proteins that plays a central role in pre-mRNA processing. Recent studies have revealed that hnRNP A2/B1 may be involved in the progress of I/R; therefore, the present study aimed to examine expression patterns of hnRNP A2/B1 to better understand posttranscriptional regulations in cerebral I/R insults. Focal cerebral I/R models were induced by right middle cerebral artery occlusion (MCAO) for 120 min followed by 3, 6, 12, 24, 48, and 72 hr of reperfusion in male Sprague-Dawley rats. We employed immunohistochemistry to examine expression of hnRNP A2/B1 in rat cerebral cortex (including cingulate cortex, striate cortex, temporal cortex, and piriform cortex) and hippocampus after I/R insults. Results showed that expression of hnRNP A2/B1 was significantly downregulated in cerebral cortex and hippocampus from 3 to 24 hr of reperfusion after MCAO for 120 min, but significantly upregulated at 48 hr of reperfusion. Unexpectedly, translocation of hnRNP A2/B1 from nucleus to cytoplasm and even to neurites was observed in cerebral cortex at 3 hr of reperfusion, reaching a peak at 24 hr of reperfusion, but not in hippocampus, indicating different posttranscriptional regulation patterns in different brain regions. Interestingly, translocation of hnRNP A2/B1 was only observed in cerebral cortex with MCAO but not in the opposite side, suggesting an I/R-specific expression pattern in the brain. Our data suggest that hnRNP A2/B1 participates in posttranscriptional regulation of neurons in cerebral cortex and hippocampus that suffered I/R insults, although posttranscriptional regulation is more extensive in neuronal cells of cerebral cortex than in hippocampus.
Collapse
Affiliation(s)
- Yichen Liu
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing, China
| | | | | | | | | | | |
Collapse
|
15
|
Tauler J, Mulshine JL. Lung cancer and inflammation: interaction of chemokines and hnRNPs. Curr Opin Pharmacol 2009; 9:384-8. [DOI: 10.1016/j.coph.2009.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/02/2009] [Indexed: 12/16/2022]
|
16
|
Characterization of a Cryptosporidium parvum protein that binds single-stranded G-strand telomeric DNA. Mol Biochem Parasitol 2009; 165:132-41. [PMID: 19428660 DOI: 10.1016/j.molbiopara.2009.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 11/21/2022]
Abstract
We have initiated a project to characterize telomere-associated proteins of Cryptosporidium parvum. Searching public databases with C. parvum expressed sequence tag (EST) sequences revealed one EST sequence that is highly similar to Gbp1p of Chlamydomonas reinhardtii (Cr Gbp1p), a protein that binds single-stranded telomeric DNA. This EST was used to clone a gene encoding a 198 amino acids long protein (CpGbp). Sequence analysis suggested that CpGbp contains two RNA recognition motif (RRMs) domains linked with a short hinge region. RT-PCR analysis showed that the mRNA expression of CpGbp was up- and down-regulated significantly comparing to that of CpDNAPol, suggesting a potential role of CpGbp playing in the parasite's life cycle. In Western blot analysis, monoclonal antibody against recombinant CpGbp identified one band (approximately 23kDa) specifically from cell extracts of C. parvum sporozoites. Confocal microscopy analysis with anti-CpGbp antibody localized CpGbp proteins to the nucleus, consistent with its potential role in telomere length regulation. In electrophoretic mobility shift assays (EMSAs), recombinant CpGbp bound oligonucleotide TG3 that bears three copies of C. parvum telomeric DNA G-strand repeat "TTTAGG", but not C-strand or double-stranded telomeric DNA sequences. To map the binding domain and to define the binding site of CpGbp, we constructed four CpGbp deletion mutants and synthesized ten TG3 mutants and tested their binding affinities by EMSAs. We found that only the RRM domain at N-terminus has oligonucleotide-binding ability in vitro. And the minimal sequence necessary for CpGbp's binding is "GTTTAGGTTTAG". These data support the notion that CpGbp represents a C. parvum single-stranded telomeric DNA binding protein.
