1
|
Demoures B, Soulet F, Descarpentrie J, Galeano-Otero I, Sanchez Collado J, Casado M, Smani T, González A, Alves I, Lalloué F, Masri B, Rascol E, Dupuy JW, Dourthe C, Saltel F, Raymond AA, Badiola I, Evrard S, Villoutreix B, Pernot S, Siegfried G, Khatib AM. Repression of apelin Furin cleavage sites provides antimetastatic strategy in colorectal cancer. EMBO Mol Med 2025; 17:504-534. [PMID: 39962271 PMCID: PMC11904221 DOI: 10.1038/s44321-025-00196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 03/14/2025] Open
Abstract
The adipokine apelin has been directly implicated in various physiological processes during embryogenesis and human cancers. Nevertheless, the importance of the conversion of its precursor proapelin to mature apelin in tumorigenesis remains unknown. In this study, we identify Furin as the cellular proprotein convertase responsible for proapelin cleavage. We explore the therapeutic potential of targeting proapelin cleavage sites in metastatic colorectal cancer by introducing apelin-dm, a modified variant resulting from alteration in proapelin cleavage sites. Apelin-dm demonstrates efficacy in inhibiting tumor growth, promoting cell death, suppressing angiogenesis, and early colorectal liver metastasis events. Proteomic analysis reveals reciprocal regulation between apelin and apelin-dm on proteins associated with clinical outcomes in colon cancer patients. Apelin-dm emerges as a modulator of apelin receptor dynamics, influencing affinity, internalization, and repression of apelin signaling linked to various protein kinases. Pharmacokinetic and toxicity assessments confirm the specificity, safety, and stability of apelin-dm, as well as its facile hepatic metabolism. These findings position targeting proapelin cleavage as a promising therapeutic strategy against metastatic colorectal cancer, paving the way for further clinical exploration.
Collapse
Affiliation(s)
- Béatrice Demoures
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Fabienne Soulet
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Jean Descarpentrie
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Isabel Galeano-Otero
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - José Sanchez Collado
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Maria Casado
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Department of Cell Biology and Histology, University of the Basque Country, B° Sarriena sn, 48940, Leioa, Spain
| | - Tarik Smani
- Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Avenida Manuel Siurot s/n, 41013, Seville, Spain
| | - Alvaro González
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
| | - Isabel Alves
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, Bordeaux, France
| | - Fabrice Lalloué
- EA3842- CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Cedex, Limoges, France
| | - Bernard Masri
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014, Paris, France
| | - Estelle Rascol
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, Bordeaux, France
| | - Jean-William Dupuy
- Bordeaux Protéome, F-33000, Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Cyril Dourthe
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Frédéric Saltel
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Anne-Aurélie Raymond
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Iker Badiola
- Department of Cell Biology and Histology, University of the Basque Country, B° Sarriena sn, 48940, Leioa, Spain
| | - Serge Evrard
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Institut Bergonié, Bordeaux, France
| | - Bruno Villoutreix
- Université de Paris, Inserm UMR 1141, Robert-Debré Hospital, 75019, Paris, France
| | - Simon Pernot
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France
- Institut Bergonié, Bordeaux, France
| | - Géraldine Siegfried
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France.
| | - Abdel-Majid Khatib
- University of Bordeaux, Bordeaux Institute of Oncology (BRIC)-UMR1312, Bordeaux, France.
- Institut Bergonié, Bordeaux, France.
| |
Collapse
|
2
|
Couvineau P, Llorens-Cortes C. Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function. Clin Sci (Lond) 2025; 139:131-149. [PMID: 39879076 DOI: 10.1042/cs20240955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025]
Abstract
Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present. Apelin and vasopressin interact at the brain and renal levels to maintain body fluid homeostasis by regulating diuresis in opposite directions. Apelin and angiotensin II have opposite effects on the regulation of blood pressure (BP). Angiotensin II, by binding to AT1 receptors present in VSMCs, induces intracellular calcium mobilization and vasoconstriction, while apelin, by binding to Apelin-R present on vascular endothelium, increases nitric oxide production and induces vasodilation. Apelin also plays a crucial role in the regulation of cardiac function. Apelin-deficient and Apelin-R-deficient mice develop progressive myocardial dysfunction with ageing and are susceptible to heart failure in response to pressure overload. Since the half-life of apelin is very short in vivo (in the minute range), several metabolically stable apelin analogs and non-peptidic Apelin-R agonists have been developed, with potential applications in diverse diseases. In this review, we highlight the interaction between apelin and vasopressin in the regulation of water balance and that between apelin and angiotensin II in the regulation of BP. Additionally, we underline the protective effects of apelin in cardiac function. Lastly, we discuss the beneficial effects of Apelin-R activation in different pathological states such as hyponatremia, hypertension, and heart failure.
Collapse
Affiliation(s)
- Pierre Couvineau
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U1191, Montpellier University, Montpellier, France
| | - Catherine Llorens-Cortes
- Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France
- Department of Medicines and Healthcare Technologies, CEA Paris-Saclay, Frédéric Joliot Institute for Life and Sciences, SIMoS, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Xu W, Yan J, Travis ZD, Lenahan C, Gao L, Wu H, Zheng J, Zhang J, Shao A, Yu J. Apelin/APJ system: a novel promising target for anti-oxidative stress in stroke. Front Pharmacol 2025; 15:1352927. [PMID: 39881878 PMCID: PMC11775478 DOI: 10.3389/fphar.2024.1352927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
The apelin/APJ system has garnered increasing attention in recent years. In this review, we comprehensively discuss the physiological and pathological mechanisms of the apelin/APJ system in stroke. The apelin/APJ system is widely expressed in the central nervous system (CNS). However, the distribution of the apelin/APJ system varies across different regions and subcellular organelles of the brain. Additionally, the neuroprotective effects of the apelin/APJ system have been reported to inhibit oxidative and nitrative stresses via various signaling pathways. Despite this, the clinical application of the apelin/APJ system remains distant, as apelin has numerous active forms and signaling pathways. The development of a range of drugs targeting the apelin/APJ system holds promise for treating stroke.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jun Yan
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zachary D. Travis
- Department of Medical Science Education, College of Health Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, New Mexico State University, Las Cruces, NM, United States
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jun Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Mohammadi K, Habibi‐Khorasani S, Nasri H, Toudeshki KK, Mirtajaddini M, Davari N. Evaluation of left ventricular systolic function in opium users by strain echocardiography. ESC Heart Fail 2024; 11:4308-4313. [PMID: 39206946 PMCID: PMC11631326 DOI: 10.1002/ehf2.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 09/04/2024] Open
Abstract
AIMS Heart failure is known as a health problem in the world due to its mortality and burdens on the health care system. Studies remain controversial about the effect of opium usage on systolic heart function. Therefore, the aim of this study was to compare systolic left ventricular function in opium users with non-addict people by strain echocardiography and its association with serum apelin level. METHODS This case-control study was conducted in 2022 at Shafa Hospital in Kerman, Iran, on 50 opium users who referred to the addiction treatment centres and had no history of other substance usage. The addiction is defined by the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) and a history of opium consumption for at least 3 years. Fifty healthy people (non-opium users) who were matched in terms of age and sex were enrolled as a control group. Demographic information of the participants, including age, gender and amount of opium usage, was recorded by questionnaire. Citrated blood samples were taken from all participants in the study, and serum apelin was measured by the enzyme-linked immunosorbent assay (ELISA) method. They underwent transthoracic echocardiography by an expert cardiologist using the same device (Philips Affiniti 50). Echocardiographic systolic parameters have been recorded and compared between the two groups. RESULTS In this study, 100 participants, including 50 opium users and 50 non-opium users (as a control group), were investigated. The mean age was 36.4 ± 5.08 in the opium users' group and 34.14 ± 7.2 in the control group. As both groups were matched, there were 8 (16%) women and 42 (84%) men in each of the two groups. The mean amount of ejection fraction (EF) and global longitudinal strain (GLS) were significantly lower in opium users than in the control group (P < 0.001). The results also demonstrated that the serum level of apelin in the addicted persons was lower when compared with the non-addicted persons (3.4 vs. 9.7; P < 0.001). CONCLUSIONS Evaluation of systolic left ventricular function in opium users by strain echocardiography showed that opium affects the systolic function of the heart, as observed by a significant reduction in EF and GLS. So opium usage can be considered a risk factor for heart failure and needs more attention in preventive cardiology.
Collapse
Affiliation(s)
- Khadije Mohammadi
- Cardiovascular Research CenterKerman University of Medical SciencesKermanIran
| | - Shirin Habibi‐Khorasani
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Hamidreza Nasri
- Cardiovascular Research CenterKerman University of Medical SciencesKermanIran
| | | | - Marzieh Mirtajaddini
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Nazanin Davari
- Cardiovascular Research CenterKerman University of Medical SciencesKermanIran
| |
Collapse
|
5
|
Malchow J, Eberlein J, Li W, Hogan BM, Okuda KS, Helker CSM. Neural progenitor-derived Apelin controls tip cell behavior and vascular patterning. SCIENCE ADVANCES 2024; 10:eadk1174. [PMID: 38968355 PMCID: PMC11225789 DOI: 10.1126/sciadv.adk1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
During angiogenesis, vascular tip cells guide nascent vascular sprouts to form a vascular network. Apelin, an agonist of the G protein-coupled receptor Aplnr, is enriched in vascular tip cells, and it is hypothesized that vascular-derived Apelin regulates sprouting angiogenesis. We identify an apelin-expressing neural progenitor cell population in the dorsal neural tube. Vascular tip cells exhibit directed elongation and migration toward and along the apelin-expressing neural progenitor cells. Notably, restoration of neural but not vascular apelin expression in apelin mutants remedies the angiogenic defects of mutants. By functional analyses, we show the requirement of Apelin signaling for tip cell behaviors, like filopodia formation and cell elongation. Through genetic interaction studies and analysis of transgenic activity reporters, we identify Apelin signaling as a modulator of phosphoinositide 3-kinase and extracellular signal-regulated kinase signaling in tip cells in vivo. Our results suggest a previously unidentified neurovascular cross-talk mediated by Apelin signaling that is important for tip cell function during sprouting angiogenesis.
Collapse
Affiliation(s)
- Julian Malchow
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
| | - Jean Eberlein
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
| | - Wei Li
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
| | - Benjamin M. Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Kazuhide S. Okuda
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Christian S. M. Helker
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Marburg, Germany
| |
Collapse
|
6
|
Franchini L, Orlandi C. Deorphanization of G Protein Coupled Receptors: A Historical Perspective. Mol Pharmacol 2024; 105:374-385. [PMID: 38622017 DOI: 10.1124/molpharm.124.000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Counting over 800 members, G protein coupled receptors (GPCRs) form the largest family of membrane receptors encoded in the human genome. Since the discovery of G proteins and GPCRs in the late 1970s and early 1980s, a significant portion of the GPCR research has been focused on identifying ligand/receptor pairs in parallel to studies related to their signaling properties. Despite significant advancements, about a fourth of the ∼400 nonodorant GPCRs are still considered orphan because their natural or endogenous ligands have yet to be identified. We should consider that every GPCR was once an orphan and that endogenous ligands have often been associated with biologic effects without a complete understanding of the molecular identity of their target receptors. Within this framework, this review offers a historical perspective on deorphanization processes for representative GPCRs, including the ghrelin receptor, γ aminobutyric acid B receptor, apelin receptor, cannabinoid receptors, and GPR15. It explores three main scenarios encountered in deorphanization efforts and discusses key questions and methodologies employed in elucidating ligand-receptor interactions, providing insights for future research endeavors. SIGNIFICANCE STATEMENT: Understanding how scientists have historically approached the issue of GPCR deorphanization and pairing of biologically active ligands with their cognate receptors are relevant topics in pharmacology. In fact, the biology of each GPCR, including its pathophysiological involvement, has often been uncovered only after its deorphanization, illuminating druggable targets for various diseases. Furthermore, uncovered endogenous ligands have therapeutic value as many ligands-or derivates thereof-are developed into drugs.
