1
|
Duhen T, Gough MJ, Leidner RS, Stanton SE. Development and therapeutic manipulation of the head and neck cancer tumor environment to improve clinical outcomes. FRONTIERS IN ORAL HEALTH 2022; 3:902160. [PMID: 35937775 PMCID: PMC9354490 DOI: 10.3389/froh.2022.902160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical response to cancer therapies involves the complex interplay between the systemic, tumoral, and stromal immune response as well as the direct impact of treatments on cancer cells. Each individual's immunological and cancer histories are different, and their carcinogen exposures may differ. This means that even though two patients with oral tumors may carry an identical mutation in TP53, they are likely to have different pre-existing immune responses to their tumors. These differences may arise due to their distinct accessory mutations, genetic backgrounds, and may relate to clinical factors including previous chemotherapy exposure and concurrent medical comorbidities. In isolation, their cancer cells may respond similarly to cancer therapy, but due to their baseline variability in pre-existing immune responses, patients can have different responses to identical therapies. In this review we discuss how the immune environment of tumors develops, the critical immune cell populations in advanced cancers, and how immune interventions can manipulate the immune environment of patients with pre-malignancies or advanced cancers to improve therapeutic outcomes.
Collapse
Affiliation(s)
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | | | | |
Collapse
|
2
|
Zhang Z, Xie H, Zuo W, Tang J, Zeng Z, Cai W, Lai L, Lu Y, Shen L, Dong X, Yin L, Tang D, Dai Y. Lysine 2-hydroxyisobutyrylation proteomics reveals protein modification alteration in the actin cytoskeleton pathway of oral squamous cell carcinoma. J Proteomics 2021; 249:104371. [PMID: 34500091 DOI: 10.1016/j.jprot.2021.104371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022]
Abstract
As the most commonplace malignant carcinoma in the oral cavity, oral squamous cell carcinoma (OSCC) is highly invasive and prone to recurrence. The nosogenesis of OSCC are affected by epigenetics. Recently, a newly-found post-translational modification of lysine, 2-hydroxyisobutylation (Khib), has been proved to play a critical role in biological regulation. However, no research has evaluated the mechanism of Khib in oral cancer. Here, we performed liquid chromatography-mass spectrometry-based quantitative proteomics combined with bioinformatics analysis to reveal and evaluate Khib protein alterations in OSCC. Numerous proteins in OSCC undergo up-regulated modification of Khib. We quantified and identified 967 proteins with differential expression levels, and 617 2-hydroxyisobutylated proteins with 938 Khib sites. Among them, 125 proteins both differentially expressed and accompanied by obvious Khib modification were further identified and analyzed through KEGG-based and ingenuity pathway analysis (IPA). These proteins are enriched in the actin cytoskeleton regulatory pathway, and IPA predicted that they alter the state of actin aggregation and stability, hence impacting and regulating the actin cytoskeleton in OSCC. This is the first 2-hydroxyisobutylated modification proteomics performed for OSCC. Khib protein is significantly concentrated in the actin cytoskeleton regulatory pathway, indicating that this pathway may mediate the tumorigenesis or exacerbation of OSCC. SIGNIFICANCE: This is the first study that revealed the alterations of Khib protein in oral squamous cell carcinoma through LC-MS/MS-based modified proteomic. Our data showed that the protein in the actin cytoskeleton regulatory pathway was underwent significant Khib modification and abundance changes. We applied predictive function in IPA software to analyze and clarify that the aggregation of actin and the regulation of actin stability that mediated by the actin cytoskeleton regulatory pathway may be the potential mechanism of the occurrence and development of oral squamous cell carcinoma. Our research broadens the understanding of the pathogenesis of oral squamous cell carcinoma and provides new insights for future research.
Collapse
Affiliation(s)
- Zeyu Zhang
- The First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, CN 518020, PR China; Department of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, PR China
| | - Hongliang Xie
- The First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, CN 518020, PR China
| | - Wenxin Zuo
- The First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, CN 518020, PR China
| | - Jianming Tang
- The First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, CN 518020, PR China
| | - Zhipeng Zeng
- The First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, CN 518020, PR China
| | - Wanxia Cai
- The First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, CN 518020, PR China
| | - Liusheng Lai
- Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Hospital, Southern Medical University, Guilin 541002, Guangxi, PR China
| | - Yongpin Lu
- Department of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, PR China
| | - Lingjun Shen
- Department of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, PR China
| | - Xiangnan Dong
- Department of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, PR China
| | - Lianghong Yin
- Department of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, PR China.
| | - Donge Tang
- The First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, CN 518020, PR China.
| | - Yong Dai
- The First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, CN 518020, PR China; Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Hospital, Southern Medical University, Guilin 541002, Guangxi, PR China.
