1
|
Anaphylaxis and anaphylactoid reactions associated with the insertion of peripherally inserted central catheters: A multiyear comparative retrospective cohort study. Infect Control Hosp Epidemiol 2020; 40:1215-1221. [PMID: 31591954 DOI: 10.1017/ice.2019.237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Peripherally inserted central catheters (PICCs) are a mainstay of nonpermanent vascular access devices. In this study, we assessed patients displaying anaphylaxis or anaphylactoid reactions to the PowerPICC SOLO and Groshong PICC (Bard Access Systems) using the Sherlock tip locating system (TLS). METHODS Patients from 2 tertiary-care hospitals were systematically monitored over 4 years for adverse events following the insertion of a PICC using the Sherlock TLS. Insertion data were also collected using the BioFlo PICC (Angiodynamics)from a third hospital site and from The Ottawa Hospital over 4 years as an additional comparator. Three definitions of anaphylaxis and anaphylactoid reactions were utilized, and the Cohen κ was used to assess interrater agreement. Analysis of reactions among the patient cohorts was performed using the χ2 test with Yates correction or the Fisher exact test as appropriate. RESULTS Among 8,257 insertions using the TLS PICCs, 37 potential reactions (0.45%) were recorded. Using specific definitions for anaphylaxis or anaphylactoid reactions, 54.1%-91.9% met criteria. Comparator populations using data from Calgary (n = 491) and Ottawa (n = 7,889) using the BioFlo PICC insertion found no reactions. Anaphylactic or anaphylactoid reactions were significantly associated with the PowerPICC SOLO and Groshong PICC with the TLS compared to the BioFlo PICC (P < .0001) across all definitions. The largest subset of patients experiencing adverse reactions had cystic fibrosis (CF) (n = 4, 10.8%). CONCLUSION Our study results demonstrate significant adverse events associated with the PowerPICC SOLO and Groshong PICC using the Sherlock TLS inserted across a range of patient populations. The incidence rate of anaphylaxis or anaphylactoid reactions in the CF population at our center is significantly higher than in non-CF patients (P < .001).
Collapse
|
2
|
Alsaleh NB, Mendoza RP, Brown JM. Exposure to silver nanoparticles primes mast cells for enhanced activation through the high-affinity IgE receptor. Toxicol Appl Pharmacol 2019; 382:114746. [PMID: 31494149 DOI: 10.1016/j.taap.2019.114746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/29/2023]
Abstract
Mast cells are a key effector cell in type I allergic reactions. It has been shown that environmental exposures such as diesel exhaust and heavy metals exacerbate mast cell degranulation and activation. Today, the use of engineered nanomaterials (ENMs) is rapidly expanding and silver nanoparticles (AgNP) are one of the mostly widely utilized ENMs, primarily for their antimicrobial properties, and are being incorporated into many consumer and biomedical products. We assessed whether pre-exposure of bone marrow-derived mast cells (BMMCs) to 20 nm AgNPs enhanced degranulation and activation to an allergen (dinitrophenol-conjugated human serum albumin) by measuring β-hexosaminidase release, LTB4 and IL-6 production. In addition, we assessed reactive oxygen species (ROS) generation, cell oxidative stress and toxicity as well as total and individual protein tyrosine phosphorylation (p-Tyr). We found that pre-exposure of BMMCs to AgNPs results in exacerbated allergen-mediated mast cell degranulation, LTB4 production and IL-6 release. Exposure of BMMCs to AgNPs exacerbated allergen-induced ROS generation, however, this was not associated with oxidative stress nor cell death. Finally, pre-exposure to AgNPs enhanced allergen-mediated global p-Tyr as well as individual proteins including Syk, PLCγ and LAT. Our findings indicate that pre-exposure to AgNPs exacerbates mast cell allergen-mediated phosphorylation of FcεR1-linked tyrosine kinases and ROS generation resulting in amplified early and late-phase responses. These findings suggest that exposure to AgNPs has the potential to prime mast cells to allergic immune responses, which could be of particular concern to atopic populations as the use of AgNPs in consumer and biomedical products rapidly increases.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- Colorado Center for Nanomedicine and Nanosafety, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ryan P Mendoza
