1
|
Niño-Narvión J, Rojo-López MI, Martinez-Santos P, Rossell J, Ruiz-Alcaraz AJ, Alonso N, Ramos-Molina B, Mauricio D, Julve J. NAD+ Precursors and Intestinal Inflammation: Therapeutic Insights Involving Gut Microbiota. Nutrients 2023; 15:2992. [PMID: 37447318 DOI: 10.3390/nu15132992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The oxidized form of nicotinamide adenine dinucleotide (NAD+) is a critical metabolite for living cells. NAD+ may act either as a cofactor for many cellular reactions as well as a coenzyme for different NAD+-consuming enzymes involved in the physiological homeostasis of different organs and systems. In mammals, NAD+ is synthesized from either tryptophan or other vitamin B3 intermediates that act as NAD+ precursors. Recent research suggests that NAD+ precursors play a crucial role in maintaining the integrity of the gut barrier. Indeed, its deficiency has been associated with enhanced gut inflammation and leakage, and dysbiosis. Conversely, NAD+-increasing therapies may confer protection against intestinal inflammation in experimental conditions and human patients, with accumulating evidence indicating that such favorable effects could be, at least in part, mediated by concomitant changes in the composition of intestinal microbiota. However, the mechanisms by which NAD+-based treatments affect the microbiota are still poorly understood. In this context, we have focused specifically on the impact of NAD+ deficiency on intestinal inflammation and dysbiosis in animal and human models. We have further explored the relationship between NAD+ and improved host intestinal metabolism and immunity and the composition of microbiota in vivo. Overall, this comprehensive review aims to provide a new perspective on the effect of NAD+-increasing strategies on host intestinal physiology.
Collapse
Affiliation(s)
- Julia Niño-Narvión
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grupo de Obesidad y Metabolismo, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia (UMU), 30120 Murcia, Spain
| | | | | | - Joana Rossell
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 08041 Barcelona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia (UMU), 30120 Murcia, Spain
| | - Núria Alonso
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias I Pujol, 08916 Badalona, Spain
| | - Bruno Ramos-Molina
- Grupo de Obesidad y Metabolismo, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain
| | - Didac Mauricio
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 08041 Barcelona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Faculty of Medicine, University of Vic/Central University of Catalonia (UVIC/UCC), 08500 Vic, Spain
| | - Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 08041 Barcelona, Spain
| |
Collapse
|
2
|
Abstract
The small intestine mediates the absorption of amino acids after ingestion of protein and sustains the supply of amino acids to all tissues. The small intestine is an important contributor to plasma amino acid homeostasis, while amino acid transport in the large intestine is more relevant for bacterial metabolites and fluid secretion. A number of rare inherited disorders have contributed to the identification of amino acid transporters in epithelial cells of the small intestine, in particular cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, and dicarboxylic aminoaciduria. These are most readily detected by analysis of urine amino acids, but typically also affect intestinal transport. The genes underlying these disorders have all been identified. The remaining transporters were identified through molecular cloning techniques to the extent that a comprehensive portrait of functional cooperation among transporters of intestinal epithelial cells is now available for both the basolateral and apical membranes. Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology. Intestinal amino acid transport activities can vary between species, but these can now be explained as differences of amino acid transporter distribution along the intestine. © 2019 American Physiological Society. Compr Physiol 9:343-373, 2019.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Fairweather
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Abstract
Nicotinic acid and nicotinamide, collectively referred to as niacin, are nutritional precursors of the bioactive molecules nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). NAD and NADP are important cofactors for most cellular redox reactions, and as such are essential to maintain cellular metabolism and respiration. NAD also serves as a cosubstrate for a large number of ADP-ribosylation enzymes with varied functions. Among the NAD-consuming enzymes identified to date are important genetic and epigenetic regulators, e.g., poly(ADP-ribose)polymerases and sirtuins. There is rapidly growing knowledge of the close connection between dietary niacin intake, NAD(P) availability, and the activity of NAD(P)-dependent epigenetic regulator enzymes. It points to an exciting role of dietary niacin intake as a central regulator of physiological processes, e.g., maintenance of genetic stability, and of epigenetic control mechanisms modulating metabolism and aging. Insight into the role of niacin and various NAD-related diseases ranging from cancer, aging, and metabolic diseases to cardiovascular problems has shifted our view of niacin as a vitamin to current views that explore its potential as a therapeutic.