| |
Collapse
|
3
|
Wiśniewski A, Sobczyński M, Pawełczyk K, Porębska I, Jasek M, Wagner M, Niepiekło-Miniewska W, Kowal A, Dubis J, Jędruchniewicz N, Kuśnierczyk P. Polymorphisms of Antigen-Presenting Machinery Genes in Non-Small Cell Lung Cancer: Different Impact on Disease Risk and Clinical Parameters in Smokers and Never-Smokers. Front Immunol 2021; 12:664474. [PMID: 34149699 PMCID: PMC8212834 DOI: 10.3389/fimmu.2021.664474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is strongly associated with cigarette smoking; nevertheless some never-smokers develop cancer. Immune eradication of cancer cells is dependent on polymorphisms of HLA class I molecules and antigen-processing machinery (APM) components. We have already published highly significant associations of single nucleotide polymorphisms (SNPs) of the ERAP1 gene with non-small cell lung cancer (NSCLC) in Chinese, but not in Polish populations. However, the smoking status of participants was not known in the previous study. Here, we compared the distribution of APM polymorphic variants in larger cohorts of Polish patients with NSCLC and controls, stratified according to their smoking status. We found significant but opposite associations in never-smokers and in smokers of all tested SNPs (rs26653, rs2287987, rs30187, and rs27044) but one (rs26618) in ERAP1. No significant associations were seen in other genes. Haplotype analysis indicated that the distribution of many ERAP1/2 haplotypes is opposite, depending on smoking status. Additionally, haplotypic combination of low activity ERAP1 and the lack of an active form of ERAP2 seems to favor the disease in never-smokers. We also revealed interesting associations of some APM polymorphisms with: age at diagnosis (ERAP1 rs26653), disease stage (ERAP1 rs27044, PSMB9 rs17587), overall survival (ERAP1 rs30187), and response to chemotherapy (ERAP1 rs27044). The results presented here may suggest the important role for ERAP1 in the anti-cancer response, which is different in smokers versus never-smokers, depending to some extent on the presence of ERAP2, and affecting NSCLC clinical course.
Collapse
Affiliation(s)
- Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Maciej Sobczyński
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Konrad Pawełczyk
- Department and Clinic of Thoracic Surgery, Wrocław Medical University, Wrocław, Poland
| | - Irena Porębska
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Monika Jasek
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Wagner
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aneta Kowal
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Joanna Dubis
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Natalia Jędruchniewicz
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
4
|
Horton JD, Knochelmann HM, Day TA, Paulos CM, Neskey DM. Immune Evasion by Head and Neck Cancer: Foundations for Combination Therapy. Trends Cancer 2019; 5:208-232. [PMID: 30961829 DOI: 10.1016/j.trecan.2019.02.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 12/24/2022]
Abstract
Head and neck cancer is disfiguring and deadly, and contemporary treatment has fallen short in terms of morbidity and mortality. The rich immune infiltrate within these tumors designates them as prime candidates for immunotherapy and success with these drugs has been documented for recurrent and metastatic head and neck cancer. Still, single-agent immunotherapy has generated either only transient responses or durable response in only a minority subset of patients. Mapping the immune escape mechanisms enacted by head and neck cancer within the tumor microenvironment allows for rational design of strategies to overcome this tolerance. We outline the immune pathway derangements within the head and neck cancer microenvironment and discuss combination treatment strategies to overcome the limitations of immunologic monotherapy.
Collapse
Affiliation(s)
- Joshua D Horton
- Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA.
| | - Hannah M Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Terry A Day
- Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - David M Neskey
- Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA; Department of Cell and Molecular Pharmacology and Developmental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
5
|
Vigneron N, Ferrari V, Van den Eynde BJ, Cresswell P, Leonhardt RM. Cytosolic Processing Governs TAP-Independent Presentation of a Critical Melanoma Antigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1875-1888. [PMID: 30135181 PMCID: PMC6457910 DOI: 10.4049/jimmunol.1701479] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 07/26/2018] [Indexed: 12/30/2022]
Abstract
Cancer immunotherapy has been flourishing in recent years with remarkable clinical success. But as more patients are treated, a shadow is emerging that has haunted other cancer therapies: tumors develop resistance. Resistance is often caused by defects in the MHC class I Ag presentation pathway critical for CD8 T cell-mediated tumor clearance. TAP and tapasin, both key players in the pathway, are frequently downregulated in human cancers, correlating with poor patient survival. Reduced dependence on these factors may promote vaccine efficiency by limiting immune evasion. In this study, we demonstrate that PMEL209-217, a promising phase 3 trial-tested antimelanoma vaccine candidate, is robustly presented by various TAP- and/or tapasin-deficient cell lines. This striking characteristic may underlie its potency as a vaccine. Surprisingly, cytosolic proteasomes generate the peptide even for TAP-independent presentation, whereas tripeptidyl peptidase 2 (TPP2) efficiently degrades the epitope. Consequently, inhibiting TPP2 substantially boosts PMEL209-217 presentation, suggesting a possible strategy to improve the therapeutic efficacy of the vaccine.
Collapse
Affiliation(s)
- Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium
- de Duve Institute, University of Louvain, Brussels B-1200, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium
| | - Violette Ferrari
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium
- de Duve Institute, University of Louvain, Brussels B-1200, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium
| | - Benoît J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium;
- de Duve Institute, University of Louvain, Brussels B-1200, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium
| | - Peter Cresswell
- Department of Immunobiology, Yale University, New Haven, CT 06519; and
- Department of Cell Biology, Yale University, New Haven, CT 06519
| | - Ralf M Leonhardt
- Department of Immunobiology, Yale University, New Haven, CT 06519; and
| |
Collapse
|
6
|
Chen JY, Xu L, Fang WM, Han JY, Wang K, Zhu KS. Identification of PA28β as a potential novel biomarker in human esophageal squamous cell carcinoma. Tumour Biol 2017; 39:1010428317719780. [PMID: 29020885 DOI: 10.1177/1010428317719780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common and serious malignancies in China. However, the exact mechanisms of tumor formation and progression are unclear. As late diagnosis and poor therapeutic efficacy result in lower survival rates, identifying biomarkers for early detection, prognostic evaluation, and recurrence monitoring of ESCC is necessary. Here we analyzed 10 protein expression profiles of ESCC core tissues and paired normal esophageal epithelial tissues using two-dimensional gel electrophoresis. We excised 29 protein spots with two-fold or greater differential expression between cancer and normal tissues and identified them using matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight mass spectrometry. The role of PA28β in ESCC cell was confirmed using cell growth, colony formation and soft agar in TE-1 cells pre- and post- PA28β transfection. Compared to their expression in the adjacent normal epithelia, 12 proteins, including transgelin (TAGLN), were upregulated in ESCC tissues; 17 proteins, including proteasome activator 28-beta subunit (PA28β), were downregulated (p < 0.05). Western blotting and immunohistochemistry confirmed that PA28β was significantly underexpressed in ESCC tissues. The functional assays demonstrate that PA28β inhibited cell growth, proliferation and malignancy of TE-1 cells. Among the differentially expressed proteins, PA28β is a potential tumor inhibitor.