Collapse
Affiliation(s)
- Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
7
|
Shi N, Wang Y, Xia Z, Zhang J, Jia S, Jiao Y, Wang C, Wang X, Zhao J, Zhang J, Jiang D. The regulatory role of the apelin/APJ axis in scarring: Identification of upstream and downstream mechanisms. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167125. [PMID: 38508477 DOI: 10.1016/j.bbadis.2024.167125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Scarring, a prevalent issue in clinical settings, is characterized by the excessive generation of extracellular matrix within the skin tissue. Among the numerous regulatory factors implicated in fibrosis across various organs, the apelin/APJ axis has emerged as a potential regulator of fibrosis. Given the shared attribute of heightened extracellular matrix production between organ fibrosis and scarring, we hypothesize that the apelin/APJ axis also plays a regulatory role in scar development. In this study, we examined the expression of apelin and APJ in scar tissue, normal skin, and fibroblasts derived from these tissues. We investigated the impact of the hypoxic microenvironment in scars on apelin/APJ expression to identify the transcription factors influencing apelin/APJ expression. Through overexpressing or knocking down apelin/APJ expression, we observed their effects on fibroblast secretion of extracellular matrix proteins. We further validated these effects in animal experiments while exploring the underlying mechanisms. Our findings demonstrated that the apelin/APJ axis is expressed in fibroblasts from keloid, hypertrophic scar, and normal skin. The regulation of apelin/APJ expression by the hypoxic environment in scars plays a significant role in hypertrophic scar and keloid development. This regulation promotes extracellular matrix secretion through upregulation of TGF-β1 expression via the PI3K/Akt/CREB1 pathway.
Collapse
Affiliation(s)
- Nian Shi
- Department of Burns and Plastic Surgery, The Second Hospital, Shandong University, Jinan, Shandong 250033, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Wang
- Department of Burns and Plastic Surgery, The Second Hospital, Shandong University, Jinan, Shandong 250033, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhenyu Xia
- Department of Burns and Plastic Surgery, The Second Hospital, Shandong University, Jinan, Shandong 250033, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jingjuan Zhang
- Department of Burns and Plastic Surgery, The Second Hospital, Shandong University, Jinan, Shandong 250033, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shanshan Jia
- Department of Burns and Plastic Surgery, The Second Hospital, Shandong University, Jinan, Shandong 250033, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ya Jiao
- Department of Burns and Plastic Surgery, The Second Hospital, Shandong University, Jinan, Shandong 250033, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chao Wang
- Department of Burns and Plastic Surgery, The Second Hospital, Shandong University, Jinan, Shandong 250033, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoyang Wang
- Department of Burns and Plastic Surgery, The Second Hospital, Shandong University, Jinan, Shandong 250033, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jie Zhao
- Department of Burns and Plastic Surgery, The Second Hospital, Shandong University, Jinan, Shandong 250033, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Jixun Zhang
- Department of Burns and Plastic Surgery, The Second Hospital, Shandong University, Jinan, Shandong 250033, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Duyin Jiang
- Department of Burns and Plastic Surgery, The Second Hospital, Shandong University, Jinan, Shandong 250033, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
8
|
Phạm TTT, Murza A, Marsault É, Frampton JP, Rainey JK. Localized apelin-17 analogue-bicelle interactions as a facilitator of membrane-catalyzed receptor recognition and binding. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184289. [PMID: 38278504 DOI: 10.1016/j.bbamem.2024.184289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
The apelinergic system encompasses two peptide ligand families, apelin and apela, along with the apelin receptor (AR or APJ), a class A G-protein-coupled receptor. This system has diverse physiological effects, including modulating heart contraction, vasodilation/constriction, glucose regulation, and vascular development, with involvement in a variety of pathological conditions. Apelin peptides have been previously shown to interact with and become structured upon binding to anionic micelles, consistent with a membrane-catalyzed mechanism of ligand-receptor binding. To overcome the challenges of observing nuclear magnetic resonance (NMR) spectroscopy signals of a dilute peptide in biological environments, 19F NMR spectroscopy, including diffusion ordered spectroscopy (DOSY) and saturation transfer difference (STD) experiments, was used herein to explore the membrane-interactive behaviour of apelin. NMR-optimized apelin-17 analogues with 4-trifluoromethyl-phenylalanine at various positions were designed and tested for bioactivity through ERK activation in stably-AR transfected HEK 293 T cells. Far-UV circular dichroism (CD) spectropolarimetry and 19F NMR spectroscopy were used to compare the membrane interactions of these analogues with unlabelled apelin-17 in both zwitterionic/neutral and net-negative bicelle conditions. Each analogue binds to bicelles with relatively weak affinity (i.e., in fast exchange on the NMR timescale), with preferential interactions observed at the cationic residue-rich N-terminal and mid-length regions of the peptide leaving the C-terminal end unencumbered for receptor recognition, enabling a membrane-anchored fly-casting mechanism of peptide search for the receptor. In all, this study provides further insight into the membrane-interactive behaviour of an important bioactive peptide, demonstrating interactions and biophysical behaviour that cannot be neglected in therapeutic design.
Collapse
Affiliation(s)
- Trần Thanh Tâm Phạm
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Alexandre Murza
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Éric Marsault
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - John P Frampton
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
9
|
Gao S, Chen H. Therapeutic potential of apelin and Elabela in cardiovascular disease. Biomed Pharmacother 2023; 166:115268. [PMID: 37562237 DOI: 10.1016/j.biopha.2023.115268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Apelin and Elabela (Ela) are peptides encoded by APLN and APELA, respectively, which act on their receptor APJ and play crucial roles in the body. Recent research has shown that they not only have important effects on the endocrine system, but also promote vascular development and maintain the homeostasis of myocardial cells. From a molecular biology perspective, we explored the roles of Ela and apelin in the cardiovascular system and summarized the mechanisms of apelin-APJ signaling in the progression of myocardial infarction, ischemia-reperfusion injury, atherosclerosis, pulmonary arterial hypertension, preeclampsia, and congenital heart disease. Evidences indicated that apelin and Ela play important roles in cardiovascular diseases, and there are many studies focused on developing apelin, Ela, and their analogues for clinical treatments. However, the literature on the therapeutic potential of apelin, Ela and their analogues and other APJ agonists in the cardiovascular system is still limited. This review summarized the regulatory pathways of apelin/ELA-APJ axis in cardiovascular function and cardiovascular-related diseases, and the therapeutic effects of their analogues in cardiovascular diseases were also included.
Collapse
Affiliation(s)
- Shenghan Gao
- Department of Histology and embryology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Hongping Chen
- Department of Histology and embryology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
10
|
Chen J, Wang Z, Zhang R, Yin H, Wang P, Wang C, Jiang Y. Heterodimerization of apelin and opioid receptor-like 1 receptors mediates apelin-13-induced G protein biased signaling. Life Sci 2023:121892. [PMID: 37364634 DOI: 10.1016/j.lfs.2023.121892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The apelin receptor (APJ) and the opioid-related nociceptin receptor 1 (ORL1) are family A G protein-coupled receptors that participate in a variety of physiological processes. The distribution and function of APJ and ORL1 in the nervous system and peripheral tissues are similar; however, the detailed mechanism of how these two receptors modulate signaling and physiological effects remains unclear. Here, we examined whether APJ and ORL1 form dimers, and investigated signal transduction pathways. The endogenous co-expression of APJ and ORL1 in SH-SY5Y cells was confirmed by western blotting and RT-PCR. Bioluminescence and fluorescence resonance energy transfer assays, as well as a proximity ligation assay and co-immunoprecipitation experiments, demonstrated that APJ and ORL1 heterodimerize in HEK293 cells. We found that the APJ-ORL1 heterodimer is selectively activated by apelin-13, which causes the dimer to couple to Gαi proteins and reduce the recruitment of GRKs and β-arrestins to the dimer. We showed that the APJ-ORL1 dimer exhibits biased signaling, in which G protein-dependent signaling pathways override β-arrestin-dependent signaling pathways. Our results demonstrate that the structural interface of the APJ-ORL1 dimer switches from transmembrane domain TM1/TM2 in the inactive state to TM5 in the active state. We used mutational analysis and BRET assays to identify key residues in TM5 (APJ L2185.55, APJ I2245.61, and ORL1 L2295.52) responsible for the receptor-receptor interaction. These results provide important information on the APJ-ORL1 heterodimer and may assist the design of new drugs targeting biased signaling pathways for treatment of pain and cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom.
| | - Zhengwen Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Haiyan Yin
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Peixiang Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining, China.
| |
Collapse
|
11
|
Zhang R, Wu F, Cheng B, Wang C, Bai B, Chen J. Apelin-13 prevents the effects of oxygen-glucose deprivation/reperfusion on bEnd.3 cells by inhibiting AKT-mTOR signaling. Exp Biol Med (Maywood) 2023; 248:146-156. [PMID: 36573455 PMCID: PMC10041053 DOI: 10.1177/15353702221139186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Autophagy plays works by degrading misfolded proteins and dysfunctional organelles and maintains intracellular homeostasis. Apelin-13 has been investigated as an agent that might protect the blood-brain barrier (BBB) from cerebral ischemia/reperfusion (I/R) injury. In this study, we examined whether apelin-13 protects cerebral microvascular endothelial cells, important components of the BBB, from I/R injury by regulating autophagy. To mimic I/R injury, the mouse cerebral microvascular endothelia l cell line bEnd 3 undergoes the process of oxygen and glucose deprivation and re feeding in the process of culture. Cell viability was detected using a commercial kit, and cell migration was monitored by in vitro scratch assay. The tight junction (TJ) proteins ZO-1 and occludin; the autophagy markers LC3 II, beclin 1, and p62; and components of the AKT-mTOR signaling pathway were detected by Western blotting and immunofluorescence. To confirm the role of autophagy in OGD/R and the protective effect of apelin-13, we treated the cells with 3-methyladenine (3-MA), a pharmacological inhibitor of autophagy. Our results demonstrated that OGD/R increased autophagic activity but decreased viability, abundance of TJs, and migration. Viability and TJ abundance were further reduced when the OGD/R group was treated with 3-MA. These results indicated that bEnd.3 upregulates autophagy to ameliorate the effects of OGD/R injury on viability and TJs, but that the autophagy induced by OGD/R alone is not sufficient to protect against the effect on cell migration. Treatment of OGD/R samples with apelin-13 markedly increased viability, TJ abundance, and migration, as well as autophagic activity, whereas 3-MA inhibited this increase, suggesting that apelin-13 exerted its protective effects by upregulating autophagy.
