1
|
Kögel D, Temme A, Aigner A. Recent advances in development and delivery of non-viral nucleic acid therapeutics for brain tumor therapy. Pharmacol Ther 2025; 266:108762. [PMID: 39603349 DOI: 10.1016/j.pharmthera.2024.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
High grade gliomas (HGG) are a group of CNS tumors refractory to currently existing therapies, which routinely leads to early recurrence and a dismal prognosis. Recent advancements in nucleic acid-based therapy using a wide variety of different molecular targets and non-viral nanocarrier systems suggest that this approach holds significant potential to meet the urgent demand for improved therapeutic options for the treatment of these tumors. This review provides a comprehensive and up-to-date overview on the current landscape and progress of preclinical and clinical developments in this rapidly evolving and exciting field of research, including optimized nanocarrier delivery systems, promising therapeutic targets and tailor-made therapeutic strategies for individualized HGG patient treatment.
Collapse
Affiliation(s)
- Donat Kögel
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt am Main, Germany; German Cancer Research Center DKFZ, Heidelberg, Germany.
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Site Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Kulmann MI, Taborska E, Benköova B, Palus M, Drobek A, Horvat F, Pasulka J, Malik R, Salyova E, Hönig V, Pellerova M, Borsanyiova M, Nedvedova L, Stepanek O, Bopegamage S, Ruzek D, Svoboda P. Enhanced RNAi does not provide efficient innate antiviral immunity in mice. Nucleic Acids Res 2025; 53:gkae1288. [PMID: 39778869 PMCID: PMC11707545 DOI: 10.1093/nar/gkae1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance. To investigate its antiviral potential, we modified the mouse Dicer locus to express a truncated variant (DicerΔHEL1) known to stimulate RNAi and we analyzed how DicerΔHEL1/wt mice respond to four RNA viruses: coxsackievirus B3 and encephalomyocarditis virus from Picornaviridae; tick-borne encephalitis virus from Flaviviridae; and lymphocytic choriomeningitis virus (LCMV) from Arenaviridae. Increased Dicer activity in DicerΔHEL1/wt mice did not elicit any antiviral effect, supporting an insignificant antiviral function of endogenous mammalian RNAi in vivo. However, we also observed that sufficiently high expression of DicerΔHEL1 suppressed LCMV in embryonic stem cells and in a transgenic mouse model. Altogether, mice with increased Dicer activity offer a new benchmark for identifying and studying viruses susceptible to mammalian RNAi in vivo.
Collapse
Affiliation(s)
- Marcos Iuri Roos Kulmann
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Eliska Taborska
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Brigita Benköova
- Faculty of Medicine, Enterovirus Laboratory, Institute of Microbiology, Slovak Medical University, Limbova 12, 83303Bratislava, Slovakia
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Filip Horvat
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Bioinformatics Group, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Josef Pasulka
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Radek Malik
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Eva Salyova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Vaclav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Michaela Pellerova
- Faculty of Medicine, Enterovirus Laboratory, Institute of Microbiology, Slovak Medical University, Limbova 12, 83303Bratislava, Slovakia
| | - Maria Borsanyiova
- Faculty of Medicine, Enterovirus Laboratory, Institute of Microbiology, Slovak Medical University, Limbova 12, 83303Bratislava, Slovakia
| | - Lenka Nedvedova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 1645/31a, CZ-37005Ceske Budejovice, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Shubhada Bopegamage
- Faculty of Medicine, Enterovirus Laboratory, Institute of Microbiology, Slovak Medical University, Limbova 12, 83303Bratislava, Slovakia
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500Brno, Czech Republic
| | - Petr Svoboda
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| |
Collapse
|
3
|
Jalal MS, Duttaroy A. Maternal Spargel/dPGC-1 is critical for embryonic development and influences chorion gene amplification via Cyclin E activity. Dev Biol 2024; 516:158-166. [PMID: 39173813 DOI: 10.1016/j.ydbio.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
The function of spargel/dPGC-1 in Drosophila oogenesis has been unequivocally established. Here, we sought to assess whether Spargel protein or RNA is essential for developmentally competent eggs. The trans-heterozygotic combination of two spargel mutant alleles allowed us to decrease Spargel expression to very low levels. Using this model, we now demonstrated the requirement for Spargel in eggshell patterning and embryonic development, which led us to establish that spargel is a maternal effect gene. Further examination of Spargel's potential mechanism of action in eggshell biogenesis revealed that low levels of Spargel in the adult ovary cause diminished Cyclin E activity, resulting in reduced chorion gene amplification levels, leading to eggshell biogenesis defects. Thus, another novel role for spargel/dPGC-1 is exposed whereby, through Cyclin E activity, this conserved transcriptional coactivator regulates the chorion gene amplification process.
Collapse
|
4
|
Schultz RM, Stein P, Svoboda P. The oocyte-to-embryo transition in mouse: past, present, and future. Biol Reprod 2019; 99:160-174. [PMID: 29462259 DOI: 10.1093/biolre/ioy013] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/03/2018] [Indexed: 02/06/2023] Open
Abstract
The oocyte-to-embryo transition (OET) arguably initiates with formation of a primordial follicle and culminates with reprogramming of gene expression during the course of zygotic genome activation. This transition results in converting a highly differentiated cell, i.e. oocyte, to undifferentiated cells, i.e. initial blastomeres of a preimplantation embryo. A plethora of changes occur during the OET and include, but are not limited to, changes in transcription, chromatin structure, and protein synthesis; accumulation of macromolecules and organelles that will comprise the oocyte's maternal contribution to the early embryo; sequential acquisition of meiotic and developmental competence to name but a few. This review will focus on transcriptional and post-transcriptional changes that occur during OET in mouse because such changes are likely the major driving force for OET. We often take a historical and personal perspective, and highlight how advances in experimental methods often catalyzed conceptual advances in understanding the molecular bases for OET. We also point out questions that remain open and therefore represent topics of interest for future investigation.
Collapse
Affiliation(s)
- Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Anatomy, Physiology, Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
5
|
Honda S, Miki Y, Miyamoto Y, Kawahara Y, Tsukamoto S, Imai H, Minami N. Oocyte-specific gene Oog1 suppresses the expression of spermatogenesis-specific genes in oocytes. J Reprod Dev 2018; 64:297-301. [PMID: 29731491 PMCID: PMC6105735 DOI: 10.1262/jrd.2018-024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oog1, an oocyte-specific gene that encodes a protein of 425 amino acids, is present in five copies on mouse chromosomes 4 and 12. In mouse oocytes, Oog1 mRNA expression begins at embryonic day 15.5 and almost disappears by the late two-cell stage. Meanwhile, OOG1 protein is detectable in oocytes in ovarian cysts and disappears by the four-cell stage; the protein is transported to the nucleus in late one-cell to early two-cell stage embryos. In this study, we examined the role of Oog1 during oogenesis in mice. Oog1 RNAi-transgenic mice were generated by expressing double-stranded hairpin Oog1 RNA, which is processed into siRNAs targeting Oog1 mRNA. Quantitative RT-PCR revealed that the amount of Oog1 mRNA was dramatically reduced in oocytes obtained from Oog1-knockdown mice, whereas the abundance of spermatogenesis-associated transcripts (Klhl10, Tekt2, Tdrd6, and Tnp2) was increased in Oog1 knockdown ovaries. Tdrd6 is involved in the formation of the chromatoid body, Tnp2 contributes to the formation of sperm heads, Tekt2 is required for the formation of ciliary and flagellar microtubules, and Klhl10 plays a key role in the elongated sperm differentiation. These results indicate that Oog1 down-regulates the expression of spermatogenesis-associated genes in female germ cells, allowing them to develop normally into oocytes.