Collapse
Affiliation(s)
- Jin-Yan Chen
- 1 Institute for Immunology, Fujian Academy of Medical Sciences, Fuzhou, China.,2 Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, China
| | - Li Xu
- 3 Department of Physiology, Basic Medical College of Putian University, Putian, China
| | - Wei-Min Fang
- 4 Fujian Provincial Cancer Hospital, Fuzhou, China
| | - Jun-Yong Han
- 1 Institute for Immunology, Fujian Academy of Medical Sciences, Fuzhou, China.,2 Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, China
| | - Kun Wang
- 1 Institute for Immunology, Fujian Academy of Medical Sciences, Fuzhou, China.,2 Fujian Provincial Key Laboratory of Medical Analysis, Fuzhou, China
| | - Kun-Shou Zhu
- 4 Fujian Provincial Cancer Hospital, Fuzhou, China
| |
Collapse
|
7
|
Moy JD, Moskovitz JM, Ferris RL. Biological mechanisms of immune escape and implications for immunotherapy in head and neck squamous cell carcinoma. Eur J Cancer 2017; 76:152-166. [PMID: 28324750 DOI: 10.1016/j.ejca.2016.12.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/26/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy with high morbidity and mortality. Despite advances in cytotoxic therapies and surgical techniques, overall survival (OS) has not improved over the past few decades. This emphasises the need for intense investigation into novel therapies with good tumour control and minimal toxicity. Cancer immunotherapy has led this endeavour, attempting to improve tumour recognition and expand immune responses against tumour cells. While various forms of HNSCC immunotherapy are in preclinical trials, the most promising direction thus far has been with monoclonal antibodies (mAbs), targeting growth factor and immune checkpoint receptors. Preclinical and early phase trials have shown unprecedented efficacy with minimal adverse effects. This article will review biological mechanisms of immune escape and implications for immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Jennifer D Moy
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Leibowitz MS, Srivastava RM, Andrade Filho PA, Egloff AM, Wang L, Seethala RR, Ferrone S, Ferris RL. SHP2 is overexpressed and inhibits pSTAT1-mediated APM component expression, T-cell attracting chemokine secretion, and CTL recognition in head and neck cancer cells. Clin Cancer Res 2013; 19:798-808. [PMID: 23363816 DOI: 10.1158/1078-0432.ccr-12-1517] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Human leukocyte antigen (HLA) class I antigen processing machinery (APM) component downregulation permits escape of malignant cells from recognition by cytotoxic T lymphocytes (CTL) and correlates with poor prognosis in patients with head and neck cancer (HNC). Activated STAT1 (pSTAT1) is necessary for APM component expression in HNC cells. We investigated whether an overexpressed phosphatase was responsible for basal suppression of pSTAT1 and subsequent APM component-mediated immune escape in HNC cells. EXPERIMENTAL DESIGN Immunohistochemical staining and reverse transcription PCR of paired HNC tumors was performed for the phosphatases src homology domain-containing phosphatase (SHP)-1 and SHP2. Depletion of phosphatase activity in HNC and STAT1(-/-) tumor cells was achieved by siRNA knockdown. HLA class I-restricted, tumor antigen-specific CTL were used in IFN-γ ELISPOT assays against HNC cells. Chemokine secretion was measured after SHP2 depletion in HNC cells. RESULTS SHP2, but not SHP1, was significantly upregulated in HNC tissues. In HNC cells, SHP2 depletion significantly upregulated expression of pSTAT1 and HLA class I APM components. Overexpression of SHP2 in nonmalignant keratinocytes inhibited IFN-γ-mediated STAT1 phosphorylation, and SHP2 depletion in STAT1(-/-) tumor cells did not significantly induce IFN-γ-mediated APM component expression, verifying STAT1 dependence of SHP2 activity. SHP2 depletion induced recognition of HNC cells by HLA class I-restricted CTL and secretion of inflammatory, T-cell attracting chemokines, RANTES and IP10. CONCLUSION These findings suggest for the first time an important role for SHP2 in APM-mediated escape of HNC cells from CTL recognition. Targeting SHP2 could enhance T-cell-based cancer immunotherapy.