Collapse
Affiliation(s)
- Rumin Zhang
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
| | - Fei Wu
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
| | - Baohua Cheng
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
| | - Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
| | - Bo Bai
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
12
|
Respekta N, Pich K, Dawid M, Mlyczyńska E, Kurowska P, Rak A. The Apelinergic System: Apelin, ELABELA, and APJ Action on Cell Apoptosis: Anti-Apoptotic or Pro-Apoptotic Effect? Cells 2022; 12:cells12010150. [PMID: 36611944 PMCID: PMC9818302 DOI: 10.3390/cells12010150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The apelinergic system comprises two peptide ligands, apelin and ELABELA, and their cognate G-protein-coupled receptor, the apelin receptor APJ. Apelin is a peptide that was isolated from bovine stomach extracts; the distribution of the four main active forms, apelin-36, -17, -13, and pyr-apelin-13 differs between tissues. The mature form of ELABELA-32 can be transformed into forms called ELABELA-11 or -21. The biological function of the apelinergic system is multifaceted, and includes the regulation of angiogenesis, body fluid homeostasis, energy metabolism, and functioning of the cardiovascular, nervous, respiratory, digestive, and reproductive systems. This review summarises the mechanism of the apelinergic system in cell apoptosis. Depending on the cell/tissue, the apelinergic system modulates cell apoptosis by activating various signalling pathways, including phosphoinositide 3-kinase (PI3K), extracellular signal-regulated protein kinase (ERK1/2), protein kinase B (AKT), 5'AMP-activated protein kinase(AMPK), and protein kinase A (PKA). Apoptosis is critically important during various developmental processes, and any dysfunction leads to pathological conditions such as cancer, autoimmune diseases, and developmental defects. The purpose of this review is to present data that suggest a significant role of the apelinergic system as a potential agent in various therapies.
Collapse
|
13
|
Protective effects of apelin on gastric mucosa. Tissue Cell 2022; 78:101885. [PMID: 35940035 DOI: 10.1016/j.tice.2022.101885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
|
14
|
Chaves-Almagro C, Auriau J, Dortignac A, Clerc P, Lulka H, Deleruyelle S, Projetti F, Nakhlé J, Frances A, Berta J, Gigoux V, Fourmy D, Dufresne M, Gomez-Brouchet A, Guillermet-Guibert J, Cordelier P, Knibiehler B, Jockers R, Valet P, Audigier Y, Masri B. Upregulated Apelin Signaling in Pancreatic Cancer Activates Oncogenic Signaling Pathways to Promote Tumor Development. Int J Mol Sci 2022; 23:ijms231810600. [PMID: 36142542 PMCID: PMC9503500 DOI: 10.3390/ijms231810600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Despite decades of effort in understanding pancreatic ductal adenocarcinoma (PDAC), there is still a lack of innovative targeted therapies for this devastating disease. Herein, we report the expression of apelin and its receptor, APJ, in human pancreatic adenocarcinoma and its protumoral function. Apelin and APJ protein expression in tumor tissues from patients with PDAC and their spatiotemporal pattern of expression in engineered mouse models of PDAC were investigated by immunohistochemistry. Apelin signaling function in tumor cells was characterized in pancreatic tumor cell lines by Western blot as well as proliferation, migration assays and in murine orthotopic xenograft experiments. In premalignant lesions, apelin was expressed in epithelial lesions whereas APJ was found in isolated cells tightly attached to premalignant lesions. However, in the invasive stage, apelin and APJ were co-expressed by tumor cells. In human tumor cells, apelin induced a long-lasting activation of PI3K/Akt, upregulated β-catenin and the oncogenes c-myc and cyclin D1 and promoted proliferation, migration and glucose uptake. Apelin receptor blockades reduced cancer cell proliferation along with a reduction in pancreatic tumor burden. These findings identify the apelin signaling pathway as a new actor for PDAC development and a novel therapeutic target for this incurable disease.
Collapse
Affiliation(s)
- Carline Chaves-Almagro
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, UPS, Toulouse III, 31432 Toulouse, France
| | - Johanna Auriau
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, UPS, Toulouse III, 31432 Toulouse, France
| | - Alizée Dortignac
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, UPS, Toulouse III, 31432 Toulouse, France
| | - Pascal Clerc
- INSERM ERL1226, CNRS UMR 5215, Université de Toulouse, UPS, Toulouse III, 31432 Toulouse, France
| | - Hubert Lulka
- Centre de Recherches en Cancérologie de Toulouse, INSERM, CNRS, Université Paul Sabatier, Université de Toulouse, 31037 Toulouse, France
| | - Simon Deleruyelle
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, UPS, Toulouse III, 31432 Toulouse, France
| | | | - Jessica Nakhlé
- Centre de Recherches en Cancérologie de Toulouse, INSERM, CNRS, Université Paul Sabatier, Université de Toulouse, 31037 Toulouse, France
| | - Audrey Frances
- Centre de Recherches en Cancérologie de Toulouse, INSERM, CNRS, Université Paul Sabatier, Université de Toulouse, 31037 Toulouse, France
| | - Judit Berta
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Véronique Gigoux
- INSERM ERL1226, CNRS UMR 5215, Université de Toulouse, UPS, Toulouse III, 31432 Toulouse, France
| | - Daniel Fourmy
- INSERM ERL1226, CNRS UMR 5215, Université de Toulouse, UPS, Toulouse III, 31432 Toulouse, France
| | - Marlène Dufresne
- Centre de Recherches en Cancérologie de Toulouse, INSERM, CNRS, Université Paul Sabatier, Université de Toulouse, 31037 Toulouse, France
| | | | - Julie Guillermet-Guibert
- Centre de Recherches en Cancérologie de Toulouse, INSERM, CNRS, Université Paul Sabatier, Université de Toulouse, 31037 Toulouse, France
| | - Pierre Cordelier
- Centre de Recherches en Cancérologie de Toulouse, INSERM, CNRS, Université Paul Sabatier, Université de Toulouse, 31037 Toulouse, France
| | - Bernard Knibiehler
- Centre de Recherches en Cancérologie de Toulouse, INSERM, CNRS, Université Paul Sabatier, Université de Toulouse, 31037 Toulouse, France
| | - Ralf Jockers
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
| | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, UPS, Toulouse III, 31432 Toulouse, France
- RESTORE, UMR 1301-Inserm 5070-CNRS EFS, Université de Toulouse, 31100 Toulouse, France
| | - Yves Audigier
- Centre de Recherches en Cancérologie de Toulouse, INSERM, CNRS, Université Paul Sabatier, Université de Toulouse, 31037 Toulouse, France
| | - Bernard Masri
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, UPS, Toulouse III, 31432 Toulouse, France
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
- Correspondence: ; Tel.: +33-1-40-51-64-87
| |
Collapse
|
15
|
Wang X, Zhang L, Li P, Zheng Y, Yang Y, Ji S. Apelin/APJ system in inflammation. Int Immunopharmacol 2022; 109:108822. [DOI: 10.1016/j.intimp.2022.108822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022]
|
16
|
Girault-Sotias PE, De Mota N, Llorens-Cortès C. [Physiological role of the apelin receptor: implication in body fluid homeostasis and hyponatremia]. Biol Aujourdhui 2022; 215:119-132. [PMID: 35275056 DOI: 10.1051/jbio/2021012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 06/14/2023]
Abstract
Apelin, a vasoactive neuropeptide, its receptor and arginine-vasopressin (AVP, antidiuretic hormone) are co-localized in magnocellular vasopressinergic neurons. In the kidney, the apelin receptor is present in glomerular arterioles and the collecting duct (CD) where the AVP type 2 (V2-R) receptors are located. Apelin exerts an aquaretic action both by its inhibitory effect on the phasic electrical activity of vasopressinergic neurons and the secretion of AVP into the bloodstream and by its direct actions at the kidney level resulting in an increase in the renal microcirculation and the inhibition of the antidiuretic effect of AVP mediated by V2-R in the CD. Plasma apelin and AVP are conversely regulated by osmotic stimuli in both humans and rodents, showing that apelin is involved with AVP in maintaining body fluid homeostasis. Clinically, in patients with inappropriate antidiuresis syndrome (SIAD), the apelin/AVP balance is altered, which contributes to water metabolism defect. Activation of the apelin receptor by the metabolically stable apelin-17 analog, that increases aqueous diuresis and moderately water intake and gradually corrects hyponatremia, may constitute a new approach for the treatment of SIAD.
Collapse
Affiliation(s)
- Pierre-Emmanuel Girault-Sotias
- Laboratoire « Neuropeptides centraux et régulations hydrique et cardiovasculaire », Centre Interdisciplinaire de Recherche en Biologie, INSERM U1050, Collège de France, Paris, France
| | - Nadia De Mota
- Laboratoire « Neuropeptides centraux et régulations hydrique et cardiovasculaire », Centre Interdisciplinaire de Recherche en Biologie, INSERM U1050, Collège de France, Paris, France
| | - Catherine Llorens-Cortès
- Laboratoire « Neuropeptides centraux et régulations hydrique et cardiovasculaire », Centre Interdisciplinaire de Recherche en Biologie, INSERM U1050, Collège de France, Paris, France
| |
Collapse
|
17
|
Xu F, Wu M, Lu X, Zhang H, Shi L, Xi Y, Zhou H, Wang J, Miao L, Gong DW, Cui W. Effect of Fc-Elabela-21 on renal ischemia/reperfusion injury in mice: Mediation of anti-apoptotic effect via Akt phosphorylation. Peptides 2022; 147:170682. [PMID: 34742787 DOI: 10.1016/j.peptides.2021.170682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Renal ischemia/reperfusion injury (IRI) is the most common cause of acute kidney injury (AKI), and patients with AKI have a high rate of mortality. Apelin is a therapeutic candidate for treatment of IRI and Elabela (ELA) is a recently discovered hormone that also activates the apelin receptor (APJ). We examined the use of ELA as a preventive treatment for IRI using in vitro and in vivo models. METHODS Male mice were subjected to renal IRI, with or without administration of a stabilized form of ELA (Fc-ELA-21) for 4 days. Renal tubular lesions were measured using H&E staining, reactive oxygen species (ROS) were measured using a dihydroethidium stain assay, and renal cell apoptosis was measured using the TUNEL assay and flow cytometry. Immortalized human proximal tubular epithelial (HK-2) cells were pretreated with or without LY294002 and/or ELA-32, maintained at normoxic or hypoxic conditions, and then returned to normal culture conditions to mimic IRI. Cell apoptosis was determined using the TUNEL assay and cell proliferation was determined using the MTT assay. The levels of Akt, p-Akt, ERK1/2, p- ERK1/2, Bcl-2, Bax, caspase-3 and cleaved caspase-3 were measured using western blotting. RESULTS Fc-ELA-21 administration reduced renal tissue damage, ROS production, and apoptosis in mice that had renal IRI. ELA-32 reduced HK-2 cell apoptosis and restored the proliferation of cells subjected to IRI. Akt phosphorylation had a role in the anti-apoptotic effect of ELA. CONCLUSION This study of in vitro and in vivo models of IRI indicated that the preventive and anti-apoptotic effects of ELA were mediated via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Feng Xu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China; Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Man Wu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Xuehong Lu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Hong Zhang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Lin Shi
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Yue Xi
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Huifen Zhou
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Junhong Wang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Lining Miao
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Da-Wei Gong
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
18
|
de Oliveira AA, Vergara A, Wang X, Vederas JC, Oudit GY. Apelin pathway in cardiovascular, kidney, and metabolic diseases: Therapeutic role of apelin analogs and apelin receptor agonists. Peptides 2022; 147:170697. [PMID: 34801627 DOI: 10.1016/j.peptides.2021.170697] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The apelin/apelin receptor (ApelinR) signal transduction pathway exerts essential biological roles, particularly in the cardiovascular system. Disturbances in the apelin/ApelinR axis are linked to vascular, heart, kidney, and metabolic disorders. Therefore, the apelinergic system has surfaced as a critical therapeutic strategy for cardiovascular diseases (including pulmonary arterial hypertension), kidney disease, insulin resistance, hyponatremia, preeclampsia, and erectile dysfunction. However, apelin peptides are susceptible to rapid degradation through endogenous peptidases, limiting their use as therapeutic tools and translational potential. These proteases include angiotensin converting enzyme 2, neutral endopeptidase, and kallikrein thereby linking the apelin pathway with other peptide systems. In this context, apelin analogs with enhanced proteolytic stability and synthetic ApelinR agonists emerged as promising pharmacological alternatives. In this review, we focus on discussing the putative roles of the apelin pathway in various physiological systems from function to dysfunction, and emphasizing the therapeutic potential of newly generated metabolically stable apelin analogs and non-peptide ApelinR agonists.
