1
|
TIC236 gain-of-function mutations unveil the link between plastid division and plastid protein import. Proc Natl Acad Sci U S A 2022; 119:e2123353119. [PMID: 35275795 PMCID: PMC8931380 DOI: 10.1073/pnas.2123353119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although plastid division is critical for plant development, how components of the plastid division machinery (PDM) are imported into plastids remains unexplored. A forward genetic screen to identify suppressors of a crumpled leaf (crl) mutant deficient in plastid division led us to find dominant gain-of-function (GF) mutations in TIC236, which significantly increases the import of PDM components and completely rescues crl phenotypes. The defective plastid division phenotypes in crl and tic236-knockdown mutants and CRL-TIC236 association in a functional complex indicate that the CRL-TIC236 module is vital for plastid division. Hence, we report the first GF translocon mutants and unveil CRL as a novel functional partner of TIC236 for PDM import. TIC236 is an essential component of the translocon for protein import into chloroplasts, as evidenced by the embryonic lethality of the knockout mutant. Here, we unveil a TIC236-allied component, the chloroplast outer membrane protein CRUMPLED LEAF (CRL), absence of which impairs plastid division and induces autoimmune responses in Arabidopsis thaliana. A forward genetic screen exploring CRL function found multiple dominant TIC236 gain-of-function (tic236-gf) mutations that abolished crl-induced phenotypes. Moreover, CRL associates with TIC236, and a tic236-knockdown mutant exhibited multiple lesions similar to the crl mutant, supporting their shared functionality. Consistent with the defective plastid division phenotype of crl, CRL interacts with the transit peptides of proteins essential in plastid division, with tic236-gf mutations reinforcing their import via increased TIC236 stability. Ensuing reverse genetic analyses further revealed genetic interaction between CRL and SP1, a RING-type ubiquitin E3 ligase, as well as with the plastid protease FTSH11, which function in TOC and TIC protein turnover, respectively. Loss of either SP1 or FTSH11 rescued crl mutant phenotypes to varying degrees due to increased translocon levels. Collectively, our data shed light on the links between plastid protein import, plastid division, and plant stress responses.
Collapse
|
2
|
Porter KJ, Cao L, Chen Y, TerBush AD, Chen C, Erickson HP, Osteryoung KW. The Arabidopsis thaliana chloroplast division protein FtsZ1 counterbalances FtsZ2 filament stability in vitro. J Biol Chem 2021; 296:100627. [PMID: 33812992 PMCID: PMC8142252 DOI: 10.1016/j.jbc.2021.100627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial cell and chloroplast division are driven by a contractile “Z ring” composed of the tubulin-like cytoskeletal GTPase FtsZ. Unlike bacterial Z rings, which consist of a single FtsZ, the chloroplast Z ring in plants is composed of two FtsZ proteins, FtsZ1 and FtsZ2. Both are required for chloroplast division in vivo, but their biochemical relationship is poorly understood. We used GTPase assays, light scattering, transmission electron microscopy, and sedimentation assays to investigate the assembly behavior of purified Arabidopsis thaliana (At) FtsZ1 and AtFtsZ2 both individually and together. Both proteins exhibited GTPase activity. AtFtsZ2 assembled relatively quickly, forming protofilament bundles that were exceptionally stable, as indicated by their sustained assembly and slow disassembly. AtFtsZ1 did not form detectable protofilaments on its own. When mixed with AtFtsZ2, AtFtsZ1 reduced the extent and rate of AtFtsZ2 assembly, consistent with its previously demonstrated ability to promote protofilament subunit turnover in living cells. Mixing the two FtsZ proteins did not increase the overall GTPase activity, indicating that the effect of AtFtsZ1 on AtFtsZ2 assembly was not due to a stimulation of GTPase activity. However, the GTPase activity of AtFtsZ1 was required to reduce AtFtsZ2 assembly. Truncated forms of AtFtsZ1 and AtFtsZ2 consisting of only their conserved core regions largely recapitulated the behaviors of the full-length proteins. Our in vitro findings provide evidence that FtsZ1 counterbalances the stability of FtsZ2 filaments in the regulation of chloroplast Z-ring dynamics and suggest that restraining FtsZ2 self-assembly is a critical function of FtsZ1 in chloroplasts.
Collapse
Affiliation(s)
- Katie J Porter
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lingyan Cao
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Yaodong Chen
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Allan D TerBush
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Cheng Chen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Harold P Erickson
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | | |
Collapse
|
3
|
Corrales-Guerrero L, Camargo S, Valladares A, Picossi S, Luque I, Ochoa de Alda JAG, Herrero A. FtsZ of Filamentous, Heterocyst-Forming Cyanobacteria Has a Conserved N-Terminal Peptide Required for Normal FtsZ Polymerization and Cell Division. Front Microbiol 2018; 9:2260. [PMID: 30333801 PMCID: PMC6175996 DOI: 10.3389/fmicb.2018.02260] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/05/2018] [Indexed: 12/03/2022] Open
Abstract
Filamentous cyanobacteria grow by intercalary cell division, which should involve distinct steps compared to those producing separate daughter cells. The N-terminal region of FtsZ is highly conserved in the clade of filamentous cyanobacteria capable of cell differentiation. A derivative of the model strain Anabaena sp. PCC 7120 expressing only an FtsZ lacking the amino acids 2–51 of the N-terminal peptide (ΔN-FtsZ) could not be segregated. Strain CSL110 expresses both ΔN-FtsZ, from the endogenous ftsZ gene promoter, and the native FtsZ from a synthetic regulated promoter. Under conditions of ΔN-FtsZ predominance, cells of strain CSL110 progressively enlarge, reflecting reduced cell division, and show instances of asymmetric cell division and aberrant Z-structures notably differing from the Z-ring formed by FtsZ in the wild type. In bacterial 2-hybrid assays FtsZ interacted with ΔN-FtsZ. However, ΔN-FtsZ-GFP appeared impaired for incorporation into Z-rings when expressed together with FtsZ. FtsZ, but not ΔN-FtsZ, interacted with the essential protein SepF. Both FtsZ and ΔN-FtsZ polymerize in vitro exhibiting comparable GTPase activities. However, filaments of FtsZ show a distinct curling forming toroids, whereas ΔN-FtsZ form thick bundles of straight filaments. Thus, the N-terminal FtsZ sequence appears to contribute to a distinct FtsZ polymerization mode that is essential for cell division and division plane location in Anabaena.