Collapse
Affiliation(s)
- Shinnosuke Honda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuka Miki
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuya Miyamoto
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yu Kawahara
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Yin S, Jiang X, Jiang H, Gao Q, Wang F, Fan S, Khan T, Jabeen N, Khan M, Ali A, Xu P, Pandita TK, Fan HY, Zhang Y, Shi Q. Histone acetyltransferase KAT8 is essential for mouse oocyte development by regulating reactive oxygen species levels. Development 2017; 144:2165-2174. [PMID: 28506985 DOI: 10.1242/dev.149518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/29/2017] [Indexed: 12/22/2022]
Abstract
Proper oocyte development is crucial for female fertility and requires timely and accurate control of gene expression. K (lysine) acetyltransferase 8 (KAT8), an important component of the X chromosome dosage compensation system in Drosophila, regulates gene activity by acetylating histone H4 preferentially at lysine 16. To explore the function of KAT8 during mouse oocyte development, we crossed Kat8flox/flox mice with Gdf9-Cre mice to specifically delete Kat8 in oocytes. Oocyte Kat8 deletion resulted in female infertility, with follicle development failure in the secondary and preantral follicle stages. RNA-seq analysis revealed that Kat8 deficiency in oocytes results in significant downregulation of antioxidant genes, with a consequent increase in reactive oxygen species. Intraperitoneal injection of the antioxidant N-acetylcysteine rescued defective follicle and oocyte development resulting from Kat8 deficiency. Chromatin immunoprecipitation assays indicated that KAT8 regulates antioxidant gene expression by direct binding to promoter regions. Taken together, our findings demonstrate that KAT8 is essential for female fertility by regulating antioxidant gene expression and identify KAT8 as the first histone acetyltransferase with an essential function in oogenesis.
Collapse
Affiliation(s)
- Shi Yin
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Xiaohua Jiang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Hanwei Jiang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Qian Gao
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Fang Wang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Suixing Fan
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Teka Khan
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Nazish Jabeen
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Manan Khan
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Asim Ali
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Peng Xu
- USTC-Shenyang Jinghua Hospital Joint Center of Human Reproduction and Genetics, Shenyang, Liaoning 110000, China
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 75390, USA
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuanwei Zhang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Qinghua Shi
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| |
Collapse
|
7
|
Baumann C, Wang X, Yang L, Viveiros MM. Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin. J Cell Sci 2017; 130:1251-1262. [PMID: 28193732 DOI: 10.1242/jcs.196188] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/06/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse oocytes lack canonical centrosomes and instead contain unique acentriolar microtubule-organizing centers (aMTOCs). To test the function of these distinct aMTOCs in meiotic spindle formation, pericentrin (Pcnt), an essential centrosome/MTOC protein, was knocked down exclusively in oocytes by using a transgenic RNAi approach. Here, we provide evidence that disruption of aMTOC function in oocytes promotes spindle instability and severe meiotic errors that lead to pronounced female subfertility. Pcnt-depleted oocytes from transgenic (Tg) mice were ovulated at the metaphase-II stage, but show significant chromosome misalignment, aneuploidy and premature sister chromatid separation. These defects were associated with loss of key Pcnt-interacting proteins (γ-tubulin, Nedd1 and Cep215) from meiotic spindle poles, altered spindle structure and chromosome-microtubule attachment errors. Live-cell imaging revealed disruptions in the dynamics of spindle assembly and organization, together with chromosome attachment and congression defects. Notably, spindle formation was dependent on Ran GTPase activity in Pcnt-deficient oocytes. Our findings establish that meiotic division is highly error-prone in the absence of Pcnt and disrupted aMTOCs, similar to what reportedly occurs in human oocytes. Moreover, these data underscore crucial differences between MTOC-dependent and -independent meiotic spindle assembly.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Xiaotian Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Luhan Yang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA .,Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Zhou L, Baibakov B, Canagarajah B, Xiong B, Dean J. Genetic mosaics and time-lapse imaging identify functions of histone H3.3 residues in mouse oocytes and embryos. Development 2017; 144:519-528. [PMID: 27993980 PMCID: PMC5341799 DOI: 10.1242/dev.141390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/07/2016] [Indexed: 12/19/2022]
Abstract
During development from oocyte to embryo, genetic programs in mouse germ cells are reshaped by chromatin remodeling to orchestrate the onset of development. Epigenetic modifications of specific amino acid residues of core histones and their isoforms can dramatically alter activation and suppression of gene expression. H3.3 is a histone H3 variant that plays essential roles in mouse oocytes and early embryos, but the functional role of individual amino acid residues has been unclear because of technical hurdles. Here, we describe two strategies that successfully investigated the functions of three individual H3.3 residues in oogenesis, cleavage-stage embryogenesis and early development. We first generated genetic mosaic ovaries and blastocysts with stochastic expression of wild-type or mutant H3.3 alleles and showed dominant negative effects of H3.3R26 and H3.3K27 in modulating oogenesis and partitioning cells to the inner cell mass of the early embryo. Time-lapse imaging assays also revealed the essential roles of H3.3K56 in efficient H2B incorporation and paternal pronuclei formation. Application of these strategies can be extended to investigate roles of additional H3.3 residues and has implications for use in other developmental systems.
Collapse
Affiliation(s)
- Liquan Zhou
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, ML 20892, USA
| | - Boris Baibakov
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, ML 20892, USA
| | - Bertram Canagarajah
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, ML 20892, USA
| | - Bo Xiong
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, ML 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, ML 20892, USA
| |
Collapse
|
9
|
Abstract
Short interfering RNAs (siRNAs) are as effective at targeting and silencing genes by RNA interference (RNAi) as long double-stranded RNAs (dsRNAs). siRNAs are widely used for assessing gene function in cultured mammalian cells or early developing vertebrate embryos. siRNAs are also promising reagents for developing gene-specific therapeutics. Specifically, the inhibition of HIV-1 replication is particularly well-suited to RNAi, as several stages of the viral life cycle and many viral and cellular genes can be targeted. The future success of this approach will depend on recent advances in siRNA-based silencing technologies.
Collapse
Affiliation(s)
- Hiroshi Takaku
- Department of Life & Environmental Sciences and High Technology Research Center, Chiba Institute of Technology, Chiba, Japan.
| |
Collapse
|
10
|
Fischer S, Buck T, Wagner A, Ehrhart C, Giancaterino J, Mang S, Schad M, Mathias S, Aschrafi A, Handrick R, Otte K. A functional high-content miRNA screen identifies miR-30 family to boost recombinant protein production in CHO cells. Biotechnol J 2014; 9:1279-92. [PMID: 25061012 DOI: 10.1002/biot.201400306] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/12/2014] [Accepted: 07/23/2014] [Indexed: 12/27/2022]
Abstract
The steady improvement of mammalian cell factories for the production of biopharmaceuticals is a key challenge for the biotechnology community. Recently, small regulatory microRNAs (miRNAs) were identified as novel targets for optimizing Chinese hamster ovary (CHO) production cells as they do not add any translational burden to the cell while being capable of regulating entire physiological pathways. The aim of the present study was to elucidate miRNA function in a recombinant CHO-SEAP cell line by means of a genome-wide high-content miRNA screen. This screen revealed that out of the 1, 139 miRNAs examined, 21% of the miRNAs enhanced cell-specific SEAP productivity mainly resulting in elevated volumetric yields, while cell proliferation was accelerated by 5% of the miRNAs. Conversely, cell death was diminished by 13% (apoptosis) or 4% (necrosis) of all transfected miRNAs. Besides these large number of identified target miRNAs, the outcome of our studies suggest that the entire miR-30 family substantially improves bioprocess performance of CHO cells. Stable miR-30 over expressing cells outperformed parental cells by increasing SEAP productivity or maximum cell density of approximately twofold. Our results highlight the application of miRNAs as powerful tools for CHO cell engineering, identified the miR-30 family as a critical component of cell proliferation, and support the notion that miRNAs are powerful determinants of cell viability.
Collapse
Affiliation(s)
- Simon Fischer
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany; Faculty of Medicine, University of Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee H. Genetically engineered mouse models for drug development and preclinical trials. Biomol Ther (Seoul) 2014; 22:267-74. [PMID: 25143803 PMCID: PMC4131519 DOI: 10.4062/biomolther.2014.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022] Open
Abstract
Drug development and preclinical trials are challenging processes and more than 80% to 90% of drug candidates fail to gain approval from the United States Food and Drug Administration. Predictive and efficient tools are required to discover high quality targets and increase the probability of success in the process of new drug development. One such solution to the challenges faced in the development of new drugs and combination therapies is the use of low-cost and experimentally manageable in vivo animal models. Since the 1980's, scientists have been able to genetically modify the mouse genome by removing or replacing a specific gene, which has improved the identification and validation of target genes of interest. Now genetically engineered mouse models (GEMMs) are widely used and have proved to be a powerful tool in drug discovery processes. This review particularly covers recent fascinating technologies for drug discovery and preclinical trials, targeted transgenesis and RNAi mouse, including application and combination of inducible system. Improvements in technologies and the development of new GEMMs are expected to guide future applications of these models to drug discovery and preclinical trials.