Collapse
Affiliation(s)
- Amanda A de Oliveira
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ander Vergara
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaopu Wang
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
19
|
Chapman FA, Nyimanu D, Maguire JJ, Davenport AP, Newby DE, Dhaun N. The therapeutic potential of apelin in kidney disease. Nat Rev Nephrol 2021; 17:840-853. [PMID: 34389827 PMCID: PMC8361827 DOI: 10.1038/s41581-021-00461-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a leading cause of global morbidity and mortality and is independently associated with cardiovascular disease. The mainstay of treatment for CKD is blockade of the renin-angiotensin-aldosterone system (RAAS), which reduces blood pressure and proteinuria and slows kidney function decline. Despite this treatment, many patients progress to kidney failure, which requires dialysis or kidney transplantation, and/or die as a result of cardiovascular disease. The apelin system is an endogenous physiological regulator that is emerging as a potential therapeutic target for many diseases. This system comprises the apelin receptor and its two families of endogenous ligands, apelin and elabela/toddler. Preclinical and clinical studies show that apelin receptor ligands are endothelium-dependent vasodilators and potent inotropes, and the apelin system has a reciprocal relationship with the RAAS. In preclinical studies, apelin regulates glomerular haemodynamics and acts on the tubule to promote aquaresis. In addition, apelin is protective in several kidney injury models. Although the apelin system has not yet been studied in patients with CKD, the available data suggest that apelin is a promising potential therapeutic target for kidney disease.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Duuamene Nyimanu
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK
| | - Neeraj Dhaun
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK.
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
20
|
APLN/APLNR Signaling Controls Key Pathological Parameters of Glioblastoma. Cancers (Basel) 2021; 13:cancers13153899. [PMID: 34359800 PMCID: PMC8345670 DOI: 10.3390/cancers13153899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The neurovascular peptide Apelin and its receptor APLNR are upregulated during glioblastoma pathology. Here we summarize their role in the brain tumor microenvironment composed of neurons, astrocytes, and the vascular and immune systems. Targeting APLN/APLNR signaling promises to unfold multimodal actions in future GBM therapy, acting as an anti-angiogenic and an anti-invasive treatment, and offering the possibility to reduce neurological symptoms and increase overall survival simultaneously. Abstract Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. GBM-expansion depends on a dense vascular network and, coherently, GBMs are highly angiogenic. However, new intratumoral blood vessels are often aberrant with consequences for blood-flow and vascular barrier function. Hence, the delivery of chemotherapeutics into GBM can be compromised. Furthermore, leaky vessels support edema-formation, which can result in severe neurological deficits. The secreted signaling peptide Apelin (APLN) plays an important role in the formation of GBM blood vessels. Both APLN and the Apelin receptor (APLNR) are upregulated in GBM cells and control tumor cell invasiveness. Here we summarize the current evidence on the role of APLN/APLNR signaling during brain tumor pathology. We show that targeting APLN/APLNR can induce anti-angiogenic effects in GBM and simultaneously blunt GBM cell infiltration. In addition, we discuss how manipulation of APLN/APLNR signaling in GBM leads to the normalization of tumor vessels and thereby supports chemotherapy, reduces edema, and improves anti-tumorigenic immune reactions. Hence, therapeutic targeting of APLN/APLNR signaling offers an interesting option to address different pathological hallmarks of GBM.
Collapse
|
21
|
El Mathari B, Briand P, Corbier A, Poirier B, Briand V, Raffenne-Devillers A, Harnist MP, Guillot E, Guilbert F, Janiak P. Apelin improves cardiac function mainly through peripheral vasodilation in a mouse model of dilated cardiomyopathy. Peptides 2021; 142:170568. [PMID: 33965442 DOI: 10.1016/j.peptides.2021.170568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/13/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022]
Abstract
There is growing evidence that apelin plays a role in the regulation of the cardiovascular system by increasing myocardial contractility and acting as a vasodilator. However, it remains unclear whether apelin improves cardiac contractility in a load-dependent or independent manner in pathological conditions. For this purpose we investigated the cardiovascular effects of apelin in α-actin transgenic mice (mActin-Tg mice), a model of cardiomyopathy. [Pyr1]apelin-13 was administered by continuous infusion at 2 mg/kg/d for 3 weeks. Effects on cardiac function were determined by echocardiography and a Pressure-Volume (PV) analysis. mActin-Tg mice showed a dilated cardiomyopathy (DCM) phenotype similar to that encountered in patients expressing the same mutation. Compared to WT animals, mActin-Tg mice displayed cardiac systolic impairment [significant decrease in ejection fraction (EF), cardiac output (CO), and stroke volume (SV)] associated with cardiac ventricular dilation and diastolic dysfunction, characterized by an impairment in mitral flow velocity (E/A) and in deceleration time (DT). Load-independent myocardial contractility was strongly decreased in mActin-Tg mice while total peripheral vascular resistance (TPR) was significantly increased. As compared to vehicle-treated animals, a 3-week treatment with [Pyr1]apelin-13 significantly improved EF%, SV, E/A, DT and corrected TPR, with no significant effect on load-independent indices of myocardial contractility, blood pressure and heart rate. In conclusion [Pyr1]apelin-13 displayed no intrinsic contractile effect but improved cardiac function in dilated cardiomyopathy mainly by reducing peripheral vascular resistance, with no change in blood pressure.
Collapse
Affiliation(s)
- Brahim El Mathari
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Pascale Briand
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Alain Corbier
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Bruno Poirier
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Véronique Briand
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Alice Raffenne-Devillers
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Marie-Pierre Harnist
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Etienne Guillot
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Frederique Guilbert
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France
| | - Philip Janiak
- Cardiovascular & Metabolism Therapeutic Area, Sanofi R&D, 1 avenue Pierre Brossolette, 91385, Chilly-Mazarin, France.
| |
Collapse
|
22
|
Ashokan A, Harisankar HS, Kameswaran M, Aradhyam GK. Critical APJ receptor residues in extracellular domains that influence effector selectivity. FEBS J 2021; 288:6543-6562. [PMID: 34076959 DOI: 10.1111/febs.16048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 11/29/2022]
Abstract
Human APJ receptor/apelin receptor (APJR), activated by apelin peptide isoforms, regulates a wide range of physiological processes. The role of extracellular loop (ECL) domain residues of APJR in ligand binding and receptor activation has not been established yet. Based on multiple sequence alignment of APJ receptor from various organisms, we identified conserved residues in the extracellular domains. Alanine substitutions of specific residues were characterized to evaluate their ligand binding efficiency and Gq -, Gi -, and β-arrestin-mediated signaling. Mutation-dependent variation in ligand binding and signaling was observed. W197 A in ECL2 and L276 L277 W279 -AAA in ECL3 were deficient in Gi and β-arrestin signaling pathways with relatively preserved Gq -mediated signaling. T169 T170 -AA, Y182 A, and T190 A mutants in ECL2 showed impaired β-arrestin-dependent cell signaling while maintaining G protein- mediated signaling. Structural comparison with angiotensin II type I receptor revealed the importance of ECL2 and ECL3 residues in APJR ligand binding and signaling. Our results unequivocally confirm the specific role of these ECL residues in ligand binding and in orchestrating receptor conformations that are involved in preferential/biased signaling functions.
Collapse
Affiliation(s)
- Anisha Ashokan
- Signal Transduction Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Harikumar Sheela Harisankar
- Signal Transduction Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Mythili Kameswaran
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Gopala Krishna Aradhyam
- Signal Transduction Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
23
|
Gargalovic P, Wong P, Onorato J, Finlay H, Wang T, Yan M, Crain E, St-Onge S, Héroux M, Bouvier M, Xu C, Chen XQ, Generaux C, Lawrence M, Wexler R, Gordon D. In Vitro and In Vivo Evaluation of a Small-Molecule APJ (Apelin Receptor) Agonist, BMS-986224, as a Potential Treatment for Heart Failure. Circ Heart Fail 2021; 14:e007351. [PMID: 33663236 PMCID: PMC7982131 DOI: 10.1161/circheartfailure.120.007351] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. New heart failure therapies that safely augment cardiac contractility and output are needed. Previous apelin peptide studies have highlighted the potential for APJ (apelin receptor) agonism to enhance cardiac function in heart failure. However, apelin’s short half-life limits its therapeutic utility. Here, we describe the preclinical characterization of a novel, orally bioavailable APJ agonist, BMS-986224.
Collapse
Affiliation(s)
- Peter Gargalovic
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Pancras Wong
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Joelle Onorato
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Heather Finlay
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Tao Wang
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Mujing Yan
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Earl Crain
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Stéphane St-Onge
- Universite de Montreal, Drug Discovery Unit at Institute for Research in Immunology and Cancer (S.S.-O., M.H., M.B.)
| | - Madeleine Héroux
- Universite de Montreal, Drug Discovery Unit at Institute for Research in Immunology and Cancer (S.S.-O., M.H., M.B.)
| | - Michel Bouvier
- Universite de Montreal, Drug Discovery Unit at Institute for Research in Immunology and Cancer (S.S.-O., M.H., M.B.).,Department of Biochemistry and Molecular Medicine, Université de Montréal, QC, Canada (M.B.)
| | - Carrie Xu
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Xue-Qing Chen
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Claudia Generaux
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Michael Lawrence
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - Ruth Wexler
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| | - David Gordon
- Bristol Myers Squibb, Drug Discovery, Princeton, NJ (P.G., P.W., J.O., H.F., T.W., M.Y., E.C., C.X., X.-Q.C., C.G., M.L., R.W., D.G.)
| |
Collapse
|
24
|
Trân K, Van Den Hauwe R, Sainsily X, Couvineau P, Côté J, Simard L, Echevarria M, Murza A, Serre A, Théroux L, Saibi S, Haroune L, Longpré JM, Lesur O, Auger-Messier M, Spino C, Bouvier M, Sarret P, Ballet S, Marsault É. Constraining the Side Chain of C-Terminal Amino Acids in Apelin-13 Greatly Increases Affinity, Modulates Signaling, and Improves the Pharmacokinetic Profile. J Med Chem 2021; 64:5345-5364. [PMID: 33524256 DOI: 10.1021/acs.jmedchem.0c01941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Side-chain-constrained amino acids are useful tools to modulate the biological properties of peptides. In this study, we applied side-chain constraints to apelin-13 (Ape13) by substituting the Pro12 and Phe13 positions, affecting the binding affinity and signaling profile on the apelin receptor (APJ). The residues 1Nal, Trp, and Aia were found to be beneficial substitutions for Pro12, and the resulting analogues displayed high affinity for APJ (Ki 0.08-0.18 nM vs Ape13 Ki 0.7 nM). Besides, constrained (d-Tic) or α,α-disubstituted residues (Dbzg; d-α-Me-Tyr(OBn)) were favorable for the Phe13 position. Compounds 47 (Pro12-Phe13 replaced by Aia-Phe, Ki 0.08 nM) and 53 (Pro12-Phe13 replaced by 1Nal-Dbzg, Ki 0.08 nM) are the most potent Ape13 analogues activating the Gα12 pathways (53, EC50 Gα12 2.8 nM vs Ape13, EC50 43 nM) known to date, displaying high affinity, resistance to ACE2 cleavage as well as improved pharmacokinetics in vitro (t1/2 5.8-7.3 h in rat plasma) and in vivo.