Collapse
Affiliation(s)
- Laura Corrales-Guerrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Sergio Camargo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Silvia Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | | | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
4
|
Swid N, Nevo R, Kiss V, Kapon R, Dagan S, Snir O, Adam Z, Falconet D, Reich Z, Charuvi D. Differential impacts of FtsZ proteins on plastid division in the shoot apex of Arabidopsis. Dev Biol 2018; 441:83-94. [PMID: 29920253 DOI: 10.1016/j.ydbio.2018.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/26/2022]
Abstract
FtsZ proteins of the FtsZ1 and FtsZ2 families play important roles in the initiation and progression of plastid division in plants and green algae. Arabidopsis possesses a single FTSZ1 member and two FTSZ2 members, FTSZ2-1 and FTSZ2-2. The contribution of these to chloroplast division and partitioning has been mostly investigated in leaf mesophyll tissues. Here, we assessed the involvement of the three FtsZs in plastid division at earlier stages of chloroplast differentiation. To this end, we studied the effect of the absence of specific FtsZ proteins on plastids in the vegetative shoot apex, where the proplastid-to-chloroplast transition takes place. We found that the relative contribution of the two major leaf FtsZ isoforms, FtsZ1 and FtsZ2-1, to the division process varies with cell lineage and position within the shoot apex. While FtsZ2-1 dominates division in the L1 and L3 layers of the shoot apical meristem (SAM), in the L2 layer, FtsZ1 and FtsZ2-1 contribute equally toward the process. Depletion of the third isoform, FtsZ2-2, generally resulted in stronger effects in the shoot apex than those observed in mature leaves. The implications of these findings, along with additional observations made in this work, to our understanding of the mechanisms and regulation of plastid proliferation in the shoot apex are discussed.
Collapse
Affiliation(s)
- Neora Swid
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel; Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, Rishon LeZion 7505101, Israel; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vladimir Kiss
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ruti Kapon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shlomi Dagan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orli Snir
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale, LPCV-BIG, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, 38000 Grenoble, France
| | - Ziv Reich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dana Charuvi
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, Rishon LeZion 7505101, Israel.
| |
Collapse
|
5
|
Irieda H, Shiomi D. Bacterial Heterologous Expression System for Reconstitution of Chloroplast Inner Division Ring and Evaluation of Its Contributors. Int J Mol Sci 2018; 19:ijms19020544. [PMID: 29439474 PMCID: PMC5855766 DOI: 10.3390/ijms19020544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/23/2022] Open
Abstract
Plant chloroplasts originate from the symbiotic relationship between ancient free-living cyanobacteria and ancestral eukaryotic cells. Since the discovery of the bacterial derivative FtsZ gene—which encodes a tubulin homolog responsible for the formation of the chloroplast inner division ring (Z ring)—in the Arabidopsis genome in 1995, many components of the chloroplast division machinery were successively identified. The knowledge of these components continues to expand; however, the mode of action of the chloroplast dividing system remains unknown (compared to bacterial cell division), owing to the complexities faced in in planta analyses. To date, yeast and bacterial heterologous expression systems have been developed for the reconstitution of Z ring-like structures formed by chloroplast FtsZ. In this review, we especially focus on recent progress of our bacterial system using the model bacterium Escherichia coli to dissect and understand the chloroplast division machinery—an evolutionary hybrid structure composed of both bacterial (inner) and host-derived (outer) components.
Collapse
Affiliation(s)
- Hiroki Irieda
- Academic Assembly, Institute of Agriculture, Shinshu University, Nagano 399-4598, Japan.
| | - Daisuke Shiomi
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Japan.
| |
Collapse
|
6
|
Geng MT, Min Y, Yao Y, Chen X, Fan J, Yuan S, Wang L, Sun C, Zhang F, Shang L, Wang YL, Li RM, Fu SP, Duan RJ, Liu J, Hu XW, Guo JC. Isolation and Characterization of Ftsz Genes in Cassava. Genes (Basel) 2017; 8:genes8120391. [PMID: 29244730 PMCID: PMC5748709 DOI: 10.3390/genes8120391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022] Open
Abstract
The filamenting temperature-sensitive Z proteins (FtsZs) play an important role in plastid division. In this study, three FtsZ genes were isolated from the cassava genome, and named MeFtsZ1, MeFtsZ2-1, and MeFtsZ2-2, respectively. Based on phylogeny, the MeFtsZs were classified into two groups (FtsZ1 and FtsZ2). MeFtsZ1 with a putative signal peptide at N-terminal, has six exons, and is classed to FtsZ1 clade. MeFtsZ2-1 and MeFtsZ2-2 without a putative signal peptide, have seven exons, and are classed to FtsZ2 clade. Subcellular localization found that all the three MeFtsZs could locate in chloroplasts and form a ring in chloroplastids. Structure analysis found that all MeFtsZ proteins contain a conserved guanosine triphosphatase (GTPase) domain in favor of generate contractile force for cassava plastid division. The expression profiles of MeFtsZ genes by quantitative reverse transcription-PCR (qRT-PCR) analysis in photosynthetic and non-photosynthetic tissues found that all of the MeFtsZ genes had higher expression levels in photosynthetic tissues, especially in younger leaves, and lower expression levels in the non-photosynthetic tissues. During cassava storage root development, the expressions of MeFtsZ2-1 and MeFtsZ2-2 were comparatively higher than MeFtsZ1. The transformed Arabidopsis of MeFtsZ2-1 and MeFtsZ2-2 contained abnormally shape, fewer number, and larger volume chloroplasts. Phytohormones were involved in regulating the expressions of MeFtsZ genes. Therefore, we deduced that all of the MeFtsZs play an important role in chloroplast division, and that MeFtsZ2 (2-1, 2-2) might be involved in amyloplast division and regulated by phytohormones during cassava storage root development.
