1
|
Wu H, Ueno T, Nozaki K, Xu H, Nakano Y, Chen P, Wakabayashi N. Lithium-Modified TiO 2 Surface by Anodization for Enhanced Protein Adsorption and Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55232-55243. [PMID: 38014813 DOI: 10.1021/acsami.3c06749] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Promoting osseointegration is an essential step in improving implant success rates. Lithium has gradually gained popularity for promoting alkaline phosphatase activity and osteogenic gene expression in osteoblasts. The incorporation of lithium into a titanium surface has been reported to change its surface charge, thereby enhancing its biocompatibility. In this study, we applied anodization as a novel approach to immobilizing Li on a titanium surface and evaluated the changes in its surface characteristics. The objective of this study was to determine the effect of Li treatment of titanium on typical proteins, such as albumin, laminin, and fibronectin, in terms of their adsorption level as well as on the attachment of osteoblast cells. Titanium disks were acid-etched by 66 wt % H2SO4 at 120 °C for 90 s and set as the control group. The etched samples were placed in contact with an anode, while a platinum bar served as the counter electrode. Both electrodes were mounted on a custom electrochemical cell filled with 1 M LiCl. The samples were anodized at constant voltages of 1, 3, and 9 V. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) results showed no significant differences in the topography. However, the ζ potentials of the 3 V group were higher than those of the control group at a physiological pH of 7.4. Interestingly, the adsorption level of the extracellular matrix protein was mostly enhanced on the 3 V-anodized surface. The number of attached cells on the Li-anodized surfaces increased. The localization of vinculin at the tips of the stretching cytoplasmic projections was observed more frequently in the osteoblasts on the 3 V-anodized surface. Although the optimal concentration or voltage for Li application should be investigated further, this study suggests that anodization could be an effective method to immobilize lithium ions on a titanium surface and that modifying the surface charge characteristics enables a direct protein-to-material interaction with enhanced biological adhesion.
Collapse
Affiliation(s)
- Huaze Wu
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Takeshi Ueno
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Kosuke Nozaki
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Huichuan Xu
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Yuki Nakano
- Anton Paar Japan K.K, Riverside Sumida Central Tower Palace, 1-19-9 Tsutsumidori, Sumida City 131-0034, Tokyo, Japan
| | - Peng Chen
- Division of Interdisciplinary Co-Creation (ICC-Division), Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku 980-8575, Sendai, Japan
| | - Noriyuki Wakabayashi
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| |
Collapse
|
2
|
Lin CY, Chang YM, Tseng HY, Shih YL, Yeh HH, Liao YR, Tang HH, Hsu CL, Chen CC, Yan YT, Kao CF. Epigenetic regulator RNF20 underlies temporal hierarchy of gene expression to regulate postnatal cardiomyocyte polarization. Cell Rep 2023; 42:113416. [PMID: 37967007 DOI: 10.1016/j.celrep.2023.113416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/19/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023] Open
Abstract
Differentiated cardiomyocytes (CMs) must undergo diverse morphological and functional changes during postnatal development. However, the mechanisms underlying initiation and coordination of these changes remain unclear. Here, we delineate an integrated, time-ordered transcriptional network that begins with expression of genes for cell-cell connections and leads to a sequence of structural, cell-cycle, functional, and metabolic transitions in mouse postnatal hearts. Depletion of histone H2B ubiquitin ligase RNF20 disrupts this gene network and impairs CM polarization. Subsequently, assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis confirmed that RNF20 contributes to chromatin accessibility in this context. As such, RNF20 is likely to facilitate binding of transcription factors at the promoters of genes involved in cell-cell connections and actin organization, which are crucial for CM polarization and functional integration. These results suggest that CM polarization is one of the earliest events during postnatal heart development and provide insights into how RNF20 regulates CM polarity and the postnatal gene program.
Collapse
Affiliation(s)
- Chia-Yeh Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Hsin-Yi Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Yen-Ling Shih
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Hsiao-Hui Yeh
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - You-Rou Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Han-Hsuan Tang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Chia-Ling Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan.
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan.
| |
Collapse
|
3
|
Wang S, Li X, Jiang H, Zhang J. High Serum VE-Cadherin and Vinculin Concentrations Are Markers of the Disruption of Vascular Integrity during Type B Acute Aortic Dissection. J Clin Med 2023; 12:4730. [PMID: 37510844 PMCID: PMC10381106 DOI: 10.3390/jcm12144730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND In the present study, we measured the serum vascular endothelial cadherin (VEC) and vinculin (Vcn) concentrations in patients with type B acute aortic dissection (TBAD) to evaluate their diagnostic value for this condition. METHODS A total of 100 patients with TBAD and 90 matched controls were included in the study. The serum concentrations of VEC and Vcn were measured using enzyme-linked immunosorbent assays. RESULTS The serum VEC and Vcn concentrations were significantly higher in participants with TBAD than in healthy controls. Compared with patients with acute myocardial infarction (AMI), the serum concentrations of VEC and Vcn in patients with TBAD were higher, and the Vcn showed significant difference, with statistical significance. Receiver operating characteristic analysis generated areas under the curves for VEC and Vcn that were diagnostic for TBAD (0.599 and 0.655, respectively). The optimal cut-off values were 3.975 ng/μL and 128.1 pg/mL, the sensitivities were 43.0% and 35.0%, and the specificities were 73.3% and 90.0%, respectively. In addition, the use of a combination of serum VEC and Vcn increased the AUC to 0.661, with a sensitivity of 33.0% and a specificity of 93.33%. A high serum Vcn concentration was associated with a higher risk of visceral malperfusion in participants with TBAD (odds ratio (OR) = 1.007, 95% confidence interval [CI]: 1.001-1.013, p = 0.014). In participants with refractory pain, the adjusted OR for the serum VEC concentration increased to 1.172 (95% CI: 1.010-1.361; p = 0.036), compared with participants without refractory pain. CONCLUSION This study is the first to show the diagnostic value of serum VEC and Vcn for AAD and their relationships with the clinical characteristics of patients with TBAD. Thus, VEC and Vcn are potential serum markers of TBAD.
Collapse
Affiliation(s)
- Shiyue Wang
- Department of Vascular & Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xin Li
- Department of Vascular & Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Han Jiang
- Department of Vascular & Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jian Zhang
- Department of Vascular & Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
4
|
Tu Y, Pal K, Austin J, Wang X. Filopodial adhesive force in discrete nodes revealed by integrin molecular tension imaging. Curr Biol 2022; 32:4386-4396.e3. [PMID: 36084647 PMCID: PMC9613586 DOI: 10.1016/j.cub.2022.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
Filopodia are narrow cell extensions involved in various physiological processes. Integrins mediate filopodia adhesion and likely transmit adhesive force to regulate filopodia formation and functions, but the force is extremely weak to study and remains poorly understood. Using integrative tension sensor (ITS), we imaged filopodia adhesive force at the single molecular tension level and investigated the force dynamics and sources. Results show that filopodia integrin tension (FIT) is generated in discrete foci (force nodes) along single filopodia with a spacing of ∼1 μm. Inhibitions of actin polymerization or myosin II activity markedly reduced FIT signals in force nodes at filopodia tips and at filopodia bases, respectively, suggesting differential force sources of FIT in the distal force nodes and proximal ones in filopodia. Using two ITS constructs with different force thresholds for activation, we showed that the molecular force level of FIT is greater at filopodia bases than that at filopodia tips. We also tested the role of vinculin and myosin X in the FIT transmission. With vinculin knockout in cells, filopodia and associated force nodes were still formed normally, suggesting that vinculin is dispensable for the formation of filopodia and force nodes. However, vinculin is indeed required for the transmission of strong FIT (capable of rupturing DNA in a shear conformation), as the strong FIT vanished in filopodia with vinculin knockout. Co-imaging of FIT and myosin X shows no apparent co-localization, demonstrating that myosin X is not directly responsible for generating FIT, despite its prominent role in filopodium elongation.
Collapse
Affiliation(s)
- Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Jacob Austin
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
5
|
Ultraviolet Treatment of Titanium to Enhance Adhesion and Retention of Oral Mucosa Connective Tissue and Fibroblasts. Int J Mol Sci 2021; 22:ijms222212396. [PMID: 34830275 PMCID: PMC8617952 DOI: 10.3390/ijms222212396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/16/2023] Open
Abstract
Peri-implantitis is an unsolved but critical problem with dental implants. It is postulated that creating a seal of gingival soft tissue around the implant neck is key to preventing peri-implantitis. The objective of this study was to determine the effect of UV surface treatment of titanium disks on the adhesion strength and retention time of oral connective tissues as well as on the adherence of mucosal fibroblasts. Titanium disks with a smooth machined surface were prepared and treated with UV light for 15 min. Keratinized mucosal tissue sections (3 × 3 mm) from rat palates were incubated for 24 h on the titanium disks. The adhered tissue sections were then mechanically detached by agitating the culture dishes. The tissue sections remained adherent for significantly longer (15.5 h) on the UV-treated disks than on the untreated control disks (7.5 h). A total of 94% of the tissue sections were adherent for 5 h or longer on the UV-treated disks, whereas only 50% of the sections remained on the control disks for 5 h. The adhesion strength of the tissue sections to the titanium disks, as measured by tensile testing, was six times greater after UV treatment. In the culture studies, mucosal fibroblasts extracted from rat palates were attached to titanium disks by incubating for 24, 48, or 96 h. The number of attached cells was consistently 15–30% greater on the UV-treated disks than on the control disks. The cells were then subjected to mechanical or chemical (trypsinization) detachment. After mechanical detachment, the residual cell rates on the UV-treated surfaces after 24 and 48 h of incubation were 35% and 25% higher, respectively, than those on the control surfaces. The remaining rate after chemical detachment was 74% on the control surface and 88% on the UV-treated surface for the cells cultured for 48 h. These trends were also confirmed in mouse embryonic fibroblasts, with an intense expression of vinculin, a focal adhesion protein, on the UV-treated disks even after detachment. The UV-treated titanium was superhydrophilic, whereas the control titanium was hydrophobic. X-ray photoelectron spectroscopy (XPS) chemical analysis revealed that the amount of carbon at the surface was significantly reduced after UV treatment, while the amount of TiOH molecules was increased. These ex vivo and in vitro results indicate that the UV treatment of titanium increases the adhesion and retention of oral mucosa connective tissue as a result of increased resistance of constituent fibroblasts against exogenous detachment, both mechanically and chemically, as well as UV-induced physicochemical changes of the titanium surface.