- Colorado Center for Nanomedicine and Nanosafety, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jared M Brown
- Colorado Center for Nanomedicine and Nanosafety, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
3
|
Gao YY, Liu QM, Liu B, Xie CL, Cao MJ, Yang XW, Liu GM. Inhibitory Activities of Compounds from the Marine Actinomycete Williamsia sp. MCCC 1A11233 Variant on IgE-Mediated Mast Cells and Passive Cutaneous Anaphylaxis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10749-10756. [PMID: 29148756 DOI: 10.1021/acs.jafc.7b04314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The compounds of the deep-sea-derived marine Williamsia sp. MCCC 1A11233 (CDMW) were isolated, which are secondary metabolites of the actinomycetes. In this study, seven kinds of CDMW were found to decrease degranulation and histamine release in immunoglobulin E (IgE)-mediated rat basophilic leukemia (RBL)-2H3 cells. The production of cytokines (tumor necrosis factor-α, interleukin-4) was inhibited by these CDMW in RBL-2H3 cells, and their chemical structures were established mainly based on detailed analysis of their NMR spectra. CDMW-3, CDMW-5, and CDMW-15 were further demonstrated to block mast cell-dependent passive cutaneous anaphylaxis in IgE-sensitized mice. Bone marrow mononuclear cells (BMMCs) were established to clarify the effect of CDMW-3, CDMW-5, and CDMW-15 on mast cells. The seven kinds of CDMW decreased the degranulation and histamine release of BMMCs. Furthermore, flow cytometry results indicated that CDMW-3, CDMW-5, and CDMW-15 increased the annexin+ cell population of BMMCs. In conclusion, CDMW-3, CDMW-5, and CDMW-15 have obvious antiallergic activity due to induction of the apoptosis of mast cells.
Collapse
Affiliation(s)
- Yuan-Yuan Gao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| | - Bo Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| | - Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration , 184 Daxue Road, Xiamen 361005, P. R. China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration , 184 Daxue Road, Xiamen 361005, P. R. China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| |
Collapse
|
4
|
Kim M, Lim SJ, Lee HJ, Nho CW. Cassia tora Seed Extract and Its Active Compound Aurantio-obtusin Inhibit Allergic Responses in IgE-Mediated Mast Cells and Anaphylactic Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9037-46. [PMID: 26434611 DOI: 10.1021/acs.jafc.5b03836] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cassia tora seed is widely used due to its various biological properties including anticancer, antidiabetic, and anti-inflammatory effects. However, there has been no report of the effects of C. tora seed extract (CTE) on immunoglobulin E (IgE)-mediated allergic responses. In this research, we demonstrated the effects of CTE and its active compound aurantio-obtusin on IgE-sensitized allergic reactions in mast cells and passive cutaneous anaphylaxis (PCA). CTE and aurantio-obtusin suppressed degranulation, histamine production, and reactive oxygen species generation and inhibited the production and mRNA expression of tumor necrosis factor-α and interleukin-4. CTE and aurantio-obtusin also suppressed the prostaglandin E2 production and expression of cyclooxygenase 2. Furthermore, CTE and aurantio-obtusin suppressed IgE-mediated FcεRI signaling such as phosphorylation of Syk, protein kinase Cμ, phospholipase Cγ, and extracellular signal-regulated kinases. CTE and aurantio-obtusin blocked mast cell-dependent PCA in IgE-mediated mice. These results suggest that CTE and aurantio-obtusin are a beneficial treatment for allergy-related diseases.