Collapse
Affiliation(s)
- Ho Lee
- Division of Convergence Technology, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 410-769, Republic of Korea
| |
Collapse
|
12
|
Gantier MP. Processing of Double-Stranded RNA in Mammalian Cells: A Direct Antiviral Role? J Interferon Cytokine Res 2014; 34:469-77. [DOI: 10.1089/jir.2014.0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michael P. Gantier
- Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| |
Collapse
|
13
|
Nejepinska J, Malik R, Wagner S, Svoboda P. Reporters transiently transfected into mammalian cells are highly sensitive to translational repression induced by dsRNA expression. PLoS One 2014; 9:e87517. [PMID: 24475301 PMCID: PMC3903663 DOI: 10.1371/journal.pone.0087517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/23/2013] [Indexed: 11/18/2022] Open
Abstract
In mammals, double-stranded RNA (dsRNA) can mediate sequence-specific RNA interference, activate sequence-independent interferon response, or undergo RNA editing by adenosine deaminases. We showed that long hairpin dsRNA expression had negligible effects on mammalian somatic cells--expressed dsRNA was slightly edited, poorly processed into siRNAs, and it did not activate the interferon response. At the same time, we noticed reduced reporter expression in transient co-transfections, which was presumably induced by expressed dsRNA. Since transient co-transfections are frequently used for studying gene function, we systematically explored the role of expressed dsRNA in this silencing phenomenon. We demonstrate that dsRNA expressed from transiently transfected plasmids strongly inhibits the expression of co-transfected reporter plasmids but not the expression of endogenous genes or reporters stably integrated in the genome. The inhibition is concentration-dependent, it is found in different cell types, and it is independent of transfection method and dsRNA sequence. The inhibition occurs at the level of translation and involves protein kinase R, which binds the expressed dsRNA. Thus, dsRNA expression represents a hidden danger in transient transfection experiments and must be taken into account during interpretation of experimental results.
Collapse
Affiliation(s)
- Jana Nejepinska
- Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czech Republic
| | - Susan Wagner
- Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czech Republic
- * E-mail:
| |
Collapse
|
14
|
Flemr M, Malik R, Franke V, Nejepinska J, Sedlacek R, Vlahovicek K, Svoboda P. A Retrotransposon-Driven Dicer Isoform Directs Endogenous Small Interfering RNA Production in Mouse Oocytes. Cell 2013; 155:807-16. [DOI: 10.1016/j.cell.2013.10.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/17/2013] [Accepted: 09/24/2013] [Indexed: 12/25/2022]
|
15
|
Ishida M, Okazaki E, Tsukamoto S, Kimura K, Aizawa A, Kito S, Imai H, Minami N. The promoter of the oocyte-specific gene, Oog1, functions in both male and female meiotic germ cells in transgenic mice. PLoS One 2013; 8:e68686. [PMID: 23894331 PMCID: PMC3718783 DOI: 10.1371/journal.pone.0068686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/02/2013] [Indexed: 12/05/2022] Open
Abstract
Oog1 is an oocyte-specific gene whose expression is turned on in mouse oocytes at embryonic day (E) 15.5, concomitant with the time when most of the female germ cells stop proliferating and enter meiotic prophase. Here, we characterize the Oog1 promoter, and show that transgenic GFP reporter expression driven by the 2.7 kb and 3.9 kb regions upstream of the Oog1 transcription start site recapitulates the intrinsic Oog1 expression pattern. In addition, the 3.9 kb upstream region exhibits stronger transcriptional activity than does the 2.7 kb region, suggesting that regulatory functions might be conserved in the additional 1.2 kb region found within the 3.9 kb promoter. Interestingly, the longer promoter (3.9 kb) also showed strong activity in male germ cells, from late pachytene spermatocytes to elongated spermatids. This is likely due to the aberrant demethylation of two CpG sites in the proximal promoter region. One was highly methylated in the tissues in which GFP expression was suppressed, and another was completely demethylated only in Oog1pro3.9 male and female germ cells. These results suggest that aberrant demethylation of the proximal promoter region induced ectopic expression in male germ cells under the control of 3.9 kb Oog1 promoter. This is the first report indicating that sex-dependent gene expression is altered according to the length and the methylation status of the promoter region. Additionally, our results show that individual CpG sites are differentially methylated and play different roles in regulating promoter activity and gene transcription.
Collapse
Affiliation(s)
- Miya Ishida
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Eriko Okazaki
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Satoshi Tsukamoto
- Laboratory of Animal and Genome Science Section, National Institute of Radiological Sciences, Chiba, Japan
| | - Koji Kimura
- Animal Reproduction Laboratory, National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Japan
| | | | - Seiji Kito
- Laboratory of Animal and Genome Science Section, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
16
|
Abstract
RNA interference (RNAi) is an evolutionary conserved gene-silencing pathway that can be efficiently utilized as a tool to study gene function. RNAi is initiated by long double-stranded RNAs (dsRNAs), which are processed into small duplexes called small-interfering RNAs (siRNAs). In turn, these duplexes target mRNAs for degradation in a sequence-specific manner. Mouse oocytes, unlike most mammalian cell types, lack an interferon response to long dsRNA. Moreover, they are a rare example of a mammalian cell type with a robust endogenous RNAi pathway. For these reasons microinjection of either long dsRNAs or siRNAs results in efficient, sequence-specific gene silencing. Here, we describe a protocol for preparation and microinjection of long dsRNA into mouse oocytes.
Collapse
|
17
|
Disease-causing allele-specific silencing by RNA interference. Pharmaceuticals (Basel) 2013; 6:522-35. [PMID: 24276122 PMCID: PMC3816697 DOI: 10.3390/ph6040522] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 12/19/2022] Open
Abstract
Small double-stranded RNAs (dsRNAs) of approximately 21-nucleotides in size, referred to as small interfering RNA (siRNA) duplexes, can induce sequence-specific posttranscriptional gene silencing, or RNA interference (RNAi). Since chemically synthesized siRNA duplexes were found to induce RNAi in mammalian cells, RNAi has become a powerful reverse genetic tool for suppressing the expression of a gene of interest in mammals, including human, and its application has been expanding to various fields. Recent studies further suggest that synthetic siRNA duplexes have the potential for specifically inhibiting the expression of an allele of interest without suppressing the expression of other alleles, i.e., siRNA duplexes likely confer allele-specific silencing. Such gene silencing by RNAi is an advanced technique with very promising applications. In this review, I would like to discuss the potential utility of allele-specific silencing by RNAi as a therapeutic method for dominantly inherited diseases, and describe possible improvements in siRNA duplexes for enhancing their efficacy.
Collapse
|
18
|
Chalupnikova K, Nejepinska J, Svoboda P. Production and application of long dsRNA in mammalian cells. Methods Mol Biol 2013; 942:291-314. [PMID: 23027058 DOI: 10.1007/978-1-62703-119-6_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Double-stranded RNA (dsRNA) is involved in different biological processes. At least three different pathways can respond to dsRNA in mammals. One of these pathways is RNA interference (RNAi) where long dsRNA induces sequence-specific degradation of transcripts carrying sequences complementary to dsRNA. Long dsRNA is also a potent trigger of the interferon pathway, a sequence-independent response that leads to global suppression of translation and global RNA degradation. In addition, dsRNA can be edited by adenosine deamination, which may result in nuclear retention and degradation of dsRNA or in alteration of RNA coding potential. Here, we provide a technical review summarizing different strategies of long dsRNA usage. While the review is largely focused on long dsRNA-induced RNAi in mammalian cells, it also provides helpful information on both the in vitro production and in vivo expression of dsRNAs. We present an overview of currently available vectors for dsRNA expression and provide the latest update on oocyte-specific transgenic RNAi approaches.
Collapse
|
19
|
Nakamura H, Funahashi J. Electroporation: past, present and future. Dev Growth Differ 2012; 55:15-9. [PMID: 23157363 DOI: 10.1111/dgd.12012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 09/20/2012] [Accepted: 09/25/2012] [Indexed: 01/13/2023]
Abstract
Gene transfer by electroporation has become an indispensable method for the study of developmental biology. The technique is applied not only in chick embryos but also in mice and other organisms. Here, a short history and perspectives of electroporation for gene transfer in vertebrates are described.
Collapse
Affiliation(s)
- Harukazu Nakamura
- Department of Molecular Neurobiology, Graduate School of Life Sciences and Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku, Sendai, Japan.
| | | |
Collapse
|
20
|
Abstract
RNA interference (RNAi), a sequence-specific mRNA degradation induced by double-stranded RNA (dsRNA), is a common approach employed to specifically silence genes. Experimental RNAi in plant and invertebrate models is frequently induced by long dsRNA. However, in mammals, short RNA molecules are used preferentially since long dsRNA can provoke sequence-independent type I interferon response. A notable exception are mammalian oocytes where the interferon response is suppressed and long dsRNA is a potent and specific trigger of RNAi. Transgenic RNAi is an adaptation of RNAi allowing for inducing sequence-specific silencing upon expression of dsRNA. A decade ago, we have developed a vector for oocyte-specific expression of dsRNA, which has been used to study gene function in mouse oocytes on numerous occasions. This review provides an overview and discusses benefits and drawbacks encountered by us and our colleagues while working with the oocytes-specific transgenic RNAi system.