Collapse
|
9
|
Zimmer J, Sleiman M, Hentges F, Gadola SD. Clinical and immunological remarks about TAP deficiency. J Biol Chem 2012; 287:27047; author reply 27048. [PMID: 22865894 DOI: 10.1074/jbc.l112.379578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Deficiency of activated STAT1 in head and neck cancer cells mediates TAP1-dependent escape from cytotoxic T lymphocytes. Cancer Immunol Immunother 2011; 60:525-35. [PMID: 21207025 DOI: 10.1007/s00262-010-0961-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 12/15/2010] [Indexed: 01/06/2023]
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) cells can escape recognition by tumor antigen (TA)-specific cytotoxic T lymphocytes (CTL) by downregulation of antigen processing machinery (APM) components, such as the transporter associated with antigen processing (TAP)-1/2 heterodimer. APM component upregulation by interferon gamma (IFN-γ) restores SCCHN cell recognition and susceptibility to lysis by CTL, but the mechanism underlying TAP1/2 downregulation in SCCHN cells is not known. Because IFN-γ activates signal transducer and activator of transcription (STAT)-1, we investigated phosphorylated (p)-STAT1 as a mediator of low basal TAP1/2 expression in SCCHN cells. SCCHN cells were found to express basal total STAT1 but low to undetectable levels of activated STAT1. The association of increased pSTAT1 levels and APM components likely reflects a cause-effect relationship, since STAT1 knockdown significantly reduced both IFN-γ-mediated APM component expression and TA-specific CTL recognition of IFN-γ-treated SCCHN cells. On the other hand, since oncogenic pSTAT3 is overexpressed in SCCHN cells and was found to heterodimerize with pSTAT1, we also tested whether pSTAT3 and pSTAT1:pSTAT3 heterodimers inhibited IFN-γ-induced STAT1 activation and APM component expression. First, STAT3 activation or depletion did not affect basal or IFN-γ-induced expression of pSTAT1 and APM components or recognition of SCCHN cells by TA-specific CTL. Second, pSTAT1:pSTAT3 heterodimers did not interfere with IFN-γ-induced STAT1 binding to the TAP1 promoter or APM protein expression. These findings demonstrate that APM component downregulation is regulated primarily by an IFN-γ-pSTAT1-mediated signaling pathway, independent of oncogenic STAT3 overexpression in SCCHN cells.
Collapse
|
11
|
Xu L, Shen Y, Xia M, Miao F, Shen C, Xie W, Zhang J. Up-regulate HLA class I expression following hepatitis B virus transfection in a hepatocellular carcinoma cell line BEL7405. Immunol Invest 2010; 39:621-34. [PMID: 20653429 DOI: 10.3109/08820131003792826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis B virus infection is associated with a high risk of developing into hepatocellular carcinoma, while tumor recognition is important during the immune surveillance process that prevents cancer development in humans. The mechanisms of immune evasion and the role of the early immune response in chronic infection caused by hepatitis B virus (HBV) are still unclear. In the present study, 1 copy or 1.2 copies of HBV genome was transfected into a hepatocellular carcinoma cell line BEL7405. RT-PCR, Western blot and flow cytometry analysis were used to evaluate the expression of HLA class I molecules and transporter associated with antigen processing 1 (TAP1). Finally, the cytotoxic activity of natural killer (NK) cells against HBV transfected liver cells was detected by MTT colorimetry method. Following transfection of 1 copy or 1.2 copies of HBV genome, HLA class I expression was up-regulated in BEL7405 cell line in a dose-dependent manner. Furthermore, increased the surface HLA class I expression were caused by enhanced expression of TAP1 at mRNA and protein levels in those transfected cells. Consequently, a significantly down-regulated cytotoxic activity of NK cells against HBV transfected liver cells was observed. These results may demonstrate a way by which HBV avoids recognition by NK cells that might be associated with the establishment of chronic infection and tumor formation.
Collapse
Affiliation(s)
- Lianhong Xu
- The Key Laboratory of the Ministry of Education of China for Developmental Genes and Human Disease, Department of Genetics and Developmental Biology, Southeast University Medical School, Nanjing, Jiangsu Province, P.R. China
| | | | | | | | | | | | | |
Collapse
|
12
|
Ye Q, Shen Y, Wang X, Yang J, Miao F, Shen C, Zhang J. Hypermethylation of HLA class I gene is associated with HLA class I down-regulation in human gastric cancer. ACTA ACUST UNITED AC 2009; 75:30-9. [PMID: 19883394 DOI: 10.1111/j.1399-0039.2009.01390.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Down-regulated expression of human leukocyte antigen (HLA) class I molecules in many human cancers facilitate tumor cells to escape from immune attack. Promoter hypermethylation, one of the major epigenetic changes responsible for gene inactivation, plays an important role in gastric carcinogenesis. This study evaluated the expression and alteration of HLA class I molecules in a panel of 47 pairs of gastric cancer specimens with their noncancerous parts from Chinese patients by using immunohistochemistry (IHC), reverse transcription polymerase chain reaction (RT-PCR) and methylation-specific PCR (MSP) analysis. The expression of HLA-A, HLA-B/C and HLA class I complex was lost or down-regulated in human gastric cancer. The percentage of promoter methylation was 59.57% for HLA-A gene, 55.32% for HLA-B gene and 48.94% for HLA-C gene in gastric cancer, while it was decreased to 19.15%, 12.77% and 6.38% in the adjacent nontumor tissues, respectively. Seven of 10 (70%), 4 of 6 (66.7%) and 3 of 4 (75%) gastric cancer specimens with promoter hypermethylation at HLA-A, -B and -C loci showed transcriptional inactivation of HLA-A,-B and -C genes, suggesting an association between promoter hypermethylation and down-regulated expression of HLA class I molecules. Human gastric cancer cell line BGC-823 showed HLA-A down-regulation with promoter methylation of HLA-A locus. Treatment with DNA methyltransferase inhibitor restored the expression of HLA-A mRNA and surface HLA-A complex. Thus, our results showed that promoter hypermethylation might be one of the mechanisms that lead to HLA class I antigen down-regulation in gastric cancer.