Collapse
Affiliation(s)
- James B Kirkland
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
4
|
Zhu Y, Chen L, He J, Chen Y, Gou H, Ma L, Qu Y, Liu Y, Wang D, Zhu Y. Study of Seizure-Manifested Hartnup Disorder Case Induced By Novel Mutations in SLC6A19. Open Life Sci 2018; 13:22-27. [PMID: 33817063 PMCID: PMC7874744 DOI: 10.1515/biol-2018-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/08/2018] [Indexed: 11/15/2022] Open
Abstract
AIM The aim of the study is to investigate a variation in the gene SLC6A19 in a female patient with Hartnup disorder manifested only by seizure. METHODS DNA samples collected from the patient and her parents were analyzed and twelve exons of the SLC6A19 gene were amplified and sequenced. RESULTS We found c.47C>T and c.1522G>A mutations in the gene SLC6A19 belonging to the patient, which are missense mutations inherited from her parents. The c.47C>T mutation is from her father and c.1522G>A is inherited from her mother. The parents are both heterozygous healthy carriers. CONCLUSION Two novel mutations of the SLC6A19 gene are revealed in the female patient with Hartnup disorder, exhibiting no typical dermatologic problems, but having dramatic neurological symptoms.
Collapse
Affiliation(s)
- Yanmei Zhu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Chen
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia He
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Chen
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiyan Gou
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Long Ma
- Second Department of Internal Medicine, Second Hospital of Heilongjiang Province, Harbin, China
| | - Youyang Qu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Liu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Wang
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yulan Zhu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Abstract
Eczema and urticaria are common disorders encountered in pediatric patients, but they may occasionally be the presenting complaint in a child with an underlying rare disease. Immunodeficiency syndromes should be suspected when eczema is associated with neonatal onset, recurrent infections, chronic lymphadenopathy, or failure to thrive. Nutritional deficiencies and mycosis fungoides are in the differential diagnosis for a child with a recalcitrant eczematous eruption. Autoinflammatory syndromes should be suspected in a child with chronic urticaria, fever, and other systemic signs of inflammation. Although these disorders are rare, early recognition allows for appropriate treatment and decreased morbidity for the child.
Collapse
Affiliation(s)
- Molly J Youssef
- Department of Dermatology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Yvonne E Chiu
- Section of Pediatric Dermatology, Department of Dermatology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
6
|
Intestinal B(0)AT1 (SLC6A19) and PEPT1 (SLC15A1) mRNA levels in European sea bass (Dicentrarchus labrax) reared in fresh water and fed fish and plant protein sources. J Nutr Sci 2015; 4:e21. [PMID: 26097704 PMCID: PMC4462763 DOI: 10.1017/jns.2015.9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/08/2015] [Accepted: 02/18/2015] [Indexed: 01/11/2023] Open
Abstract
The objective of the present study was to examine the effect of diets with descending
fish meal (FM) inclusion levels and the addition of salt to the diet containing the lowest
FM level on growth performances, feed conversion ratio, and intestinal solute carrier
family 6 member 19 (SLC6A19) and oligopeptide transporter 1
(PEPT1) transcript levels, in freshwater-adapted European sea bass
(Dicentrarchus labrax). We first isolated by molecular cloning and
sequenced a full-length cDNA representing the neutral amino acid transporter SLC6A19 in
sea bass. The cDNA sequence was deposited in GenBank database (accession no. KC812315).
The twelve transmembrane domains and the ‘de novo’ prediction of the
three-dimensional structure of SLC6A19 protein (634 amino acids) are presented. We then
analysed diet-induced changes in the mRNA copies of SLC6A19 and
PEPT1 genes in different portions of sea bass intestine using real-time
RT-PCR. Sea bass were fed for 6 weeks on different diets, with ascending levels of fat or
descending levels of FM, which was replaced with vegetable meal. The salt-enriched diet
was prepared by adding 3 % NaCl to the diet containing 10 % FM. SLC6A19
mRNA in the anterior and posterior intestine of sea bass were not modulated by dietary
protein sources and salt supplementation. Conversely, including salt in a diet containing
a low FM percentage up-regulated the mRNA copies of PEPT1 in the hindgut.