Collapse
Affiliation(s)
- Kien Trân
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Robin Van Den Hauwe
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2 1050 Brussels, Belgium
| | - Xavier Sainsily
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Pierre Couvineau
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Jérôme Côté
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Louise Simard
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Département de Chimie, Faculté de Science, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada
| | - Marco Echevarria
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Département de Chimie, Faculté de Science, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada
| | - Alexandre Murza
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Alexandra Serre
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Léa Théroux
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Sabrina Saibi
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Lounès Haroune
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Olivier Lesur
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Département de Médecine spécialisé, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Mannix Auger-Messier
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Département de Médecine spécialisé, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Claude Spino
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Département de Chimie, Faculté de Science, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada
| | - Michel Bouvier
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2 1050 Brussels, Belgium
| | - Éric Marsault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| |
Collapse
|
25
|
Girault-Sotias PE, Gerbier R, Flahault A, de Mota N, Llorens-Cortes C. Apelin and Vasopressin: The Yin and Yang of Water Balance. Front Endocrinol (Lausanne) 2021; 12:735515. [PMID: 34880830 PMCID: PMC8645901 DOI: 10.3389/fendo.2021.735515] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Apelin, a (neuro)vasoactive peptide, plays a prominent role in controlling body fluid homeostasis and cardiovascular functions. Experimental data performed in rodents have shown that apelin has an aquaretic effect via its central and renal actions. In the brain, apelin inhibits the phasic electrical activity of vasopressinergic neurons and the release of vasopressin from the posterior pituitary into the bloodstream and in the kidney, apelin regulates renal microcirculation and counteracts in the collecting duct, the antidiuretic effect of vasopressin occurring via the vasopressin receptor type 2. In humans and rodents, if plasma osmolality is increased by hypertonic saline infusion/water deprivation or decreased by water loading, plasma vasopressin and apelin are conversely regulated to maintain body fluid homeostasis. In patients with the syndrome of inappropriate antidiuresis, in which vasopressin hypersecretion leads to hyponatremia, the balance between apelin and vasopressin is significantly altered. In order to re-establish the correct balance, a metabolically stable apelin-17 analog, LIT01-196, was developed, to overcome the problem of the very short half-life (in the minute range) of apelin in vivo. In a rat experimental model of vasopressin-induced hyponatremia, subcutaneously (s.c.) administered LIT01-196 blocks the antidiuretic effect of vasopressin and the vasopressin-induced increase in urinary osmolality, and induces a progressive improvement in hyponatremia, suggesting that apelin receptor activation constitutes an original approach for hyponatremia treatment.
Collapse
|
26
|
Trân K, Murza A, Sainsily X, Delile E, Couvineau P, Côté J, Coquerel D, Peloquin M, Auger-Messier M, Bouvier M, Lesur O, Sarret P, Marsault É. Structure-Activity Relationship and Bioactivity of Short Analogues of ELABELA as Agonists of the Apelin Receptor. J Med Chem 2020; 64:602-615. [PMID: 33350824 DOI: 10.1021/acs.jmedchem.0c01547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ELABELA (ELA) is the second endogenous ligand of the apelin receptor (APJ). Although apelin-13 and ELA both target APJ, there is limited information on structure-activity relationship (SAR) of ELA. In the present work, we identified the shortest bioactive C-terminal fragment ELA23-32, which possesses high affinity for APJ (Ki 4.6 nM) and produces cardiorenal effects in vivo similar to those of ELA. SAR studies on conserved residues (Leu25, His26, Val29, Pro30, Phe31, Pro32) show that ELA and apelin-13 may interact differently with APJ. His26 and Val29 emerge as important for ELA binding. Docking and binding experiments suggest that Phe31 of ELA may bind to a tight groove distinct from that of Phe13 of Ape13, while the Phe13 pocket may be occupied by Pro32 of ELA. Further characterization of signaling profiles on the Gαi1, Gα12, and β-arrestin2 pathways reveals the importance of aromatic residue at the Phe31 or Pro32 position for receptor activation.
Collapse
Affiliation(s)
- Kien Trân
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Alexandre Murza
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Xavier Sainsily
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Eugénie Delile
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Pierre Couvineau
- Département de Biochimie et de Médecine Moléculaire & Institut de Recherche en Immunologie et Cancérologie (IRIC), Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Jérôme Côté
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - David Coquerel
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Maude Peloquin
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Mannix Auger-Messier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Michel Bouvier
- Département de Biochimie et de Médecine Moléculaire & Institut de Recherche en Immunologie et Cancérologie (IRIC), Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Olivier Lesur
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Éric Marsault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| |
Collapse
|
27
|
Aplnr knockout mice display sex-specific changes in conditioned fear. Behav Brain Res 2020; 400:113059. [PMID: 33309737 DOI: 10.1016/j.bbr.2020.113059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/23/2022]
Abstract
The G-protein-coupled receptor APLNR and its ligands apelin and ELABELA/TODDLER/apela comprise the apelinergic system, a signaling pathway that is critical during development and physiological homeostasis. Targeted regulation of the receptor has been proposed to treat several important diseases including heart failure, pulmonary arterial hypertension and metabolic syndrome. The apelinergic system is widely expressed within the central nervous system (CNS). However, the role of this system in the CNS has not been completely elucidated. Utilizing an Aplnr knockout mouse model, we report here results from tests of sensory ability, locomotion, reward preference, social preference, learning and memory, and anxiety. We find that knockout of Aplnr leads to significant effects on acoustic startle response and sex-specific effects on conditioned fear responses without significant changes in baseline anxiety. In particular, male Aplnr knockout mice display enhanced context- and cue-dependent fear responses. Our results complement previous reports that exogenous Apelin administration reduced conditioned fear and freezing responses in rodent models, and future studies will explore the therapeutic benefit of APLNR-targeted drugs in rodent models of PTSD.
Collapse
|
28
|
Wang X, Liu X, Song Z, Shen X, Lu S, Ling Y, Kuang H. Emerging roles of APLN and APELA in the physiology and pathology of the female reproductive system. PeerJ 2020; 8:e10245. [PMID: 33240613 PMCID: PMC7666558 DOI: 10.7717/peerj.10245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
APLN, APELA and their common receptor APLNR (composing the apelinergic axis) have been described in various species with extensive body distribution and multiple physiological functions. Recent studies have witnessed emerging intracellular cascades triggered by APLN and APELA which play crucial roles in female reproductive organs, including hypothalamus-pituitary-gonadal axis, ovary, oviduct, uterus and placenta. However, a comprehensive summary of APLN and APELA roles in physiology and pathology of female reproductive system has not been reported to date. In this review, we aim to concentrate on the general characteristics of APLN and APELA, as well as their specific physiological roles in female reproductive system. Meanwhile, the pathological contexts of apelinergic axis dysregulation in the obstetrics and gynecology are also summarized here, suggesting its potential prospect as a diagnostic biomarker and/or therapeutic intervention in the polycystic ovary syndrome, ovarian cancer, preeclampsia and gestational diabetes mellitus.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China.,Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Xiaofei Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China.,Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Zifan Song
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Xin Shen
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Siying Lu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Yan Ling
- Department of Obstetrics and Gynecology, Jiangxi provincial People's Hospital affiliated Nanchang University, Nanchang, China
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Medical Experimental Teaching Center of Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Apelin Receptor Signaling During Mesoderm Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32648246 DOI: 10.1007/5584_2020_567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The Apelin receptor (Aplnr) is a G-protein coupled receptor which has a wide body distribution and various physiological roles including homeostasis, angiogenesis, cardiovascular and neuroendocrine function. Apelin and Elabela are two peptide components of the Aplnr signaling and are cleaved to give different isoforms which are active in different tissues and organisms.Aplnr signaling is related to several pathologies including obesity, heart disases and cancer in the adult body. However, the developmental role in mammalian embryogenesis is crucial for migration of early cardiac progenitors and cardiac function. Aplnr and peptide components have a role in proliferation, differentiation and movement of endodermal precursors. Although expression of Aplnr signaling is observed in endodermal lineages, the main function is the control of mesoderm cell movement and cardiac development. Mutant of the Aplnr signaling components results in the malformations, defects and lethality mainly due to the deformed heart function. This developmental role share similarity with the cardiovascular functions in the adult body.Determination of Aplnr signaling and underlying mechanisms during mammalian development might enable understanding of regulatory molecular mechanisms which not only control embryonic development process but also control tissue function and disease pathology in the adult body.
Collapse
|
30
|
Chen J, Chen X, Li S, Jiang Y, Mao H, Zhang R, Ji B, Yan M, Cai X, Wang C. Individual phosphorylation sites at the C-terminus of the apelin receptor play different roles in signal transduction. Redox Biol 2020; 36:101629. [PMID: 32863206 PMCID: PMC7338617 DOI: 10.1016/j.redox.2020.101629] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022] Open
Abstract
The apelin and Elabela proteins constitute a spatiotemporal double-ligand system that controls apelin receptor (APJ) signal transduction. Phosphorylation of multiple sites within the C-terminus of APJ is essential for the recruitment of β-arrestins. We sought to determine the precise mechanisms by which apelin and Elabela promote APJ phosphorylation, and to elucidate the influence of β-arrestin phosphorylation on G-protein-coupled receptor (GPCR)/β-arrestin-dependent signaling. We used techniques including mass spectrometry (MS), mutation analysis, and bioluminescence resonance energy transfer (BRET) to evaluate the role of phosphorylation sites in APJ-mediated G-protein-dependent and β-dependent signaling. Phosphorylation of APJ occurred at five serine residues in the C-terminal region (Ser335, Ser339, Ser345, Ser348 and Ser369). We also identified two phosphorylation sites in β-arrestin1 and three in β-arrestin2, including three previously identified residues (Ser412, Ser361, and Thr383) and two new sites, Tyr47 in β-arrestin1 and Tyr48 in β-arrestin2. APJ mutations did not affect the phosphorylation of β-arrestins, but it affects the β-arrestin signaling pathway, specifically Ser335 and Ser339. Mutation of Ser335 decreased the ability of the receptor to interact with β-arrestin1/2 and AP2, indicating that APJ affects the β-arrestin signaling pathway by stimulating Elabela. Mutation of Ser339 abolished the capability of the receptor to interact with GRK2 and β-arrestin1/2 upon stimulation with apelin-36, and disrupted receptor internalization and β-arrestin-dependent ERK1/2 activation. Five peptides act on distinct phosphorylation sites at the APJ C-terminus, differentially regulating APJ signal transduction and causing different biological effects. These findings may facilitate screening for drugs to treat cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong, China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | - Xiaoyu Chen
- Department of Physiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Sheng Li
- Neurobiology Institute, Jining Medical University, Jining, Shandong, China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining, Shandong, China
| | - Huiling Mao
- Neurobiology Institute, Jining Medical University, Jining, Shandong, China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining, Shandong, China
| | - Bingyuan Ji
- Neurobiology Institute, Jining Medical University, Jining, Shandong, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Shandong, China
| | - Xin Cai
- Department of Physiology, Weifang Medical University, Weifang, Shandong, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
31
|
Essential Role of the ELABELA-APJ Signaling Pathway in Cardiovascular System Development and Diseases. J Cardiovasc Pharmacol 2020; 75:284-291. [DOI: 10.1097/fjc.0000000000000803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Catalina MOS, Redondo PC, Granados MP, Cantonero C, Sanchez-Collado J, Albarran L, Lopez JJ. New Insights into Adipokines as Potential Biomarkers for Type-2 Diabetes Mellitus. Curr Med Chem 2019; 26:4119-4144. [PMID: 29210636 DOI: 10.2174/0929867325666171205162248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
A large number of studies have been focused on investigating serum biomarkers associated with risk or diagnosis of type-2 diabetes mellitus. In the last decade, promising studies have shown that circulating levels of adipokines could be used as a relevant biomarker for diabetes mellitus progression as well as therapeutic future targets. Here, we discuss the possible use of recently described adipokines, including apelin, omentin-1, resistin, FGF-21, neuregulin-4 and visfatin, as early biomarkers for diabetes. In addition, we also include recent findings of other well known adipokines such as leptin and adiponectin. In conclusion, further studies are needed to clarify the pathophysiological significance and clinical value of these biological factors as potential biomarkers in type-2 diabetes and related dysfunctions.