Collapse
Affiliation(s)
- Radek Malik
- Institute of Molecular Genetics AS CR, Videnska 1083, Prague, Czech Republic
| | | |
Collapse
|
21
|
Kong BY, Bernhardt ML, Kim AM, O'Halloran TV, Woodruff TK. Zinc maintains prophase I arrest in mouse oocytes through regulation of the MOS-MAPK pathway. Biol Reprod 2012; 87:11, 1-12. [PMID: 22539682 DOI: 10.1095/biolreprod.112.099390] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Meiosis in mammalian females is marked by two arrest points, at prophase I and metaphase II, which must be tightly regulated in order to produce a haploid gamete at the time of fertilization. The transition metal zinc has emerged as a necessary and dynamic regulator of the establishment, maintenance, and exit from metaphase II arrest, but the roles of zinc during prophase I arrest are largely unknown. In this study, we investigate the mechanisms of zinc regulation during the first meiotic arrest. Disrupting zinc availability in the prophase I arrested oocyte by treatment with the heavy metal chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN) causes meiotic resumption even in the presence of pharmacological inhibitors of meiosis. We further show that the MOS-MAPK pathway mediates zinc-dependent prophase I arrest, as the pathway prematurely activates during TPEN-induced meiotic resumption. Conversely, inhibition of the MOS-MAPK pathway maintains prophase I arrest. While prolonged zinc insufficiency ultimately results in telophase I arrest, early and transient exposure of oocytes to TPEN is sufficient to induce meiotic resumption and bypass the telophase I block, allowing the formation of developmentally competent eggs upon parthenogenetic activation. These results establish zinc as a crucial regulator of meiosis throughout the entirety of oocyte maturation, including the maintenance of and release from the first and second meiotic arrest points.
Collapse
Affiliation(s)
- Betty Y Kong
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
22
|
Compensatory functions of histone deacetylase 1 (HDAC1) and HDAC2 regulate transcription and apoptosis during mouse oocyte development. Proc Natl Acad Sci U S A 2012; 109:E481-9. [PMID: 22223663 DOI: 10.1073/pnas.1118403109] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dramatic changes in chromatin structure and histone modification occur during oocyte growth, as well as a global cessation of transcription. The role of histone modifications in these processes is poorly understood. We report the effect of conditionally deleting Hdac1 and Hdac2 on oocyte development. Deleting either gene has little or no effect on oocyte development, whereas deleting both genes results in follicle development arrest at the secondary follicle stage. This developmental arrest is accompanied by substantial perturbation of the transcriptome and a global reduction in transcription even though histone acetylation is markedly increased. There is no apparent change in histone repressive marks, but there is a pronounced decrease in histone H3K4 methylation, an activating mark. The decrease in H3K4 methylation is likely a result of increased expression of Kdm5b because RNAi-mediated targeting of Kdm5b in double-mutant oocytes results in an increase in H3K4 methylation. An increase in TRP53 acetylation also occurs in mutant oocytes and may contribute to the observed increased incidence of apoptosis. Taken together, these results suggest seminal roles of acetylation of histone and nonhistone proteins in oocyte development.
Collapse
|
23
|
Zhao X, Cang M, Yuan J, Wang Z, Yang M, Gao X, Zhu B, Liang H, Liu D. Interleukin-6 and its receptor in the development of in vitro fertilized ovine embryos. Small Rumin Res 2012. [DOI: 10.1016/j.smallrumres.2011.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Okamura K. Diversity of animal small RNA pathways and their biological utility. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:351-68. [PMID: 22086843 DOI: 10.1002/wrna.113] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Higher eukaryotes employ extensive post-transcriptional gene regulation to accomplish fine control of gene expression. The microRNA (miRNA) family plays important roles in the post-transcriptional gene regulation of broad networks of target mRNA expression. Most miRNAs are generated by a conserved mechanism involving two RNase III enzymes Drosha and Dicer. However, work from the past few years has uncovered diverse noncanonical miRNA pathways, which exploit a variety of other RNA processing enzymes. In addition, the discovery of another abundant small RNA family, endogenous short interfering RNAs (endo-siRNAs), has also broadened the catalogs of short regulatory RNAs. This review highlights recent studies that revealed novel small RNA biogenesis pathways, and discusses their relevance to gene regulatory networks.
Collapse
Affiliation(s)
- Katsutomo Okamura
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY, USA.
| |
Collapse
|
25
|
Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm Res 2011; 28:2996-3015. [PMID: 22033880 DOI: 10.1007/s11095-011-0608-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/12/2011] [Indexed: 12/13/2022]
Abstract
RNA interference (RNAi) strategies include double-stranded RNA (dsRNA), small interfering RNA (siRNA), short hairpin RNA (shRNA), and microRNA (miRNA). As this is a highly specific technique, efforts have been made to utilize RNAi towards potential knock down of disease-causing genes in a targeted fashion. RNAi has the potential to selectively inhibit gene expression by degrading or blocking the translation of the target mRNA. However, delivering these RNAs to specific cells presents a significant challenge. Some of these challenges result from the necessity of traversing the circulatory system while avoiding kidney filtration, degradation by endonucleases, aggregation with serum proteins, and uptake by phagocytes. Further, non-specific delivery may result in side-effects, including the activation of immune response. We discuss the challenges in the systemic delivery to target cells, cellular uptake, endosomal release and intracellular transport of RNAi drugs and recent progress in overcoming these barriers. We also discuss approaches that increase the specificity and metabolic stability and reduce the off-target effects of RNAi strategy.
Collapse
|
26
|
Nejepinska J, Malik R, Filkowski J, Flemr M, Filipowicz W, Svoboda P. dsRNA expression in the mouse elicits RNAi in oocytes and low adenosine deamination in somatic cells. Nucleic Acids Res 2011; 40:399-413. [PMID: 21908396 PMCID: PMC3245926 DOI: 10.1093/nar/gkr702] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Double-stranded RNA (dsRNA) can enter different pathways in mammalian cells, including sequence-specific RNA interference (RNAi), sequence-independent interferon (IFN) response and editing by adenosine deaminases. To study the routing of dsRNA to these pathways in vivo, we used transgenic mice ubiquitously expressing from a strong promoter, an mRNA with a long hairpin in its 3′-UTR. The expressed dsRNA neither caused any developmental defects nor activated the IFN response, which was inducible only at high expression levels in cultured cells. The dsRNA was poorly processed into siRNAs in somatic cells, whereas, robust RNAi effects were found in oocytes, suggesting that somatic cells lack some factor(s) facilitating siRNA biogenesis. Expressed dsRNA did not cause transcriptional silencing in trans. Analysis of RNA editing revealed that a small fraction of long dsRNA is edited. RNA editing neither prevented the cytoplasmic localization nor processing into siRNAs. Thus, a long dsRNA structure is well tolerated in mammalian cells and is mainly causing a robust RNAi response in oocytes.
Collapse
Affiliation(s)
- Jana Nejepinska
- Institute of Molecular Genetics AS CR, Videnska 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|
27
|
Ihara M, Tseng H, Schultz RM. Expression of variant ribosomal RNA genes in mouse oocytes and preimplantation embryos. Biol Reprod 2011; 84:944-6. [PMID: 21209414 DOI: 10.1095/biolreprod.110.089680] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ribosomal DNA (rDNA) is not composed of multiple copies of identical transcription units, as commonly believed, but rather of at least seven rDNA variant subtypes that are expressed in somatic cells. This finding raises the possibility that ribosome function may be modulated as proposed by the ribosome filter hypothesis. We report here that mouse oocytes and preimplantation embryos express all the rDNA variants except variant V and that there is no marked developmental change in the qualitative pattern of variant expression. The maternal and embryonic ribosome pools are therefore quite similar, minimizing the likelihood that developmental changes in composition of the ribosome population are critical for preimplantation development.