Collapse
|
6
|
Gajiwala M, Paliwal J, Husain SY, Dadarwal A, Kalla R, Sharma V, Sharma M. Influence of surface modification of titanium implants on improving osseointegration: An in vitro study. J Prosthet Dent 2021; 126:405.e1-405.e7. [PMID: 34376285 DOI: 10.1016/j.prosdent.2021.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022]
Abstract
STATEMENT OF PROBLEM The effect of aging and the surface treatment of implants on osseointegration needs to be evaluated. PURPOSE The purpose of this in vitro study was to evaluate the effects of aging and the surface treatment of titanium with ultraviolet (UV) radiation and fibroblast growth factor (FGF) on hydrophilicity and cell growth and thus on osseointegration. MATERIAL AND METHODS A total of 28 specimens were divided into 2 groups to measure hydrophilicity (n=14) and cell growth (n=14). Each group was further divided into 4 groups according to surface modification. These include the control group (CG) (nascent specimens), aged group (AG) (nascent specimens aged for 4 weeks), photofunctionalized group (PG) (aged specimens UV-A treated), and mimed group (MG) (aged specimens UV-A and FGF2 treated). The PG and MG specimens were treated with UV-A light for 40 minutes. The biomimetic surface modification was performed for MG. Hydrophilicity was measured by using the contact angle in relation to the surface of titanium disks with the help of a drop shape analyzing device (KRUSS), and cell growth was measured by calculating the number of stem cells per cm2 with the help of a scanning electron microscope (SEM). The data obtained were subjected to statistical analysis with a statistical software program (α=.05). RESULTS The lowest contact angle values were found in PG (13.52 ±0.90 degrees) and the highest in AG (70.54 ±1.72 degrees). The highest number of cells per cm2 (2880 ±99.33) were found for MG, and the lowest number of cells per cm2 (760 ±9.17) for AG. CONCLUSIONS Aging decreased the hydrophilicity and cell adhesion, migration, and growth on the titanium surface. UV treatment improved the hydrophilicity, cell adhesion, migration, and growth for both CG and AG. FGF2 treatment increased the cell adhesion, migration, and growth for CG, AG, and PG.
Collapse
Affiliation(s)
- Mohini Gajiwala
- Post Graduate student, Department of Prosthodontics, Crown & bridge, R.U.H.S. College of Dental Sciences, Jaipur, India
| | - Jyoti Paliwal
- Professor and Head, Department of Prosthodontics, Crown & bridge, R.U.H.S. College of Dental Sciences, Jaipur, India.
| | - Syed Yawer Husain
- Assistant Professor, Department of Dental Materials, R.U.H.S. College of Dental Sciences, Jaipur, India
| | - Ashish Dadarwal
- Senior Demonstrator, Department of Prosthodontics, Crown & bridge, R.U.H.S. College of Dental Sciences, Jaipur, India
| | - Rajni Kalla
- Assistant Professor, Department of Prosthodontics, Crown & bridge, R.U.H.S. College of Dental Sciences, Jaipur, India
| | - Vineet Sharma
- Medical Officer (Dental), Department of Prosthodontics, Crown & bridge, R.U.H.S. College of Dental Sciences, Jaipur, India
| | - Meenakshi Sharma
- Assistant Professor, Department of Pedodontics, R.U.H.S. College of Dental Sciences, Jaipur, India
| |
Collapse
|
7
|
Monti N, Masiello MG, Proietti S, Catizone A, Ricci G, Harrath AH, Alwasel SH, Cucina A, Bizzarri M. Survival Pathways Are Differently Affected by Microgravity in Normal and Cancerous Breast Cells. Int J Mol Sci 2021; 22:ijms22020862. [PMID: 33467082 PMCID: PMC7829699 DOI: 10.3390/ijms22020862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Metazoan living cells exposed to microgravity undergo dramatic changes in morphological and biological properties, which ultimately lead to apoptosis and phenotype reprogramming. However, apoptosis can occur at very different rates depending on the experimental model, and in some cases, cells seem to be paradoxically protected from programmed cell death during weightlessness. These controversial results can be explained by considering the notion that the behavior of adherent cells dramatically diverges in respect to that of detached cells, organized into organoids-like, floating structures. We investigated both normal (MCF10A) and cancerous (MCF-7) breast cells and found that appreciable apoptosis occurs only after 72 h in MCF-7 cells growing in organoid-like structures, in which major modifications of cytoskeleton components were observed. Indeed, preserving cell attachment to the substrate allows cells to upregulate distinct Akt- and ERK-dependent pathways in MCF-7 and MCF-10A cells, respectively. These findings show that survival strategies may differ between cell types but cannot provide sufficient protection against weightlessness-induced apoptosis alone if adhesion to the substrate is perturbed.
Collapse
Affiliation(s)
- Noemi Monti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Grazia Masiello
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy; (M.G.M.); (S.P.); (A.C.)
| | - Sara Proietti
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy; (M.G.M.); (S.P.); (A.C.)
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy;
| | - Giulia Ricci
- Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.H.); (S.H.A.)
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.H.); (S.H.A.)
| | - Alessandra Cucina
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy; (M.G.M.); (S.P.); (A.C.)
- Azienda Policlinico Umberto I, 00161 Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-4976-6606
| |
Collapse
|
8
|
Suliman Y, Kafaja S, Oh SJ, Alemam M, Bagnato G, Abignano G, Singh RR, Barlow G, Liu X, Valera I, Morales W, Rezaie A, Pimentel M, Del Galdo F, Furst DE. Anti-vinculin antibodies in scleroderma (SSc): a potential link between autoimmunity and gastrointestinal system involvement in two SSc cohorts. Clin Rheumatol 2020; 40:2277-2284. [PMID: 33231773 DOI: 10.1007/s10067-020-05479-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/11/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is an autoimmune disorder and commonly presents with vascular system involvement and motility disorders in the gastrointestinal (GI) tract. Vinculin is a cytoskeletal protein that plays major roles in cell-cell adhesion and is expressed in the neuromuscular apparatus of the gut. Antibodies to vinculin have been identified as a biomarker of irritable bowel syndrome (IBS). Our aim was to evaluate serum anti-vinculin antibodies in patients with SSc. METHODS Patients were recruited from two SSc centers: group I (GI-enriched group), University of Leeds, UK, and Group II (vascular predominant), University of California, Los Angeles. Serum samples of patients recruited from two SSc centres, Group I ( GI enriched group), University of Leeds, UK and Group II (Vascular predominant), University of California, Los Angeles) were collected. Samples from age- and sex-matched healthy volunteers (N = 88) were used as controls. RESULTS Group I (GI-enriched group, N = 83) patients were 58 [50-67] years old; 83% were females with a median body mass index (BMI) of 20.3 (21.2 ± 4.5) [18-23]. Group II (vascular-enriched group, N = 72) patients were 58 [50-67] years old; 80% were female, and BMI was 23.9 (21.3-26.9). More subjects in group I had prominent GI involvement (N = 55, 66%) than group II (12, 16%), p ˂ 0.0001. Anti-vinculin antibody levels in SSc group I (1.3 [0.9]) were significantly higher than in HC (0.7 [0.8]; p = 0.002). When pooled, circulating anti-vinculin levels in both SSc groups remained significantly higher than in the HC group (p = 0.02). Higher anti-vinculin levels were associated with higher GI-visual analogue scale (GI-VAS) scores and specifically with GI-VAS scores of ≥ 4 (p < 0.0001). CONCLUSION This study demonstrates that elevated anti-vinculin antibody levels are common in SSc and suggests a potential link between increased anti-vinculin levels and GI tract symptoms. KEY POINTS • Anti-vinculin antibodies are elevated in systemic sclerosis and are relatively common. • In these SSc patients, anti-vinculin antibodies are associated with higher levels of GI symptoms in SSc. • A potential link between anti-vinculin antibodies and vascular system involvement was shown.
Collapse
Affiliation(s)
- Yossra Suliman
- Division of Rheumatology, Department of Internal Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Rheumatology and Rehabilitation Department, Assiut University Hospital, Assiut, Egypt
| | - Suzanne Kafaja
- Division of Rheumatology, Department of Internal Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sunny J Oh
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohamed Alemam
- Clinical Pathology and Laboratory Medicine Department, Qena faculty of Medicine, South Valley University, Qena, Egypt
| | - Gianluca Bagnato
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Giuseppina Abignano
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,San Carlo Hospital, Rheumatology Institute of Lucania (IReL), Potenza, Italy
| | - Ram Raj Singh
- Division of Rheumatology, Department of Internal Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Gillian Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaochen Liu
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Isela Valera
- Division of Rheumatology, Department of Internal Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Daniel E Furst
- Division of Rheumatology, Department of Internal Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Division of Rheumatology, University of Washington, Seattle, WA, USA. .,Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy.