Collapse
Affiliation(s)
- Q Ye
- Department of Genetics and Developmental Biology, The Key Laboratory of the Ministry of Education of China for Developmental Genes and Human Disease, Southeast University Medical School, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Tang Q, Zhang J, Qi B, Shen C, Xie W. Downregulation of HLA class I molecules in primary oral squamous cell carcinomas and cell lines. Arch Med Res 2009; 40:256-63. [PMID: 19608014 DOI: 10.1016/j.arcmed.2009.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Loss or downregulation of human leukocyte antigen (HLA) class I expression has been reported in a variety of human tumors including oral squamous cell carcinoma (OSCC). METHODS Expression of HLA class I molecules were evaluated by immunohistochemistry, flow cytometry, semi-quantitative Western blot and RT-PCR in 43 tissue samples of primary oral squamous cell carcinomas (pOSCC) from Chinese patients and two OSCC cell lines. RESULTS HLA class I heavy chain of B/C locus and A locus and beta(2-)microglobulin were obviously lost or downregulated in pOSCC with the percentage of 31, 55 and 35% respectively. The expression of HLA B/C, LMP2, LMP7, LMP10 and PA28beta in OSCC cell lines was also presumably reduced in comparison with normal epithelial cell line. CONCLUSIONS These data suggested that the downregulation of HLA class I molecules in OSCC was closely associated with the low-efficient transcription and abnormality of post-transcription regulation of HLA class I genes and antigen presentation-related genes. These results can add more light to the mechanism by which OSCC escape from immunological surveillance.
Collapse
Affiliation(s)
- Qiusha Tang
- The Key Laboratory of Developmental Genes and Human Disease of Education Ministry, Department of Genetics and Developmental Biology, Southeast University Medical School, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
14
|
Kobayashi JI, Hirohashi Y, Torigoe T, Michifuri Y, Yamamoto T, Tamura Y, Kamiguchi K, Miyazaki A, Yamaguchi A, Hariu H, Hiratsuka H, Sato N. Clonal diversity of cytotoxic T lymphocytes that recognize autologous oral squamous cell carcinoma. Hum Immunol 2009; 70:89-95. [DOI: 10.1016/j.humimm.2008.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 11/05/2008] [Accepted: 11/13/2008] [Indexed: 12/22/2022]
|
15
|
Shen YQ, Zhang JQ, Xia M, Miao FQ, Shan XN, Xie W. Low-molecular-weight protein (LMP)2/LMP7 abnormality underlies the downregulation of human leukocyte antigen class I antigen in a hepatocellular carcinoma cell line. J Gastroenterol Hepatol 2007; 22:1155-61. [PMID: 17608862 DOI: 10.1111/j.1440-1746.2006.04421.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Tumor cells may alter the expression of numerous components involved in antigen-processing machinery to decrease human leukocyte antigen (HLA) class I expression, allowing the tumor cells to escape immune surveillance. The purpose of the present study was to investigate the involvement of these components in the downregulation of HLA class I expression in human hepatocellular carcinoma cell line BEL7,404. METHODS Expression of HLA-I and antigen presentation-related genes were analyzed by flow cytometry and polymerase chain reaction. The HLA class I-deficient BEL7,404 cell was transfected with the low-molecular-weight protein (LMP) 2 and LMP7 gene and were analyzed by flow cytometry for restoration of surface HLA class I expression. RESULTS The BEL7,404 cells downregulated the expression of HLA class I antigen and lacked expression of LMP2 and LMP7. Interferon (IFN)-gamma treatment increased the expression of LMP2 but not LMP7. The LMP2-transfected BEL7,404 cells or LMP2 and LMP7-cotransfected cells restored surface HLA class I expression while LMP7-transfected cells did not. However, in IFN-gamma-treated BEL7,404 cells, transfection with the LMP7 gene induced more HLA class I expression than mock transfection. CONCLUSIONS The LMP2 gene was required for the expression of HLA class I molecules in BEL7,404. The LMP7 was not the major reason for loss of HLA class I in BEL7,404 cells, although the supply of exogenous LMP7 could increase surface expression of HLA class I antigen.
Collapse
Affiliation(s)
- Yu-Qing Shen
- State Education Ministry Laboratory of Developmental Genes and Human Diseases, Jiangsu Provincial Key Laboratory of Gene Diagnosis and Therapy, Genetics Research Center, Southeast University Medical School, Nanjing, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
16
|
Hirata T, Yamamoto H, Taniguchi H, Horiuchi S, Oki M, Adachi Y, Imai K, Shinomura Y. Characterization of the immune escape phenotype of human gastric cancers with and without high-frequency microsatellite instability. J Pathol 2007; 211:516-523. [PMID: 17318812 DOI: 10.1002/path.2142] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Accepted: 12/22/2006] [Indexed: 11/11/2022]
Abstract
Gastric cancers with and without high-frequency microsatellite instability (MSI-H) represent distinctive pathways of carcinogenesis. The aim of this study was to clarify if human leukocyte antigen (HLA) class I antigen subunits and antigen processing machinery (APM) components are differentially downregulated in these two groups of tumours. Using reverse transcription PCR (RT-PCR), loss of heterozygosity (LOH) analysis, methylation-specific PCR (MSP), DNA sequencing, immunohistochemistry, and flow cytometry, we analysed expression and/or alteration of HLA class I antigen subunits and APM components, including low molecular weight polypeptide proteasome subunit (LMP)2, LMP7, LMP10, transporter associated with antigen processing (TAP)1, TAP2, tapasin, proteasome activator (PA) 28alpha, and PA28beta in two stage-matched panels of 30 MSI-H and 30 microsatellite stable (MSS) gastric cancers. Mutations at coding microsatellites (cMS) located within beta2-microglobulin (beta2m) and genes encoding APM components, including endoplasmic reticulum (ER) chaperone protein genes, such as calnexin, SEC63, SEC31, and P4HB (p55), were also analysed. HLA class Ia transcripts were totally downregulated in 18.3% of cancer cases. Locus-specific downexpression of HLA-A, -B, and -C was detected in 41.7%, 45.0%, and 31.7% of cases. Loss of HLA-A was significantly more frequent in MSI-H cancers. The LOH ratios of the HLA-A, -B, and -C loci microsatellite markers were relatively low: 5/32 (15.6%) for D6S306, 4/32 (12.5%) for D6S258, 4/33 (12.1%) for D6S273, and 4/30 (13.3%) for D6S1666. Methylation of HLA-A, -B, and -C was detected in 38.3%, 40.0%, and 28.3% of cases. A significant association between methylation and reduction in expression was observed in gastric cancer tissues. Mutations at cMS of beta2m and APM components were detected in 3.3-46.7% of MSI-H cancers but in none of MSS cancers. These data show that gastric cancers have various defects in HLA class I antigen subunits and APM components and that the MSI phenotype is associated with frequent HLA-A inactivation and frameshift mutations of the beta2m and APM genes.