Collapse
Affiliation(s)
- Motomasa Ihara
- Department of Biology, University of Pennsylvania, 433 South University Ave., Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
28
|
Baumann C, Viveiros MM, De La Fuente R. Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo. PLoS Genet 2010; 6:e1001137. [PMID: 20885787 PMCID: PMC2944790 DOI: 10.1371/journal.pgen.1001137] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 08/24/2010] [Indexed: 01/10/2023] Open
Abstract
The α-thalassemia/mental retardation X-linked protein (ATRX) is a chromatin-remodeling factor known to regulate DNA methylation at repetitive sequences of the human genome. We have previously demonstrated that ATRX binds to pericentric heterochromatin domains in mouse oocytes at the metaphase II stage where it is involved in mediating chromosome alignment at the meiotic spindle. However, the role of ATRX in the functional differentiation of chromatin structure during meiosis is not known. To test ATRX function in the germ line, we developed an oocyte-specific transgenic RNAi knockdown mouse model. Our results demonstrate that ATRX is required for heterochromatin formation and maintenance of chromosome stability during meiosis. During prophase I arrest, ATRX is necessary to recruit the transcriptional regulator DAXX (death domain associated protein) to pericentric heterochromatin. At the metaphase II stage, transgenic ATRX-RNAi oocytes exhibit abnormal chromosome morphology associated with reduced phosphorylation of histone 3 at serine 10 as well as chromosome segregation defects leading to aneuploidy and severely reduced fertility. Notably, a large proportion of ATRX-depleted oocytes and 1-cell stage embryos exhibit chromosome fragments and centromeric DNA–containing micronuclei. Our results provide novel evidence indicating that ATRX is required for centromere stability and the epigenetic control of heterochromatin function during meiosis and the transition to the first mitosis. The transmission of an abnormal chromosome complement from the gametes to the early embryo, a condition called aneuploidy, is a major cause of congenital birth defects and pregnancy loss. Human embryos are particularly susceptible to aneuploidy, which in the majority of cases is the result of abnormal meiosis in the female gamete. However, the molecular mechanisms involved in the onset of aneuploidy in mammalian oocytes are not fully understood. We show here that, the α-thalassemia/mental retardation X-linked protein (ATRX) is essential for the maintenance of chromosome stability during female meiosis. ATRX is required to recruit the transcriptional regulator DAXX to pericentric heterochromatin at prophase I of meiosis. Notably, lack of ATRX function at the metaphase II stage interferes with the establishment of chromatin modifications associated with chromosome condensation leading to segregation defects, chromosome fragmentation, and severely reduced fertility. Our results provide direct evidence for a role of ATRX in the regulation of pericentric heterochromatin structure and function in mammalian oocytes and have important implications for our understanding of the epigenetic factors contributing to the onset of aneuploidy in the female gamete.
Collapse
Affiliation(s)
- Claudia Baumann
- Female Germ Cell Biology Group, Department of Clinical Studies, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
| | - Maria M. Viveiros
- Department of Animal Biology, Center for Animal Transgenesis and Germ Cell Research, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
| | - Rabindranath De La Fuente
- Female Germ Cell Biology Group, Department of Clinical Studies, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Chen LL, Yang L, Carmichael GG. Molecular basis for an attenuated cytoplasmic dsRNA response in human embryonic stem cells. Cell Cycle 2010; 9:3552-64. [PMID: 20814227 PMCID: PMC3047619 DOI: 10.4161/cc.9.17.12792] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/24/2010] [Accepted: 06/24/2010] [Indexed: 12/12/2022] Open
Abstract
The introduction of double stranded RNA (dsRNA) into the cytoplasm of mammalian cells usually leads to a potent antiviral response resulting in the rapid induction of interferon beta (IFNβ). This response can be mediated by a number of dsRNA sensors, including TLR3, MDA5, RIG-I and PKR. We show here that pluripotent human cells (human embryonic stem (hES) cells and induced pluripotent (iPS) cells) do not induce interferon in response to cytoplasmic dsRNA, and we have used a variety of approaches to learn the underlying basis for this phenomenon. Two major cytoplasmic dsRNA sensors, TLR3 and MDA5, are not expressed in hES cells and iPS cells. PKR is expressed in hES cells, but is not activated by transfected dsRNA. In addition, RIG-I is expressed, but fails to respond to dsRNA because its signaling adapter, MITA/STING, is not expressed. Finally, the interferon-inducible RNAse L and oligoadenylate synthetase enzymes are also expressed at very low levels. Upon differentiation of hES cells into trophoblasts, cells acquire the ability to respond to dsRNA and this correlates with a significant induction of expression of TLR3 and its adaptor protein TICAM-1/TRIF. Taken together, our results reveal that the lack of an interferon response may be a general characteristic of pluripotency and that this results from the systematic downregulation of a number of genes involved in cytoplasmic dsRNA signaling.
Collapse
Affiliation(s)
- Ling-Ling Chen
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, Farmington, CT, USA.
| | | | | |
Collapse
|
30
|
Svoboda P, Stein P. RNAi experiments in mouse oocytes and early embryos. Cold Spring Harb Protoc 2010; 2009:pdb.top56. [PMID: 20147032 DOI: 10.1101/pdb.top56] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The discovery of RNA interference (RNAi) in 1998 ushered in a new era in biology. RNAi currently serves as a favorite approach for inhibition of gene function in many areas of research. This article provides a brief review of RNAi and discussion of the benefits and drawbacks of using long double-stranded RNA (dsRNA) in mammalian oocytes and early embryos. We also provide an introduction to protocols for RNAi experiments in mouse, including preparation and microinjection of dsRNA into mouse oocytes and early embryos, and preparation and testing of constructs for transgenic RNAi based on long hairpin RNA expression.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | |
Collapse
|
31
|
Goossens K, Tesfaye D, Rings F, Schellander K, Hölker M, Van Poucke M, Van Zeveren A, Lemahieu I, Van Soom A, Peelman LJ. Suppression of keratin 18 gene expression in bovine blastocysts by RNA interference. Reprod Fertil Dev 2010; 22:395-404. [PMID: 20047725 DOI: 10.1071/rd09080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/13/2009] [Indexed: 11/23/2022] Open
Abstract
The expression of the cytoskeleton protein Keratin 18 (KRT18) starts at the onset of bovine blastocyst formation. KRT18 is solely expressed in the trophectoderm and can therefore be used as a marker for trophectodermal differentiation. In the present study, the expression of KRT18 was suppressed by RNA interference to probe its functional importance in bovine blastocyst formation. Microinjection of KRT18 double-stranded RNA into the cytoplasm of zygotes resulted in reduced KRT18 mRNA (76% reduction) and protein expression at the blastocyst stage and a lower developmental competence (41% reduction in the percentage of blastocyst formation) compared with non-injected and phosphate-buffered saline (PBS)-injected controls. KRT18 downregulation was associated with reduced mRNA expression of KRT8, the binding partner of KRT18, but had no effect on the expression of KRT19, CDH1 and DSP, other genes involved in intermediate filament and cytoskeleton formation. The results of the present study demonstrated that KRT18 knockdown in preimplantation embryos results in reduced blastocyst formation, but no further morphological aberrations were observed with regard to the biological function of KRT18. These observations could be due to the function of KRT18 being replaced by that of another gene, the surviving blastocysts expressing the minimum level of KRT18 required for normal blastocyst development or the possibility that further aberrations may occur later in development.