| |
Collapse
|
9
|
Chuang T, Lien C, Tsai Y, Lin K, Hsu C, Wu W, Su L, Lu C, Wu C. Oral treatment with the Chinese herbal supplements B307 enhances muscle endurance of ICR mice after exhaustive swimming via suppressing fatigue, oxidative stress, and inflammation. Food Sci Nutr 2020; 8:3682-3691. [PMID: 32724631 PMCID: PMC7382157 DOI: 10.1002/fsn3.1652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/03/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Exhaustive exercise may damage muscles due to oxidative stress and inflammation and cause muscle fatigue and soreness. The study investigated the effects of Chinese herbal supplements (CHS) B307 on muscle endurance after exhaustive swimming (ES). Thirty-two male ICR mice were randomly divided into 4 groups: Sham + ES, pretreatment of CHS B307 + ES (Pre + ES), post-treatment of CHS B307 + ES (Post + ES), and dual treatment of CHS B307 + ES (Dual + ES). All mice were subjected to ES in the form of a forced swimming test. Then, we compared ES time (EST) as the index of muscular endurance. Also, we examined the fatigue, oxidative stress, inflammation, and damage in the muscle tissue among these groups by using immunohistochemistry (IHC), chemiluminescence, and biochemical analysis. Our results revealed that those mice of Pre + ES and Dual + ES groups had remarkably better EST than those mice of Sham + ES and Post + ES groups. Those mice with oral treatment of CHS B307(Pre + ES, Post + ES, and Dual + ES groups) showed significantly reduced leukocyte counts in the urine, and reduced levels of reactive oxygen species (ROS), neutrophils, and lactic acid in the blood than those mice of Sham + ES. In addition, those mice with oral treatment of CHS B307 (Pre + ES, Post + ES, and Dual + ES groups) showed significant alleviation of oxidative stress, inflammation, and damage in the muscle tissue than those mice of Sham + ES. Thus, we suggested that CHS B307 can be a functional sports supplement because it can enhance muscle endurance after exhaustive swimming via suppressing fatigue, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Tai‐Yuan Chuang
- School of Life ScienceNational Taiwan Normal UniversityTaipei CityTaiwan
- Department of AthleticsNational Taiwan UniversityTaipei CityTaiwan
| | - Chia‐Ying Lien
- Department of AthleticsNational Taiwan UniversityTaipei CityTaiwan
| | - Ya‐Chun Tsai
- Department of Physical EducationNational Tsing Hua UniversityHsinchu CityTaiwan
| | - Kuei‐Fu Lin
- Department of Physical EducationNational Tsing Hua UniversityHsinchu CityTaiwan
| | - Chih‐Hsiang Hsu
- School of Life ScienceNational Taiwan Normal UniversityTaipei CityTaiwan
| | - Wan‐Jhen Wu
- School of Life ScienceNational Taiwan Normal UniversityTaipei CityTaiwan
| | - Li‐Yu Su
- School of Life ScienceNational Taiwan Normal UniversityTaipei CityTaiwan
| | - Chen‐Wen Lu
- School of Life ScienceNational Taiwan Normal UniversityTaipei CityTaiwan
| | - Chung‐Hsin Wu
- School of Life ScienceNational Taiwan Normal UniversityTaipei CityTaiwan
| |
Collapse
|
10
|
Ching JY, Huang BJ, Hsu YT, Khung YL. Anti-Adhesion Behavior from Ring-Strain Amine Cyclic Monolayers Grafted on Silicon (111) Surfaces. Sci Rep 2020; 10:8758. [PMID: 32472042 PMCID: PMC7260185 DOI: 10.1038/s41598-020-65710-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/07/2020] [Indexed: 01/09/2023] Open
Abstract
In this manuscript, a series of amine tagged short cyclic molecules (cyclopropylamine, cyclobutylamine, cyclopentylamine and cyclohexylamine) were thermally grafted onto p-type silicon (111) hydride surfaces via nucleophilic addition. The chemistries of these grafting were verified via XPS, AFM and sessile droplet measurements. Confocal microscopy and cell viability assay was performed on these surfaces incubated for 24 hours with triple negative breast cancer cells (MDA-MB 231), gastric adenocarcinoma cells (AGS) endometrial adenocarcinoma (Hec1A). All cell types had shown a significant reduction when incubated on these ring-strain cyclic monolayer surfaces than compared to standard controls. The expression level of focal adhesion proteins (vinculin, paxilin, talin and zyxin) were subsequently quantified for all three cell types via qPCR analysis. Cells incubate on these surface grafting were observed to have reduced levels of adhesion protein expression than compared to positive controls (collagen coating and APTES). A potential application of these anti-adhesive surfaces is the maintenance of the chondrocyte phenotype during in-vitro cell expansion. Articular chondrocytes cultured for 6 days on ring strained cyclopropane-modified surfaces was able to proliferate but had maintained a spheroid/aggregated phenotype with higher COL2A1 and ACAN gene expression. Herein, these findings had help promote grafting of cyclic monolayers as an viable alternative for producing antifouling surfaces.
Collapse
Affiliation(s)
- Jing Yuan Ching
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Brian J Huang
- Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40447, Taiwan.,Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yu-Ting Hsu
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yit Lung Khung
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan.
| |
Collapse
|
11
|
Po A, Giuliani A, Masiello MG, Cucina A, Catizone A, Ricci G, Chiacchiarini M, Tafani M, Ferretti E, Bizzarri M. Phenotypic transitions enacted by simulated microgravity do not alter coherence in gene transcription profile. NPJ Microgravity 2019; 5:27. [PMID: 31799378 PMCID: PMC6872750 DOI: 10.1038/s41526-019-0088-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Cells in simulated microgravity undergo a reversible morphology switch, causing the appearance of two distinct phenotypes. Despite the dramatic splitting into an adherent-fusiform and a floating-spherical population, when looking at the gene-expression phase space, cell transition ends up in a largely invariant gene transcription profile characterized by only mild modifications in the respective Pearson's correlation coefficients. Functional changes among the different phenotypes emerging in simulated microgravity using random positioning machine are adaptive modifications-as cells promptly recover their native phenotype when placed again into normal gravity-and do not alter the internal gene coherence. However, biophysical constraints are required to drive phenotypic commitment in an appropriate way, compatible with physiological requirements, given that absence of gravity foster cells to oscillate between different attractor states, thus preventing them to acquire a exclusive phenotype. This is a proof-of-concept of the adaptive properties of gene-expression networks supporting very different phenotypes by coordinated 'profile preserving' modifications.
Collapse
Affiliation(s)
- Agnese Po
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | | | - Alessandra Cucina
- Department of Surgery “Pietro Valdoni”, Sapienza University, Rome, Italy
- Azienda Policlinico Umberto I, Rome, Italy
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University, Rome, Italy
- Systems Biology Group Lab, Sapienza University, Rome, Italy
| |
Collapse
|
12
|
Lux JC, Channaveerappa D, Aslebagh R, Heintz TA, McLerie M, Panama BK, Darie CC. Identification of dysregulation of atrial proteins in rats with chronic obstructive apnea using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. J Cell Mol Med 2019; 23:3016-3020. [PMID: 30756508 PMCID: PMC6433690 DOI: 10.1111/jcmm.14131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022] Open
Abstract
Obstructive sleep apnea (OSA) affects an estimated 20% of adults worldwide and has been associated with electrical and structural abnormalities of the atria, although the molecular mechanisms are not well understood. Here, we used two‐dimensional polyacrylamide gel electrophoresis (2D PAGE) coupled with nanoliquid chromatography‐tandem mass spectrometry (nanoLC‐MS/MS) to investigate the proteins that are dysregulated in the atria from severe and moderate apnea when compared to control. We found enzymes involved in the glycolysis, beta‐oxidation, electron transport chain and Krebs cycle to be down‐regulated. The data suggested that the dysregulated proteins may play a role in atrial pathology developing via chronic obstructive apnea and hypoxia. Our results are consistent with our previous 1D‐PAGE and nanoLC‐MS/MS study (Channaveerappa et al, J Cell Mol Med. 2017), where we found that some aerobic and anaerobic glycolytic and Krebs cycle enzymes were down‐regulated, suggesting that apnea may be a result of paucity of oxygen and production of ATP and reducing equivalents (NADH). The 2D‐PAGE study not only complements our current study, but also advances our understanding of the OSA. The complete mass spectrometry data are available via ProteomeXchange with identifier PXD011181.
Collapse
Affiliation(s)
- Jacob C Lux
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, New York
| | - Devika Channaveerappa
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York
| | - Roshanak Aslebagh
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York
| | - Timothy A Heintz
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, New York
| | - Meredith McLerie
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, New York
| | - Brian K Panama
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, New York
| | - Costel C Darie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York
| |
Collapse
|
13
|
Charbonier FW, Zamani M, Huang NF. Endothelial Cell Mechanotransduction in the Dynamic Vascular Environment. ADVANCED BIOSYSTEMS 2019; 3:e1800252. [PMID: 31328152 PMCID: PMC6640152 DOI: 10.1002/adbi.201800252] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 12/11/2022]
Abstract
The vascular endothelial cells (ECs) that line the inner layer of blood vessels are responsible for maintaining vascular homeostasis under physiological conditions. In the presence of disease or injury, ECs can become dysfunctional and contribute to a progressive decline in vascular health. ECs are constantly exposed to a variety of dynamic mechanical stimuli, including hemodynamic shear stress, pulsatile stretch, and passive signaling cues derived from the extracellular matrix. This review describes the molecular mechanisms by which ECs perceive and interpret these mechanical signals. The translational applications of mechanosensing are then discussed in the context of endothelial-to-mesenchymal transition and engineering of vascular grafts.
Collapse
Affiliation(s)
- Frank W. Charbonier
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305
| | - Maedeh Zamani
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305
- Stanford University, 300 Pasteur Drive, MC 5407, Stanford, CA 94305-5407, USA
| |
Collapse
|
14
|
Mass Spectrometry Based Comparative Proteomics Using One Dimensional and Two Dimensional SDS-PAGE of Rat Atria Induced with Obstructive Sleep Apnea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:541-561. [DOI: 10.1007/978-3-030-15950-4_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Rosowski KA, Boltyanskiy R, Xiang Y, Van den Dries K, Schwartz MA, Dufresne ER. Vinculin and the mechanical response of adherent fibroblasts to matrix deformation. Sci Rep 2018; 8:17967. [PMID: 30568231 PMCID: PMC6299284 DOI: 10.1038/s41598-018-36272-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
Cells respond to the mechanics of their environment. Mechanical cues include extracellular matrix (ECM) stiffness and deformation, which are primarily sensed through integrin-mediated adhesions. We investigated the impact of ECM deformation on cellular forces, measuring the time-evolution of traction forces of isolated mouse fibroblasts in response to stretch and release. Stretch triggered a marked increase of traction stresses and apparent stiffness. Expression of the focal adhesion protein vinculin not only increased baseline traction forces, but also increased dissipation of mechanical energy, which was correlated with the cells’ failure to recover baseline traction forces after release of stretch.