Collapse
|
17
|
Sato A, Sueoka-Aragane N, Saitoh J, Komiya K, Hisatomi T, Tomimasu R, Hayashi S, Sueoka E. Establishment of a new method, transcription-reverse transcription concerted reaction, for detection of plasma hnRNP B1 mRNA, a biomarker of lung cancer. J Cancer Res Clin Oncol 2008; 134:1191-7. [PMID: 18461365 DOI: 10.1007/s00432-008-0402-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE Development of an early detection marker is one of the most important strategies for improving overall prognosis in lung cancer patients. We previously reported that hnRNP B1--an RNA binding protein--is overexpressed in lung cancer tissue from the early stage of cancer, and found that hnRNP B1 mRNA is detectable in the plasma of lung cancer patients using real-time RT-PCR. The purpose of this study was to establish a quick and simple method for detecting plasma hnRNP B1mRNA for use in screening for lung cancer. METHODS TRC, a homogenous method for fluorescence real-time monitoring of isothermal RNA amplification using intercalation activating fluorescence DNA probe, was used to detect plasma hnRNP B1 mRNA. RESULTS The detection limit of hnRNP B1 mRNA by TRC using synthetic control RNA or total RNA derived from a lung cancer cell line was 25 or 8.65 x 10(2) copies, respectively. Using total RNA extracted from 600 mul of plasma, we detected hnRNP B1 mRNA in 39.1% (9/23) of lung cancer patients, with levels ranging from 1.9 to 19,045.5 copies/100 ng RNA, and in 5.2% (5/97) of healthy volunteers. Copy numbers were not associated with age, gender, smoking status, or histological type of cancer. TRC could detect 10(3) copies of hnRNP B1 mRNA in 10 min. CONCLUSION Detection of plasma hnRNP B1 mRNA by TRC is a quick, easy, and non-invasive method suitable for lung cancer screening.
Collapse
Affiliation(s)
- Akemi Sato
- Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang PR, Tsai ST, Hsieh KH, Wang TCV. Heterogeneous nuclear ribonucleoprotein A3 binds single-stranded telomeric DNA and inhibits telomerase extension in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:193-202. [DOI: 10.1016/j.bbamcr.2007.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/13/2007] [Accepted: 08/16/2007] [Indexed: 01/25/2023]
|
19
|
Bermudez Y, Yang H, Cheng JQ, Kruk PA. Pyk2/ERK 1/2 mediate Sp1- and c-Myc-dependent induction of telomerase activity by epidermal growth factor. Growth Factors 2008; 26:1-11. [PMID: 18365874 DOI: 10.1080/08977190802001389] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Epidermal growth factor (EGF) promotes growth of normal ovarian surface as well as malignant ovarian epithelial cells. Further, EGF receptors are present on both normal and malignant ovarian surface epithelial cells and they are often constitutively activated in many cancers. Since telomerase confers cellular immortalization and survival through increased cellular proliferation, we sought to investigate the potential role of EGF to regulate telomerase activity in normal and ovarian cancer cells. While exogenous EGF failed to activate telomerase in normal ovarian surface epithelial cells, in cancer cells we herein report that: exogenous EGF activates telomerase activity and human telomerase reverse transcriptase gene (hTERT) transcription; EGF-induced telomerase activity is ERK 1/2-dependent; EGF targets Sp1 and c-Myc binding sites within the core region of the hTERT promoter; and proline-rich tyrosine kinase 2 (Pyk2) is a key mediator of EGF-mediated telomerase activity. Together, these data show that dysregulation of EGF signaling may promote cancer cell survival through up-regulation of telomerase activity.
Collapse
Affiliation(s)
- Yira Bermudez
- Department of Pathology and Cell Biology, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
20
|
Bermudez Y, Erasso D, Johnson NC, Alfonso MY, Lowell NE, Kruk PA. Telomerase confers resistance to caspase-mediated apoptosis. Clin Interv Aging 2007; 1:155-67. [PMID: 18044112 PMCID: PMC2695162 DOI: 10.2147/ciia.2006.1.2.155] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
There is growing evidence that accelerated telomeric attrition and/or aberrant telomerase activity contributes to pathogenesis in a number of diseases. Likewise, there is increasing interest to develop new therapies to restore or replace dysfunctional cells characterized by short telomeric length using telomerase-positive counterparts or stem cells. While telomerase adds telomeric repeats de novo contributing to enhanced proliferative capacity and lifespan, it may also increase cellular survival by conferring resistance to apoptosis. Consequently, we sought to determine the involvement of telomerase for reduced apoptosis using ovarian surface epithelial cells. We found that expression of hTERT, the catalytic component of telomerase, was sufficient and specific to reduce caspase-mediated cellular apoptosis. Further, hTERT expression reduced activation of caspases 3, 8, and 9, reduced expression of pro-apoptotic mitochondrial proteins t-BID, BAD, and BAX and increased expression of the anti-apoptotic mitochondrial protein, Bcl-2. The ability of telomerase to suppress caspase-mediated apoptosis was p-jnk dependent since abrogation of jnk expression with jip abolished resistance to apoptosis. Consequently, these findings indicate that telomerase may promote cellular survival in epithelial cells by suppressing jnk-dependent caspase-mediated apoptosis.