Collapse
Affiliation(s)
| | - Pedro C Redondo
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Maria P Granados
- Aldea Moret's Medical Center, Extremadura Health Service, 10195-Caceres, Spain
| | - Carlos Cantonero
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Jose Sanchez-Collado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Letizia Albarran
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| |
Collapse
|
33
|
Marsault E, Llorens-Cortes C, Iturrioz X, Chun HJ, Lesur O, Oudit GY, Auger-Messier M. The apelinergic system: a perspective on challenges and opportunities in cardiovascular and metabolic disorders. Ann N Y Acad Sci 2019; 1455:12-33. [PMID: 31236974 PMCID: PMC6834863 DOI: 10.1111/nyas.14123] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
The apelinergic pathway has been generating increasing interest in the past few years for its potential as a therapeutic target in several conditions associated with the cardiovascular and metabolic systems. Indeed, preclinical and, more recently, clinical evidence both point to this G protein-coupled receptor as a target of interest in the treatment of not only cardiovascular disorders such as heart failure, pulmonary arterial hypertension, atherosclerosis, or septic shock, but also of additional conditions such as water retention/hyponatremic disorders, type 2 diabetes, and preeclampsia. While it is a peculiar system with its two classes of endogenous ligand, the apelins and Elabela, its intricacies are a matter of continuing investigation to finely pinpoint its potential and how it enables crosstalk between the vasculature and organ systems of interest. In this perspective article, we first review the current knowledge on the role of the apelinergic pathway in the above systems, as well as the associated therapeutic indications and existing pharmacological tools. We also offer a perspective on the challenges and potential ahead to advance the apelinergic system as a target for therapeutic intervention in several key areas.
Collapse
Affiliation(s)
- Eric Marsault
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Catherine Llorens-Cortes
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Xavier Iturrioz
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Hyung J. Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Departments of Internal Medicine and Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Olivier Lesur
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Intensive Care Units, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gavin Y. Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Mannix Auger-Messier
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Cardiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
34
|
Read C, Nyimanu D, Williams TL, Huggins DJ, Sulentic P, Macrae RGC, Yang P, Glen RC, Maguire JJ, Davenport AP. International Union of Basic and Clinical Pharmacology. CVII. Structure and Pharmacology of the Apelin Receptor with a Recommendation that Elabela/Toddler Is a Second Endogenous Peptide Ligand. Pharmacol Rev 2019; 71:467-502. [PMID: 31492821 PMCID: PMC6731456 DOI: 10.1124/pr.119.017533] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The predicted protein encoded by the APJ gene discovered in 1993 was originally classified as a class A G protein-coupled orphan receptor but was subsequently paired with a novel peptide ligand, apelin-36 in 1998. Substantial research identified a family of shorter peptides activating the apelin receptor, including apelin-17, apelin-13, and [Pyr1]apelin-13, with the latter peptide predominating in human plasma and cardiovascular system. A range of pharmacological tools have been developed, including radiolabeled ligands, analogs with improved plasma stability, peptides, and small molecules including biased agonists and antagonists, leading to the recommendation that the APJ gene be renamed APLNR and encode the apelin receptor protein. Recently, a second endogenous ligand has been identified and called Elabela/Toddler, a 54-amino acid peptide originally identified in the genomes of fish and humans but misclassified as noncoding. This precursor is also able to be cleaved to shorter sequences (32, 21, and 11 amino acids), and all are able to activate the apelin receptor and are blocked by apelin receptor antagonists. This review summarizes the pharmacology of these ligands and the apelin receptor, highlights the emerging physiologic and pathophysiological roles in a number of diseases, and recommends that Elabela/Toddler is a second endogenous peptide ligand of the apelin receptor protein.
Collapse
Affiliation(s)
- Cai Read
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - David J Huggins
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Petra Sulentic
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robyn G C Macrae
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Peiran Yang
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robert C Glen
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| |
Collapse
|
35
|
Kuba K, Sato T, Imai Y, Yamaguchi T. Apelin and Elabela/Toddler; double ligands for APJ/Apelin receptor in heart development, physiology, and pathology. Peptides 2019; 111:62-70. [PMID: 29684595 DOI: 10.1016/j.peptides.2018.04.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022]
Abstract
Apelin is an endogenous peptide ligand for the G protein-coupled receptor APJ/AGTRL1/APLNR and is widely expressed throughout human body. In adult hearts Apelin-APJ/Apelin receptor axis is potently inotropic, vasodilatory, and pro-angiogenic and thereby contributes to maintaining homeostasis in normal and pathological hearts. Apelin-APJ/Apelin receptor is also involved in heart development including endoderm differentiation, heart morphogenesis, and coronary vascular formation. APJ/Apelin receptor had been originally identified as an orphan receptor for its sequence similarity to Angiotensin II type 1 receptor, and it was later deorphanized by identification of Apelin in 1998. Both Apelin and Angiotensin II are substrates for Angiotensin converting enzyme 2 (ACE2), which degrades the peptides and thus negatively regulates their agonistic activities. Elabela/Toddler, which shares little sequence homology with Apelin, has been recently identified as a second endogenous APJ ligand. Elabela plays crucial roles in heart development and disease conditions presumably at time points or at areas of the heart different from Apelin. Apelin and Elabela seem to constitute a spatiotemporal double ligand system to control APJ/Apelin receptor signaling in the heart. These expanding knowledges of Apelin systems would further encourage therapeutic applications of Apelin, Elabela, or their synthetic derivatives for cardiovascular diseases.
Collapse
Affiliation(s)
- Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | - Teruki Sato
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan; Department of Cardiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yumiko Imai
- Laboratory of Regulation of Intractable Infectious Diseases, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
36
|
Sato T, Kuba K. [The functional role of endogenous APJ agonists; Apelin and Elabela/Toddler in cardiovascular diseases]. Nihon Yakurigaku Zasshi 2019; 153:172-178. [PMID: 30971657 DOI: 10.1254/fpj.153.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Apelin is an endogenous peptide ligand for APJ receptor, which is widely expressed in human body, and exerts various physiological effects such as vasodilation, inotropic effect, water balance, heart development, angiogenesis and energy metabolism. The beneficial effects of Apelin in cardiovascular diseases have been elucidated, and the roles of Apelin in aging-associated diseases are recently implicated. The mechanisms for therapeutic effects of Aplein include an antagonistic action to renin-angiotensin system (RAS) in addition to inotropic and vasodilatory actions. We have revealed that endogenous Apelin negatively regulates RAS via upregulation of Angiotensin converting enzyme 2 (ACE2). In addition, a second ligand for APJ receptor, Elabela/Toddler, was identified as an essential hormone for heart development, and it has been reported to have physiological effects similar to Apelin. We and others have shown that Elabela exerts inotropic and protective effects in the heart. Although the number of heart failure patients is rapidly increasing, the pathophysiology of heart failure remains elusive and further development of new therapeutic option is awaited. Apelin is a unique bifunctional molecule, which has both inotropic and cardioprotective effects in heart failure, and thus further elucidation of the mechanisms for Apelin/Elabela-APJ signaling would contribute to development of a novel therapeutics for heart failure patients.
Collapse
Affiliation(s)
- Teruki Sato
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine
- Department of Cardiology, Akita University Graduate School of Medicine
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine
| |
Collapse
|
37
|
Zhang Y, Wang Y, Lou Y, Luo M, Lu Y, Li Z, Wang Y, Miao L. Elabela, a newly discovered APJ ligand: Similarities and differences with Apelin. Peptides 2018; 109:23-32. [PMID: 30267732 DOI: 10.1016/j.peptides.2018.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 08/24/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
The Apelin/APJ system is involved in a wide range of biological functions. For a long time, Apelin was thought to be the only ligand for APJ. Recently, a new peptide that acts via APJ and has similar functions, called Elabela, was identified. Elabela has beneficial effects on body fluid homeostasis, cardiovascular health, and renal insufficiency, as well as potential benefits for metabolism and diabetes. In this review, the properties and biological functions of this new peptide are discussed in comparison with those of Apelin. Important areas for future study are also discussed, with the consideration that research on Apelin could guide future research on Elabela.
Collapse
Affiliation(s)
- Yixian Zhang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, 40202, USA
| | - Yonggang Wang
- Cardiovascular Center, First Hospital of Jilin University, Changchun 130021, China
| | - Yan Lou
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Manyu Luo
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yue Lu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Zhuo Li
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yangwei Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
38
|
McAnally D, Siddiquee K, Gomaa A, Szabo A, Vasile S, Maloney PR, Divlianska DB, Peddibhotla S, Morfa CJ, Hershberger P, Falter R, Williamson R, Terry DB, Farjo R, Pinkerton AB, Qi X, Quigley J, Boulton ME, Grant MB, Smith LH. Repurposing antimalarial aminoquinolines and related compounds for treatment of retinal neovascularization. PLoS One 2018; 13:e0202436. [PMID: 30208056 PMCID: PMC6135396 DOI: 10.1371/journal.pone.0202436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023] Open
Abstract
Neovascularization is the pathological driver of blinding eye diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and wet age-related macular degeneration. The loss of vision resulting from these diseases significantly impacts the productivity and quality of life of patients, and represents a substantial burden on the health care system. Current standard of care includes biologics that target vascular endothelial growth factor (VEGF), a key mediator of neovascularization. While anti-VGEF therapies have been successful, up to 30% of patients are non-responsive. Therefore, there is a need for new therapeutic targets, and small molecule inhibitors of angiogenesis to complement existing treatments. Apelin and its receptor have recently been shown to play a key role in both developmental and pathological angiogenesis in the eye. Through a cell-based high-throughput screen, we identified 4-aminoquinoline antimalarial drugs as potent selective antagonists of APJ. The prototypical 4-aminoquinoline, amodiaquine was found to be a selective, non-competitive APJ antagonist that inhibited apelin signaling in a concentration-dependent manner. Additionally, amodiaquine suppressed both apelin-and VGEF-induced endothelial tube formation. Intravitreal amodaiquine significantly reduced choroidal neovascularization (CNV) lesion volume in the laser-induced CNV mouse model, and showed no signs of ocular toxicity at the highest doses tested. This work firmly establishes APJ as a novel, chemically tractable therapeutic target for the treatment of ocular neovascularization, and that amodiaquine is a potential candidate for repurposing and further toxicological, and pharmacokinetic evaluation in the clinic.