Collapse
Affiliation(s)
- Kathryn A Rosowski
- Department of Materials, ETH Zürich, 8093, Zürich, Switzerland.,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA
| | - Rostislav Boltyanskiy
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA
| | - Yingjie Xiang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA
| | - Koen Van den Dries
- Cardiovascular Research Center and Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT, 06511, USA.,Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin A Schwartz
- Cardiovascular Research Center and Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT, 06511, USA.,Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Eric R Dufresne
- Department of Materials, ETH Zürich, 8093, Zürich, Switzerland. .,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
16
|
Elkhidir Y, Lai R, Feng Z. The impact of photofunctionalized gold nanoparticles on osseointegration. Heliyon 2018; 4:e00662. [PMID: 30094359 PMCID: PMC6077240 DOI: 10.1016/j.heliyon.2018.e00662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/10/2018] [Accepted: 06/18/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The aims of this study were to create a new surface topography using simulated body fluids (SBF) and Gold Nanoparticles (GNPs) and then to assess the influence of UV Photofunctionalization (PhF) on the osteogenic capacity of these surfaces. MATERIALS AND METHODS Titanium plates were divided into six groups All were acid etched with 67% Sulfuric acid, 4 were immersed in SBF and 2 of these were treated with 10 nm GNPs. Half of the TiO2 plates were photofunctionalized to be compared with the non-PhF ones. Rat's bone marrow stem cells were seeded into the plates and then CCK8 assay, cell viability assay, immunofluorescence, and Scanning electron microscopy (SEM) were done after 24 hours. Gene expression analysis was done using real time quantitative PCR (qPCR) one week later to check for the mRNA expression of Collagen-1, Osteopontin and Osteocalcin. Alkaline phosphatase (ALP) activity was assessed after 2 weeks of cell seeding. RESULTS Our new topography has shown remarkable osteogenic potential. The new surface was the most biocompatible, and the 10 nm GNPs did not show any cytotoxicity. There was a significant increase in bioactivity, enhanced gene expressions and ALP activity. CONCLUSIONS GNPs enhances osteogenic differentiation of stem cells and Photofunctionalizing GNPs highly increases this. We have further created a novel highly efficient topography which highly enhances the speed and extent of osseointegration. This may have great potential for improving treatment outcomes for implant, maxillofacial as well as orthopedic patients.
Collapse
Affiliation(s)
| | | | - Zhiqiang Feng
- Implant Department – Suihua, The First Affiliated Stomatological Hospital of Jinan University, PR China
| |
Collapse
|
17
|
Liu H, Jia L, Guo W, Sun Y, Zhu R, Li S, Qu G, Jiang H, Wang J, Gu J, Sun C, Feng X, Han W, Lei L. Differential Protein Profiling of Cerebrospinal Fluid in Piglets with Severe Meningoencephalitis Caused by Streptococcus suis Type 2 Compared to Controls. Front Cell Infect Microbiol 2018; 8:35. [PMID: 29479521 PMCID: PMC5811643 DOI: 10.3389/fcimb.2018.00035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/25/2018] [Indexed: 11/19/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a zoonotic pathogen that can cause meningitis both in pigs and in human beings. However, the pathogenesis of central nervous system (CNS) infection caused by SS2 have not yet been elucidated. To find the key molecules in cerebrospinal fluid (CSF) needed for the pathogenesis, a SS2 meningoencephalitic pig model and a SS2 non-meningoencephalitic pig model were established in this study. CSF was collected from infected piglets, and protein profiling was performed with label-free proteomics technology. A total of 813 differential proteins, including 52 up-regulated proteins and 761 down-regulated proteins, were found in the CSF of meningoencephalitic pigs compared with both non-meningoencephalitic pigs and healthy pigs. These 813 differential proteins were clustered into three main categories, namely, cellular component, biological process, and molecular function by gene ontology (GO) analysis. The most enriched subclasses of differential proteins in each category were exosome (44.3%), energy pathway (25.0%) and catalytic activity (11.3%), respectively. The most enriched subclasses of upregulated proteins were extracellular (62.1%), protein metabolism (34.5%) and cysteine-type peptidase activity (6.9%), and of downregulated proteins were exosomes (45.0%), energy pathway (24.0%) and catalytic activity (9.4%). Then, the differential proteins were further investigated by using the KEGG database and were found to participate in 16 KEGGs. The most enriched KEGG was citrate cycle (56.6%), and some of these differential proteins are associated with brain diseases such as Huntington's disease (18.6%), Parkinson's disease (23.8%) and Alzheimer's disease (17.6%). Sixteen of the 813 differential proteins, chosen randomly as examples, were further confirmed by enzyme-linked immunosorbent assay (ELISA) to support the proteomic data. To our knowledge, this is the first study to analyze the differential protein profiling of CSF between SS2 meningoencephalitic piglets and non-meningoencephalitic piglets by employing proteomic technology. The discovery and bioinformatics analysis of these differential proteins provides reference data not only for research on pathogenesis of SS2 CNS infection but also for diagnosis and drug therapy research.
Collapse
Affiliation(s)
- Hongtao Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Jia
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenfei Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yingying Sun
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rining Zhu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuguang Li
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Guanggang Qu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Hexiang Jiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Junjie Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
18
|
Enhanced bovine serum albumin absorption on the N-hydroxysuccinimide activated graphene oxide and its corresponding cell affinity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:386-392. [DOI: 10.1016/j.msec.2017.08.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/20/2017] [Accepted: 08/10/2017] [Indexed: 12/22/2022]
|
19
|
Yoshihara C, Ueno T, Chen P, Tsutsumi Y, Hanawa T, Wakabayashi N. Inverse response of osteoblasts and fibroblasts to growth on carbon-deposited titanium surfaces. J Biomed Mater Res B Appl Biomater 2017; 106:1869-1877. [PMID: 28926194 DOI: 10.1002/jbm.b.33996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/08/2017] [Accepted: 08/28/2017] [Indexed: 11/07/2022]
Abstract
Titanium implant surfaces may serve as attachment substrates for various cell types. Since carbon adsorption on titanium is inevitable, this study examined the negative/positive biological reaction of osteoblasts and fibroblasts on carbon-deposited titanium surfaces. Osteogenic MC3T3-E1 and fibrogenic NIH/3T3 cells were separately cultured on titanium disks on which carbon deposition was experimentally regulated to achieve titanium/carbon ratios of 6.5, 0.02, 0.005, and 0. The initial attachment of cells demonstrated that the quantity of attached osteoblasts on Ti/C (0.005) surfaces was 20% lower than that on Ti/C (6.5) surfaces at 4 h of culture. A 40% reduction in cell attachment at 24 h transferring from Ti/C (6.5) to Ti/C (0.005) surfaces highlighted the negative effect of carbon deposition on osteoblast attachment. However, the initial attachment of fibroblasts, which depended on carbon deposition, increased, and the quantity of cells on Ti/C (0.005) surfaces was almost twice that on Ti/C (6.5) surfaces at 4 h of culture. The levels of common differentiation markers of collagen synthesis were also differentially carbon-dependent as total collagen deposition on Ti/C (0.005) decreased by > 30% compared to that on Ti/C (6.5) in osteoblasts after 7 days of culture. In contrast, collagen synthesis in fibroblasts markedly increased as was evident by the increase in carbon deposition. These inverse effects indicate that carbon deposition on a titanium surface would likely be a disadvantage for bone formation, but might represent an effective option for achieving better wound healing and soft tissue sealing around the surface of an implant-neck region. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1869-1877, 2018.
Collapse
Affiliation(s)
- Chie Yoshihara
- Removable Partial Prosthodontics, Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Takeshi Ueno
- Removable Partial Prosthodontics, Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Peng Chen
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yusuke Tsutsumi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Takao Hanawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Noriyuki Wakabayashi
- Removable Partial Prosthodontics, Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| |
Collapse
|
20
|
YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun 2017; 8:15321. [PMID: 28504269 PMCID: PMC5440673 DOI: 10.1038/ncomms15321] [Citation(s) in RCA: 424] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
Hippo effectors YAP/TAZ act as on–off mechanosensing switches by sensing modifications in extracellular matrix (ECM) composition and mechanics. The regulation of their activity has been described by a hierarchical model in which elements of Hippo pathway are under the control of focal adhesions (FAs). Here we unveil the molecular mechanism by which cell spreading and RhoA GTPase activity control FA formation through YAP to stabilize the anchorage of the actin cytoskeleton to the cell membrane. This mechanism requires YAP co-transcriptional function and involves the activation of genes encoding for integrins and FA docking proteins. Tuning YAP transcriptional activity leads to the modification of cell mechanics, force development and adhesion strength, and determines cell shape, migration and differentiation. These results provide new insights into the mechanism of YAP mechanosensing activity and qualify this Hippo effector as the key determinant of cell mechanics in response to ECM cues. The transcriptional co-activator YAP is known to operate downstream of mechanical signals arising from the cell niche. Here the authors demonstrate that YAP controls cell mechanics, force development and adhesion strength by promoting the transcription of genes related to focal adhesions.
Collapse
|
21
|
Zhang Z, Cheng X, Yao Y, Luo J, Tang Q, Wu H, Lin S, Han C, Wei Q, Chen L. Electrophoretic deposition of chitosan/gelatin coatings with controlled porous surface topography to enhance initial osteoblast adhesive responses. J Mater Chem B 2016; 4:7584-7595. [PMID: 32263815 DOI: 10.1039/c6tb02122k] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electrophoretically deposited (EPD) coatings have often been employed recently for the addition of different new chemical compositions to classic chitosan coatings to improve the biocompatibility and therapeutic potential of coated implants. However, little attention has been paid to enhance the cell response to EPD coatings via integrating the effects of chemical components and surface topography. Here, we fabricated EPD chitosan/gelatin (CS/G) coatings with controlled porous surface topography by controlling bubble generation in the EPD process via changing the gelatin content in solution from 0, 0.01, 0.1, and 1 to 10 mg ml-1. The pure chitosan coating surface was characterized by homogeneous large pores of 500 μm. After 0.01 mg ml-1 gelatin was added, 180 μm small pores appeared on the walls of large pores. As the gelatin content increased to 0.1 mg ml-1, a number of small pores increased noticeably. When the gelatin content reached 1 mg ml-1, large pores disappeared, and the coating displayed homogeneous small pores. 10 mg ml-1 gelatin concentration led to coatings consisting of small pores with not integral and continuous structures. The initial osteoblastic responses, including cell adherence progress, spreading area, proliferation rate, and focal adhesion-related gene expression, gradually improved from 0 to 0.01, 0.1, and 1 mg ml-1 gelatin content, but decreased from 1 to 10 mg ml-1. All these results indicated that the initial cell responses to coatings reached a peak when it was 1 mg ml-1 gelatin and they had homogeneous small pores, which might contribute to the synergistic effects of the porous surface structure and components. This work would be beneficial for expanding the potential application of EPD coatings.