Collapse
Affiliation(s)
- Karen Goossens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ma J, Flemr M, Stein P, Berninger P, Malik R, Zavolan M, Svoboda P, Schultz RM. MicroRNA activity is suppressed in mouse oocytes. Curr Biol 2010; 20:265-70. [PMID: 20116252 DOI: 10.1016/j.cub.2009.12.042] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/02/2009] [Accepted: 12/16/2009] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs that typically imperfectly base pair with 3' untranslated regions (3'UTRs) and mediate translational repression and mRNA degradation. Dicer, which generates small RNAs in the miRNA and RNA interference (RNAi) pathways, is essential for meiotic maturation of mouse oocytes. We found that 3'UTRs of transcripts upregulated in Dicer1(-/-) oocytes are not enriched in miRNA binding sites, implicating a weak impact of miRNAs on the maternal transcriptome. Therefore, we tested the ability of endogenous miRNAs to mediate RNA-like cleavage or translational repression of reporter mRNAs. In contrast to somatic cells, endogenous miRNAs in oocytes poorly repressed translation of mRNA reporters, whereas their RNAi-like activity was much less affected. Reporter mRNA carrying let-7-binding sites failed to localize to P body-like structures in oocytes. Our data suggest that miRNA function is downregulated during oocyte development, an idea supported by normal meiotic maturation of oocytes lacking Dgcr8, which is required for the miRNA but not the RNAi pathway (Suh et al. [1], this issue of Current Biology). Suppressing miRNA function during oocyte growth is likely an early event in reprogramming gene expression during the transition of a differentiated oocyte into pluripotent blastomeres of the embryo.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Oh JS, Han SJ, Conti M. Wee1B, Myt1, and Cdc25 function in distinct compartments of the mouse oocyte to control meiotic resumption. ACTA ACUST UNITED AC 2010; 188:199-207. [PMID: 20083600 PMCID: PMC2812522 DOI: 10.1083/jcb.200907161] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Keeping Wee1B in the nucleus is important to maintain meiotic arrest, but its timely export is also required for meiosis to resume. After a long period of quiescence at dictyate prophase I, termed the germinal vesicle (GV) stage, mammalian oocytes reenter meiosis by activating the Cdc2–cyclin B complex (maturation-promoting factor [MPF]). The activity of MPF is regulated by Wee1/Myt1 kinases and Cdc25 phosphatases. In this study, we demonstrate that the sequestration of components that regulate MPF activity in distinct subcellular compartments is essential for their function during meiosis. Down-regulation of either Wee1B or Myt1 causes partial meiotic resumption, and oocytes reenter the cell cycle only when both proteins are down-regulated. Shortly before GV breakdown (GVBD), Cdc25B is translocated from the cytoplasm to the nucleus, whereas Wee1B is exported from the nucleus to the cytoplasm. These movements are regulated by PKA inactivation and MPF activation, respectively. Mislocalized Wee1B or Myt1 is not able to maintain meiotic arrest. Thus, cooperation of Wee1B, Myt1, and Cdc25 is required to maintain meiotic arrest and relocation of these components before GVBD is necessary for meiotic reentry.
Collapse
Affiliation(s)
- Jeong Su Oh
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
34
|
|
35
|
[Construction of the oocyte-specific expressing phiC31 integrase vector pZP3-INT and its expression in mouse oocytes]. YI CHUAN = HEREDITAS 2009; 31:595-9. [PMID: 19586858 DOI: 10.3724/sp.j.1005.2009.00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Streptomyces phage phiC31 integrase is a site-specific recombinase, which can catalyze site-specific, unidirectional recombination between the attP site and attB site. To explore whether it can be used to mediate the recombination of specific gene in oocytes, GV-stage oocytes were collected from 3-week-old Kunming White mice by puncturing antral follocles with a sharp needle, and micro-injected with oocyte-specific expressing phiC31 integrase vector pZP3-INT and site -specific recombination detection vector pBCPB+. phiC31 integrase mRNA were detected by RT-PCR and the recombination of pBCPB+ was evaluated by PCR in mouse oocytes at 48 h after injection. Both can get corresponding bands. These results indicated that the expression of phiC31 integrase can be driven by ZP3 promoter efficiently and phiC31 integrase can mediate the site-specific recombination between attP site and attB site in mouse GV-stage oocytes. It could be a powerful tool for the study of recombination of specific gene in mouse oocytes and would provide an alternative way for the mouse oocyte genome manipulation.
Collapse
|
36
|
Wang C, Xu B, Zhou B, Zhang C, Yang J, Ouyang H, Ning G, Zhang M, Shen J, Xia G. Reducing CYP51 inhibits follicle-stimulating hormone induced resumption of mouse oocyte meiosis in vitro. J Lipid Res 2009; 50:2164-72. [PMID: 19433477 DOI: 10.1194/jlr.m800533-jlr200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiosis activating sterol, produced directly by lanosterol 14-alpha-demethylase (CYP51) during cholesterol biosynthesis, has been shown to promote the initiation of oocyte meiosis. However, the physiological significance of CYP51 action on oocyte meiosis in response to gonadotrophins' induction remained to be further explored. Herein, we analyzed the role of CYP51 in gonadotrophin-induced in vitro oocyte maturation via RNA interference (RNAi). We showed that although both luteinizing hormone (LH) and follicle-stimulating hormone (FSH) significantly induced meiotic resumption in follicle-enclosed oocytes (FEOs), the effect of LH on oocyte meiosis resumption in FEOs was weaker than FSH. Moreover, both FSH and LH were able to upregulate CYP51 expression in cultured follicular granulosa cells when examined at 8 h or 12 h posttreatments, respectively. Interestingly, whereas knockdown of CYP51 expression via small interference RNA (siRNA) moderately blocked (23% reduction at 24 h) FSH-induced oocyte maturation [43% germinal vesicle breakdown (GVBD) rate in RNAi vs. 66% in control, P < 0.05] in FEOs, similar treatments showed no apparent effects on LH-induced FEO meiotic maturation (58% GVBD rate in RNAi vs. 63% in control, P > 0.05). Moreover, the results in a cumulus-enclosed oocytes (CEOs) model showed that approximately 30% of FSH-induced CEOs' meiotic resumption was blocked upon CYP51 knockdown by siRNAs. These findings suggest that FSH, partially at least, employs CYP51, and therefore the MAS pathway, to initiate oocyte meiosis.
Collapse
Affiliation(s)
- Chao Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Transgenic RNAi-mediated reduction of LZP3 in Lagurus lagurus oocytes results in decreased fertilization ability in IVF. Mol Biol Rep 2009; 37:1253-9. [PMID: 19301144 DOI: 10.1007/s11033-009-9498-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 03/02/2009] [Indexed: 01/18/2023]
Abstract
Structural differences in oligosaccharides on mammalian zona pellucida 3(ZP3) from different species may determine whether or not spermatozoa being able to bind to ZP. We reported here that by microinjecting the siRNA interference recombinant construct pGenesil-ZP31 encoding a Lagurus zp3 (lzp3) hairpin dsRNA of 21 bp into the inmatured oocytes of Lagurus lagurus, distributed in northern region of Xingjiang, to disturb its fertility. Results of in vitro fertilization after in vitro maturation of the immature oocytes of Lagurus lagurus showed that the fertilization rate of the transgenic oocytes carried pGenesil-ZP31 was decreased greatly (2.82%) compared to the oocytes carried pGenesil-HK (15.71%), suggesting that the transgenic RNAi-mediated silencing of lzp3 in Lagurus lagurus oocytes results in decreased fertilization ability. These results proved that LZP3 of Lagurus lagurus, like other mammalians, is essential for the recognition between oocyte and spermatozoa.
Collapse
|
38
|
Schindler K, Schultz RM. CDC14B acts through FZR1 (CDH1) to prevent meiotic maturation of mouse oocytes. Biol Reprod 2009; 80:795-803. [PMID: 19129509 DOI: 10.1095/biolreprod.108.074906] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Meiotic maturation in oocytes is a prolonged process that is unique because of cell cycle arrests at prophase of meiosis I (MI) and at metaphase of meiosis II (MII). Fluctuations in cyclin-dependent kinase 1 (CDK1/CDC2A) activity govern meiotic progression, yet little is known about how these fluctuations are achieved. CDC14 is a highly conserved dual-specificity phosphatase that counteracts the function of proteins phosphorylated by CDK. Mammals contain two CDC14 homologs, CDC14A and CDC14B. We report that CDC14B localizes with the meiotic spindle in mouse oocytes, and (unlike somatic cells) it does not localize in the nucleolus. Oocytes that overexpress CDC14B are significantly delayed in resuming meiosis and fail to progress to MII, whereas oocytes depleted of CDC14B spontaneously resume meiosis under conditions that normally inhibit meiotic resumption. Depletion of FZR1 (CDH1), a regulatory subunit of the anaphase-promoting complex/cyclosome that targets cyclin B1 (CCNB1) for ubiquitin-mediated proteolysis, partially restores normal timing of meiotic resumption in oocytes with excess CDC14B. These studies also reveal that experimentally altering CDC14B levels generates eggs with abnormal spindles and with chromosome alignment perturbations. Our data indicate that CDC14B is a negative regulator of meiotic resumption and may regulate MI in mouse oocytes.