Collapse
Affiliation(s)
- Meng-Ting Geng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yi Min
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yuan Yao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xia Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Jie Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Shuai Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Lei Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chong Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Fan Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Lu Shang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yun-Lin Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Rui-Mei Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Shao-Ping Fu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Rui-Jun Duan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jiao Liu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xin-Wen Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Jian-Chun Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
7
|
ARC6-mediated Z ring-like structure formation of prokaryote-descended chloroplast FtsZ in Escherichia coli. Sci Rep 2017; 7:3492. [PMID: 28615720 PMCID: PMC5471200 DOI: 10.1038/s41598-017-03698-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/04/2017] [Indexed: 12/04/2022] Open
Abstract
Plant chloroplasts proliferate through binary fission, and the stromal-side molecules that are involved in chloroplast division are bacterial derivatives. As in bacteria, the prokaryotic tubulin homolog FtsZ assembles into a ring-like structure (Z ring) at mid-chloroplast, and this process is followed by constriction. However, the properties of chloroplast FtsZs remain unclarified. Here, we employed Escherichia coli as a novel heterologous system for expressing chloroplast FtsZs and their regulatory components. Fluorescently labelled Arabidopsis FtsZ2 efficiently assembled into long filaments in E. coli cells, and artificial membrane tethering conferred FtsZ2 filaments with the ability to form Z ring-like structures resembling the bacterial Z ring. A negative regulator of chloroplast FtsZ assembly, ARC3, retained its inhibitory effects on FtsZ2 filamentation and Z ring-like structure formation in E. coli cells. Thus, we provide a novel heterologous system by using bacterial cells to study the regulation of the chloroplast divisome. Furthermore, we demonstrated that the FtsZ2-interacting protein ARC6, which is a potential candidate for Z ring tethering to the chloroplast inner envelope membrane, genuinely targeted FtsZ2 to the membrane components and supported its morphological shift from linear filaments to Z ring-like structures in a manner dependent on the C-terminal ARC6-interacting domain of FtsZ2.
Collapse
|
8
|
TerBush AD, Yoshida Y, Osteryoung KW. FtsZ in chloroplast division: structure, function and evolution. Curr Opin Cell Biol 2013; 25:461-70. [DOI: 10.1016/j.ceb.2013.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/06/2013] [Accepted: 04/23/2013] [Indexed: 11/30/2022]
|
9
|
|
10
|
TerBush AD, Osteryoung KW. Distinct functions of chloroplast FtsZ1 and FtsZ2 in Z-ring structure and remodeling. J Cell Biol 2012; 199:623-37. [PMID: 23128242 PMCID: PMC3494859 DOI: 10.1083/jcb.201205114] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/12/2012] [Indexed: 12/19/2022] Open
Abstract
FtsZ, a cytoskeletal GTPase, forms a contractile ring for cell division in bacteria and chloroplast division in plants. Whereas bacterial Z rings are composed of a single FtsZ, those in chloroplasts contain two distinct FtsZ proteins, FtsZ1 and FtsZ2, whose functional relationship is poorly understood. We expressed fluorescently tagged FtsZ1 and FtsZ2 in fission yeast to investigate their intrinsic assembly and dynamic properties. FtsZ1 and FtsZ2 formed filaments with differing morphologies when expressed separately. FRAP showed that FtsZ2 filaments were less dynamic than FtsZ1 filaments and that GTPase activity was essential for FtsZ2 filament turnover but may not be solely responsible for FtsZ1 turnover. When coexpressed, the proteins colocalized, consistent with coassembly, but exhibited an FtsZ2-like morphology. However, FtsZ1 increased FtsZ2 exchange into coassembled filaments. Our findings suggest that FtsZ2 is the primary determinant of chloroplast Z-ring structure, whereas FtsZ1 facilitates Z-ring remodeling. We also demonstrate that ARC3, a regulator of chloroplast Z-ring positioning, functions as an FtsZ1 assembly inhibitor.