Collapse
Affiliation(s)
- Zhen Zhang
- Dept. Stomatol., Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Advani AS, Chen AY, Babbitt CC. Human fibroblasts display a differential focal adhesion phenotype relative to chimpanzee. EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:110-6. [PMID: 26971204 PMCID: PMC4804348 DOI: 10.1093/emph/eow010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
Abstract
It has been documented that there are differences in disease susceptibilities between humans and non-human primates. We investigate one of these differences in fibroblasts to examine differences in cellular adhesion between humans and chimpanzees using microscopy and gene expression and have found significant differences in both datasets. These results suggest that human and chimpanzee fibroblasts may have somewhat different adhesive properties, which could play a role in differential disease phenotypes and responses to external factors. There are a number of documented differences between humans and our closest relatives in responses to wound healing and in disease susceptibilities, suggesting a differential cellular response to certain environmental factors. In this study, we sought to look at a specific cell type, fibroblasts, to examine differences in cellular adhesion between humans and chimpanzees in visualized cells and in gene expression. We have found significant differences in the number of focal adhesions between primary human and chimpanzee fibroblasts. Additionally, we see that adhesion related gene ontology categories are some of the most differentially expressed between human and chimpanzee in normal fibroblast cells. These results suggest that human and chimpanzee fibroblasts may have somewhat different adhesive properties, which could play a role in differential disease phenotypes and responses to external factors.
Collapse
Affiliation(s)
| | - Annie Y Chen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Courtney C Babbitt
- Department of Biology, Duke University, Durham, NC 27708, USA Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
23
|
Xu L, Rönnlund D, Aspenström P, Braun LJ, Gad AKB, Widengren J. Resolution, target density and labeling effects in colocalization studies - suppression of false positives by nanoscopy and modified algorithms. FEBS J 2016; 283:882-98. [PMID: 26756570 DOI: 10.1111/febs.13652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/10/2015] [Accepted: 01/08/2016] [Indexed: 11/28/2022]
Abstract
Colocalization analyses of fluorescence images are extensively used to quantify molecular interactions in cells. In recent years, fluorescence nanoscopy has approached resolutions close to molecular dimensions. However, the extent to which image resolution influences different colocalization estimates has not been systematically investigated. In this work, we applied simulations and resolution-tunable stimulated emission depletion microscopy to evaluate how the resolution, molecular density and label size of targeted molecules influence estimates of the most commonly used colocalization algorithms (Pearson correlation coefficient, Manders' M1 and M2 coefficients), as well as estimates by the image cross-correlation spectroscopy method. We investigated the practically measureable extents of colocalization for stimulated emission depletion microscopy with positive and negative control samples with an aim to identifying the strengths and weaknesses of nanoscopic techniques for colocalization studies. At a typical optical resolution of a confocal microscope (200-300 nm), our results indicate that the extent of colocalization is typically overestimated by the tested algorithms, especially at high molecular densities. Only minor effects of this kind were observed at higher resolutions (< 60 nm). By contrast, underestimation of colocalization may occur if the resolution is close to the size of the label/affinity molecules themselves. To suppress false positives at confocal resolutions and high molecular densities, we introduce a statistical variant of Costes' threshold searching algorithm, used in combination with correlation-based methods like the Pearson coefficient and the image cross-correlation spectroscopy approach, to set intensity thresholds separating background noise from signals.
Collapse
Affiliation(s)
- Lei Xu
- Department of Applied Physics, Royal Institute of Technology, KTH, Stockholm, Sweden
| | - Daniel Rönnlund
- Department of Applied Physics, Royal Institute of Technology, KTH, Stockholm, Sweden
| | - Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Laura J Braun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Annica K B Gad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Jerker Widengren
- Department of Applied Physics, Royal Institute of Technology, KTH, Stockholm, Sweden
| |
Collapse
|
24
|
Goldmann WH. Role of vinculin in cellular mechanotransduction. Cell Biol Int 2016; 40:241-56. [DOI: 10.1002/cbin.10563] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/14/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Wolfgang H. Goldmann
- Department of Biophysics; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
25
|
Sterner O, Giazzon M, Zürcher S, Tosatti S, Liley M, Spencer ND. Delineating fibronectin bioadhesive micropatterns by photochemical immobilization of polystyrene and poly(vinylpyrrolidone). ACS APPLIED MATERIALS & INTERFACES 2014; 6:18683-18692. [PMID: 25253530 DOI: 10.1021/am5042093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bioadhesive micropatterns, capable of laterally confining cells to a 2D lattice, have proven effective in simulating the in vivo tissue environment. They reveal fundamental aspects of the role of adhesion in cell mechanics, proliferation, and differentiation. Here we present an approach based on photochemistry for the fabrication of synthetic polymer micropatterns. Perfluorophenyl azide (PFPA), upon deep-UV exposure, forms a reactive nitrene capable of covalently linking to a molecule that is in close proximity. PFPA has been grafted onto a backbone of poly(allyl amine), which readily forms a self-assembled monolayer on silicon wafers or glass. A film of polystyrene was applied by spin-coating, and by laterally confining the UV exposure through a chromium-on-quartz photomask, monolayers of polymers could be immobilized in circular microdomains. Poly(vinylpyrrolidone) (PVP) was attached to the background to form a barrier to nonspecific protein adsorption and cell adhesion. Micropatterns were characterized with high-lateral-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS), which confirmed the formation of polystyrene domains within a PVP background. Fluorescence-microscopy adsorption assays with rhodamine-labeled bovine serum albumin demonstrated the nonfouling efficiency of PVP and, combined with TOF-SIMS, allowed for a comprehensive characterization of the pattern geometry. The applicability of the micropatterned platform in single-cell assays was tested by culturing two cell types, WM 239 melanoma cells and SaOs-2 osteoblasts, on micropatterned glass, either with or without backfilling of the patterns with fibronectin. It was demonstrated that the platform was efficient in confining cells to the fibronectin-backfilled micropatterns for at least 48 h. PVP is thus proposed as a viable, highly stable alternative to poly(ethylene glycol) for nonfouling applications. Due to the versatility of the nitrene-insertion reaction, the platform could be extended to other polymer pairs or proteins and the surface chemistry adapted to specific applications.
Collapse
Affiliation(s)
- Olof Sterner
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells. Colloids Surf B Biointerfaces 2014; 121:409-16. [PMID: 24986753 DOI: 10.1016/j.colsurfb.2014.06.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/23/2022]
Abstract
The quality of the initial cell attachment to a biomaterial will influence any further cell function, including spreading, proliferation, differentiation and viability. Cell attachment is influenced by the material's ability to adsorb proteins, which is related to the surface chemistry and topography of the material. In this study, we incorporated hydroxyapatite (HA) particles into a poly(lactic acid) (PLA) composite and evaluated the surface structure and the effects of HA density on the initial cell attachment in vitro of murine calvarial preosteoblasts (MC3T3-EI). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and infrared spectroscopy (FTIR) showed that the HA particles were successfully incorporated into the PLA matrix and located at the surface which is of importance in order to maintain the bioactive effect of the HA particles. SEM and AFM investigation revealed that the HA density (particles/area) as well as surface roughness increased with HA loading concentration (i.e. 5, 10, 15 and 20wt%), which promoted protein adsorption. Furthermore, the presence of HA on the surface enhanced cell spreading, increased the formation of actin stress fibers and significantly improved the expression of vinculin in MC3T3-E1 cells which is a key player in the regulation of cell adhesion. These results suggest the potential utility of PLA/HA composites as biomaterials for use as a bone substitute material and in tissue engineering applications.
Collapse
|
27
|
Rowlands DS, Shultz SP, Ogawa T, Aoi W, Korte M. The effects of uniquely-processed titanium on biological systems: implications for human health and performance. J Funct Biomater 2014; 5:1-14. [PMID: 24956353 PMCID: PMC4030905 DOI: 10.3390/jfb5010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/19/2022] Open
Abstract
Titanium is biocompatible and widely utilized in a variety of applications. Recently, titanium in pico-nanometer scale and soluble form (Aqua Titan) has expanded its use to applied human health and performance. The purpose of this article is to review the current evidence associated with specific physiological responses to Aqua Titan-treated materials. In vitro studies have shown that application of Aqua Titan can modify membrane potential and long-term potentiation in isolated hippocampal neurons, suggesting reduced pain memory as a possible mechanism for reported analgesia. Proximal contact with Aqua Titan-treated titanium increased gene expression, protein synthesis, cell growth and adhesion in normal cultured muscle and bone cells, suggesting application for Aqua Titan in clinical implant procedures and wound healing. Evidence for beneficial effects on neuromuscular control of muscle-tendon function and improvements in running economy in human athletes was seen when Aqua Titan-treated tape was applied to the human triceps surae following fatigue induced by prior strenuous exercise. Finally, behavioral responses and effects on the autonomic nervous system to environmental exposure suggest Aqua Titan may promote a mild relaxant, or stress-suppressive response. Together, data suggest exposure to Aqua Titan-treated materials modulates aspects of growth and function in neuronal and other musculoskeletal cells with possible benefits to musculotendinous recovery from exercise and to the systemic response to stress.