Collapse
Affiliation(s)
- Karen Schindler
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
39
|
Abstract
RNA interference (RNAi) is a suitable method for sequence-specific post-transcriptional gene silencing for a number of model systems. The production of a transgene for transgenic RNAi in mouse can be accomplished by cloning an inverted repeat (IR) into the Zp3 transgenic cassette. Here, we describe three different strategies that have been used successfully to clone an IR: cloning by ligating polymerase chain reaction (PCR) products, sequential cloning using a short spacer, and sequential cloning using a temporary long spacer. Once cloning has been completed, sequencing the IR is the best way to assure that both arms are sufficiently long and intact; thus, we also describe typical problems one may encounter when sequencing IRs. There are two possible strategies for sequencing a cloned IR: (1) one internal primer at the end of the IR can be used to sequence both arms in a single sequencing run or (2) external primers can be used to sequence both arms separately. Although we have successfully sequenced IRs using both strategies, we suggest using the latter to sequence transgenic constructs.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
40
|
Ihara M, Stein P, Schultz RM. UBE2I (UBC9), a SUMO-conjugating enzyme, localizes to nuclear speckles and stimulates transcription in mouse oocytes. Biol Reprod 2008; 79:906-13. [PMID: 18703419 DOI: 10.1095/biolreprod.108.070474] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sumoylation is a posttranslational modification in which SUMO (small ubiquitin-related modifier) proteins are covalently attached to their substrates. In vertebrates, developmental roles for sumoylation have been studied, but the function of sumoylation during mammalian oocyte growth and maturation is not known. As a prelude to conducting studies on the role of sumoylation during oocyte development, we analyzed the temporal and spatial pattern of expression of UBE2I, a SUMO-conjugating E2 enzyme. Immunocytochemical analysis of UBE2I revealed a punctate nuclear staining pattern, with transcriptionally quiescent, fully grown, GV-intact oocytes having larger UBE2I-containing bodies than transcriptionally active, meiotically incompetent growing oocytes. Inhibiting transcription in incompetent oocytes resulted in an increase in the size of the UBE2I-containing bodies. Overexpression of either wild-type UBE2I or catalytically inactive UBE2I resulted in an increase in the size of the UBE2I-containing bodies but also an increase in BrUTP incorporation, suggesting that transcriptional activation by UBE2I is independent of its catalytic activity. Although UBE2I-containing bodies did not completely colocalize with SUMO1 or SUMO2 and SUMO3, which were localized mainly on the nuclear membrane and in the nucleoplasm, UBE2I strikingly colocalized with SFRS2, which is a component of nuclear speckles and critical for mRNA processing. These results suggest a novel function for UBE2I and therefore sumoylation in gene expression.
Collapse
Affiliation(s)
- Motomasa Ihara
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | |
Collapse
|
41
|
Abstract
RNA interference (RNAi) is a powerful tool in deciphering gene function. It has been used extensively, especially in cultured mammalian cells. We have shown that RNAi-induced gene silencing can be generated in mice. With conventional transgenic techniques, shRNA-expressing constructs can be introduced into one-cell mouse embryos. The transgenic animals so obtained exhibit reduced expression of the targeted genes. Furthermore, the knockdown effect can be transmitted through the germline in these animals. We describe a method of generating a transgenic RNAi mouse line.
Collapse
Affiliation(s)
- Pumin Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
42
|
Abstract
RNA silencing is a common term for homology-dependent silencing phenomena found in the majority of eukaryotic species. RNA silencing pathways share several conserved components. The common denominator of these pathways is the presence of specific, short (21-25 nt) RNA molecules generated from different double-stranded RNA substrates by a specific RNase III activity. Short RNA molecules serve as a template for sequence-specific effects including transcriptional silencing, mRNA degradation, and inhibition of translation. This review will discuss possible roles of RNA silencing pathways in mouse oocytes and early embryos as well as the use of RNA silencing for experimental inhibition of gene expression in this model system.
Collapse
|
43
|
Arnold DR, Françon P, Zhang J, Martin K, Clarke HJ. Stem-loop binding protein expressed in growing oocytes is required for accumulation of mRNAs encoding histones H3 and H4 and for early embryonic development in the mouse. Dev Biol 2008; 313:347-58. [PMID: 18036581 PMCID: PMC5123872 DOI: 10.1016/j.ydbio.2007.10.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/18/2007] [Accepted: 10/22/2007] [Indexed: 11/29/2022]
Abstract
Growing oocytes accumulate mRNAs and proteins that support early embryogenesis. Among the most abundant of these maternal factors are the histones. Histone mRNA accumulation and translation are mainly restricted to S-phase in somatic cells, and the mechanism by which oocytes produce histones is unknown. In somatic cells, replication-dependent histone synthesis requires the stem-loop binding protein (SLBP). SLBP is expressed during S-phase, binds to the 3'-untranslated region of non-polyadenylated transcripts encoding the histones, and is required for their stabilization and translation. SLBP is expressed in oocytes of several species, suggesting a role in histone synthesis. To test this, we generated transgenic mice whose oocytes lack SLBP. mRNAs encoding histones H3 and H4 failed to accumulate in these oocytes. Unexpectedly, mRNAs encoding H2A and H2B were little affected. Embryos derived from SLBP-depleted oocytes reached the 2-cell stage, but most then became arrested. Histones H3 and H4, but not H2A or H2B, were substantially reduced in these embryos. The embryos also expressed high levels of gamma H2A.X. Injection of histones into SLBP-depleted embryos rescued them from developmental arrest. Thus, SLBP is an essential component of the mechanism by which growing oocytes of the mouse accumulate the histones that support early embryonic development.
Collapse
Affiliation(s)
- Daniel R. Arnold
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Patricia Françon
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - James Zhang
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Kyle Martin
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Hugh J. Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
- Department of Biology, McGill University, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
44
|
Gantier MP, Baugh JA, Donnelly SC. Nuclear transcription of long hairpin RNA triggers innate immune responses. J Interferon Cytokine Res 2007; 27:789-97. [PMID: 17892400 DOI: 10.1089/jir.2006.0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RNA interference (RNAi) is one of the most promising tools for deciphering the human genome and has great therapeutic potential. However, its high target specificity limits its efficiency for therapeutic protection from viruses with high rates of genetic mutation. This limitation may be overcome by the expression of long hairpin RNAs (lhRNAs). Indeed, lhRNAs have been shown recently to have increased efficacy over short interfering RNAs (siRNAs) as protective antiviral agents. Here, we investigate the expression of lhRNAs and demonstrate unintended effects. We show that overexpressed lhRNAs are exported to the cytoplasm. As a consequence, we detect activation of innate immune signaling pathways by lhRNAs. With growing concerns about the complexity of cytoplasmic detection of dsRNAs by the innate immune machinery, this work highlights the need for closer scrutiny when using lhRNAs as potential antiviral agents.
Collapse
Affiliation(s)
- Michael P Gantier
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, and St. Vincent's University Hospital, Dublin, Ireland
| | | | | |
Collapse
|
45
|
Favetta LA, Madan P, Mastromonaco GF, St John EJ, King WA, Betts DH. The oxidative stress adaptor p66Shc is required for permanent embryo arrest in vitro. BMC DEVELOPMENTAL BIOLOGY 2007; 7:132. [PMID: 18047664 PMCID: PMC2220003 DOI: 10.1186/1471-213x-7-132] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 11/29/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Excessive developmental failure occurs during the first week of in vitro embryo development due to elevated levels of cell death and arrest. We hypothesize that permanently arrested embryos enter a stress-induced "senescence-like" state that is dependent on the oxidative stress-adaptor and lifespan determinant protein p66Shc. The aim of this study was to selectively diminish p66Shc gene expression in bovine oocytes and embryos using post-transcriptional gene silencing by RNA-mediated interference to study the effects of p66Shc knockdown on in vitro fertilized bovine embryos. RESULTS Approximately 12,000-24,000 short hairpin (sh)RNAi molecules specific for p66Shc were microinjected into bovine germinal vesicle stage oocytes or zygotes. Experiments were comprised of a control group undergoing IVF alone and two groups microinjected with and without p66Shc shRNAi molecules prior to IVF. The amount of p66Shc mRNA quantified by Real Time PCR was significantly (P < 0.001) lowered upon p66Shc shRNAi microinjection. This reduction was selective for p66Shc mRNA, as both histone H2a and p53 mRNA levels were not altered. The relative signal strength of p66Shc immuno-fluorescence revealed a significant reduction in the number of pixels for p66Shc shRNAi microinjected groups compared to controls (P < 0.05). A significant decrease (P < 0.001) in the incidence of arrested embryos upon p66Shc shRNAi microinjection was detected compared to IVF and microinjected controls along with significant reductions (P < 0.001) in both cleavage divisions and blastocyst development. No significant differences in p66Shc mRNA levels (P = 0.314) were observed among the three groups at the blastocyst stage. CONCLUSION These results show that p66Shc is involved in the regulation of embryo development specifically in mediating early cleavage arrest and facilitating development to the blastocyst stage for in vitro produced bovine embryos.