Collapse
Affiliation(s)
- Allan D. TerBush
- Biochemistry and Molecular Biology Graduate Program and Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Katherine W. Osteryoung
- Biochemistry and Molecular Biology Graduate Program and Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
11
|
Itoh RD, Yamasaki H, Septiana A, Yoshida S, Fujiwara MT. Chemical induction of rapid and reversible plastid filamentation in Arabidopsis thaliana roots. PHYSIOLOGIA PLANTARUM 2010; 139:144-58. [PMID: 20088905 DOI: 10.1111/j.1399-3054.2010.01352.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plastids assume various morphologies depending on their developmental status, but the basis for developmentally regulated plastid morphogenesis is poorly understood. Chemical induction of alterations in plastid morphology would be a useful tool for studying this; however, no such chemicals have been identified. Here, we show that antimycin A, an effective respiratory inhibitor, can change plastid morphology rapidly and reversibly in Arabidopsis thaliana. In the root cortex, hypocotyls, cotyledon epidermis and true leaf epidermis, significant differences in mitochondrial morphology were not observed between antimycin-treated and untreated tissues. In contrast, antimycin caused extreme filamentation of plastids in the mature cortices of main roots. This phenomenon was specifically observed in the mature root cortex. Other mitochondrial respiratory inhibitors (rotenone and carbonyl cyanide m-chlorophenylhydrazone), hydrogen peroxide, S-nitroso-N-acetylpenicillamine [a nitric oxide (NO) donor] and 3-(3,4-dichlorophenyl)-1,1-dimethylurea did not mimic the phenomenon under the present study conditions. Antimycin-induced plastid filamentation was initiated within 5 min after the onset of chemical treatment and appeared to complete within 1 h. Plastid morphology was restored within 7 h after the washout of antimycin, suggesting that the filamentation was reversible. Co-applications of antimycin and cytoskeletal inhibitors (demecolcine or latrunculin B) or protein synthesis inhibitors (cycloheximide or chloramphenicol) still caused plastid filamentation. Antimycin A was also effective for plastid filamentation in the chloroplast division mutants atftsZ1-1 and atminE1. Salicylhydroxamic acid, an alternative oxidase inhibitor, was solely found to suppress the filamentation, implying the possibility that this phenomenon was partly mediated by an antimycin-activated alternative oxidase in the mitochondria.
Collapse
Affiliation(s)
- Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| | | | | | | | | |
Collapse
|
12
|
Schmitz AJ, Glynn JM, Olson BJSC, Stokes KD, Osteryoung KW. Arabidopsis FtsZ2-1 and FtsZ2-2 are functionally redundant, but FtsZ-based plastid division is not essential for chloroplast partitioning or plant growth and development. MOLECULAR PLANT 2009; 2:1211-22. [PMID: 19995726 DOI: 10.1093/mp/ssp077] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
FtsZ1 and FtsZ2 are phylogenetically distinct families of FtsZ in plants that co-localize to mid-plastid rings and facilitate division of chloroplasts. In plants, altered levels of either FtsZ1 or FtsZ2 cause dose-dependent defects in chloroplast division; thus, studies on the functional relationship between FtsZ genes require careful manipulation of FtsZ levels in vivo. To define the functional relationship between the two FtsZ2 genes in Arabidopsis thaliana, FtsZ2-1 and FtsZ2-2, we expressed FtsZ2-1 in an ftsZ2-2 null mutant, and vice versa, and determined whether the chloroplast division defects were rescued in plants expressing different total levels of FtsZ2. Full rescue was observed when either the FtsZ2-1 or FtsZ2-2 level approximated total FtsZ2 levels in wild-type (WT). Additionally, FtsZ2-2 interacts with ARC6, as shown previously for FtsZ2-1. These data indicate that FtsZ2-1 and FtsZ2-2 are functionally redundant for chloroplast division in Arabidopsis. To rigorously validate the requirement of each FtsZ family for chloroplast division, we replaced FtsZ1 with FtsZ2 in vivo, and vice versa, while maintaining the FtsZ level in the transgenic plants equal to that of the total level in WT. Chloroplast division defects were not rescued, demonstrating conclusively that FtsZ1 and FtsZ2 are non-redundant for maintenance of WT chloroplast numbers. Finally, we generated ftsZ triple null mutants and show that plants completely devoid of FtsZ protein are viable and fertile. As plastids are presumably essential organelles, these findings suggest that an FtsZ-independent mode of plastid partitioning may occur in higher plants.
Collapse
Affiliation(s)
- Aaron J Schmitz
- Department of Plant Biology, 166 Plant Biology Bldg, Michigan State University, East Lansing, MI 48824-1312, USA
| | | | | | | | | |
Collapse
|
13
|
McAndrew RS, Olson BJSC, Kadirjan-Kalbach DK, Chi-Ham CL, Vitha S, Froehlich JE, Osteryoung KW. In vivo quantitative relationship between plastid division proteins FtsZ1 and FtsZ2 and identification of ARC6 and ARC3 in a native FtsZ complex. Biochem J 2008; 412:367-78. [PMID: 18284374 DOI: 10.1042/bj20071354] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FtsZ1 and FtsZ2 are phylogenetically distinct homologues of the tubulin-like bacterial cell division protein FtsZ that play major roles in the initiation and progression of plastid division in plant cells. Both proteins are components of a mid-plastid ring, the Z-ring, which functions as a contractile ring on the stromal surface of the chloroplast IEM (inner envelope membrane). FtsZ1 and FtsZ2 have been shown to interact, but their in vivo biochemical properties are largely unknown. To gain insight into the in vivo biochemical relationship between FtsZ1 and FtsZ2, in the present study we investigated their molecular levels in wild-type Arabidopsis thaliana plants and endogenous interactions in Arabidopsis and pea. Quantitative immunoblotting and morphometric analysis showed that the average total FtsZ concentration in chloroplasts of 3-week-old Arabidopsis plants is comparable with that in Escherichia coli. FtsZ levels declined as plants matured, but the molar ratio between FtsZ1 and FtsZ2 remained constant at approx. 1:2, suggesting that this stoichiometry is regulated and functionally important. Density-gradient centrifugation, native gel electrophoresis, gel filtration and co-immunoprecipitation experiments showed that a portion of the FtsZ1 and FtsZ2 in Arabidopsis and pea chloroplasts is stably associated in a complex of approximately 200-245 kDa. This complex also contains the FtsZ2-interacting protein ARC6 (accumulation and replicatioin of chloroplasts 6), an IEM protein, and analysis of density-gradient fractions suggests the presence of the FtsZ1-interacting protein ARC3. Based on the mid-plastid localization of ARC6 and ARC3 and their postulated roles in promoting and inhibiting chloroplast FtsZ polymer formation respectively, we hypothesize that the FtsZ1-FtsZ2-ARC3-ARC6 complex represents an unpolymerized IEM-associated pool of FtsZ that contributes to the dynamic regulation of Z-ring assembly and remodelling at the plastid division site in vivo.