Collapse
Affiliation(s)
- David S Rowlands
- School of Sport and Exercise, Massey University, 63 Wallace Street, Wellington 6140, New Zealand.
| | - Sarah P Shultz
- School of Sport and Exercise, Massey University, 63 Wallace Street, Wellington 6140, New Zealand.
| | - Takahiro Ogawa
- University of California, Los Angeles, School of Dentistry, B3-088H CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1668, USA.
| | - Wataru Aoi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Hangi-cho 1-5, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Martin Korte
- Zoological Institute, Technical University of Braunschweig, Spielmannstr. 7, Braunschweig D-38106, Germany.
| |
Collapse
|
28
|
Mierke CT. The role of focal adhesion kinase in the regulation of cellular mechanical properties. Phys Biol 2013; 10:065005. [PMID: 24304934 DOI: 10.1088/1478-3975/10/6/065005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Biological Physics Division, University of Leipzig, Linnéstr. 5, D-04103 Leipzig, Germany
| |
Collapse
|
29
|
Yang N, Yang MK, Bi SX, Chen L, Zhu ZY, Gao YT, Du Z. Cells behaviors and genotoxicity on topological surface. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3465-3473. [PMID: 23706235 DOI: 10.1016/j.msec.2013.04.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/20/2013] [Accepted: 04/16/2013] [Indexed: 12/11/2022]
Abstract
To investigate different cells behaviors and genotoxicity, which were driven by specific microenvironments, three patterned surfaces (pillars, wide grooves and narrow grooves) and one smooth surface were prepared by template-based technique. Vinculin is a membrane-cytoskeletal protein in focal adhesion plaques and associates with cell-cell and cell-matrix junctions, which can promote cell adhesion and spreading. The immunofluorescence staining of vinculin revealed that the narrow grooves patterned substrate was favorable for L929 cell adhesion. For cell multiplication, the narrow grooves surface was fitted for the proliferation of L929, L02 and MSC cells, the pillars surface was only in favor of L929 cells to proliferate during 7 days of cell cultivation. Cell genetic toxicity was evaluated by cellular micronuclei test (MNT). The results indicated that topological surfaces were more suitable for L929 cells to proliferate and maintain the stability of genome. On the contrary, the narrow grooves surface induced higher micronuclei ratio of L02 and MSC cells than other surfaces. With the comprehensive results of cell multiplication and MNT, it was concluded that the wide grooves surface was best fitted for L02 cells to proliferate and have less DNA damages, and the smooth surface was optimum for the research of MSC cells in vitro.
Collapse
Affiliation(s)
- N Yang
- Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Ueno T, Takeuchi M, Hori N, Iwasa F, Minamikawa H, Igarashi Y, Anpo M, Ogawa T. Gamma ray treatment enhances bioactivity and osseointegration capability of titanium. J Biomed Mater Res B Appl Biomater 2012; 100:2279-87. [PMID: 22987777 DOI: 10.1002/jbm.b.32799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/02/2012] [Accepted: 07/14/2012] [Indexed: 11/07/2022]
Abstract
The time-dependent degradation of titanium bioactivity (i.e., the biological aging of titanium) has been reported in previous studies. This phenomenon is caused by the loss of hydrophilicity and the inevitable occurrence of progressive contamination of titanium surfaces by hydrocarbons. In this study, we tested the hypothesis that gamma ray treatment, owing to its high energy to decompose and remove organic contaminants, enhances the bioactivity and osteoconductivity of titanium. Titanium disks were acid-etched and stored for 4 weeks. Rat bone marrow-derived osteoblasts (BMOs) were cultured on titanium disks with or without gamma ray treatment (30 kGy) immediately before experiments. The cell density at day 2 increased by 50% on gamma-treated surfaces, which reflected the 25% higher rate of cell proliferation. Osteoblasts on gamma-treated surfaces showed 30% higher alkaline phosphatase activity at day 5 and 60% higher calcium deposition at day 20. The strength of in vivo bone-implant integration increased by 40% at the early healing stage of week 2 for gamma-treated implants. Gamma ray-treated surfaces regained hydrophilicity and showed a lower percentage of carbon (35%) as opposed to 48% on untreated aged surfaces. The data indicated that gamma ray pretreatment of titanium substantially enhances its bioactivity and osteoconductivity, in association with the significant reduction in surface carbon and the recovery of hydrophilicity. The results suggest that gamma ray treatment could be an effective surface enhancement technology to overcome biological aging of titanium and improve the biological properties of titanium implants.
Collapse
Affiliation(s)
- Takeshi Ueno
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Karna P, Rida PC, Turaga RC, Gao J, Gupta M, Fritz A, Werner E, Yates C, Zhou J, Aneja R. A novel microtubule-modulating agent EM011 inhibits angiogenesis by repressing the HIF-1α axis and disrupting cell polarity and migration. Carcinogenesis 2012; 33:1769-81. [PMID: 22678119 PMCID: PMC3514903 DOI: 10.1093/carcin/bgs200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 05/18/2012] [Accepted: 05/26/2012] [Indexed: 12/21/2022] Open
Abstract
Endothelial tubular morphogenesis relies on an exquisite interplay of microtubule dynamics and actin remodeling to propel directed cell migration. Recently, the dynamicity and integrity of microtubules have been implicated in the trafficking and efficient translation of the mRNA for HIF-1α (hypoxia-inducible factor), the master regulator of tumor angiogenesis. Thus, microtubule-disrupting agents that perturb the HIF-1α axis and neovascularization cascade are attractive anticancer drug candidates. Here we show that EM011 (9-bromonoscapine), a microtubule-modulating agent, inhibits a spectrum of angiogenic events by interfering with endothelial cell invasion, migration and proliferation. Employing green-fluorescent transgenic zebrafish, we found that EM011 not only inhibited vasculogenesis but also disrupted preexisting vasculature. Mechanistically, EM011 caused proteasome-dependent, VHL-independent HIF-1α degradation and repressed expression of HIF-1α downstream targets, namely VEGF and survivin. Furthermore, EM011 inhibited membrane ruffling and impeded formation of filopodia, lamellipodia and stress fibers, which are critical for cell migration. These events were associated with a drug-mediated decrease in activation of Rho GTPases- RhoA, Cdc42 and Rac1, and correlated with a loss in the geometric precision of centrosome reorientation in the direction of movement. This is the first report to describe a previously unrecognized, antiangiogenic property of a noscapinoid, EM011, and provides evidence for novel anticancer strategies recruited by microtubule-modulating drugs.
Collapse
Affiliation(s)
- Prasanthi Karna
- Department of Biology,
Georgia State University,
Atlanta, GA 30303, USA,
| | | | - Ravi Chakra Turaga
- Department of Biology,
Georgia State University,
Atlanta, GA 30303, USA,
| | - Jinmin Gao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University,
Tianjin 300071, China,
| | | | | | - Erica Werner
- Department of Biochemistry, Emory University School of Medicine,
Atlanta, GA 30322, USA and
| | - Clayton Yates
- Department of Biology and Center for Cancer Research,
Tuskegee, AL 36088, USA
| | - Jun Zhou
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University,
Tianjin 300071, China,
| | - Ritu Aneja
- Department of Biology,
Georgia State University,
Atlanta, GA 30303, USA,
| |
Collapse
|
32
|
Carlisle RE, Heffernan A, Brimble E, Liu L, Jerome D, Collins CA, Mohammed-Ali Z, Margetts PJ, Austin RC, Dickhout JG. TDAG51 mediates epithelial-to-mesenchymal transition in human proximal tubular epithelium. Am J Physiol Renal Physiol 2012; 303:F467-81. [DOI: 10.1152/ajprenal.00481.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) contributes to renal fibrosis in chronic kidney disease. Endoplasmic reticulum (ER) stress, a feature of many forms of kidney disease, results from the accumulation of misfolded proteins in the ER and leads to the unfolded protein response (UPR). We hypothesized that ER stress mediates EMT in human renal proximal tubules. ER stress is induced by a variety of stressors differing in their mechanism of action, including tunicamycin, thapsigargin, and the calcineurin inhibitor cyclosporine A. These ER stressors increased the UPR markers GRP78, GRP94, and phospho-eIF2α in human proximal tubular cells. Thapsigargin and cyclosporine A also increased cytosolic Ca2+ concentration and T cell death-associated gene 51 (TDAG51) expression, whereas tunicamycin did not. Thapsigargin was also shown to increase levels of active transforming growth factor (TGF)-β1 in the media of cultured human proximal tubular cells. Thapsigargin induced cytoskeletal rearrangement, β-catenin nuclear translocation, and α-smooth muscle actin and vinculin expression in proximal tubular cells, indicating an EMT response. Subconfluent primary human proximal tubular cells were induced to undergo EMT by TGF-β1 treatment. In contrast, tunicamycin treatment did not produce an EMT response. Plasmid-mediated overexpression of TDAG51 resulted in cell shape change and β-catenin nuclear translocation. These results allowed us to develop a two-hit model of ER stress-induced EMT, where Ca2+ dysregulation-mediated TDAG51 upregulation primes the cell for mesenchymal transformation via Wnt signaling and then TGF-β1 activation leads to a complete EMT response. Thus the release of Ca2+ from ER stores mediates EMT in human proximal tubular epithelium via the induction of TDAG51.
Collapse
Affiliation(s)
- Rachel E. Carlisle
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Alana Heffernan
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Elise Brimble
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Limin Liu
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Danielle Jerome
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Celeste A. Collins
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Zahraa Mohammed-Ali
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Peter J. Margetts
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Richard C. Austin
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Jeffrey G. Dickhout
- Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Influence of the fetal bovine serum proteins on the growth of human osteoblast cells on graphene. J Biomed Mater Res A 2012; 100:3001-7. [DOI: 10.1002/jbm.a.34231] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/22/2012] [Accepted: 04/23/2012] [Indexed: 11/07/2022]
|
34
|
Mierke CT. The biomechanical properties of 3d extracellular matrices and embedded cells regulate the invasiveness of cancer cells. Cell Biochem Biophys 2012; 61:217-36. [PMID: 21516307 DOI: 10.1007/s12013-011-9193-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The malignancy of tumors depends on the biomechanical properties of cancer cells and their microenvironment, which enable cancer cells to migrate through the connective tissue, transmigrate through basement membranes and endothelial monolayers and form metastases in targeted organs. The current focus of cancer research is still based on biological capabilities such as molecular genetics and gene signaling, but these approaches ignore the mechanical nature of the invasion process of cancer cells. This review will focus on how structural, biochemical and mechanical properties of extracellular matrices (ECMs), and adjacent cells regulate the invasiveness of cancer cells. In addition, it presents how cancer cells create their own microenvironment by restructuring of the ECM and by interaction with stromal cells, which then further contribute to the progression of cancer disease. Finally, this review will point out that mechanical properties are a critical determinant for the efficiency of cancer cell invasion and the progression of cancer which might affect the future development of new cancer treatments.