Collapse
Affiliation(s)
- Myungsuk Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon, Korea
| | - Sue Ji Lim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon, Korea
| | - Hee-Ju Lee
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon, Korea
| | - Chu Won Nho
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon, Korea
| |
Collapse
|
5
|
Nanofiber-Coated Drug Eluting Stent for the Stabilization of Mast Cells. Pharm Res 2014; 31:2463-78. [DOI: 10.1007/s11095-014-1341-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/13/2014] [Indexed: 12/21/2022]
|
6
|
Lee T, Lee S, Ho Kim K, Oh KB, Shin J, Mar W. Effects of magnolialide isolated from the leaves of Laurus nobilis L. (Lauraceae) on immunoglobulin E-mediated type I hypersensitivity in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:550-556. [PMID: 23891890 DOI: 10.1016/j.jep.2013.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Laurus nobilis L. (Lauraceae) has been used for folk medicines in the Mediterranean area and Europe to treat various disorders including skin inflammation (dermatitis) and asthma. AIM OF THE STUDY Our aim was to investigate the scientific evaluation of the compounds from Laurus nobilis L. on immuniglobulin E (IgE)-mediated type I hypersensitivity responses in vitro such as atopic dermatitis and asthma. METHODS AND MATERIALS Seven compounds were isolated and examined for the mast cell stabilizing effect on IgE-sensitized RBL-2H3 mast cells by measuring the β-hexosaminidase activity. In addition, the effects on interleukin (IL)-4 production and IL-5-dependent Y16 early B cell proliferation were investigated as well as their cytotoxic effects on RBL-2H3 cells. RESULTS Among the seven isolated compounds, magnolialide attenuated the release of β-hexosaminidase from RBL-2H3 cells with an IC50 value of 20.2 μM, while the other compounds revealed no significant effects at concentrations tested. Furthermore, magnolialide significantly inhibited the IL-4 release with an IC50 value of 18.1 μM and IL-4 mRNA expression with an IC50 value of 15.7 μM in IgE-sensitized RBL-2H3 cells. In addition, the inhibition of IL-5-dependent proliferation of early B cells (Y16 cells) by magnolialide was demonstrated with an IC50 value of 18.4 μM. CONCLUSION These results suggest that the magnolialide might be a candidate for the treatment of IgE-mediated hypersensitivity responses such as atopic dermatitis and asthma by inhibiting mast cell degranulation, the IL-4 production, and IL-5-dependent early B cell proliferation, key factors in the development and amplification of type I hypersensitivity reactions.
Collapse
Affiliation(s)
- Taehun Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
7
|
Furukawa M, Makino M, Ohkoshi E, Uchiyama T, Fujimoto Y. Terpenoids and phenethyl glucosides from Hyssopus cuspidatus (Labiatae). PHYTOCHEMISTRY 2011; 72:2244-2252. [PMID: 21893325 DOI: 10.1016/j.phytochem.2011.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/15/2011] [Accepted: 07/08/2011] [Indexed: 05/31/2023]
Abstract
Monoterpenoids (3 and 4), sesquiterpenoid (2), diterpenoid (1) and four phenethyl glucosides (5-8), together with fourteen known compounds, were isolated from the whole herb of Hyssopus cuspidatus. Their structures were determined by spectroscopic means. The abietane-type diterpenoids (1, 9, 10), rosmarinic acid (15) and salvigenin (17) inhibited leukotriene (LT) C(4) secretion from primary alveolar cells of Wistar rats.
Collapse
Affiliation(s)
- Megumi Furukawa
- College of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | | | | | | | | |
Collapse
|
8
|
Koohi MK, Hejazy M, Asadi F, Asadian P. Assessment of dermal exposure and histopathologic changes of different sized nano-silver in healthy adult rabbits. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/304/1/012028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Hayama K, Suzuki Y, Inoue T, Ochiai T, Terui T, Ra C. Gold activates mast cells via calcium influx through multiple H2O2-sensitive pathways including L-type calcium channels. Free Radic Biol Med 2011; 50:1417-28. [PMID: 21376117 DOI: 10.1016/j.freeradbiomed.2011.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/17/2011] [Accepted: 02/23/2011] [Indexed: 11/23/2022]
Abstract
Heavy metals, including gold, induce severe contact hypersensitivity and autoimmune disorders, which develop through an initial Th2-independent process followed by a Th2-dependent process. It has been shown that mast cell activation plays a role in the Th2-independent process and that gold stimulates histamine release in vitro. However, the mechanisms of the gold-induced mast cell activation remain largely unclear. Here we report that gold directly activates mast cells in a Ca2+-dependent manner. HAuCl4 [Au(III)] at nontoxic concentrations (≤50 μM) induced substantial degranulation and leukotriene C4 secretion in an extracellular Ca2+-dependent manner. Au(III) induced a robust Ca2+ influx but not Ca2+ mobilization from internal stores. Au(III) also stimulated intracellular production of reactive oxygen species, including H2O2, and blockade of the production abolished the mediator release and Ca2+ influx. Au(III) induced Ca2+ influx through multiple store-independent Ca2+ channels, including Cav1.2 L-type Ca2+ channels (LTCCs) and 2-aminoethoxydiphenyl borate (2-APB)-sensitive Ca2+ channels. The 2-APB-sensitive channel seemed to mediate Au(III)-induced degranulation. Our results indicate that gold stimulates Ca2+ influx and mediator release in mast cells through multiple H2O2-sensitive Ca2+ channels including LTCCs and 2-APB-sensitive Ca2+ channels. These findings provide insight into the roles of these Ca2+ channels in the Th2-independent process of gold-induced immunological disorders.