Collapse
Affiliation(s)
- Rosemary S McAndrew
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Fujiwara MT, Hashimoto H, Kazama Y, Abe T, Yoshida S, Sato N, Itoh RD. The Assembly of the FtsZ Ring at the Mid-Chloroplast Division Site Depends on a Balance Between the Activities of AtMinE1 and ARC11/AtMinD1. ACTA ACUST UNITED AC 2008; 49:345-61. [DOI: 10.1093/pcp/pcn012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Maple J, Mateo* A, Møller SG. Plastid Division Regulation and Interactions with the Environment. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/7089_2008_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
16
|
Primavesi LF, Wu H, Mudd EA, Day A, Jones HD. Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ and maize ferredoxin III proteins. Transgenic Res 2007; 17:529-43. [PMID: 17710559 DOI: 10.1007/s11248-007-9126-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
The ability to target marker proteins to specific subcellular compartments is a powerful research tool to study the structure and development of organelles. Here transit sequences from nuclear-encoded, plastid proteins, namely rice FtsZ, maize non-photosynthetic ferredoxin III (FdIII) and the small subunit of RubisCO were used to target a modified synthetic GFP (S65G, S72A) to plastids. The localisations of the fusion proteins expressed in transgenic wheat plants and under the control of the rice actin promoter were compared to an untargeted GFP control. GFP fluorescence was localised to non-green plastids in pollen, roots and seed endosperm and detected in isolated leaf chloroplasts using a GFP-specific antibody. Transit peptides appeared to influence the relative fluorescence intensities of plastids in different tissues. This is consistent with differential targeting and/or turnover of GFP fusion proteins in different plastid types. Replacement of GFP sequences with alternative coding regions enables immediate applications of our vectors for academic research and commercial applications.
Collapse
|
17
|
Gnanasambandam A, Polkinghorne IG, Birch RG. Heterologous signals allow efficient targeting of a nuclear-encoded fusion protein to plastids and endoplasmic reticulum in diverse plant species. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:290-6. [PMID: 17309684 DOI: 10.1111/j.1467-7652.2007.00241.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Approximately 30% of plant nuclear genes appear to encode proteins targeted to the plastids or endoplasmic reticulum (ER). The signals that direct proteins into these compartments are diverse in sequence, but, on the basis of a limited number of tests in heterologous systems, they appear to be functionally conserved across species. To further test the generality of this conclusion, we tested the ability of two plastid transit peptides and an ER signal peptide to target green fluorescent protein (GFP) in 12 crops, including three monocots (barley, sugarcane, wheat) and nine dicots (Arabidopsis, broccoli, cabbage, carrot, cauliflower, lettuce, radish, tobacco, turnip). In all species, transient assays following microprojectile bombardment or vacuum infiltration using Agrobacterium showed that the plastid transit peptides from tomato DCL (defective chloroplast and leaves) and tobacco RbcS [ribulose bisphosphate carboxylase (Rubisco) small subunit] genes were effective in targeting GFP to the leaf plastids. GFP engineered as a fusion to the N-terminal ER signal peptide from Arabidopsis basic chitinase and a C-terminal HDEL signal for protein retention in the ER was accumulated in the ER of all species. The results in tobacco were confirmed in stably transformed cells. These signal sequences should be useful to direct proteins to the plastid stroma or ER lumen in diverse plant species of biotechnological interest for the accumulation of particular recombinant proteins or for the modification of particular metabolic streams.
Collapse
|
18
|
Lohse S, Hause B, Hause G, Fester T. FtsZ characterization and immunolocalization in the two phases of plastid reorganization in arbuscular mycorrhizal roots of Medicago truncatula. PLANT & CELL PHYSIOLOGY 2006; 47:1124-34. [PMID: 16854943 DOI: 10.1093/pcp/pcj083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We have analyzed plastid proliferation in root cortical cells of Medicago truncatula colonized by arbuscular mycorrhizal (AM) fungi by concomitantly labeling fungal structures, root plastids, a protein involved in plastid division (FtsZ1) and a protein involved in the biosynthesis of AM-specific apocarotenoids. Antibodies directed against FtsZ1 have been generated after heterologous expression of the respective gene from M. truncatula and characterization of the gene product. Analysis of enzymatic activity and assembly experiments showed similar properties of this protein when compared with the bacterial proteins. Immunocytological experiments allowed two phases of fungal and plastid development to be clearly differentiated and plastid division to be monitored during these phases. In the early phase of arbuscule development, lens-shaped plastids, intermingled with the arbuscular branches, divide frequently. Arbuscule degradation, in contrast, is characterized by large, tubular plastids, decorated by a considerable number of FtsZ division rings.