Fish growth correlated positively with the content of FM in the diets. Interestingly, the
addition of salt to the diet containing 10 % FM improved feed intake, as well as specific
growth rate and feed conversion ratio.
Collapse
|
7
|
Pochini L, Seidita A, Sensi C, Scalise M, Eberini I, Indiveri C. Nimesulide binding site in the B0AT1 (SLC6A19) amino acid transporter. Mechanism of inhibition revealed by proteoliposome transport assay and molecular modelling. Biochem Pharmacol 2014; 89:422-30. [PMID: 24704252 DOI: 10.1016/j.bcp.2014.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/29/2022]
Abstract
The effect of pharmaceutical compounds on the rat kidney B0AT1 transporter in proteoliposomes has been screened. To this aim, inhibition of the transport activity by the different compounds was measured on Na(+)-[(3)H]glutamine co-transport in the presence of membrane potential positive outside. Most of the tested drugs had no effect on the transport activity. Some compounds exhibited inhibitory effects from 5 to 88% at concentration of 300μM. Among the tested compounds, only the anti-inflammatory drug nimesulide exerted potent inhibition on B0AT1. From dose response analysis, an IC50 value of 23μM was found. Inhibition kinetic analysis was performed: noncompetitive inhibition of the glutamine transport was observed while competitive behaviour was found when the inhibition was analyzed with respect to the Na(+) concentration. Several molecules harbouring functional groups of nimesulide (analogues) were tested as inhibitors. None among the tested molecules has the capacity to inhibit the transport with the exception of the compound NS-398, whose chemical structure is very close to that of whole nimesulide. The IC50 for this compound was 131μM. Inhibition kinetics showed behaviour of NS-398 identical to that of nimesulide, i.e., noncompetitive inhibition respect to glutamine and competitive inhibition respect to Na(+). Molecular docking of nimesulide suggested that this drug is able to bind B0AT1 in an external dedicated binding site and that its binding produces a steric hindrance effect of the protein translocation path abolishing the transporter activity.
Collapse
Affiliation(s)
- Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Angela Seidita
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Cristina Sensi
- Laboratorio di Biochimica e Biofisica Computazionale, Dipartimento di Scienze Farmacologiche e Biomolecolari Sezione di Biochimica, Biofisica, Fisiologia ed Immunopatologia Università degli Studi di Milano Via Trentacoste, 22134 Milano, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Ivano Eberini
- Laboratorio di Biochimica e Biofisica Computazionale, Dipartimento di Scienze Farmacologiche e Biomolecolari Sezione di Biochimica, Biofisica, Fisiologia ed Immunopatologia Università degli Studi di Milano Via Trentacoste, 22134 Milano, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
8
|
|
9
|
Abstract
A 10 year old girl presented with clinical signs and symptoms of the triad of niacin deficiency namely skin eruptions, ataxia, mental changes and diarrhea. Although this deficiency could be nutritional where maize is a staple diet, this patient had neutral aminoaciduria which indicated a defective transport of neutral amino acid transporter in the kidneys and intestine resulting in failure of transport of tryptophan and other neutral (ie, monoaminomonocarboxylic) alpha-amino acids in the small intestine and the renal tubules.
Collapse
Affiliation(s)
- A B Patel
- Department of Pediatrics, Clinical Epidemiology Unit, Indira Gandhi Government Medical College, Nagpur, India.