Collapse
Affiliation(s)
- Yira Bermudez
- Department of Pathology, University of South Florida and the H Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
21
|
Hoffmann MH, Tuncel J, Skriner K, Tohidast-Akrad M, Türk B, Pinol-Roma S, Serre G, Schett G, Smolen JS, Holmdahl R, Steiner G. The Rheumatoid Arthritis-Associated Autoantigen hnRNP-A2 (RA33) Is a Major Stimulator of Autoimmunity in Rats with Pristane-Induced Arthritis. THE JOURNAL OF IMMUNOLOGY 2007; 179:7568-76. [DOI: 10.4049/jimmunol.179.11.7568] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Brown DPG, Gökmen-Polar Y, Jiang L, Tan J, Ringham H, Janecki DJ, Qi G, Witzmann FA, Sledge GW, Wang M. A comparative proteomic study to characterize the vinblastine resistance in human ovarian cancer cells. Proteomics Clin Appl 2007; 1:18-31. [DOI: 10.1002/prca.200600171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Indexed: 11/10/2022]
|
23
|
Hayer S, Tohidast-Akrad M, Haralambous S, Jahn-Schmid B, Skriner K, Trembleau S, Dumortier H, Pinol-Roma S, Redlich K, Schett G, Muller S, Kollias G, Smolen J, Steiner G. Aberrant Expression of the Autoantigen Heterogeneous Nuclear Ribonucleoprotein-A2 (RA33) and Spontaneous Formation of Rheumatoid Arthritis-Associated Anti-RA33 Autoantibodies in TNF-α Transgenic Mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:8327-36. [PMID: 16339574 DOI: 10.4049/jimmunol.175.12.8327] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human TNF-alpha transgenic (hTNFtg) mice develop erosive arthritis closely resembling rheumatoid arthritis (RA). To investigate mechanisms leading to pathological autoimmune reactions in RA, we examined hTNFtg animals for the presence of RA-associated autoantibodies including Abs to citrullinated epitopes (anti-cyclic citrullinated peptide), heterogeneous nuclear ribonucleoprotein (hnRNP)-A2 (anti-RA33), and heat shock proteins (hsp) (anti-hsp). Although IgM anti-hsp Abs were detected in 40% of hTNFtg and control mice, IgG anti-hsp Abs were rarely seen, and anti-cyclic citrullinated peptide Abs were not seen at all. In contrast, >50% of hTNFtg mice showed IgG anti-RA33 autoantibodies, which became detectable shortly after the onset of arthritis. These Abs were predominantly directed to a short epitope, which was identical with an epitope previously described in MRL/lpr mice. Incidence of anti-RA33 was significantly decreased in mice treated with the osteoclast inhibitor osteoprotegerin and also in c-fos-deficient mice lacking osteoclasts. Pronounced expression of hnRNP-A2 and a smaller splice variant was seen in joints of hTNFtg mice, whereas expression was low in control animals. Although the closely related hnRNP-A1 was also overexpressed, autoantibodies to this protein were infrequently detected. Because expression of hnRNP-A2 in thymus, spleen, brain, and lung was similar in hTNFtg and control mice, aberrant expression appeared to be restricted to the inflamed joint. Finally, immunization of hTNFtg mice with recombinant hnRNP-A2 or a peptide harboring the major B cell epitope aggravated arthritis. These findings suggest that overproduction of TNF-alpha leads to aberrant expression of hnRNP-A2 in the rheumatoid joint and subsequently to autoimmune reactions, which may enhance the inflammatory and destructive process.
Collapse
Affiliation(s)
- Silvia Hayer
- Department of Rheumatology, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Carpenter B, MacKay C, Alnabulsi A, MacKay M, Telfer C, Melvin WT, Murray GI. The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression. Biochim Biophys Acta Rev Cancer 2005; 1765:85-100. [PMID: 16378690 DOI: 10.1016/j.bbcan.2005.10.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 10/18/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNP) are a family of proteins which share common structural domains, and extensive research has shown that they have central roles in DNA repair, telomere biogenesis, cell signaling and in regulating gene expression at both transcriptional and translational levels. Through these key cellular functions, individual hnRNPs have a variety of potential roles in tumour development and progression including the inhibition of apoptosis, angiogenesis and cell invasion. The aims of this review are to provide an overview of the multi functional roles of the hnRNPs, and how such roles implicate this family as regulators of tumour development. The different stages of tumour development that are potentially regulated by the hnRNPs along with their aberrant expression profiles in tumour tissues will also be discussed.