Collapse
Affiliation(s)
- Swanhild Lohse
- Leibniz Institute of Plant Biochemistry, Department of Secondary Metabolism, Weinberg 3, D-06120 Halle (Saale), Germany
| | | | | | | |
Collapse
|
19
|
Maple J, Møller SG. An emerging picture of plastid division in higher plants. PLANTA 2005; 223:1-4. [PMID: 16136332 DOI: 10.1007/s00425-005-0078-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 06/30/2005] [Indexed: 05/04/2023]
Affiliation(s)
- Jodi Maple
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| | | |
Collapse
|
20
|
Miyagishima SY. Origin and evolution of the chloroplast division machinery. JOURNAL OF PLANT RESEARCH 2005; 118:295-306. [PMID: 16143878 DOI: 10.1007/s10265-005-0226-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 07/13/2005] [Indexed: 05/04/2023]
Abstract
Chloroplasts were originally established in eukaryotes by the endosymbiosis of a cyanobacterium; they then spread through diversification of the eukaryotic hosts and subsequent engulfment of eukaryotic algae by previously nonphotosynthetic eukaryotes. The continuity of chloroplasts is maintained by division of preexisting chloroplasts. Like their ancestors, chloroplasts use a bacterial division system based on the FtsZ ring and some associated factors, all of which are now encoded in the host nuclear genome. The majority of bacterial division factors are absent from chloroplasts and several new factors have been added by the eukaryotic host. For example, the ftsZ gene has been duplicated and modified, plastid-dividing (PD) rings were most likely added by the eukaryotic host, and a member of the dynamin family of proteins evolved to regulate chloroplast division. The identification of several additional proteins involved in the division process, along with data from diverse lineages of organisms, our current knowledge of mitochondrial division, and the mining of genomic sequence data have enabled us to begin to understand the universality and evolution of the division system. The principal features of the chloroplast division system thus far identified are conserved across several lineages, including those with secondary chloroplasts, and may reflect primeval features of mitochondrial division.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Plant Biology, Michigan State University, East Lansing, 48824, USA.
| |
Collapse
|
21
|
Aldridge C, Møller SG. The plastid division protein AtMinD1 is a Ca2+-ATPase stimulated by AtMinE1. J Biol Chem 2005; 280:31673-8. [PMID: 16014621 DOI: 10.1074/jbc.m505126200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria and plastids divide symmetrically through binary fission by accurately placing the division site at midpoint, a process initiated by FtsZ polymerization, which forms a Z-ring. In Escherichia coli precise Z-ring placement at midcell depends on controlled oscillatory behavior of MinD and MinE: In the presence of ATP MinD interacts with the FtsZ inhibitor MinC and migrates to the membrane where the MinD-MinC complex recruits MinE, followed by MinD-mediated ATP hydrolysis and membrane release. Although correct Z-ring placement during Arabidopsis plastid division depends on the precise localization of the bacterial homologs AtMinD1 and AtMinE1, the underlying mechanism of this process remains unknown. Here we have shown that AtMinD1 is a Ca2+-dependent ATPase and through mutation analysis demonstrated the physiological importance of this activity where loss of ATP hydrolysis results in protein mislocalization within plastids. The observed mislocalization is not due to disrupted AtMinD1 dimerization, however; the active site AtMinD1(K72A) mutant is unable to interact with the topological specificity factor AtMinE1. We have shown that AtMinE1, but not E. coli MinE, stimulates AtMinD1-mediated ATP hydrolysis, but in contrast to prokaryotes stimulation occurs in the absence of membrane lipids. Although AtMinD1 appears highly evolutionarily conserved, we found that important biochemical and cell biological properties have diverged. We propose that correct intraplastidic AtMinD1 localization is dependent on AtMinE1-stimulated, Ca2+-dependent AtMinD1 ATP hydrolysis, ultimately ensuring precise Z-ring placement and symmetric plastid division.
Collapse
Affiliation(s)
- Cassie Aldridge
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | |
Collapse
|
22
|
Asano T, Yoshioka Y, Kurei S, Sakamoto W, Machida Y. A mutation of the CRUMPLED LEAF gene that encodes a protein localized in the outer envelope membrane of plastids affects the pattern of cell division, cell differentiation, and plastid division in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:448-459. [PMID: 15086805 DOI: 10.1111/j.1365-313x.2004.02057.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We identified a novel mutation of a nuclear-encoded gene, designated as CRUMPLED LEAF (CRL), of Arabidopsis thaliana that affects the morphogenesis of all plant organs and division of plastids. Histological analysis revealed that planes of cell division were distorted in shoot apical meristems (SAMs), root tips, and embryos in plants that possess the crl mutation. Furthermore, we observed that differentiation patterns of cortex and endodermis cells in inflorescence stems and root endodermis cells were disturbed in the crl mutant. These results suggest that morphological abnormalities observed in the crl mutant were because of aberrant cell division and differentiation. In addition, cells of the crl mutant contained a reduced number of enlarged plastids, indicating that the division of plastids was inhibited in the crl. The CRL gene encodes a novel protein with a molecular mass of 30 kDa that is localized in the plastid envelope. The CRL protein is conserved in various plant species, including a fern, and in cyanobacteria, but not in other organisms. These data suggest that the CRL protein is required for plastid division, and it also plays an important role in cell differentiation and the regulation of the cell division plane in plants. A possible function of the CRL protein is discussed.