Collapse
Affiliation(s)
- T Hirata
- First Department of Internal Medicine, Sapporo Medical University, Sapporo 060-8543, Japan
| | - H Yamamoto
- First Department of Internal Medicine, Sapporo Medical University, Sapporo 060-8543, Japan
| | - H Taniguchi
- First Department of Internal Medicine, Sapporo Medical University, Sapporo 060-8543, Japan
| | - S Horiuchi
- First Department of Internal Medicine, Sapporo Medical University, Sapporo 060-8543, Japan
| | - M Oki
- First Department of Internal Medicine, Sapporo Medical University, Sapporo 060-8543, Japan
| | - Y Adachi
- First Department of Internal Medicine, Sapporo Medical University, Sapporo 060-8543, Japan
| | - K Imai
- Sapporo Medical University, Sapporo 060-8557, Japan
| | - Y Shinomura
- First Department of Internal Medicine, Sapporo Medical University, Sapporo 060-8543, Japan
| |
Collapse
|
17
|
Meissner M, Reichert TE, Kunkel M, Gooding W, Whiteside TL, Ferrone S, Seliger B. Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcome. Clin Cancer Res 2005; 11:2552-60. [PMID: 15814633 DOI: 10.1158/1078-0432.ccr-04-2146] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Human leukocyte antigen (HLA) class I antigen defects, which are frequently present in head and neck squamous cell carcinoma (HNSCC) cells may provide the tumor with an escape mechanism from immune surveillance. Scanty information is available about mechanisms underlying HLA class I antigen defects in both lesions and cell lines from HNSCC. In this study, we investigate the role of antigen processing machinery (APM) component abnormalities in the generation of deficient HLA class I surface expression of HNSCC cells. EXPERIMENTAL DESIGN Using immunohistochemistry, Western blot, and RT-PCR analyses we correlated the expression of the IFN-gamma inducible proteasome subunits and of the peptide transporter TAP with that of HLA class I antigens in biopsies and cell lines from primary, recurrent, and metastatic HNSCC. Furthermore, APM component and HLA class I antigen expression in surgically removed lesions were correlated with the course of the disease in order to assess the clinical significance of deficient expression of these molecules. RESULTS A high frequency of LMP2, LMP7, and TAP1 down-regulation or loss was found in tumor lesions and cell lines obtained from HNSCC cancer patients. These defects could be corrected by incubating cells with IFN-gamma. Furthermore, LMP2, LMP7, TAP1, TAP2, and HLA class I antigen expression rates in primary HNSCC lesions were found to predict overall survival. Lastly, the level of LMP7 expression was significantly associated with disease recurrence at 2 years. CONCLUSIONS Our results suggest that the analysis of APM component expression in HNSCC lesions can provide useful prognostic information in patients with HNSCC.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP Binding Cassette Transporter, Subfamily B, Member 3
- ATP-Binding Cassette Transporters/analysis
- ATP-Binding Cassette Transporters/genetics
- Adult
- Aged
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line
- Cell Line, Tumor
- Cysteine Endopeptidases/analysis
- Cysteine Endopeptidases/genetics
- Down-Regulation/drug effects
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- HLA Antigens/analysis
- HLA Antigens/genetics
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Histocompatibility Antigens Class I/analysis
- Histocompatibility Antigens Class I/genetics
- Humans
- Immunohistochemistry
- Interferon-gamma/pharmacology
- Male
- Middle Aged
- Multienzyme Complexes/analysis
- Multienzyme Complexes/genetics
- Proteasome Endopeptidase Complex
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Analysis
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Markus Meissner
- Department of Internal Medicine, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Chang MC, Chiang CP, Lin CL, Lee JJ, Hahn LJ, Jeng JH. Cell-mediated immunity and head and neck cancer: with special emphasis on betel quid chewing habit. Oral Oncol 2005; 41:757-75. [PMID: 16109353 DOI: 10.1016/j.oraloncology.2005.01.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 01/20/2005] [Indexed: 01/12/2023]
Abstract
Betel quid (BQ) chewing is popular in Taiwan, India, and many southeast-Asian countries. BQ chewing has strong association with the risk of oral leukoplakia (OL), oral submucous fibrosis (OSF), and oral cancer (OC). BQ components exhibit genotoxicity and may alter the structure of DNA, proteins and lipids, resulting in production of antigenicity. BQ ingredients are also shown to induce keratinocyte inflammation by stimulating the production of prostaglandins, TNF-alpha, IL-6, IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF) in keratinocytes. These events may provoke tissue inflammation, early cell-mediated immunity (CMI), and immune surveillance in BQ chewers. However, BQ components also directly affect the functional activities of immunocompotent cells, and moreover tumor cells may hypo-respond to the CMI via diverse mechanisms such as induction of apoptosis of lymphocytes, induction of production of suppressor T cells, downregulation of MHC molecules in tumor cells, etc. Clinically, an alteration in lymphocyte subsets, a decrease in total number of lymphocytes, and a reduction in functional activities of CMI have been observed in isolated peripheral blood mononuclear cells (PBMC) and tumor infiltrated lymphocytes (TIL) in patients with OSF, OL or OC. Adaptation of tumor cells to immune system may promote clonal selection of resistant tumor cells, leading to immune tolerance. Future studies on effects of BQ components on CMI and humoral immunity in vitro and in vivo can be helpful for chemoprevention of BQ-related oral mucosal diseases. To elucidate how virus infection, tobacco, alcohol and BQ consumption, and other environmental exposure affect the immune status of patients with oral premalignant lesions or OC will help us to understand the immunopathogenesis of OC and to develop immunotherapeutic strategies for OC.