| | | |
Collapse
|
10
|
Abstract
Genetic dissection of diseases is one of the epoch-making achievements in modern medicine. Positional cloning is a key method to isolate disease-related genes. For positional cloning, there are two conventional methods: family-based studies and case-control studies. In this review, I would like to describe several family-based studies on single gene diseases which I had conducted including those of Akita diabetic mice, systemic carnitine deficiency and Hartnup disease. The study of systemic carnitine deficiency underscored a potential power of the "Carrier state." Furthermore, cultural and public health practices in Japan such as preservation of umbilical cords and mother and child passbooks enabled us to conduct linkage analysis even 20 years after the deaths of affected patients in Hartnup disease. For multifactorial diseases, I present three family-based studies: intracranial aneurysm, moyamoya and arteriovenous malformation. Finally, I discuss on theoretical issues concerning the relationship among odds ratio, phenocopy rate and penetrance by formulating a single-locus dominant association model. Analysis of the model predicted a notion that a large odds ratio facilitates familial clustering of multifactorial diseases and vice versa is the case. Furthermore, the analysis predicted that genetic markers for screening should have odds ratio >/= eight to maintain similar qualities commonly required for clinical tests. Collectively, the analysis predicted a two-stage study design composed of linkage analysis based on a family study and subsequent replication by a case-control association study is more rational than the currently used two-independent case-control design. This newly proposed method is expected to provide polymorphisms, which have large odds ratios, requiring only minimum research budgets.
Collapse
Affiliation(s)
- Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
11
|
Bröer S. The role of the neutral amino acid transporter B0AT1 (SLC6A19) in Hartnup disorder and protein nutrition. IUBMB Life 2009; 61:591-9. [PMID: 19472175 PMCID: PMC7165679 DOI: 10.1002/iub.210] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hartnup disorder (OMIM 234500) is an autosomal recessive disorder, which was first described in 1956 as an aminoaciduria of neutral amino acids accompanied by a variety of symptoms, such as a photo‐sensitive skin‐rash and cerebellar ataxia. The disorder is caused by mutations in the neutral amino acid transporter B0AT1 (SLC6A19)1. To date 21 mutations have been identified in more than twenty families. SLC6A19 requires either collectrin or angiotensin‐converting enzyme 2 for surface expression in the kidney and intestine, respectively. This ties SLC6A19 together with more complex functions such as blood‐pressure control, glomerular structure, and exocytosis. © 2009 IUBMB IUBMB Life, 61(6): 591–599, 2009
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
12
|
Bröer S. Apical transporters for neutral amino acids: physiology and pathophysiology. Physiology (Bethesda) 2008; 23:95-103. [PMID: 18400692 DOI: 10.1152/physiol.00045.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Absorption of amino acids in kidney and intestine involves a variety of transporters for different groups of amino acids. This is illustrated by inherited disorders of amino acid absorption, such as Hartnup disorder, cystinuria, iminoglycinuria, dicarboxylic aminoaciduria, and lysinuric protein intolerance, affecting separate groups of amino acids. Recent advances in the molecular identification of apical neutral amino acid transporters has shed a light on the molecular basis of Hartnup disorder and iminoglycinuria.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australia.
| |
Collapse
|
13
|
Bröer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 2008; 88:249-86. [PMID: 18195088 DOI: 10.1152/physrev.00018.2006] [Citation(s) in RCA: 652] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transport of amino acids in kidney and intestine is critical for the supply of amino acids to all tissues and the homeostasis of plasma amino acid levels. This is illustrated by a number of inherited disorders affecting amino acid transport in epithelial cells, such as cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, dicarboxylic aminoaciduria, and some other less well-described disturbances of amino acid transport. The identification of most epithelial amino acid transporters over the past 15 years allows the definition of these disorders at the molecular level and provides a clear picture of the functional cooperation between transporters in the apical and basolateral membranes of mammalian epithelial cells. Transport of amino acids across the apical membrane not only makes use of sodium-dependent symporters, but also uses the proton-motive force and the gradient of other amino acids to efficiently absorb amino acids from the lumen. In the basolateral membrane, antiporters cooperate with facilitators to release amino acids without depleting cells of valuable nutrients. With very few exceptions, individual amino acids are transported by more than one transporter, providing backup capacity for absorption in the case of mutational inactivation of a transport system.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