Collapse
Affiliation(s)
- Tomoya Asano
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
23
|
Fujiwara MT, Nakamura A, Itoh R, Shimada Y, Yoshida S, Møller SG. Chloroplast division site placement requires dimerization of the ARC11/AtMinD1 protein in Arabidopsis. J Cell Sci 2004; 117:2399-410. [PMID: 15126639 DOI: 10.1242/jcs.01092] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloroplast division is mediated by the coordinated action of a prokaryote-derived division system(s) and a host eukaryote-derived membrane fission system(s). The evolutionary conserved prokaryote-derived system comprises several nucleus-encoded proteins, two of which are thought to control division site placement at the midpoint of the organelle: a stromal ATPase MinD and a topological specificity factor MinE. Here, we show that arc11, one of 12 recessive accumulation and replication of chloroplasts (arc) mutants in Arabidopsis, contains highly elongated and multiple-arrayed chloroplasts in developing green tissues. Genomic sequence analysis revealed that arc11 contains a missense mutation in α-helix 11 of the chloroplast-targeted AtMinD1 changing an Ala at position 296 to Gly (A296G). Introduction of wild-type AtMinD1 restores the chloroplast division defects of arc11 and quantitative RT-PCR analysis showed that the degree of complementation was highly dependent on transgene expression levels. Overexpression of the mutant ARC11/AtMinD1 in transgenic plants results in the inhibition of chloroplast division, showing that the mutant protein has retained its division inhibition activity. However, in contrast to the defined and punctate intraplastidic localization patterns of an AtMinD1-YFP fusion protein, the single A296G point mutation in ARC11/AtMinD1 results in aberrant localization patterns inside chloroplasts. We further show that AtMinD1 is capable of forming homodimers and that this dimerization capacity is abolished by the A296G mutation in ARC11/AtMinD1. Our data show that arc11 is a loss-of-function mutant of AtMinD1 and suggest that the formation of functional AtMinD1 homodimers is paramount for appropriate AtMinD1 localization, ultimately ensuring correct division machinery placement and chloroplast division in plants.
Collapse
Affiliation(s)
- Makoto T Fujiwara
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Vaughan S, Wickstead B, Gull K, Addinall SG. Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J Mol Evol 2004; 58:19-29. [PMID: 14743312 DOI: 10.1007/s00239-003-2523-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2003] [Accepted: 07/24/2003] [Indexed: 10/26/2022]
Abstract
The FtsZ protein is a polymer-forming GTPase which drives bacterial cell division and is structurally and functionally related to eukaryotic tubulins. We have searched for FtsZ-related sequences in all freely accessible databases, then used strict criteria based on the tertiary structure of FtsZ and its well-characterized in vitro and in vivo properties to determine which sequences represent genuine homologues of FtsZ. We have identified 225 full-length FtsZ homologues, which we have used to document, phylum by phylum, the primary sequence characteristics of FtsZ homologues from the Bacteria, Archaea, and Eukaryota. We provide evidence for at least five independent ftsZ gene-duplication events in the bacterial kingdom and suggest the existence of three ancestoral euryarchaeal FtsZ paralogues. In addition, we identify "FtsZ-like" sequences from Bacteria and Archaea that, while showing significant sequence similarity to FtsZs, are unlikely to bind and hydrolyze GTP.
Collapse
Affiliation(s)
- Sue Vaughan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | |
Collapse
|
25
|
Stokes KD, Osteryoung KW. Early divergence of the FtsZ1 and FtsZ2 plastid division gene families in photosynthetic eukaryotes. Gene 2004; 320:97-108. [PMID: 14597393 DOI: 10.1016/s0378-1119(03)00814-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Homologues of the bacterial cell division protein FtsZ are found in higher plants where they function as key components of the chloroplast division complex. In contrast to most bacteria that encode a single FtsZ protein, plants encode multiple proteins that group into two families, FtsZ1 and FtsZ2. Using new sequence data from a broad range photosynthetic organisms, we performed a series of analyses to better understand the evolutionary history of the plant FtsZ families. Multiple phylogenetic analyses strongly support the grouping of the plant FtsZ genes and proteins into distinct FtsZ1 and FtsZ2 clades. Protein features representing potentially significant functional differences between FtsZ1 and FtsZ2 are identified. Genomic structure comparisons show that exon length and intron position are conserved within each clade, but differ between the clades except at one position. Our data indicate that the divergence of the FtsZ1 and FtsZ2 families occurred long before the evolution of land plants, preceding the emergence of the green algae. The results are consistent with proposals that the two FtsZ families evolved distinct functions during evolution of the chloroplast division apparatus, and indicate that genetic and functional differentiation occurred much earlier than previously hypothesized.
Collapse
Affiliation(s)
- Kevin D Stokes
- Department of Plant Biology, Michigan State University, 166 Plant Biology Building, East Lansing, MI 48824-1312, USA
| | | |
Collapse
|
26
|
Abstract
Mitochondria and chloroplasts are essential eukaryotic organelles of endosymbiotic origin. Dynamic cellular machineries divide these organelles. The mechanisms by which mitochondria and chloroplasts divide were thought to be fundamentally different because chloroplasts use proteins derived from the ancestral prokaryotic cell division machinery, whereas mitochondria have largely evolved a division apparatus that lacks bacterial cell division components. Recent findings indicate, however, that both types of organelles universally require dynamin-related guanosine triphosphatases to divide. This mechanistic link provides fundamental insights into the molecular events driving the division, and possibly the evolution, of organelles in eukaryotes.