Collapse
Affiliation(s)
- Claudia T Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
35
|
Xu J, Chen C, Jiang X, Xu R, Tambe D, Zhang X, Liu L, Lan B, Cai K, Deng L. Effects of micropatterned curvature on the motility and mechanical properties of airway smooth muscle cells. Biochem Biophys Res Commun 2011; 415:591-6. [PMID: 22074822 DOI: 10.1016/j.bbrc.2011.10.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 10/25/2011] [Indexed: 11/29/2022]
Abstract
Geometric features such as size and shape of the microenvironment are known to alter cell behaviors such as growth, differentiation, apoptosis, and migration. Little is known, however, about the effect of curvature on cell behaviors despite that many cells reside in curved space of tubular organs such as the bronchial airways. To address this question, we fabricated micropatterned strips that mimic airway walls with varying curvature. Then, we cultured airway smooth muscle cells (ASMCs) on these strips and investigated the cells' motility and mechanical properties using time-lapse imaging microscopy and optical magnetic twisting cytometry (OMTC). We found that both motility and mechanical properties of the ASMCs were influenced by the curvature. In particular, when the curvature increased from 0 to 1/150 μm(-1), the velocity of cell migration first decreased (0-1/750 μm(-1)), and then increased (1/750-1/150 μm(-1)). In contrast, the cell stiffness increased and then decreased. Thus, at the intermediate curvature (1/750 μm(-1)) the ASMCs were the least motile, but most stiff. The contractility instead decreased consistently as the curvature increased. The level of F-actin, and vinculin expression within the ASMCs appeared to correlate with the contractility and motility, respectively, in relation to the curvature. These results may provide valuable insights to understanding the heterogeneity of airway constrictions in asthma as well as the developing and functioning of other tubular organs and tissue engineering.
Collapse
Affiliation(s)
- Jimin Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, 174 Shapingzhengjie Street, Chongqing 400044, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ishizaki K, Sugita Y, Iwasa F, Minamikawa H, Ueno T, Yamada M, Suzuki T, Ogawa T. Nanometer-thin TiO₂ enhances skeletal muscle cell phenotype and behavior. Int J Nanomedicine 2011; 6:2191-203. [PMID: 22114483 PMCID: PMC3215160 DOI: 10.2147/ijn.s24839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background The independent role of the surface chemistry of titanium in determining its biological properties is yet to be determined. Although titanium implants are often in contact with muscle tissue, the interaction of muscle cells with titanium is largely unknown. This study tested the hypotheses that the surface chemistry of clinically established microroughened titanium surfaces could be controllably varied by coating with a minimally thin layer of TiO2 (ideally pico-to-nanometer in thickness) without altering the existing topographical and roughness features, and that the change in superficial chemistry of titanium is effective in improving the biological properties of titanium. Methods and results Acid-etched microroughened titanium surfaces were coated with TiO2 using slow-rate sputter deposition of molten TiO2 nanoparticles. A TiO2 coating of 300 pm to 6.3 nm increased the surface oxygen on the titanium substrates in a controllable manner, but did not alter the existing microscale architecture and roughness of the substrates. Cells derived from rat skeletal muscles showed increased attachment, spread, adhesion strength, proliferation, gene expression, and collagen production at the initial and early stage of culture on 6.3 nm thick TiO2-coated microroughened titanium surfaces compared with uncoated titanium surfaces. Conclusion Using an exemplary slow-rate sputter deposition technique of molten TiO2 nanoparticles, this study demonstrated that titanium substrates, even with microscale roughness, can be sufficiently chemically modified to enhance their biological properties without altering the existing microscale morphology. The controllable and exclusive chemical modification technique presented in this study may open a new avenue for surface modifications of titanium-based biomaterials for better cell and tissue affinity and reaction.
Collapse
Affiliation(s)
- Ken Ishizaki
- Laboratory for Bone and Implant Sciences, The Jane and Jerry, Weintraub Center for Reconstructive, Biotechnology, Division of Advanced, Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Meloni MA, Galleri G, Pani G, Saba A, Pippia P, Cogoli-Greuter M. Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111. Cytoskeleton (Hoboken) 2011; 68:125-37. [PMID: 21246756 DOI: 10.1002/cm.20499] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Certain functions of immune cells in returning astronauts are known to be altered. A dramatic depression of the mitogenic in vitro activation of human lymphocytes was observed in low gravity. T-cell activation requires the interaction of different type of immune cells as T-lymphocytes and monocytes. Cell motility based on a continuous rearrangement of the cytoskeletal network within the cell is essential for cell-cell contacts. In this investigation on the International Space Station we studied the influence of low gravity on different cytoskeletal structures in adherent monocytes and their ability to migrate. J-111 monocytes were incubated on a colloid gold substrate attached to a cover slide. Migrating cells removed the colloid gold, leaving a track recording cell motility. A severe reduction of the motility of J-111 cells was found in low gravity compared to 1g in-flight and ground controls. Cell shape appeared more contracted, whereas the control cells showed the typical morphology of migrating monocytes, i.e., elongated and with pseudopodia. A qualitative and quantitative analysis of the structures of F-actin, β-tubulin and vinculin revealed that exposure of J-111 cells to low gravity affected the distribution of the different filaments and significantly reduced the fluorescence intensity of F-actin fibers. Cell motility relies on an intact structure of different cytoskeletal elements. The highly reduced motility of monocytes in low gravity must be attributed to the observed severe disruption of the cytoskeletal structures and may be one of the reasons for the dramatic depression of the in vitro activation of human lymphocytes.
Collapse
Affiliation(s)
- Maria Antonia Meloni
- Department of Physiological, Biochemical and Cellular Science, University of Sassari, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Darville LNF, Merchant ME, Hasan A, Murray KK. Proteome analysis of the leukocytes from the American alligator (Alligator mississippiensis) using mass spectrometry. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 5:308-16. [PMID: 20920849 DOI: 10.1016/j.cbd.2010.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 01/03/2023]
Abstract
Mass spectrometry was used in conjunction with gel electrophoresis and liquid chromatography, to determine peptide sequences from American alligator (Alligator mississippiensis) leukocytes and to identify similar proteins based on homology. The goal of the study was to generate an initial database of proteins related to the alligator immune system. We have adopted a typical proteomics approach for this study. Proteins from leukocyte extracts were separated using two-dimensional gel electrophoresis and the major bands were excised, digested and analyzed by on-line nano-LC MS/MS to generate peptide sequences. The sequences generated were used to identify proteins and characterize their functions. The protein identity and characterization of the protein function were based on matching two or more peptides to the same protein by searching against the NCBI database using MASCOT and Basic Local Alignment Search Tool (BLAST). For those proteins with only one peptide matching, the phylum of the matched protein was considered. Forty-three proteins were identified that exhibit sequence similarities to proteins from other vertebrates. Proteins related to the cytoskeletal system were the most abundant proteins identified. These proteins are known to regulate cell mobility and phagocytosis. Several other peptides were matched to proteins that potentially have immune-related function.
Collapse
Affiliation(s)
- Lancia N F Darville
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | |
Collapse
|
39
|
Malonia SK, Sinha S, Lakshminarasimhan P, Singh K, Jalota-Badhwar A, Rampalli S, Kaul-Ghanekar R, Chattopadhyay S. Gene regulation by SMAR1: Role in cellular homeostasis and cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:1-12. [PMID: 20709157 DOI: 10.1016/j.bbcan.2010.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 12/22/2022]
Abstract
Changes in the composition of nuclear matrix associated proteins contribute to alterations in nuclear structure, one of the major phenotypes of malignant cancer cells. The malignancy-induced changes in this structure lead to alterations in chromatin folding, the fidelity of genome replication and gene expression programs. The nuclear matrix forms a scaffold upon which the chromatin is organized into periodic loop domains called matrix attachment regions (MAR) by binding to various MAR binding proteins (MARBPs). Aberrant expression of MARBPs modulates the chromatin organization and disrupt transcriptional network that leads to oncogenesis. Dysregulation of nuclear matrix associated MARBPs has been reported in different types of cancers. Some of these proteins have tumor specific expression and are therefore considered as promising diagnostic or prognostic markers in few cancers. SMAR1 (scaffold/matrix attachment region binding protein 1), is one such nuclear matrix associated protein whose expression is drastically reduced in higher grades of breast cancer. SMAR1 gene is located on human chromosome 16q24.3 locus, the loss of heterozygosity (LOH) of which has been reported in several types of cancers. This review elaborates on the multiple roles of nuclear matrix associated protein SMAR1 in regulating various cellular target genes involved in cell growth, apoptosis and tumorigenesis.
Collapse
|
40
|
Wirth VF, List F, Diez G, Goldmann WH. Vinculin's C-terminal region facilitates phospholipid membrane insertion. Biochem Biophys Res Commun 2010; 398:433-7. [PMID: 20599708 DOI: 10.1016/j.bbrc.2010.06.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 06/23/2010] [Indexed: 01/13/2023]
Abstract
The focal adhesion protein vinculin has been implicated in associating with soluble and membranous phospholipids. Here, we investigated the intermolecular interactions of two vinculin tail domains with membrane phospholipids. Previous studies have shown that the tail's unstructured C-terminus affects the mechanical behavior of cells, but not the H3 region. The aim of this work was to establish whether the C-terminal or the H3 region either associate favorably with or anchor in lipid membranes. This work characterizes the energetics and dynamics of phospholipid interactions using differential scanning calorimetry (DSC) as well as circular dichroism (CD) spectroscopy. Biochemical data from tryptophan quenching and SDS-PAGE experiments support calorimetric and CD spectroscopic findings insofar that only vinculin's C-terminus inserts into lipid membranes. These in vitro results provide further insight into the mechanical behavior of vinculin tail regions in cells and contribute to the understanding of their structure and function.