Collapse
Affiliation(s)
- Brian Carpenter
- Department of Pathology, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Akindahunsi AA, Bandiera A, Manzini G. Vertebrate 2xRBD hnRNP proteins: a comparative analysis of genome, mRNA and protein sequences. Comput Biol Chem 2005; 29:13-23. [PMID: 15680582 DOI: 10.1016/j.compbiolchem.2004.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 11/25/2004] [Accepted: 11/26/2004] [Indexed: 10/25/2022]
Abstract
hnRNP proteins are involved in many cell functions, primarily in pre-mRNA processing. We report here a comparative analysis of the genes of the 2xRBD members of the hnRNP family and of their expression products. Starting from the seven well characterized hnRNP members of human and murine origin (A0, A1, A2/B1, A3, AB, D and DL) and the three MuSashI-like proteins with related RBD tandems (MSI1, MSI2 and DAZAP1), we identified through BLAST search 12 homologous genes in the genome of Danio rerio and 10 in the genome of Takifugu rubripes, which can be divided into three subgroups, each with its highly conserved exon/intron structure, matching perfectly the exon/intron structures found in human and mouse genes. An exception is the gene of hnRNP A0, which is intronless consistently in all the four species. The analysis has been supported also at the level of cDNA and EST databases and extended in this respect to other vertebrate species, namely chicken, Xenopus laevis and Silurana tropicalis. PHYLIP 3.62 package (SEQBOOT, PROTDIST/DNADIST, NEIGHBOR, CONSENSE) was used for all the proteins and their CDSs and human RBDs I and II to infer relevant aspects of the phylogenesis of these proteins. Some clues to the evolution of introns in these genes have come from the analysis of their distribution in homologous genes of other eukaryotes, namely Ciona, Drosophila, Caenorhabditis, Saccharomyces and Arabidopsis.
Collapse
Affiliation(s)
- Akintunde A Akindahunsi
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, and Centre of Excellence of Biocrystallography, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | | | | |
Collapse
|
26
|
Moran-Jones K, Wayman L, Kennedy DD, Reddel RR, Sara S, Snee MJ, Smith R. hnRNP A2, a potential ssDNA/RNA molecular adapter at the telomere. Nucleic Acids Res 2005; 33:486-96. [PMID: 15659580 PMCID: PMC548348 DOI: 10.1093/nar/gki203] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multi-tasking protein that acts in the cytoplasm and nucleus. We have explored the possibility that this protein is associated with telomeres and participates in their maintenance. Rat brain hnRNP A2 was shown to have two nucleic acid binding sites. In the presence of heparin one site binds single-stranded oligodeoxyribonucleotides irrespective of sequence but not the corresponding oligoribonucleotides. Both the hnRNP A2-binding cis-acting element for the cytoplasmic RNA trafficking element, A2RE, and the ssDNA telomere repeat match a consensus sequence for binding to a second sequence-specific site identified by mutational analysis. hnRNP A2 protected the telomeric repeat sequence, but not the complementary sequence, against DNase digestion: the glycine-rich domain was found to be necessary, but not sufficient, for protection. The N-terminal RRM (RNA recognition motif) and tandem RRMs of hnRNP A2 also bind the single-stranded, template-containing segment of telomerase RNA. hnRNP A2 colocalizes with telomeric chromatin in the subset of PML bodies that are a hallmark of ALT cells, reinforcing the evidence for hnRNPs having a role in telomere maintenance. Our results support a model in which hnRNP A2 acts as a molecular adapter between single-stranded telomeric repeats, or telomerase RNA, and another segment of ssDNA.
Collapse
Affiliation(s)
| | - Lyndal Wayman
- Children's Medical Research Institute214 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Derek D. Kennedy
- School of Biomolecular and Biomedical Sciences, Griffith UniversityNathan, QLD 4111, Australia
| | - Roger R. Reddel
- Children's Medical Research Institute214 Hawkesbury Road, Westmead, NSW 2145, Australia
| | | | | | - Ross Smith
- To whom correspondence should be addressed. Tel: +61 7 3365 4627; Fax: +61 7 3365 4699;
| |
Collapse
|
27
|
Bandiera A, Medic N, Akindahunsi AA, Manzini G. In-vitro dual binding activity of a evolutionarily related subgroup of hnRNP proteins. Mol Cell Biochem 2005; 268:121-7. [PMID: 15724445 DOI: 10.1007/s11010-005-3700-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The wide family of heterogeneous nuclear ribonucleoproteins (hnRNPs) comprises members that interact with single-stranded nucleic acids. On the basis of their structure, some of them are characterised by a tandem RNA-binding domain (RBD) and a glycine-rich C-terminus, showing a high degree of homology. Recently, we have isolated some proteins belonging to this group that interact with single-stranded cytosine-block telomeric DNA. The aim of the present investigation is to better characterise the relationship of some structural features shared by these proteins and their in-vitro interaction with the telomeric type sequences. We analysed the in-vitro binding properties of some of these components toward both single-stranded telomeric motifs. Using deletion mutants, the relationship between cytosine-rich motif binding activity and the structural features of one of these proteins is further characterized. This binding activity appears to be related to a subgroup of the 2xRBD+Glycine rich hnRNP, suggesting functionally distinct properties of these proteins, in agreement with their evolutionary relationship.