14
|
Bröer S. The SLC6 orphans are forming a family of amino acid transporters. Neurochem Int 2006; 48:559-67. [PMID: 16540203 DOI: 10.1016/j.neuint.2005.11.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 11/07/2005] [Indexed: 11/21/2022]
Abstract
Transporters in the human genome are grouped in solute carrier families (SLC). The SLC6 family is one of the biggest transporter families in the human genome comprising 20 members. It is usually referred to as the neurotransmitter transporter family because its founding members encode transporters for the neurotransmitters GABA, noradrenaline, serotonin and dopamine. The family also includes a number of 'orphan' transporters, the function of which has remained elusive until recently. Identification of the broadly specific neutral amino acid transporter SLC6A19 (also called B(0)AT1) suggested that all orphan transporters may in fact be amino acid transporters. This was subsequently confirmed by the identification of SLC6A20 as the long-sought IMINO system, a proline transporter found in kidney, intestine and brain. Very recently, SLC6A15 was identified as the neutral amino acid transporter B(0)AT2. All amino acid transporters appear to cotransport only 1Na(+) together with the amino acid substrate. Both, B(0)AT1 and B(0)AT2 are chloride independent, whereas IMINO is chloride dependent. The amino acid transporters of the SLC6 family are functionally and sequence related to the recently crystallized leucine transporter from Aquifex aeolicus. The structure elegantly explains many of the mechanistic features of the SLC6 amino acid transporters.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry & Molecular Biology, Building 41, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
15
|
Camargo SMR, Makrides V, Virkki LV, Forster IC, Verrey F. Steady-state kinetic characterization of the mouse B(0)AT1 sodium-dependent neutral amino acid transporter. Pflugers Arch 2005; 451:338-48. [PMID: 16133263 DOI: 10.1007/s00424-005-1455-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 04/25/2005] [Indexed: 12/21/2022]
Abstract
The members of the neurotransmitter transporter family SLC6A exhibit a high degree of structural homology; however differences arise in many aspects of their transport mechanisms. In this study we report that mouse B(0)AT1 (mouse Slc6a19) mediates the electrogenic transport of a broad range of neutral amino acids but not of the chemically similar substrates transported by other SLC6A family members. Cotransport of L: -Leu and Na(+) generates a saturable, reversible, inward current with Michaelis-Menten kinetics (Hill coefficient approximately 1) yielding a K(0.5) for L: -Leu of 1.16 mM and for Na(+) of 16 mM at a holding potential of -50 mV. Changing the membrane voltage influences both substrate binding and substrate translocation. Li(+) can substitute partially for Na(+) in the generation of L: -Leu-evoked inward currents, whereas both Cl(-) and H(+) concentrations influence its magnitude. The simultaneous measurement of charge translocation and L: -Leu uptake in the same cell indicates that B(0)AT1 transports one Na(+) per neutral amino acid. This appears to be accomplished by an ordered, simultaneous mechanism, with the amino acid binding prior to the Na(+), followed by the simultaneous translocation of both co-substrates across the plasma membrane. From this kinetic analysis, we conclude that the relatively constant [Na(+)] along the renal proximal tubule both drives the uptake of neutral amino acids via B(0)AT1 thermodynamically and ensures that, upon binding, these are translocated efficiently into the cell.
Collapse
Affiliation(s)
- Simone M R Camargo
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Bröer A, Cavanaugh JA, Rasko JEJ, Bröer S. The molecular basis of neutral aminoacidurias. Pflugers Arch 2005; 451:511-7. [PMID: 16052352 DOI: 10.1007/s00424-005-1481-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 06/09/2005] [Indexed: 10/25/2022]
Abstract
Recent success in the molecular cloning and identification of apical neutral amino acid transporters has shed a new light on inherited neutral amino acidurias, such as Hartnup disorder and Iminoglycinuria. Hartnup disorder is caused by mutations in the neutral amino acid transporter B(0) AT1 (SLC6A19). The transporter is found in kidney and intestine, where it is involved in the resorption of all neutral amino acids. The molecular defect underlying Iminoglycinuria has not yet been identified. However, two transporters, the proton amino acid transporter PAT1 (SLC36A1) and the IMINO transporter (SLC6A20) appear to play key roles in the resorption of glycine and proline. A model is presented, involving all three transporters that can explain the phenotypic variability of iminoglycinuria.