Collapse
Affiliation(s)
- Laura A Favetta
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
MicroRNAs (miRNAs) are emerging as potent regulators of many biological processes, including cellular differentiation and disease. Recently, miRNA has been directly involved in innate immunity and transduction signalling by Toll-like receptors and the ensuing cytokine response. In this review, we present an overview of what is currently known of the involvement of miRNA and RNA interference components in the fine-tuning of innate immune responses.
Collapse
Affiliation(s)
- Michael P Gantier
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
47
|
Reese KJ, Lin S, Verona RI, Schultz RM, Bartolomei MS. Maintenance of paternal methylation and repression of the imprinted H19 gene requires MBD3. PLoS Genet 2007; 3:e137. [PMID: 17708683 PMCID: PMC1950162 DOI: 10.1371/journal.pgen.0030137] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 06/28/2007] [Indexed: 01/14/2023] Open
Abstract
Paternal repression of the imprinted H19 gene is mediated by a differentially methylated domain (DMD) that is essential to imprinting of both H19 and the linked and oppositely imprinted Igf2 gene. The mechanisms by which paternal-specific methylation of the DMD survive the period of genome-wide demethylation in the early embryo and are subsequently used to govern imprinted expression are not known. Methyl-CpG binding (MBD) proteins are likely candidates to explain how these DMDs are recognized to silence the locus, because they preferentially bind methylated DNA and recruit repression complexes with histone deacetylase activity. MBD RNA and protein are found in preimplantation embryos, and chromatin immunoprecipitation shows that MBD3 is bound to the H19 DMD. To test a role for MBDs in imprinting, two independent RNAi-based strategies were used to deplete MBD3 in early mouse embryos, with the same results. In RNAi-treated blastocysts, paternal H19 expression was activated, supporting the hypothesis that MBD3, which is also a member of the Mi-2/NuRD complex, is required to repress the paternal H19 allele. RNAi-treated blastocysts also have reduced levels of the Mi-2/NuRD complex protein MTA-2, which suggests a role for the Mi-2/NuRD repressive complex in paternal-specific silencing at the H19 locus. Furthermore, DNA methylation was reduced at the H19 DMD when MBD3 protein was depleted. In contrast, expression and DNA methylation were not disrupted in preimplantation embryos for other imprinted genes. These results demonstrate new roles for MBD3 in maintaining imprinting control region DNA methylation and silencing the paternal H19 allele. Finally, MBD3-depleted preimplantation embryos have reduced cell numbers, suggesting a role for MBD3 in cell division. Genomic imprinting is a specialized system of gene regulation whereby only one copy of a gene is used, either the maternal or the paternal copy. Misregulation of imprinting in humans results in developmental disorders such as Beckwith-Wiedemann Syndrome, and is implicated in many cancers. Study of imprinted genes in mice can lead to a greater understanding of these diseases as well as insight into gene regulation. Many imprinted genes are associated with methylation on the silenced allele. The imprinted gene H19 is maternally expressed and paternally methylated in a region upstream of the promoter known as the differentially methylated domain. This region is required for proper imprinted expression of H19 and its upstream imprinted neighbor Igf2. Our studies have explored the requirement for methyl-CpG binding protein 3 (MBD3) in silencing of the paternal allele. MBD3 is known to be part of a repressive complex that resides at silenced genes. In our experiments, we have shown that MBD3 is required for imprinting of H19, and is also required for the maintenance of methylation on the paternal allele. Finally, the MBD3 protein can be found at the differentially methylated domain. The identification of a protein required for silencing of the paternal allele of H19 is an important step in understanding regulation of this gene.
Collapse
Affiliation(s)
- Kimberly J Reese
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shu Lin
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Raluca I Verona
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Qin ZL, Zhao P, Cao MM, Qi ZT. siRNAs targeting terminal sequences of the SARS-associated coronavirus membrane gene inhibit M protein expression through degradation of M mRNA. J Virol Methods 2007; 145:146-54. [PMID: 17590445 PMCID: PMC7112935 DOI: 10.1016/j.jviromet.2007.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 05/14/2007] [Accepted: 05/16/2007] [Indexed: 11/07/2022]
Abstract
SARS-associated coronavirus (SCoV) M protein plays a key role in viral assembly and budding. Recent studies revealed that M protein could interact with N protein in the Golgi complex. In this study, we showed that SCoV M protein co-localized in the Golgi apparatus with a Golgi vector marker. To study M protein function, three candidate small interfering RNAs (siRNAs) corresponding to M gene sequences were designed, transcribed in vitro, and then tested for their ability to silence M protein expression. The plasmid, pEGFP-M, encoding SCoV M protein as a fusion protein with EGFP, was used for silencing and for reporter gene detection in HEK 293T cells transfected with siRNA constructs. The results showed that the mean green fluorescence intensity and M RNA transcripts were significantly reduced, and that the expression of M glycoprotein was strongly inhibited in those cells co-transfected with M-specific siRNAs. These findings demonstrated that the three M-specific siRNAs were able to specifically and effectively inhibit M glycoprotein expression in cultured cells by blocking the accumulation of mRNA, which provides an approach for studies on the functions of M protein and for the development of novel prophylactic or therapeutic agents for SCoV infection.
Collapse
Affiliation(s)
| | | | | | - Zhong-tian Qi
- Corresponding author. Tel.: +86 21 25070312; fax: +86 21 25070312.
| |
Collapse
|
49
|
Hirai S, Oka SI, Adachi E, Kodama H. The effects of spacer sequences on silencing efficiency of plant RNAi vectors. PLANT CELL REPORTS 2007; 26:651-9. [PMID: 17205339 DOI: 10.1007/s00299-006-0277-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 11/19/2006] [Accepted: 11/23/2006] [Indexed: 05/13/2023]
Abstract
RNA interference (RNAi) has been used to suppress gene expression in various eukaryotic organisms. In plants, RNAi can be induced by introduction of an RNAi vector that transcribes a self-complementary hairpin RNA. Most basic RNAi constructs have an inverted repeat interrupted with a spacer sequence. To test silencing capability of RNAi constructs, we developed an in vivo assay that is based on the RNAi-mediated changes of the alpha-linolenic acid content in hairy roots. A tobacco endoplasmic reticulum omega-3 fatty acid desaturase (NtFAD3) is the main enzyme for production of alpha-linolenic acid of root membrane lipids. Tobacco hairy roots transformed with the RNAi vectors against the NtFAD3 gene showed a decrease in alpha-linolenic acid content. The frequency of RNA silencing was more affected by spacer sequence than by spacer length, at least between 100 and 1800 bp. Since significant amounts of hairpin RNA against the NtFAD3 gene remained in the transgenic plants displaying a weak silencing phenotype, low degree of silencing was attributed to low efficiency of hairpin RNA processing mediated by Dicer-like proteins. Our results show the possibility of producing a broad range of the RNAi-induced silencing phenotypes by replacing the spacer sequence of RNAi construct.
Collapse
Affiliation(s)
- Sayaka Hirai
- Graduate School of Science and Technology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522 Japan
| | | | | | | |
Collapse
|
50
|
Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ. Critical roles for Dicer in the female germline. Genes Dev 2007; 21:682-93. [PMID: 17369401 PMCID: PMC1820942 DOI: 10.1101/gad.1521307] [Citation(s) in RCA: 380] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dicer is an essential component of RNA interference (RNAi) pathways, which have broad functions in gene regulation and genome organization. Probing the consequences of tissue-restricted Dicer loss in mice indicates a critical role for Dicer during meiosis in the female germline. Mouse oocytes lacking Dicer arrest in meiosis I with multiple disorganized spindles and severe chromosome congression defects. Oogenesis and early development are times of significant post-transcriptional regulation, with controlled mRNA storage, translation, and degradation. Our results suggest that Dicer is essential for turnover of a substantial subset of maternal transcripts that are normally lost during oocyte maturation. Furthermore, we find evidence that transposon-derived sequence elements may contribute to the metabolism of maternal transcripts through a Dicer-dependent pathway. Our studies identify Dicer as central to a regulatory network that controls oocyte gene expression programs and that promotes genomic integrity in a cell type notoriously susceptible to aneuploidy.
Collapse
Affiliation(s)
- Elizabeth P. Murchison
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences and Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA
| | - Paula Stein
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zhenyu Xuan
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences and Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA
| | - Hua Pan
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael Q. Zhang
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences and Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA
| | - Richard M. Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- E-MAIL ; FAX (215) 898-8780
| | - Gregory J. Hannon
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences and Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA
- Corresponding authors.E-MAIL ; FAX (516) 367-8874
| |
Collapse
|