Collapse
Affiliation(s)
- Koremasa Hayama
- Division of Molecular Cell Immunology and Allergology, Graduate School of Medical Science, Nihon University, and Department of Dermatology, Nihon University Surugadai Hospital, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
10
|
MANEEWATTANAPINYO P, BANLUNARA W, THAMMACHAROEN C, EKGASIT S, KAEWAMATAWONG T. An Evaluation of Acute Toxicity of Colloidal Silver Nanoparticles. J Vet Med Sci 2011; 73:1417-23. [DOI: 10.1292/jvms.11-0038] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Wijit BANLUNARA
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University
| | - Chuchaat THAMMACHAROEN
- Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University
| | - Sanong EKGASIT
- Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University
| | | |
Collapse
|
11
|
Yang W, Lee S, Lee J, Bae Y, Kim D. Silver nanoparticle-induced degranulation observed with quantitative phase microscopy. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:045005. [PMID: 20799800 DOI: 10.1117/1.3470104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Monitoring a degranulation process in a live mast cell is a quite important issue in immunology and pharmacology. Because the size of a granule is normally much smaller than the resolution limit of an optical microscope system, there is no direct real-time live cell imaging technique for observing degranulation processes except for fluorescence imaging techniques. In this research, we propose optical quantitative phase microscopy (QPM) as a new observation tool to study degranulation processes in a live mast cell without any fluorescence labeling. We measure the cell volumes and the cross sectional profiles (x-z plane) of an RBL-2H3 cell and a HeLa cell, before and after they are exposed to calcium ionophore A23187 and silver nanoparticles (AgNPs). We verify that the volume and the cross sectional line profile of the RBL-2H3 cell were changed significantly when it was exposed to A23187. When 50 microg/mL of AgNP is used instead of A23187, the measurements of cell volume and cross sectional profiles indicate that RBL-2H3 cells also follow degranulation processes. Degranulation processes for these cells are verified by monitoring the increase of intracellular calcium ([Ca(2+)](i)) and histamine with fluorescent methods.
Collapse
Affiliation(s)
- Wenzhong Yang
- Department of Information and Communications, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, Republic of Korea.