Collapse
Affiliation(s)
- M C Chang
- Biomedical Science Team, Chang Gung Institute of Technology, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Kurte M, López M, Aguirre A, Escobar A, Aguillón JC, Charo J, Larsen CG, Kiessling R, Salazar-Onfray F. A Synthetic Peptide Homologous to Functional Domain of Human IL-10 Down-Regulates Expression of MHC Class I and Transporter Associated with Antigen Processing 1/2 in Human Melanoma Cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:1731-7. [PMID: 15265902 DOI: 10.4049/jimmunol.173.3.1731] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tumor cells treated with IL-10 were shown to have decreased, but peptide-inducible expression of MHC class I, decreased sensitivity to MHC class I-restricted CTL, and increased NK sensitivity. These findings could be explained, at least partially, by a down-regulation of TAP1/TAP2 expression. In this study, IT9302, a nanomeric peptide (AYMTMKIRN), homologous to the C-terminal of the human IL-10 sequence, was demonstrated to mimic these previously described IL-10 effects on MHC class I-related molecules and functions. We observed a dose-dependent down-regulation of MHC class I at the cell surface of melanoma cells after 24-h treatment with IT9302. The IL-10 homologue peptide also caused a dose-dependent inhibition of the IFN-gamma-mediated surface induction of MHC class I in a melanoma cell line. We demonstrated, using Western blot and flow cytometry, that IT9302 inhibits the expression of TAP1 and TAP2 proteins, but not MHC class I H chain or low molecular protein molecules. Finally, peptide-treated melanoma cells were shown to be more sensitive to lysis by NK cells in a dose-dependent way. Taken together, these results demonstrate that a small synthetic peptide derived from IL-10 can mimic the Ag presentation-related effects mediated by this cytokine in human melanomas and increase tumor sensitivity to NK cells, which can be relevant in the designing of future strategies for cancer immune therapy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP Binding Cassette Transporter, Subfamily B, Member 3
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/genetics
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/metabolism
- Cysteine Endopeptidases/biosynthesis
- Cysteine Endopeptidases/genetics
- Cytotoxicity, Immunologic
- Dose-Response Relationship, Drug
- Eye Neoplasms/metabolism
- Eye Neoplasms/pathology
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, MHC Class I
- Histocompatibility Antigens Class I/biosynthesis
- Humans
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/pharmacology
- Interleukin-10/agonists
- Interleukin-10/chemistry
- Killer Cells, Lymphokine-Activated/immunology
- Melanoma/metabolism
- Melanoma/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Oligopeptides/pharmacology
- Protein Structure, Tertiary
- Recombinant Proteins
Collapse
Affiliation(s)
- Mónica Kurte
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cabrera T, Maleno I, Lopez-Nevot MA, Redondo M, Fernandez MA, Collado A, Garrido F. High frequency of HLA-B44 allelic losses in human solid tumors. Hum Immunol 2003; 64:941-50. [PMID: 14522091 DOI: 10.1016/s0198-8859(03)00164-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human leukocyte antigen (HLA) class I downregulation, a frequent phenomenon observed in a variety of human tumors, favors tumor immune escape from T-lymphocyte recognition. However, it is not known whether a particular HLA class I allele is lost more frequently than others. To address this question we analyzed HLA class I expression in tumor tissues derived from 300 patients diagnosed as having breast, colorectal, or laryngeal carcinomas. Cryostatic tumor sections and a broad panel of anti-HLA class I monoclonal antibodies were used. We found that the HLA-B44 allele was lost more frequently than other HLA class I alleles, and that the difference was not related with changes in HLA-B44 allele frequencies between patients and controls. In addition, we observed that 35% of the HLA-B44 negative tumors presented HLA haplotype loss associated with loss of heterozygosity. These tests were performed on DNA samples obtained from microdissected tumor tissues. The results seem to indicate that HLA class I allelic losses are not randomly distributed during tumor development but that some HLA class I alleles, and HLA-B44 in particular, are more frequently downregulated and may play an important role in immune escape mechanisms.