Collapse
Affiliation(s)
- Antonella Bandiera
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, 34127 Trieste, Italy.
| | | | | | | |
Collapse
|
28
|
Ishikawa M, Mizukami K, Iwakiri M, Kamma H, Ikonomovic MD, Dekosky ST, Asada T. Immunohistochemical study of hnRNP B1 in the postmortem temporal cortices of patients with Alzheimer's disease. Neurosci Res 2004; 50:481-4. [PMID: 15567486 DOI: 10.1016/j.neures.2004.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Accepted: 08/27/2004] [Indexed: 10/26/2022]
Abstract
In order to examine the post-transcriptional regulations in Alzheimer's disease, we employed immunohistochemical techniques and examined the expression of heterogeneous nuclear ribonucleoprotein (hnRNP) B1 in the inferior temporal cortex of subjects with Alzheimer's disease. In the mild cases, intense B1 immunoreactivity was observed in neurons of layer V, and less intense immunoreactivity was observed in layers II and III. The overall distributions and intensities of B1 immunoreactivity were undistinguishable among mild, moderate, and severe cases. Double-immunolabeling with MC1 and B1 demonstrated that B1 immunoreactivity was preserved in the majority of neurofibrillary tangle (NFT)-bearing neurons. Our study suggests that hnRNP B1-associated post-transcriptional regulations are preserved in the inferior temporal cortex of Alzheimer's disease.
Collapse
Affiliation(s)
- Masanori Ishikawa
- Department of Psychiatry, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba city, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Liu Y, Snow BE, Kickhoefer VA, Erdmann N, Zhou W, Wakeham A, Gomez M, Rome LH, Harrington L. Vault poly(ADP-ribose) polymerase is associated with mammalian telomerase and is dispensable for telomerase function and vault structure in vivo. Mol Cell Biol 2004; 24:5314-23. [PMID: 15169895 PMCID: PMC419898 DOI: 10.1128/mcb.24.12.5314-5323.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Revised: 03/07/2004] [Accepted: 03/22/2004] [Indexed: 11/20/2022] Open
Abstract
Vault poly(ADP-ribose) polymerase (VPARP) was originally identified as a minor protein component of the vault ribonucleoprotein particle, which may be involved in molecular assembly or subcellular transport. In addition to the association of VPARP with the cytoplasmic vault particle, subpopulations of VPARP localize to the nucleus and the mitotic spindle, indicating that VPARP may have other cellular functions. We found that VPARP was associated with telomerase activity and interacted with exogenously expressed telomerase-associated protein 1 (TEP1) in human cells. To study the possible role of VPARP in telomerase and vault complexes in vivo, mVparp-deficient mice were generated. Mice deficient in mVparp were viable and fertile for up to five generations, with no apparent changes in telomerase activity or telomere length. Vaults purified from mVparp-deficient mouse liver appeared intact, and no defect in association with other vault components was observed. Mice deficient in mTep1, whose disruption alone does not affect telomere function but does affect the stability of vault RNA, showed no additional telomerase or telomere-related phenotypes when the mTep1 deficiency was combined with an mVparp deficiency. These data suggest that murine mTep1 and mVparp, alone or in combination, are dispensable for normal development, telomerase catalysis, telomere length maintenance, and vault structure in vivo.