| | | | | | | | | |
Collapse
|
12
|
Shavandi Z, Ghazanfari T, Moghaddam KN. In vitrotoxicity of silver nanoparticles on murine peritoneal macrophages. Immunopharmacol Immunotoxicol 2010; 33:135-40. [DOI: 10.3109/08923973.2010.487489] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Kempuraj D, Asadi S, Zhang B, Manola A, Hogan J, Peterson E, Theoharides TC. Mercury induces inflammatory mediator release from human mast cells. J Neuroinflammation 2010; 7:20. [PMID: 20222982 PMCID: PMC2850891 DOI: 10.1186/1742-2094-7-20] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/11/2010] [Indexed: 02/06/2023] Open
Abstract
Background Mercury is known to be neurotoxic, but its effects on the immune system are less well known. Mast cells are involved in allergic reactions, but also in innate and acquired immunity, as well as in inflammation. Many patients with Autism Spectrum Disorders (ASD) have "allergic" symptoms; moreover, the prevalence of ASD in patients with mastocytosis, characterized by numerous hyperactive mast cells in most tissues, is 10-fold higher than the general population suggesting mast cell involvement. We, therefore, investigated the effect of mercuric chloride (HgCl2) on human mast cell activation. Methods Human leukemic cultured LAD2 mast cells and normal human umbilical cord blood-derived cultured mast cells (hCBMCs) were stimulated by HgCl2 (0.1-10 μM) for either 10 min for beta-hexosaminidase release or 24 hr for measuring vascular endothelial growth factor (VEGF) and IL-6 release by ELISA. Results HgCl2 induced a 2-fold increase in β-hexosaminidase release, and also significant VEGF release at 0.1 and 1 μM (311 ± 32 pg/106 cells and 443 ± 143 pg/106 cells, respectively) from LAD2 mast cells compared to control cells (227 ± 17 pg/106 cells, n = 5, p < 0.05). Addition of HgCl2 (0.1 μM) to the proinflammatory neuropeptide substance P (SP, 0.1 μM) had synergestic action in inducing VEGF from LAD2 mast cells. HgCl2 also stimulated significant VEGF release (360 ± 100 pg/106 cells at 1 μM, n = 5, p < 0.05) from hCBMCs compared to control cells (182 ± 57 pg/106 cells), and IL-6 release (466 ± 57 pg/106 cells at 0.1 μM) compared to untreated cells (13 ± 25 pg/106 cells, n = 5, p < 0.05). Addition of HgCl2 (0.1 μM) to SP (5 μM) further increased IL-6 release. Conclusions HgCl2 stimulates VEGF and IL-6 release from human mast cells. This phenomenon could disrupt the blood-brain-barrier and permit brain inflammation. As a result, the findings of the present study provide a biological mechanism for how low levels of mercury may contribute to ASD pathogenesis.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Rattanaruengsrikul V, Pimpha N, Supaphol P. Development of gelatin hydrogel pads as antibacterial wound dressings. Macromol Biosci 2009; 9:1004-15. [PMID: 19530128 DOI: 10.1002/mabi.200900131] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gelatin hydrogel pads have been prepared from a 10 wt.-% gelatin solution that contained 2.5 wt.-% AgNO(3) in 70% v/v acetic acid by a solvent-casting technique. The AgNO(3)-containing gelatin solution was aged under mechanical stirring for various time intervals to allow for the formation of silver nanoparticles (nAgs). The formation of nAgs was monitored by a UV-vis spectrophotometer. The morphology and size of the nAgs were characterized by transmission electron microscopy (TEM). To improve the water resistance of the hydrogels, various contents of glutaraldehyde (GTA) were added to the AgNO(3)-containing gelatin solution to cross-link the obtained gelatin hydrogels. These hydrogels were tested for their water retention and weight loss behavior, release characteristics of the as-loaded silver, and antibacterial activity against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The AgNO(3)-containing gelatin solution that had been aged for 5 d showed the greatest number of nAgs formed. The size of these particles, based on TEM results, was 10-11 nm. With an increase in the GTA content used to cross-link the hydrogels, the water retention, the weight loss, and the cumulative amount of silver released were found to decrease. Finally, all of the nAg-loaded gelatin hydrogels could inhibit the growth of the tested pathogens, which confirmed their applicability as antibacterial wound dressings.