Collapse
Affiliation(s)
- Teresa Cabrera
- Departamento de Anáslisis Clínicos, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Rochaix P, Lacroix-Triki M, Lamant L, Pichereaux C, Valmary S, Puente E, Al Saati T, Monsarrat B, Susini C, Buscail L, Delsol G, Voigt JJ. PNL2, a new monoclonal antibody directed against a fixative-resistant melanocyte antigen. Mod Pathol 2003; 16:481-90. [PMID: 12748255 DOI: 10.1097/01.mp.0000067686.34489.50] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report the production of a new monoclonal antibody, PNL2, directed against a fixative resistant melanocyte antigen. The analysis of PNL2 immunostaining on a broad range of normal or malignant human tissues and on various melanocytic lesions revealed its high specificity. PNL2 gave a strong cytoplasmic staining of skin and oral mucosae melanocytes, and staining of granulocytes when used at high concentration. PNL2 stained all intra-epidermal nevi irrespective of their histologic type, but common intradermal nevi and the dermal component of compound nevi were largely non-reactive as only scattered nevus cells in the papillary dermis were labeled. PNL2 labeled more than 70% of the neoplastic cells in all primary melanomas irrespective of their histologic type. However, PNL2 did not label desmoplastic melanomas. All metastatic melanomas were also stained but the percentage of labeled cells was occasionally lower than the primary tumor. PNL2, as anti-Melan A and HMB-45 antibodies, stained most of the clear cell sarcoma cells, and a few cells in angiomyolipomas and lymphangioleiomyomatosis. None of the other non-melanocytic lesions tested were labeled. Proteomic approaches showed that the immunoaffinity purified PNL2-binding complexes isolated from melanoma cell lines comprise at least TAP1, Clathrin 17 and prealbumin proteins, but not the gp100 recognized by HMB-45. In conclusion, this new monoclonal antibody, PNL2, is directed against a new fixative resistant melanocyte associated antigen. This antigen is chemically resistant and thus allows immunostaining after melanin bleaching or decalcification. We also demonstrate that it is different from Melan A and from gp100, even if PNL2 and HMB-45 staining patterns are sometimes similar.
Collapse
Affiliation(s)
- Philippe Rochaix
- Laboratoire d'anatomie et cytologie pathologiques, Institut Claudius Regaud, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Matsui M, Machida S, Itani-Yohda T, Akatsuka T. Downregulation of the proteasome subunits, transporter, and antigen presentation in hepatocellular carcinoma, and their restoration by interferon-gamma. J Gastroenterol Hepatol 2002; 17:897-907. [PMID: 12164966 DOI: 10.1046/j.1440-1746.2002.02837.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND In our previous study, expressions of human histocompatibility leukocyte antigens class I molecules (HLA-I) and the transporter associated with antigen processing (TAP) 1/2 genes were investigated in seven hepatocellular carcinoma (HCC) cell lines. Two cell lines, Hep-3B and HuH-7, showed a reduced level of TAP, which might cause the low surface expression of HLA-I. In order to understand the downregulation mechanism of antigen presentation in tumors, the two cell lines were further investigated. METHODS Expressions of HLA-I and antigen presentation-related genes were analyzed by flow cytometry and polymerase chain reaction, respectively. Antigen presentation was tested in 51Cr-release assays. RESULTS Flow cytometric analyses revealed low surface expression of HLA-I on Hep-3B and HuH-7 cells. Introduction of HLA-A2 gene did not result in a high surface expression of HLA-A2. This suggested the downregulation of HLA-I expression might be related to defects in the antigen presentation machinery. We then examined expression levels of various antigen presentation-related genes. Hep-3B and HuH-7 demonstrated low expression of the low-molecular-weight protein (LMP) 2, LMP7, TAP1, and HLA-I heavy-chain transcripts. The downregulation of these genes was dissolved by treatment with gamma-interferon. Furthermore, allo-specific cytotoxic T lymphocyte (CTL) lines failed to recognize Hep-3B and HuH-7 cells, while they killed IFN-gamma-treated Hep-3B and HuH-7 cells. CONCLUSIONS Our results suggest that defects in the antigen presentation-related molecules might cause downregulation of HLA-I expression, antigen presentation, and subsequently, escape from specific CTL killing. The downregulation could be restored by IFN-gamma treatment, suggesting the potential use of IFN-gamma for therapeutic purposes.
Collapse
|
23
|
Matsui M, Machida S, Tomiyama H, Takiguchi M, Akatsuka T. Introduction of tapasin gene restores surface expression of HLA class I molecules, but not antigen presentation of an HIV envelope peptide in a hepatoma cell line. Biochem Biophys Res Commun 2001; 285:508-17. [PMID: 11444872 DOI: 10.1006/bbrc.2001.5166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A hepatoma cell line, Hep G2, reveals the diminished HLA class I surface expression and the reduced expression of LMP2, LMP7, and tapasin transcripts, suggesting that the reduced expression of these transcripts may be associated with the low expression of HLA class I molecules. Introduction of tapasin gene dramatically up-regulates the surface expression of HLA class I molecules on Hep G2 cells, and unexpectedly, enhances the expression of LMP2 and LMP7 transcripts as well. Unlike Hep G2, these tapasin-transfected Hep G2 cells are recognized by allo-specific CTL. However, the transfectant is unable to endogenously present an HIV envelope peptide to an HIV-specific CTL clone, suggesting that a proteasome-independent antigen processing pathway exists and still remains defective in the transfectant. These data may provide significant evidence that the nonproteasomal antigen processing pathway as well as the proteasomal pathway may be impaired in tumor cells to escape immune surveillance performed by CTL.
Collapse
Affiliation(s)
- M Matsui
- Department of Microbiology, Saitama Medical School, Moroyama-Cho, Iruma-Gun, Saitama 350-0495, Japan
| | | | | | | | | |
Collapse
|