Collapse
Affiliation(s)
- Yie Liu
- Ontario Cancer Institute/Advanced Medical Discovery Institute, Toronto, Ontario M5G 2C1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kwon C, Chung IK. Interaction of an Arabidopsis RNA-binding protein with plant single-stranded telomeric DNA modulates telomerase activity. J Biol Chem 2003; 279:12812-8. [PMID: 14703514 DOI: 10.1074/jbc.m312011200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telomeres are the specialized structures at the end of linear chromosomes and terminate with a single-stranded 3' overhang of the G-rich strand. The primary role of telomeres is to protect chromosome ends from recombination and fusion and from being recognized as broken DNA ends. This protective function can be achieved through association with specific telomere-binding proteins. Although proteins that bind single-stranded G-rich overhang regulate telomere length and telomerase activity in mammals and lower eukaryotes, equivalent factors have yet to be identified in plants. Here we have identified proteins capable of interacting with the G-rich single-stranded telomeric repeat from the Arabidopsis extracts by affinity chromatography. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis indicates that the isolated protein is a chloroplast RNA-binding protein (and a truncated derivative). The truncated derivative, which we refer to as STEP1 (single-stranded telomere-binding protein 1), binds specifically the single-stranded G-rich plant telomeric DNA sequences but not double-stranded telomeric DNA. Unlike the chloroplast-localized full-length RNA-binding protein, STEP1 localizes exclusively to the nucleus, suggesting that it plays a role in plant telomere biogenesis. We also demonstrated that the specific binding of STEP1 to single-stranded telomeric DNA inhibits telomerase-mediated telomere extension. The evidence presented here suggests that STEP1 is a telomere-end binding protein that may contribute to telomere length regulation by capping the ends of chromosomes and thereby repressing telomerase activity in plants.
Collapse
Affiliation(s)
- Chian Kwon
- Department of Biology, Molecular Aging Research Center, and Protein Network Research Center, Yonsei University, 134 Shinchon-dong, Seoul 120-749, Korea
| | | |
Collapse
|
31
|
Ohshima K, Karube K, Shimazaki K, Kamma H, Suzumiya J, Hamasaki M, Kikuchi M. Imbalance between apoptosis and telomerase activity in myelodysplastic syndromes: possible role in ineffective hemopoiesis. Leuk Lymphoma 2003; 44:1339-46. [PMID: 12952227 DOI: 10.1080/1042819031000083037] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The myelodysplastic syndromes (MDS) are a group of disorders characterized by peripheral pancytopenia despite normo- or hyper-cellular bone marrow. This is thought to be due to apoptosis of hematopoietic bone marrow cells, resulting in ineffective hematopoiesis. The heterogeneous nuclear ribonucleoprotein (hnRNP) B1 is involved in pre-mRNA processing and binds to telomeric cDNA repeats. The hnRNP B1 is a marker for early cancer. The aim of our study was to clarify the relationships between prognosis and apoptosis, telomerase activity (TA) and hnRNP expression in the bone marrow. The subjects were 51 patients with MDS, including patients with refractory anemia (RA) (n = 32), refractory anemia with ringed sideroblasts (RARS) (n = 1), refractory anemia with excess blasts (RAEB) (n = 7), refractory anemia with excess blasts in transformation (RAEB-t) (n = 8) and chronic myelomonocytic leukemia (CMMoL) (n = 3). We also studied 6 cases with acute myelogenous leukemia (AML) arising from MDS (AML-MDS) and 10 control subjects. Bone marrow biopsies were stained immunohistochemically for caspase-3 (marker of apoptotic activity) and human telomerase reverse transcriptase (hTERT), and hnRNP B1. Fatal pancytopenia was the cause of death in 19 of the 51 patients. The caspase-3 positive cell rate was higher in MDS (16.3%) than in controls (4.4%) and AML-MDS (0.5%). The percentage of hnRNP B1-positive cells was higher in MDS (15.3%) and AML-MDS (56.3%) than in controls (5.6%). In MDS, hnRNP B1 levels were higher in RAEB and RAEB-t subtypes than in RA and RARS. The percentage of hTERT-positive cells was higher in AML-MDS (50.0%) than in controls (20.2%) and MDS (23.6%). Our findings suggest that activation of apoptosis occurs in MDS in the absence of hTERT expression, implicating high apoptosis in the absence of high TA with ineffective hematopoiesis. Poor prognosis correlated with higher caspase-3 and lower hTERT rates. In MDS, hnRNP B1 activity may be associated with leukemic transformation.
Collapse
Affiliation(s)
- K Ohshima
- Department of Pathology, School of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonanku, Fukuoka 814-01, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Arthur Kornberg "never met a dull enzyme" (For the Love of Enzymes: The Odyssey of a Biochemist, Harvard University Press, 1989) and telomerase is no exception. Telomerase is a remarkable polymerase that uses an internal RNA template to reverse-transcribe telomere DNA, one nucleotide at a time, onto telomeric, G-rich single-stranded DNA. In the 17 years since its discovery, the characterization of telomerase enzyme components has uncovered a highly conserved family of telomerase reverse transcriptases that, together with the telomerase RNA, appear to comprise the enzymatic core of telomerase. While not as comprehensively understood as yet, some telomerase-associated proteins also serve crucial roles in telomerase function in vivo, such as telomerase ribonudeoprotein (RNP) assembly, recruitment to the telomere, and the coordination of DNA replication at the telomere. A selected overview of the biochemical properties of this unique enzyme, in vitro and in vivo, will be presented.