Collapse
|
15
|
Inoue T, Suzuki Y, Yoshimaru T, Ra C. Nitric oxide positively regulates Ag (I)-induced Ca2+
influx and mast cell activation: role of a nitric oxide synthase-independent pathway. J Leukoc Biol 2009; 86:1365-75. [DOI: 10.1189/jlb.0609387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Inoue T, Suzuki Y, Yoshimaru T, Ra C. Ca2+-dependent mast cell death induced by Ag (I) via cardiolipin oxidation and ATP depletion. J Leukoc Biol 2009; 86:167-79. [PMID: 19401388 DOI: 10.1189/jlb.1108691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In genetically susceptible humans and/or experimental animals, ions of heavy metals, Hg (II), Au (III), and Ag (I) have been shown to strongly induce autoimmunity, in which mast cells have been implicated to play a role. Here, we demonstrate that Ag (I) application results in mast cell death through a unique Ca(2+)- and mitochondria-dependent pathway. As cellular susceptibilities to Ag (I) cytotoxicity varied considerably, we analyzed the cell death pathway in the low and high responding cells. In the low responding cells, long application (e.g., 20 h) of Ag (I) at concentrations (>or=30 microM) induced cell death, which was accompanied by mitochondrial membrane depolarization, cyt c release, and caspase-3/7 activation but was not prevented by selective inhibitors of caspase-3/7 and the mitochondrial permeability transition. The cell death was preceded by elevations in the cytoplasmic and mitochondrial Ca(2+) levels, and Ca(2+) responses and cell death were prevented by thiol reagents, including DTT, N-acetylcysteine, and reduced glutathione monoethyl ester. In the high responding cells, Ag (I) evoked considerable cell death by necrosis within 1 h, without inducing caspase activation, and this cell death was reduced significantly by depleting extracellular but not intracellular Ca(2+). Moreover, Ag (I) strongly induced Ca(2+)-dependent CL oxidation and intracellular ATP depletion, both of which were blocked by thiol reagents. These results suggest that Ag (I) activates thiol-dependent Ca(2+) channels, thereby promoting Ca(2+)-dependent CL oxidation, cyt c release, and ATP depletion. This necrotic cell death may play roles in Ag-induced inflammation and autoimmune disorders.
Collapse
Affiliation(s)
- Toshio Inoue
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Science, Tokyo, Japan
| | | | | | | |
Collapse
|
17
|
Chen X, Schluesener H. Nanosilver: A nanoproduct in medical application. Toxicol Lett 2008; 176:1-12. [DOI: 10.1016/j.toxlet.2007.10.004] [Citation(s) in RCA: 1365] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 10/08/2007] [Accepted: 10/09/2007] [Indexed: 11/29/2022]
|
18
|
Yoshimaru T, Suzuki Y, Inoue T, Niide O, Ra C. Silver activates mast cells through reactive oxygen species production and a thiol-sensitive store-independent Ca2+ influx. Free Radic Biol Med 2006; 40:1949-59. [PMID: 16716896 DOI: 10.1016/j.freeradbiomed.2006.01.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 01/18/2006] [Accepted: 01/23/2006] [Indexed: 11/29/2022]
Abstract
In genetically susceptible human and/or experimental animals, heavy metals such as mercury, gold, and silver have been shown to highly induce adverse immunological reactions such as allergy and autoimmunity, in which mast cell degranulation is implicated as playing a role. We previously reported that silver activates mast cells and induces Ca2+ influx without stimulating intracellular signaling events required for activation of store-operated Ca2+ channels (SOCs). The purpose of the present study was to elucidate the possible involvement of reactive oxygen species (ROS) in the biological effects of silver. Analysis using oxidant-sensitive fluorescent probes such as dichlorodihydrofluorescein and scopoletin, as well as MCLA-amplified chemiluminescence, showed that silver induced intracellular production and/or extracellular release of ROS. Silver induced mast cell degranulation in a Ca2+ -dependent manner. Unlike IgE antigen, silver-induced Ca2+ influx was not affected by depletion of internal Ca2+ stores. Instead, the metal-induced Ca2+ influx was abolished and reversed by the cell-impermeant thiol-reducing agent dithiothreitol, indicating the regulation by oxidation of vicinal thiols on the cell surface. Consistent with this view, Ca2+ influx was blocked by the glutathione peroxidase mimetic ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) and the superoxide dismutase mimetic manganese(III) tetrakis 4-(benzoic acid)porphyrin, but not by exogenously added catalase or superoxide dismutase. These findings indicate that silver evokes the release of ROS and oxidation of thiols critical for the activation of a Ca2+ channel other than SOC. Such a novel ROS-dependent pathway might play a role in mast cell degranulation in metal-induced allergic and autoimmune reactions.