Collapse
Affiliation(s)
- Katherine W Osteryoung
- Department of Plant Biology, 166 Plant Biology Building, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
27
|
Gilson PR, Yu XC, Hereld D, Barth C, Savage A, Kiefel BR, Lay S, Fisher PR, Margolin W, Beech PL. Two Dictyostelium orthologs of the prokaryotic cell division protein FtsZ localize to mitochondria and are required for the maintenance of normal mitochondrial morphology. EUKARYOTIC CELL 2003; 2:1315-26. [PMID: 14665465 PMCID: PMC326642 DOI: 10.1128/ec.2.6.1315-1326.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 08/13/2003] [Indexed: 11/20/2022]
Abstract
In bacteria, the protein FtsZ is the principal component of a ring that constricts the cell at division. Though all mitochondria probably arose through a single, ancient bacterial endosymbiosis, the mitochondria of only certain protists appear to have retained FtsZ, and the protein is absent from the mitochondria of fungi, animals, and higher plants. We have investigated the role that FtsZ plays in mitochondrial division in the genetically tractable protist Dictyostelium discoideum, which has two nuclearly encoded FtsZs, FszA and FszB, that are targeted to the inside of mitochondria. In most wild-type amoebae, the mitochondria are spherical or rod-shaped, but in fsz-null mutants they become elongated into tubules, indicating that a decrease in mitochondrial division has occurred. In support of this role in organelle division, antibodies to FszA and FszA-green fluorescent protein (GFP) show belts and puncta at multiple places along the mitochondria, which may define future or recent sites of division. FszB-GFP, in contrast, locates to an electron-dense, submitochondrial body usually located at one end of the organelle, but how it functions during division is unclear. This is the first demonstration of two differentially localized FtsZs within the one organelle, and it points to a divergence in the roles of these two proteins.
Collapse
Affiliation(s)
- Paul R Gilson
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, Victoria 3125, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Miyagishima SY, Nishida K, Kuroiwa T. An evolutionary puzzle: chloroplast and mitochondrial division rings. TRENDS IN PLANT SCIENCE 2003; 8:432-438. [PMID: 13678910 DOI: 10.1016/s1360-1385(03)00193-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Consistent with their bacterial origin, chloroplasts and primitive mitochondria retain a FtsZ ring for division. However, chloroplasts and mitochondria have lost most of the proteins required for bacterial division other than FtsZ and certain homologues of the Min proteins, but they do contain plastid and mitochondrion dividing rings, which were recently shown to be distinct from the FtsZ ring. Moreover, recent studies have revealed that rings of the eukaryote-specific dynamin-related family of GTPases regulate the division of chloroplasts and mitochondria, and these proteins emerged early in eukaryotic evolution. These findings suggest that the division of chloroplasts and primitive mitochondria involve very similar systems, consisting of an amalgamation of rings from bacteria and eukaryotes.
Collapse
Affiliation(s)
- Shin-ya Miyagishima
- Department of Life Science, College of Science, Rikkyo (St Paul's) University, 3-34-1 Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | | | | |
Collapse
|
29
|
Gao H, Kadirjan-Kalbach D, Froehlich JE, Osteryoung KW. ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc Natl Acad Sci U S A 2003; 100:4328-33. [PMID: 12642673 PMCID: PMC153092 DOI: 10.1073/pnas.0530206100] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2002] [Accepted: 01/13/2003] [Indexed: 12/30/2022] Open
Abstract
Chloroplast division in plant cells is orchestrated by a complex macromolecular machine with components positioned on both the inner and outer envelope surfaces. The only plastid division proteins identified to date are of endosymbiotic origin and are localized inside the organelle. Employing positional cloning methods in Arabidopsis in conjunction with a novel strategy for pinpointing the mutant locus, we have identified a gene encoding a new chloroplast division protein, ARC5. Mutants of ARC5 exhibit defects in chloroplast constriction, have enlarged, dumbbell-shaped chloroplasts, and are rescued by a wild-type copy of ARC5. The ARC5 gene product shares similarity with the dynamin family of GTPases, which mediate endocytosis, mitochondrial division, and other organellar fission and fusion events in eukaryotes. Phylogenetic analysis showed that ARC5 is related to a group of dynamin-like proteins unique to plants. A GFP-ARC5 fusion protein localizes to a ring at the chloroplast division site. Chloroplast import and protease protection assays indicate that the ARC5 ring is positioned on the outer surface of the chloroplast. Thus, ARC5 is the first cytosolic component of the chloroplast division complex to be identified. ARC5 has no obvious counterparts in prokaryotes, suggesting that it evolved from a dynamin-related protein present in the eukaryotic ancestor of plants. These results indicate that the chloroplast division apparatus is of mixed evolutionary origin and that it shares structural and mechanistic similarities with both the cell division machinery of bacteria and the dynamin-mediated organellar fission machineries of eukaryotes.
Collapse
Affiliation(s)
- Hongbo Gao
- Department of Plant Biology, 166 Plant Biology Building, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
30
|
Wang D, Kong D, Wang Y, Hu Y, He Y, Sun J. Isolation of two plastid division ftsZ genes from Chlamydomonas reinhardtii and its evolutionary implication for the role of FtsZ in plastid division. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:1115-1116. [PMID: 12598582 DOI: 10.1093/jxb/erg117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In order to elucidate the origin of the plastid division gene ftsZ in green plant lineage, and to understand the significance of this divergence for the function of FtsZ proteins in plants, two full-length cDNAs (accession numbers AF449446 and AB084236) were isolated from Chlamydomonas reinhardtii, a base species of green plant lineage. A phylogenetic analysis based on amino acid sequences of eukaryotic FtsZs reveals that an ancient duplication of the ftsZ gene occurred after the endosymbiotic event. The ancient duplication implies that two ftsZ families might play an indispensable role at the early endosymbiotic stage.
Collapse
Affiliation(s)
- Dong Wang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | |
Collapse
|