Collapse
Affiliation(s)
- Danielle McAnally
- Cardiovascular Pathobiology Program, Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Khandaker Siddiquee
- Cardiovascular Pathobiology Program, Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Ahmed Gomaa
- Department of Ophthalmology, Indiana University School of Medicine Indianapolis, Indiana, United States of America
| | - Andras Szabo
- Cardiovascular Pathobiology Program, Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Stefan Vasile
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Patrick R. Maloney
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Daniela B. Divlianska
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Satyamaheshwar Peddibhotla
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Camilo J. Morfa
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Paul Hershberger
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Rebecca Falter
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Robert Williamson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - David B. Terry
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| | - Rafal Farjo
- EyeCRO LLC, Oklahoma City, Oklahoma, United States of America
| | - Anthony B. Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Xiaping Qi
- Department of Ophthalmology, Indiana University School of Medicine Indianapolis, Indiana, United States of America
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama, United States of America
| | - Judith Quigley
- Department of Ophthalmology, Indiana University School of Medicine Indianapolis, Indiana, United States of America
| | - Michael E. Boulton
- Department of Ophthalmology, Indiana University School of Medicine Indianapolis, Indiana, United States of America
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama, United States of America
| | - Maria B. Grant
- Department of Ophthalmology, Indiana University School of Medicine Indianapolis, Indiana, United States of America
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama, United States of America
| | - Layton H. Smith
- Cardiovascular Pathobiology Program, Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, United States of America
| |
Collapse
|
39
|
Jiang Y, Liu H, Ji B, Wang Z, Wang C, Yang C, Pan Y, Chen J, Cheng B, Bai B. Apelin‑13 attenuates ER stress‑associated apoptosis induced by MPP+ in SH‑SY5Y cells. Int J Mol Med 2018; 42:1732-1740. [PMID: 29901077 DOI: 10.3892/ijmm.2018.3719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 05/31/2018] [Indexed: 11/06/2022] Open
Abstract
Apelin‑13, a neuropeptide that acts as a ligand for a putative receptor related to the angiotensin II type receptor, elicits neuroprotective effects in numerous neurological conditions, such as Huntington's disease and cerebral ischemia. Parkinson's disease (PD), one of the most prevalent neurodegenerative diseases, is caused by damage to neurons in the brain; however, the underlying mechanism remains unclear. The present study explored the effects of apelin‑13 on SH‑SY5Y human neuroblastoma cells treated with 1‑methyl‑4‑phenylpyridine (MPP+). Cell growth, cell viability, and apoptosis were measured by real‑time cell analysis, the Cell Counting Kit‑8 assay, and flow cytometry, respectively. In addition, the expression levels of extracellular signal‑regulated kinase (ERK) 1/2, p38 mitogen‑activated protein kinase (MAPK), glucose‑regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and cleaved caspase‑12 were assessed by western blotting. MPP+ treatment decreased the viability of SH‑SY5Y cells and increased their apoptosis; however, these changes were attenuated by pretreatment with apelin‑13. Treatment with MPP+ for 24 h significantly increased the expression levels of phospho‑ERK1/2, phospho‑p38, GRP78, CHOP, and cleaved caspase‑12 in SH‑SY5Y cells. Pretreatment with apelin‑13 significantly attenuated the upregulation of GRP78, CHOP and cleaved caspase‑12 in MPP+‑treated SH‑SY5Y cells, and significantly enhanced the expression levels of phospho‑ERK1/2. Taken together, the present results support a model in which apelin‑13 inhibits MPP+‑induced apoptosis of SH‑SY5Y cells by decreasing the expression of GRP78, CHOP, and cleaved caspase‑12, and by increasing the expression of phospho‑ERK1/2. The present findings suggest that apelin‑13 may be useful for the treatment of PD.
Collapse
Affiliation(s)
- Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Haiqing Liu
- Department of Physiology, Taishan Medical College, Taian, Shandong 271000, P.R. China
| | - Bingyuan Ji
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Zhengwen Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Chunqing Yang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yanyou Pan
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Jing Chen
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
40
|
Murza A, Trân K, Bruneau-Cossette L, Lesur O, Auger-Messier M, Lavigne P, Sarret P, Marsault É. Apelins, ELABELA, and their derivatives: Peptidic regulators of the cardiovascular system and beyond. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexandre Murza
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Kien Trân
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Laurent Bruneau-Cossette
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Olivier Lesur
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Mannix Auger-Messier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Pierre Lavigne
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Philippe Sarret
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Éric Marsault
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| |
Collapse
|
41
|
Besserer-Offroy É, Bérubé P, Côté J, Murza A, Longpré JM, Dumaine R, Lesur O, Auger-Messier M, Leduc R, Marsault É, Sarret P. The hypotensive effect of activated apelin receptor is correlated with β-arrestin recruitment. Pharmacol Res 2018. [PMID: 29530600 DOI: 10.1016/j.phrs.2018.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The apelinergic system is an important player in the regulation of both vascular tone and cardiovascular function, making this physiological system an attractive target for drug development for hypertension, heart failure and ischemic heart disease. Indeed, apelin exerts a positive inotropic effect in humans whilst reducing peripheral vascular resistance. In this study, we investigated the signaling pathways through which apelin exerts its hypotensive action. We synthesized a series of apelin-13 analogs whereby the C-terminal Phe13 residue was replaced by natural or unnatural amino acids. In HEK293 cells expressing APJ, we evaluated the relative efficacy of these compounds to activate Gαi1 and GαoA G-proteins, recruit β-arrestins 1 and 2 (βarrs), and inhibit cAMP production. Calculating the transduction ratio for each pathway allowed us to identify several analogs with distinct signaling profiles. Furthermore, we found that these analogs delivered i.v. to Sprague-Dawley rats exerted a wide range of hypotensive responses. Indeed, two compounds lost their ability to lower blood pressure, while other analogs significantly reduced blood pressure as apelin-13. Interestingly, analogs that did not lower blood pressure were less effective at recruiting βarrs. Finally, using Spearman correlations, we established that the hypotensive response was significantly correlated with βarr recruitment but not with G protein-dependent signaling. In conclusion, our results demonstrated that the βarr recruitment potency is involved in the hypotensive efficacy of activated APJ.
Collapse
Affiliation(s)
- Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Patrick Bérubé
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Alexandre Murza
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Robert Dumaine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Olivier Lesur
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Mannix Auger-Messier
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Éric Marsault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
42
|
Zhang J, Zhou Y, Wu C, Wan Y, Fang C, Li J, Fang W, Yi R, Zhu G, Li J, Wang Y. Characterization of the Apelin/Elabela Receptors (APLNR) in Chickens, Turtles, and Zebrafish: Identification of a Novel Apelin-Specific Receptor in Teleosts. Front Endocrinol (Lausanne) 2018; 9:756. [PMID: 30631305 PMCID: PMC6315173 DOI: 10.3389/fendo.2018.00756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
Apelin receptor(s) (APLNR) are suggested to mediate the actions of apelin and Elabela (ELA) peptides in many physiological processes, including cardiovascular development and food intake in vertebrates. However, the functionality of APLNR has not been examined in most vertebrate groups. Here, we characterized two APLNRs APLNR1, APLNR2) in chickens and red-eared sliders, and three APLNRs in zebrafish (APLNR2a, APLNR2b, APLNR3a), which are homologous to human APLNR. Using luciferase-reporter assays or Western blot, we demonstrated that in chickens, APLNR1 (not APLNR2) expressed in HEK293 cells was potently activated by chicken apelin-36 and ELA-32 and coupled to Gi-cAMP and MAPK/ERK signaling pathways, indicating a crucial role of APLNR1 in mediating apelin/ELA actions; in red-eared sliders, APLNR2 (not APLNR1) was potently activated by apelin-36/ELA-32, suggesting that APLNR2 may mediate apelin/ELA actions; in zebrafish, both APLNR2a and APLNR2b were potently activated by apelin-36/ELA-32 and coupled to Gi-cAMP signaling pathway, as previously proposed, whereas the novel APLNR3a was specifically and potently activated by apelin. Similarly, an apelin-specific receptor (APLNR3b) sharing 57% sequence identity with zebrafish APLNR3a was identified in Nile tilapia. Collectively, our data facilitates the uncovering of the roles of APLNR signaling in different vertebrate groups and suggests a key functional switch between APLNR1 and APLNR2/3 in mediating the actions of ELA and apelin during vertebrate evolution.
Collapse
|
43
|
Abstract
Apelin and apela (ELABELA/ELA/Toddler) are two peptide ligands for a class A G-protein-coupled receptor named the apelin receptor (AR/APJ/APLNR). Ligand-AR interactions have been implicated in regulation of the adipoinsular axis, cardiovascular system, and central nervous system alongside pathological processes. Each ligand may be processed into a variety of bioactive isoforms endogenously, with apelin ranging from 13 to 55 amino acids and apela from 11 to 32, typically being cleaved C-terminal to dibasic proprotein convertase cleavage sites. The C-terminal region of the respective precursor protein is retained and is responsible for receptor binding and subsequent activation. Interestingly, both apelin and apela exhibit isoform-dependent variability in potency and efficacy under various physiological and pathological conditions, but most studies focus on a single isoform. Biophysical behavior and structural properties of apelin and apela isoforms show strong correlations with functional studies, with key motifs now well determined for apelin. Unlike its ligands, the AR has been relatively difficult to characterize by biophysical techniques, with most characterization to date being focused on effects of mutagenesis. This situation may improve following a recently reported AR crystal structure, but there are still barriers to overcome in terms of comprehensive biophysical study. In this review, we summarize the three components of the apelinergic system in terms of structure-function correlation, with a particular focus on isoform-dependent properties, underlining the potential for regulation of the system through multiple endogenous ligands and isoforms, isoform-dependent pharmacological properties, and biological membrane-mediated receptor interaction. © 2018 American Physiological Society. Compr Physiol 8:407-450, 2018.
Collapse
Affiliation(s)
- Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Calem Kenward
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
44
|
Apelin protects against liver X receptor-mediated steatosis through AMPK and PPARα in human and mouse hepatocytes. Cell Signal 2017; 39:84-94. [DOI: 10.1016/j.cellsig.2017.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/04/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
|
45
|
Xiong Q, He W, Wang H, Zhou J, Zhang Y, He J, Yang C, Zhang B. Effect of the spinal apelin‑APJ system on the pathogenesis of chronic constriction injury‑induced neuropathic pain in rats. Mol Med Rep 2017. [PMID: 28627589 PMCID: PMC5562064 DOI: 10.3892/mmr.2017.6734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Apelin is hypothesized to serve a dual function in pain processing. Spinal administration of apelin induces hyperalgesia, while opioid receptors are implicated in the antinociceptive effects of apelin in acute nociceptive models. However, whether the apelin-apelin receptor (APJ) system is involved in neuropathic pain remains to be elucidated. The present study aimed to evaluate the impact and mechanism of the spinal apelin-APJ system in neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve produced sustained spinal apelin and APJ upregulation, which was associated with mechanical allodynia and heat hyperalgesia development in the hind-paw plantar surface. Immunofluorescence demonstrated that apelin and APJ were localized to the superficial dorsal horns. In order to further clarify the function of the apelin-APJ system, a single intrathecal administration of ML221, an APJ antagonist, was used; this transiently reduced CCI-induced pain hypersensitivity. However, apelin-13 (the isoform which binds most strongly to APJ) exhibited no effect on the nociceptive response, suggesting an essential role for the spinal apelin-APJ system in neuropathic pain sensitization. The present study demonstrated that a single application of ML221 alleviated mechanical allodynia and heat hyperalgesia 7 days following CCI, in a dose-dependent manner. Intraspinal delivery of ML221, at the onset of and in fully-established neuropathic pain, persistently attenuated CCI-induced pain hypersensitivity, indicating that the apelin-APJ system was involved in initiating and maintaining pain. It was demonstrated, using immunoblotting, that intrathecal ML221 downregulated phosphorylated extracellular signal-related kinase (ERK) in the rat spinal cord dorsal horn, suggesting that the effect of apelin on neuropathic pain may be mediated via ERK signaling. The results of the present study suggested that the spinal apelin-APJ system may drive neuropathic pain. Inhibition of APJ may provide novel pharmacological interventions for neuropathic pain.