Collapse
Affiliation(s)
- Angelika Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra
| | | | | | | |
Collapse
|
17
|
Bröer S, Cavanaugh JA, Rasko JEJ. Neutral amino acid transport in epithelial cells and its malfunction in Hartnup disorder. Biochem Soc Trans 2005; 33:233-6. [PMID: 15667315 DOI: 10.1042/bst0330233] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hartnup disorder is an autosomal recessive abnormality of renal and gastrointestinal neutral amino acid transport. A corresponding transport activity has been characterized in kidney and intestinal cells and named system B(0). The failure to resorb amino acids in this disorder is thought to be compensated by a protein-rich diet. However, in combination with a poor diet and other factors, more severe symptoms can develop in Hartnup patients, including a photosensitive pellagra-like skin rash, cerebellar ataxia and other neurological symptoms. Homozygosity mapping in a Japanese family and linkage analysis on six Australian pedigrees placed the Hartnup disorder gene at a locus on chromosome 5p15. This fine mapping facilitated a candidate gene approach within the interval, which resulted in the cloning and characterization of a novel member of the sodium-dependent neurotransmitter transporter family (B(0)AT1, SLC6A19) from mouse and human kidney, which shows all properties of system B(0). Flux experiments and electrophysiological recording showed that the transporter is Na(+) dependent and Cl(-) independent, electrogenic and actively transports most neutral amino acids. In situ hybridization showed strong expression in intestinal villi and in the proximal tubule of the kidney. Expression of B(0)AT1 was restricted to kidney, intestine and skin. A total of ten mutations have been identified in SLC6A19 that co-segregate with disease in the predicted recessive manner, with the majority of affected individuals being compound heterozygotes. These mutations lead to altered neutral amino acid transport function compared to the wild-type allele in vitro. One of the mutations occurs in members of the original Hartnup family described in 1956, thereby defining SLC6A19 as the 'Hartnup'-gene.
Collapse
Affiliation(s)
- S Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
18
|
Abstract
Hartnup disorder is an autosomal recessive disease that can be associated with neurological, psychiatric and dermatological abnormalities or be asymptomatic. Excessive intestinal and urinary loss of neutral amino acids is an essential feature of this disorder, which had been presumed to be due to hereditary abnormalities in an apical membrane-situated amino acid transporter. As anticipated, recently, mutations in the cytoplasmic and transmembrane domains of SLC6A19, the recently cloned neutral amino acid transporter, were detected in members of families with Hartnup disorder. Presumably, deficiency in neutral amino acid absorption and consequential hypoaminoacidemia is the cause of the symptoms of the disease because SLC6A19 is not expressed in the organs affected.
Collapse
Affiliation(s)
- Jeffrey A Kraut
- Membrane Biology Laboratory, Medical and Research Services, VAGLA Healthcare System and UCLA School of Medicine, Los Angeles, CA 90073, USA
| | | |
Collapse
|
19
|
Kleta R, Romeo E, Ristic Z, Ohura T, Stuart C, Arcos-Burgos M, Dave MH, Wagner CA, Camargo SRM, Inoue S, Matsuura N, Helip-Wooley A, Bockenhauer D, Warth R, Bernardini I, Visser G, Eggermann T, Lee P, Chairoungdua A, Jutabha P, Babu E, Nilwarangkoon S, Anzai N, Kanai Y, Verrey F, Gahl WA, Koizumi A. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat Genet 2004; 36:999-1002. [PMID: 15286787 DOI: 10.1038/ng1405] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 06/17/2004] [Indexed: 11/09/2022]
Abstract
Hartnup disorder, an autosomal recessive defect named after an English family described in 1956 (ref. 1), results from impaired transport of neutral amino acids across epithelial cells in renal proximal tubules and intestinal mucosa. Symptoms include transient manifestations of pellagra (rashes), cerebellar ataxia and psychosis. Using homozygosity mapping in the original family in whom Hartnup disorder was discovered, we confirmed that the critical region for one causative gene was located on chromosome 5p15 (ref. 3). This region is homologous to the area of mouse chromosome 13 that encodes the sodium-dependent amino acid transporter B(0)AT1 (ref. 4). We isolated the human homolog of B(0)AT1, called SLC6A19, and determined its size and molecular organization. We then identified mutations in SLC6A19 in members of the original family in whom Hartnup disorder was discovered and of three Japanese families. The protein product of SLC6A19, the Hartnup transporter, is expressed primarily in intestine and renal proximal tubule and functions as a neutral amino acid transporter.