Collapse
|
33
|
Tominaga M, Sueoka N, Irie K, Iwanaga K, Tokunaga O, Hayashi SI, Nakachi K, Sueoka E. Detection and discrimination of preneoplastic and early stages of lung adenocarcinoma using hnRNP B1 combined with the cell cycle-related markers p16, cyclin D1, and Ki-67. Lung Cancer 2003; 40:45-53. [PMID: 12660006 DOI: 10.1016/s0169-5002(02)00529-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein B1 (hnRNP B1), an RNA binding protein, is a useful marker for early detection of lung squamous cell carcinoma because it is overexpressed in the early stages of lung cancer, including bronchial dysplasia, a premalignant lesion of lung squamous cell carcinoma. In the case of adenocarcinoma, we investigated the utility of hnRNP B1 for both detection of early adenocarcinoma and discrimination of non-invasive lesion, atypical adenomatous hyperplasia (AAH) from adenocarcinoma. hnRNP B1, cyclin D1, p16, and Ki-67 were analyzed in lung adenocarcinoma tissues and divided into early and overt adenocarcinoma and AAH, using immunohistochemistry. The intensity of these molecular markers was compared among three groups and also analyzed for 4 patients who showed both adenocarcinoma and AAH. Thirty-six of 54 (67%) adenocarcinoma patients showed positive staining of hnRNP B1: 14/20 (70%) early adenocarcinoma and 22/34 (65%) overt adenocarcinoma. In contrast, overexpression of hnRNP B1 in non-invasive lesion, AAH was observed in only 9% (1/11). Overexpression of cyclin D1 and decrease of p16 were frequently observed in both adenocarcinoma and AAH. These results suggest that hnRNP B1 would be a candidate of molecular marker for detection of early lung adenocarcinoma. In addition, combined analysis of hnRNP B1 and cell cycle-related genes, such as cyclin D1 and p16, might aid in discrimination of AAH from early adenocarcinoma.
Collapse
Affiliation(s)
- Masaki Tominaga
- Department of Pathology, Saga Medical School, Saga 849-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bandiera A, Tell G, Marsich E, Scaloni A, Pocsfalvi G, Akintunde Akindahunsi A, Cesaratto L, Manzini G. Cytosine-block telomeric type DNA-binding activity of hnRNP proteins from human cell lines. Arch Biochem Biophys 2003; 409:305-14. [PMID: 12504897 DOI: 10.1016/s0003-9861(02)00413-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Following the observation of the presence in mammalian nuclear extracts of a DNA binding activity quite specific for the single-stranded C-rich telomeric motif, we have isolated from the K562 human cell line by affinity chromatography and identified by mass spectrometry a number of proteins able to bind to this sequence. All of them belong to different heterogeneous nuclear ribonucleoprotein subgroups (hnRNP). Whereas many of them, namely hnRNP K, two isoforms of hnRNP I, and the factor JKTBP, appear to bind to this sequence with limited specificity after isolation, an isoform of hnRNP D (alias AUF1) and particularly hnRNP E1 (alias PCBP-1) show a remarkable specificity for the (CCCTAA)n repeated motif. Both have been obtained also as recombinant proteins expressed in Escherichia coli and have been shown to retain their binding specificity toward the C-block repeated sequence. In the light of the current knowledge about these proteins, their possible involvement in telomere functioning is discussed.