Collapse
Affiliation(s)
- Tetsuro Yoshimaru
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Sciences, 30-1 Oyaguchikami-cho, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | |
Collapse
|
19
|
Gaudreault E, Thompson C, Stankova J, Rola-Pleszczynski M. Involvement of BLT1 Endocytosis and Yes Kinase Activation in Leukotriene B4-Induced Neutrophil Degranulation. THE JOURNAL OF IMMUNOLOGY 2005; 174:3617-25. [PMID: 15749899 DOI: 10.4049/jimmunol.174.6.3617] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One of the important biological activities of human neutrophils is degranulation, which can be induced by leukotriene B4 (LTB4). Here we investigated the intracellular signaling events involved in neutrophil degranulation mediated by the high affinity LTB4 receptor, BLT1. Peripheral blood neutrophils as well as the promyeloid PLB-985 cell line, stably transfected with BLT1 cDNA and differentiated into a neutrophil-like cell phenotype, were used throughout this study. LTB4-induced enzyme release was inhibited by 50-80% when cells were pretreated with the pharmacological inhibitors of endocytosis sucrose, Con A and NH4Cl. In addition, transient transfection with a dominant negative form of dynamin (K44A) resulted in approximately 70% inhibition of ligand-induced degranulation. Pretreating neutrophils or BLT1-expressing PLB-985 cells with the Src family kinase inhibitor PP1 resulted in a 30-60% inhibition in BLT1-mediated degranulation. Yes kinase, but not c-Src, Fgr, Hck, or Lyn, was found to exhibit up-regulated kinase activity after LTB4 stimulation. Moreover, BLT1 endocytosis was found to be necessary for Yes kinase activation in neutrophils. LTB4-induced degranulation was also sensitive to inhibition of PI3K. In contrast, it was not affected by inhibition of the mitogen-activated protein kinase MEK kinase, the Janus kinases, or the receptor tyrosine kinase epidermal growth factor receptor or platelet-derived growth factor receptor. Taken together, our results suggest an essential role for BLT1 endocytosis and Yes kinase activation in LTB4-mediated degranulation of human neutrophils.
Collapse
Affiliation(s)
- Eric Gaudreault
- Immunology Division, Department of Pediatrics, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
20
|
Suzuki Y, Yoshimaru T, Matsui T, Ra C. Silver Activates Calcium Signals in Rat Basophilic Leukemia-2H3 Mast Cells by a Mechanism That Differs from the FcεRI-Activated Response. THE JOURNAL OF IMMUNOLOGY 2002; 169:3954-62. [PMID: 12244196 DOI: 10.4049/jimmunol.169.7.3954] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously showed that silver stimulates degranulation and leukotriene (LT) C(4) production in rat basophilic leukemia mast cells and now show that silver induces these events by a mechanism that differs from the FcepsilonRI-mediated response. In common with FcepsilonRI cross-linking, silver induced tyrosine phosphorylation of extracellular signal-regulated kinases and furthermore, PD98059, a specific inhibitor of extracellular signal-regulated kinase kinase dose-dependently inhibited the silver-induced LTC(4) production. In contrast to FcepsilonRI cross-linking, silver had no effect on the production of IL-4 and TNF-alpha, indicating that different mechanisms are involved in the activation by these two stimuli. In line with this, silver had no or only marginal effect on the tyrosine phosphorylation of FcepsilonRIbeta, Lyn, Syk, and linker for activation of T cells, the early and crucial events in FcepsilonRI signaling. Silver induced calcium signals that were involved in the metal-induced degranulation, but not LTC(4) production. Unlike Ag, the silver-induced calcium signals were resistant to the depletion of thapsigargin-sensitive calcium stores and the inhibition of tyrosine kinases and phospholipase Cgamma. These findings indicate that silver activates mast cells by bypassing the early signaling events required for the induction of calcium influx. Our data strongly suggest the existence of an alternative pathway bypassing the early signaling events in mast cell activation and indicate that silver may be useful for analyses of such alternative mechanisms.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Department of Immunology and Microbiology, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|