Collapse
Affiliation(s)
- Qingming Xiong
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Wanyou He
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Hanbing Wang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Jun Zhou
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Yajun Zhang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Jian He
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Chengxiang Yang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Bin Zhang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
46
|
Bülbül M, Sinen O, Birsen İ, Izgüt-Uysal V. Peripheral apelin-13 administration inhibits gastrointestinal motor functions in rats: The role of cholecystokinin through CCK 1 receptor-mediated pathway. Neuropeptides 2017; 63:91-97. [PMID: 28012561 DOI: 10.1016/j.npep.2016.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/25/2016] [Accepted: 12/11/2016] [Indexed: 12/31/2022]
Abstract
Apelin is the endogenous ligand of the G protein-coupled receptor APJ. The APJ receptor is widely expressed in gastrointestinal (GI) tissues including stomach and small intestine. Apelin administration was shown to induce the release of cholecystokinin (CCK) which is a well-known alimentary hormone with its inhibitory actions on GI motor functions through CCK1 receptors on vagal afferent fibers. We investigated whether; (i) peripherally injected apelin-13 alters GI motor functions, (ii) apelin-induced changes are mediated by APJ receptor or CCK1 receptor and (iii) vagal afferents are involved in inhibitory effects of apelin. Solid gastric emptying (GE) and colon transit (CT) were measured, whereas duodenal phase III-like contractions were recorded in rats administered with apelin-13 (300μg/kg, ip). CCK1 receptor antagonist lorglumide (10mg/kg, ip) or APJ receptor antagonist F13A (300μg/kg, ip) was administered 30min prior to the apelin-13 injections. Vagal afferent denervation was achieved by systemic administration of vanilloid receptor agonist capsaicin (125mg/kg, sc). Apelin-13 administration significantly (p<0.01) increased the CCK level in portal venous plasma samples. Compared with vehicle-treated rats, apelin-13 significantly delayed both GE (p<0.001) and CT (p<0.01). Pretreatment of lorglumide or F13A completely abolished the apelin-13-induced inhibitory effects on GE and CT, moreover, apelin-13 was found ineffective in rats underwent afferent denervation. F13A administration alone significantly accelerated the basal CT. Apelin-13 noticeably disturbed the duodenal fasting motor pattern by impairing phase III-like contractions while increasing the amplitudes of phase II contractions which were prevented by pretreatment of lorglumide and capsaicin. Compared with vehicle-treated rats, lorglumide and capsaicin significantly (p<0.05) reduced the apelin-13-induced increases in phase II motility index. Peripherally administered apelin-13 inhibits GI motor functions through CCK-dependent pathway which appears to be mediated by CCK1 receptors on vagal afferents. Peripheral apelin might contribute to the motility changes occurred in postprandial period.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey.
| | - Osman Sinen
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - İlknur Birsen
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Vecihe Izgüt-Uysal
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| |
Collapse
|
47
|
Bioactivity of the putative apelin proprotein expands the repertoire of apelin receptor ligands. Biochim Biophys Acta Gen Subj 2017; 1861:1901-1912. [PMID: 28546009 DOI: 10.1016/j.bbagen.2017.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/20/2017] [Accepted: 05/19/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Apelin is a peptide ligand for a class A G-protein coupled receptor called the apelin receptor (AR or APJ) that regulates angiogenesis, the adipoinsular axis, and cardiovascular functions. Apelin has been shown to be bioactive as 13, 17, and 36 amino acid isoforms, C-terminal fragments of the putatively inactive 55-residue proprotein (proapelin or apelin-55). Although intracellular proprotein processing has been proposed, isolation of apelin-55 from colostrum and milk demonstrates potential for secretion prior to processing and the possibility of proapelin-AR interaction. METHODS Apelin isoform activity and potency were compared by an In-Cell Western™ assay for ERK phosphorylation using a stably AR-transfected HEK293A cell line. Conformational comparison of apelin isoforms was carried out by circular dichroism and heteronuclear solution-state nuclear magnetic resonance spectroscopy. RESULTS Apelin-55 is shown to activate the AR, with similar maximum ERK phophorylation response and potency to the shorter isoforms except for apelin-13, which exhibited a greater potency. Correlating to this shared activity, highly similar conformations are exhibited in all apelin isoforms for the shared C-terminal region responsible for receptor binding and activation. CONCLUSIONS AR activation by all apelin isoforms likely hinges upon shared conformation and dynamics in the C-terminus, with apelin-55 providing an alternative bioactive isoform despite the addition of 19N-terminal residues relative to apelin-36. GENERAL SIGNIFICANCE Beyond providing novel insight into the physiology of this system, re-annotation of proapelin to the bioactive apelin-55 isoform adds to the molecular toolkit for dissection of apelin-AR interactions and expands the repertoire of therapeutic targets for the apelinergic system.
Collapse
|
48
|
Lv X, Kong J, Chen WD, Wang YD. The Role of the Apelin/APJ System in the Regulation of Liver Disease. Front Pharmacol 2017; 8:221. [PMID: 28484393 PMCID: PMC5401884 DOI: 10.3389/fphar.2017.00221] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/10/2017] [Indexed: 12/29/2022] Open
Abstract
Apelin is an endogenous peptide that is a ligand for the APJ receptor (angiotensin II receptor like-1, AT-1). The apelin/APJ system is distributed in diverse periphery organ tissues. It has been shown that the apelin/APJ system plays various roles in physiology and pathophysiology of many organs. It regulates cardiovascular development or cardiac disease, glycometabolism and fat metabolism as well as metabolic disease. The apelin/APJ system participates in various cell activities such as proliferation, migration, apoptosis or inflammation. However, apelin/APJ function in the liver is still under investigation. In the liver, the apelin-APJ system could play an inhibitory role in liver regeneration and promote Fas-induced apoptosis. It may participate in the formation of hepatic fibrosis or cirrhosis, and even cancer. In this review, we summarize the role of the apelin/APJ system in liver disease.
Collapse
Affiliation(s)
- Xinrui Lv
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan UniversityKaifeng, China
| | - Jing Kong
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan UniversityKaifeng, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan UniversityKaifeng, China.,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical UniversityHohhot, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing, China
| |
Collapse
|
49
|
The differential effects of low and high doses of apelin through opioid receptors on the blood pressure of rats with renovascular hypertension. Hypertens Res 2017; 40:732-737. [PMID: 28275232 DOI: 10.1038/hr.2017.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 01/25/2023]
Abstract
The apelin/APJ system has an important role in the regulation of vascular tone and blood pressure. Opioid receptors (OPRs) are also important cardiovascular regulators and exert many of their effects by modulating the function of other G-protein-coupled receptors. The aim of this study was to analyze the interaction of apelin and the opioid system with respect to vascular responses to apelin in rats with renovascular hypertension (two-kidney, one clip (2K1C)). Homodynamic studies were carried out in 2K1C rats. Naloxone (a nonselective OPR inhibitor) or nor-binaltorphimine dihydrochloride (norBNI, a kappa OPR inhibitor) and signaling pathway inhibitors PTX (a Gi path inhibitor) and chelerythrine (a protein kinase C (PKC) inhibitor) were administered before apelin at 20 and 40 μg kg-1. Apelin at 20 and 40 μg kg-1 decreased the systolic blood pressure by 15% and 20%, respectively (P<0.05). The pressure drop caused by apelin 20 was inhibited by naloxone, norBNI and PTX, but it was not affected by chelerythrine. The pressure drop caused by apelin 40 was augmented by naloxone and chelerythrine, and it was not affected by norBNI or PTX. The lowering effect of apelin 20 on blood pressure is exerted through OPRs and stimulation of Gi and PKC pathways. However, apelin 40 functions independently of OPRs, Gi and PKC. This dose-dependent differential effect of apelin may have potential clinical applications as opioids are currently used, and apelin has been introduced as a potential therapeutic agent in cardiovascular complications.
Collapse
|
50
|
Le Gonidec S, Chaves-Almagro C, Bai Y, Kang HJ, Smith A, Wanecq E, Huang XP, Prats H, Knibiehler B, Roth BL, Barak LS, Caron MG, Valet P, Audigier Y, Masri B. Protamine is an antagonist of apelin receptor, and its activity is reversed by heparin. FASEB J 2017; 31:2507-2519. [PMID: 28242772 DOI: 10.1096/fj.201601074r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/07/2017] [Indexed: 12/29/2022]
Abstract
Apelin signaling plays an important role during embryo development and regulates angiogenesis, cardiovascular activity, and energy metabolism in adulthood. Overexpression and hyperactivity of this signaling pathway is observed in various pathologic states, such as cardiovascular diseases and cancer, which highlights the importance of inhibiting apelin receptor (APJ); therefore, we developed a cell-based screening assay that uses fluorescence microscopy to identify APJ antagonists. This approach led us to identify the U.S. Food and Drug Administration-approved compound protamine-already used clinically after cardiac surgery-as an agent to bind to heparin and thereby reverse its anticlotting activity. Protamine displays a 390-nM affinity for APJ and behaves as a full antagonist with regard to G protein and β-arrestin-dependent intracellular signaling. Ex vivo and in vivo, protamine abolishes well-known apelin effects, such as angiogenesis, glucose tolerance, and vasodilatation. Remarkably, protamine antagonist activity is fully reversed by heparin treatment both in vitro and in vivo Thus, our results demonstrate a new pharmacologic property of protamine-blockade of APJ-that could explain some adverse effects observed in protamine-treated patients. Moreover, our data reveal that the established antiangiogenic activity of protamine would rely on APJ antagonism.-Le Gonidec, S., Chaves-Almagro, C., Bai, Y., Kang, H. J., Smith, A., Wanecq, E., Huang, X.-P., Prats, H., Knibiehler, B., Roth, B. L., Barak, L. S., Caron, M. G., Valet, P., Audigier, Y., Masri, B. Protamine is an antagonist of apelin receptor, and its activity is reversed by heparin.
Collapse
Affiliation(s)
- Sophie Le Gonidec
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM Unité 1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France.,Service Phénotypage, Centre Régional d'Exploration Fonctionnelle et Ressources Expérimentales, INSERM US006, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Carline Chaves-Almagro
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM Unité 1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Yushi Bai
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina, USA
| | - Allyson Smith
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Estelle Wanecq
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM Unité 1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina, USA
| | - Hervé Prats
- Centre de Recherches en Cancérologie de Toulouse, Unité Mixte de Recherche 1037 INSERM, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Bernard Knibiehler
- Centre de Recherches en Cancérologie de Toulouse, Unité Mixte de Recherche 1037 INSERM, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina, USA
| | - Larry S Barak
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Marc G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM Unité 1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Yves Audigier
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM Unité 1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Bernard Masri
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM Unité 1048, Université de Toulouse, Université Paul Sabatier, Toulouse, France;
| |
Collapse
|