Collapse
Affiliation(s)
- Robert Kleta
- Medical Genetics Branch, 10 Center Drive, MSC 1851, Building 10, Room 10C-107, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Seow HF, Bröer S, Bröer A, Bailey CG, Potter SJ, Cavanaugh JA, Rasko JEJ. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet 2004; 36:1003-7. [PMID: 15286788 DOI: 10.1038/ng1406] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 06/28/2004] [Indexed: 11/09/2022]
Abstract
Hartnup disorder (OMIM 234500) is an autosomal recessive abnormality of renal and gastrointestinal neutral amino acid transport noted for its clinical variability. We localized a gene causing Hartnup disorder to chromosome 5p15.33 and cloned a new gene, SLC6A19, in this region. SLC6A19 is a sodium-dependent and chloride-independent neutral amino acid transporter, expressed predominately in kidney and intestine, with properties of system B(0). We identified six mutations in SLC6A19 that cosegregated with disease in the predicted recessive manner, with most affected individuals being compound heterozygotes. The disease-causing mutations that we tested reduced neutral amino acid transport function in vitro. Population frequencies for the most common mutated SLC6A19 alleles are 0.007 for 517G --> A and 0.001 for 718C --> T. Our findings indicate that SLC6A19 is the long-sought gene that is mutated in Hartnup disorder; its identification provides the opportunity to examine the inconsistent multisystemic features of this disorder.
Collapse
Affiliation(s)
- Heng F Seow
- Gene Therapy, Centenary Institute of Cancer Medicine & Cell Biology, University of Sydney, NSW 2042, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Palacín M, Bertran J, Chillarón J, Estévez R, Zorzano A. Lysinuric protein intolerance: mechanisms of pathophysiology. Mol Genet Metab 2004; 81 Suppl 1:S27-37. [PMID: 15050971 DOI: 10.1016/j.ymgme.2003.11.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 11/06/2003] [Accepted: 11/12/2003] [Indexed: 12/27/2022]
Abstract
Heteromeric amino acid transporters (HATs) are composed of two subunits, a polytopic membrane protein (the light subunit) and a disulfide-linked type II membrane glycoprotein (the heavy subunit). HATs represent several of the classic mammalian amino acid transport systems (e.g., L isoforms, y(+)L isoforms, asc, xc-, and b(0,+)). The light subunits confer the amino acid transport specificity to the HAT. Two transporters of this family are relevant for inherited aminoacidurias. Mutations in any of the two genes coding for the subunits of system b(0,+) (rBAT and b(0,+)AT) lead to cystinuria (MIM 220100). Transport defects in a system y(+)L isoform, composed of 4F2hc and y(+)LAT-1, result in lysinuric protein intolerance (LPI) (MIM 222700). In this case, only mutations in the light subunit y(+)LAT-1, but not in the heavy chain 4F2hc, cause the disease. LPI, in addition to affecting intestinal and renal reabsorption of amino acids, is a multisystemic disease affecting the urea cycle and presents also with symptoms related to the immune system. The pathogenesis of these alterations is less well, or not understood at all.
Collapse
Affiliation(s)
- Manuel Palacín
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona and Parc Científic de Barcelona, Avenidda Diagonal 645, Barcelona 08028, Spain.