Collapse
Affiliation(s)
- Antonella Bandiera
- Department of Biochemistry, Biophysics, and Macromolecular Chemistry, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
We have assembled references of 700 articles published in 2001 that describe work performed using commercially available optical biosensors. To illustrate the technology's diversity, the citation list is divided into reviews, methods and specific applications, as well as instrument type. We noted marked improvements in the utilization of biosensors and the presentation of kinetic data over previous years. These advances reflect a maturing of the technology, which has become a standard method for characterizing biomolecular interactions.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
36
|
Weisman-Shomer P, Cohen E, Fry M. Distinct domains in the CArG-box binding factor A destabilize tetraplex forms of the fragile X expanded sequence d(CGG)n. Nucleic Acids Res 2002; 30:3672-81. [PMID: 12202751 PMCID: PMC137428 DOI: 10.1093/nar/gkf506] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Formation of hairpin or tetraplex structures of the FMR1 gene d(CGG)n sequence triggers its expansion, setting off fragile X syndrome. In searching for proteins that destabilize d(CGG)n secondary structures we purified from rat liver quadruplex telomeric DNA binding protein 42 (qTBP42) that disrupts G'2 bimolecular tetraplex d(CGG)n while paradoxically stabilizing the G'2 structure of the telomeric sequence d(TTAGGG)n. Based on peptide sequence homology of qTBP42 and mouse CArG-box binding factor A (CBF-A), we provide direct evidence that recombinant CBF-A protein is physically and immunochemically indistinguishable from qTBP42 and that it too destabilizes G'2 d(CGG)n while stabilizing G'2 d(TTAGGG)n. We inquired whether CBF-A employs the same or different domains to differentially interact with G'2 d(CGG)n and G'2 d(TTAGGG)n. Mutant CBF-A proteins that lack each or combinations of its five conserved motifs: RNP1(1), RNP1(2), RNP2(1), RNP2(2) and ATP/GTP-binding box were tested for their G'2 d(CGG)n destabilization and G'2 d(TTAGGG)n stabilization activities. We find that either RNP1(1) or the ATP/GTP motifs are necessary and sufficient for G'2 d(CGG)n destabilization whereas RNP2(1) suppresses destabilization by either one of these two motifs. Neither RNP1(1) nor the ATP/GTP motif are required for G'2 d(TTAGGG)n stabilization. Hence, CBF-A employs different domains to destabilize G'2 d(CGG)n or stabilize G'2 d(TTAGGG)n.
Collapse
Affiliation(s)
- Pnina Weisman-Shomer
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, PO Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
37
|
Hatfield JT, Rothnagel JA, Smith R. Characterization of the mouse hnRNP A2/B1/B0 gene and identification of processed pseudogenes. Gene 2002; 295:33-42. [PMID: 12242009 DOI: 10.1016/s0378-1119(02)00800-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mouse hnRNP A2/B1/B0 gene has been cloned using a PCR-based strategy and sequenced. Analysis of this sequence showed that the gene organization closely follows that of the human orthologue with 12 exons and 11 introns. The hnRNP A2/B1/B0 gene gives rise to four splice variants through alternative splicing of exons 2 and 9. RT-PCR assays indicated that all splice variants were expressed in mouse brain, skin, and stomach tissues of varying ages, although their ratios to one another varied with age and tissue type. We also identified a small subset of all polyadenylated splice variants that included intron 11, which shows 94% sequence identity between human and mouse. Several processed pseudogenes were identified in the mouse genome. A search of the mouse genome databases located five pseudogenes, four of which are presumed to be non-functional because of the presence of premature stop codons, large deletions or rearrangements within the coding region. The fifth, which possesses putative promoter elements and has a coding sequence identical to that of the hnRNP A2 mRNA variant, may be functional.
Collapse
Affiliation(s)
- Jodie T Hatfield
- Department of Biochemistry and Molecular Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
38
|
Kim SH, Dierssen M, Ferreres JC, Fountoulakis M, Lubec G. Increased protein levels of heterogeneous nuclear ribonucleoprotein A2/B1 in fetal Down syndrome brains. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2002:273-80. [PMID: 11771750 DOI: 10.1007/978-3-7091-6262-0_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are predominantly nuclear RNA-binding proteins that form complexes with RNA polymerase II transcripts. These proteins play pivotal roles in transcription, pre-mRNA processing in the nucleus, cytoplasmic mRNA translation and its turnover. In addition, hnRNPs have been shown to be essential for embryonic development of Drosophila. Here we studied the protein levels of hnRNPs (A2/B1, H and H') in fetal brain with Down syndrome (DS; n = 5) compared to controls (n = 7). We used two-dimensional (2-D) gel electrophoresis, matrix-assisted laser desorption ionization mass spectroscopy (MALDI-MS) and specific software for quantification. hnRNP A2/B1 was significantly increased in fetal DS brain (13.52+/-4.50) compared to controls (9.16+/-1.35), but both hnRNP H and H' were unchanged. Increased hnRNP A2/B1 in fetal DS brain may represent high activity of RNA processing such as RNA trafficking and telomere protection, and/or it could contribute to abnormal development of DS brains. Furthermore, comparable expression of hnRNP H and H' suggest a specific upregulation of hnRNP A2/B.
Collapse
Affiliation(s)
- S H Kim
- Department of Pediatrics, University of Vienna, Austria
| | | | | | | | | |
Collapse
|