| | | | | | | | | |
Collapse
|
22
|
Bröer A, Klingel K, Kowalczuk S, Rasko JEJ, Cavanaugh J, Bröer S. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem 2004; 279:24467-76. [PMID: 15044460 DOI: 10.1074/jbc.m400904200] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Resorption of amino acids in kidney and intestine is mediated by transporters, which prefer groups of amino acids with similar physico-chemical properties. It is generally assumed that most neutral amino acids are transported across the apical membrane of epithelial cells by system B(0). Here we have characterized a novel member of the Na(+)-dependent neurotransmitter transporter family (B(0)AT1) isolated from mouse kidney, which shows all properties of system B(0). Flux experiments showed that the transporter is Na(+)-dependent, electrogenic, and actively transports most neutral amino acids but not anionic or cationic amino acids. Superfusion of mB(0)AT1-expressing oocytes with neutral amino acids generated inward currents, which were proportional to the fluxes observed with labeled amino acids. In situ hybridization showed strong expression in intestinal microvilli and in the proximal tubule of the kidney. Expression of mouse B(0)AT1 was restricted to kidney, intestine, and skin. It is generally assumed that mutations of the system B(0) transporter underlie autosomal recessive Hartnup disorder. In support of this notion mB(0)AT1 is located on mouse chromosome 13 in a region syntenic to human chromosome 5p15, the locus of Hartnup disorder. Thus, the human homologue of this transporter is an excellent functional and positional candidate for Hartnup disorder.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Transport Systems/genetics
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acids/chemistry
- Animals
- Anions
- Base Sequence
- Biological Transport
- Cations
- Cloning, Molecular
- DNA, Complementary/metabolism
- Electrophysiology
- Hartnup Disease/metabolism
- Hydrogen-Ion Concentration
- In Situ Hybridization
- Intestinal Mucosa/metabolism
- Ions
- Kidney/metabolism
- Leucine/chemistry
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Models, Biological
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Oocytes/metabolism
- Peptides/chemistry
- Phylogeny
- Plasmids/metabolism
- Protein Structure, Tertiary
- RNA, Complementary/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Skin/metabolism
- Substrate Specificity
- Time Factors
Collapse
Affiliation(s)
- Angelika Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Takenaka K, Moroi J, Yamada S, Yamakawa H, Abe M, Tabuchi K, Koizumi A. Genetic Dissection of the Familial Cerebral Arteriovenous Malformation. ACTA ACUST UNITED AC 2004. [DOI: 10.7887/jcns.13.837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Junko Moroi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine
| | - Shigeki Yamada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine:Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | - Hiroyasu Yamakawa
- Department of Neurosurgery, Gifu Prefectural Gero Hot Springs Hospital
| | - Masamitsu Abe
- Department of Neurosurgery, Faculty of Medicine, Saga University
| | - Kazuo Tabuchi
- Department of Neurosurgery, Faculty of Medicine, Saga University
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine
| |
Collapse
|
24
|
Potter SJ, Lu A, Wilcken B, Green K, Rasko JEJ. Hartnup disorder: polymorphisms identified in the neutral amino acid transporter SLC1A5. J Inherit Metab Dis 2002; 25:437-48. [PMID: 12555937 DOI: 10.1023/a:1021286714582] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hartnup disorder is an inborn error of renal and gastrointestinal neutral amino acid transport. The cloning and functional characterization of the 'system B0' neutral amino acid transporter SLC1A5 led to it being proposed as a candidate gene for Hartnup disorder. Linkage analysis performed at 19q13.3, the chromosomal position of SLC1A5, was suggestive of an association with the Hartnup phenotype in some families. However, SLC1A5 was not linked to the Hartnup phenotype in other families. Linkage analysis also excluded an alternative candidate region at 11q13 implicated by a putative mouse model for Hartnup disorder. Sequencing of the coding region of SLC1A5 in Hartnup patients revealed two coding region polymorphisms. These mutations did not alter the predicted amino acid sequence of SLC1A5 and were considered unlikely to play a role in Hartnup disorder. There were no mutations in splice sites flanking each exon. Quantitative RT-PCR of SLC1A5 messenger RNA in affected and unaffected subjects did not support systemic differences in expression as an explanation for Hartnup disorder. In the six unrelated Hartnup pedigrees studied, examination of linkage at 19q13.3, polymorphisms in the coding sequence and quantitation of expression of SLC1A5 did not suffice to explain the defect in neutral amino acid transport.
Collapse
Affiliation(s)
- S J Potter
- Gene Therapy Research Unit, Centenary Institute of Cancer Medicine and Cell Biology, NSW, Australia
| | | | | | | | | |
Collapse
|