Collapse
Affiliation(s)
- Volker F Wirth
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | |
Collapse
|
41
|
Dumbauld DW, Shin H, Gallant ND, Michael KE, Radhakrishna H, García AJ. Contractility modulates cell adhesion strengthening through focal adhesion kinase and assembly of vinculin-containing focal adhesions. J Cell Physiol 2010; 223:746-56. [PMID: 20205236 PMCID: PMC2874193 DOI: 10.1002/jcp.22084] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Actin-myosin contractility modulates focal adhesion assembly, stress fiber formation, and cell migration. We analyzed the contributions of contractility to fibroblast adhesion strengthening using a hydrodynamic adhesion assay and micropatterned substrates to control cell shape and adhesive area. Serum addition resulted in adhesion strengthening to levels 30-40% higher than serum-free cultures. Inhibition of myosin light chain kinase or Rho-kinase blocked phosphorylation of myosin light chain to similar extents and eliminated the serum-induced enhancements in strengthening. Blebbistatin-induced inhibition of myosin II reduced serum-induced adhesion strength to similar levels as those obtained by blocking myosin light chain phosphorylation. Reductions in adhesion strengthening by inhibitors of contractility correlated with loss of vinculin and talin from focal adhesions without changes in integrin binding. In vinculin-null cells, inhibition of contractility did not alter adhesive force, whereas controls displayed a 20% reduction in adhesion strength, indicating that the effects of contractility on adhesive force are vinculin-dependent. Furthermore, in cells expressing FAK, inhibitors of contractility reduced serum-induced adhesion strengthening as well as eliminated focal adhesion assembly. In contrast, in the absence of FAK, these inhibitors did not alter adhesion strength or focal adhesion assembly. These results indicate that contractility modulates adhesion strengthening via FAK-dependent, vinculin-containing focal adhesion assembly.
Collapse
Affiliation(s)
- David W. Dumbauld
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Heungsoo Shin
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Nathan D. Gallant
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Kristin E. Michael
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | | | - Andrés J. García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
42
|
Iwasa F, Hori N, Ueno T, Minamikawa H, Yamada M, Ogawa T. Enhancement of osteoblast adhesion to UV-photofunctionalized titanium via an electrostatic mechanism. Biomaterials 2010; 31:2717-27. [DOI: 10.1016/j.biomaterials.2009.12.024] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 12/07/2009] [Indexed: 11/25/2022]
|
43
|
Correlation between the interaction of the vinculin tail domain with lipid membranes, its phosphorylation and cell mechanical behaviour. Cell Biol Int 2010; 34:339-42. [DOI: 10.1042/cbi20100085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Klemm AH, Kienle S, Rheinlaender J, Schäffer TE, Goldmann WH. The influence of Pyk2 on the mechanical properties in fibroblasts. Biochem Biophys Res Commun 2010; 393:694-7. [PMID: 20170630 DOI: 10.1016/j.bbrc.2010.02.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 02/10/2010] [Indexed: 10/25/2022]
Abstract
The cell surface receptor integrin is involved in signaling mechanical stresses via the focal adhesion complex (FAC) into the cell. Within FAC, the focal adhesion kinase (FAK) and Pyk2 are believed to act as important scaffolding proteins. Based on the knowledge that many signal transducing molecules are transiently immobilized within FAC connecting the cytoskeleton with integrins, we applied magnetic tweezer and atomic force microscopic measurements to determine the influence of FAK and Pyk2 in cells mechanically. Using mouse embryonic fibroblasts (MEF; FAK(+/+), FAK(-/-), and siRNA-Pyk2 treated FAK(-/-) cells) provided a unique opportunity to describe the function of FAK and Pyk2 in more detail and to define their influence on FAC and actin distribution.
Collapse
Affiliation(s)
- Anna H Klemm
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
45
|
Miyauchi T, Yamada M, Yamamoto A, Iwasa F, Suzawa T, Kamijo R, Baba K, Ogawa T. The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces. Biomaterials 2010; 31:3827-39. [PMID: 20153521 DOI: 10.1016/j.biomaterials.2010.01.133] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 01/25/2010] [Indexed: 11/15/2022]
Abstract
Recently, UV photofunctionalization of titanium has been shown to be effective in enhancing osteogenic environment around this functional surface, in particular for the use of endosseous implants. However, the underlying mechanism remains unknown and its potential application to other tissue engineering materials has never been explored. We determined whether adhesion of a single osteoblast is enhanced on UV-treated nano-thin TiO(2) layer with virtually no surface roughness or topographical features. Rat bone marrow-derived osteoblasts were cultured on UV-treated or untreated 200-nm thick TiO(2) sputter-coated glass plates. After an incubation of 3 h, the mean critical shear force required to initiate detachment of a single osteoblast was determined to be 1280 +/- 430 nN on UV-treated TiO(2) surfaces, which was 2.5-fold greater than the force required on untreated TiO(2) surfaces. The total energy required to complete the detachment was 37.0 +/- 23.2 pJ on UV-treated surfaces, 3.5-fold greater than that required on untreated surfaces. Such substantial increases in single cell adhesion were also observed for osteoblasts cultured for 24 h. Osteoblasts on UV-treated TiO(2) surfaces were larger and characterized with increased levels of vinculin expression and focal contact formation. However, the density of vinculin or focal contact was not influenced by UV treatment. In contrast, both total expression and density of actin fibers increased on UV-treated surfaces. Thin layer TiO(2) coating and UV treatment of Co-Cr alloy and PTFE membrane synergistically resulted in a significant increase in the ability of cell attachment and osteoblastic production of alkaline phosphatase. These results indicated that the adhesive nature of a single osteoblast is substantially enhanced on UV-treated TiO(2) surfaces, providing the first evidence showing that each individual cell attached to these surfaces is substantially more resistant to exogenous load potentially from blood and fluid flow and mechanical force in the initial stage of in vivo biological environment. This enhanced osteoblast adhesion was supported synergistically but disproportionately by enhancement in focal adhesion and cytoskeletal developments. Also, this study demonstrated that UV treatment is effective on nano-thin TiO(2) depositioned onto non-Ti materials to enhance their bioactivity, providing a basis for TiO(2)-mediated photofunctionalization of biomaterials, a new method of developing functional biomaterials.
Collapse
Affiliation(s)
- Tomohiko Miyauchi
- Department of Prosthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sen S, Dong M, Kumar S. Isoform-specific contributions of alpha-actinin to glioma cell mechanobiology. PLoS One 2009; 4:e8427. [PMID: 20037648 PMCID: PMC2793025 DOI: 10.1371/journal.pone.0008427] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 12/01/2009] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma Multiforme (GBM) is a malignant astrocytic tumor associated with low survival rates because of aggressive infiltration of tumor cells into the brain parenchyma. Expression of the actin binding protein alpha-actinin has been strongly correlated with the invasive phenotype of GBM in vivo. To probe the cellular basis of this correlation, we have suppressed expression of the nonmuscle isoforms alpha-actinin-1 and alpha-actinin-4 and examined the contribution of each isoform to the structure, mechanics, and motility of human glioma tumor cells in culture. While subcellular localization of each isoform is distinct, suppression of either isoform yields a phenotype that includes dramatically reduced motility, compensatory upregulation and redistribution of vinculin, reduced cortical elasticity, and reduced ability to adapt to changes in the elasticity of the extracellular matrix (ECM). Mechanistic studies reveal a relationship between alpha-actinin and non-muscle myosin II in which depletion of either alpha-actinin isoform reduces myosin expression and maximal cell-ECM tractional forces. Our results demonstrate that both alpha-actinin-1 and alpha-actinin-4 make critical and distinct contributions to cytoskeletal organization, rigidity-sensing, and motility of glioma cells, thereby yielding mechanistic insight into the observed correlation between alpha-actinin expression and GBM invasiveness in vivo.
Collapse
Affiliation(s)
- Shamik Sen
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Meimei Dong
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Chen WQ, Siegel N, Li L, Pollak A, Hengstschläger M, Lubec G. Variations of Protein Levels in Human Amniotic Fluid Stem Cells CD117/2 Over Passages 5−25. J Proteome Res 2009; 8:5285-95. [PMID: 19791749 DOI: 10.1021/pr900630s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei-Qiang Chen
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria, and Department of Medical Genetics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Nicol Siegel
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria, and Department of Medical Genetics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Lin Li
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria, and Department of Medical Genetics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Arnold Pollak
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria, and Department of Medical Genetics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Markus Hengstschläger
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria, and Department of Medical Genetics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria, and Department of Medical Genetics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| |
Collapse
|
48
|
The Role of Vinculin in the Regulation of the Mechanical Properties of Cells. Cell Biochem Biophys 2009; 53:115-26. [DOI: 10.1007/s12013-009-9047-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
49
|
Palmer SM, Playford MP, Craig SW, Schaller MD, Campbell SL. Lipid binding to the tail domain of vinculin: specificity and the role of the N and C termini. J Biol Chem 2009; 284:7223-31. [PMID: 19110481 PMCID: PMC2652276 DOI: 10.1074/jbc.m807842200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/12/2008] [Indexed: 11/06/2022] Open
Abstract
Vinculin is a highly conserved and abundant cytoskeletal protein involved in linking the actin cytoskeleton to the cell membrane at sites of cellular adhesion. At these sites of adhesion, vinculin plays a role in physiological processes such as cell motility, migration, development, and wound healing. Loss of normal vinculin function has been associated with cancer phenotypes, cardiovascular disease, and lethal errors in embryogenesis. The tail domain of vinculin (Vt) binds to acidic phospholipids and has been proposed to play a role in vinculin activation and focal adhesion turnover. To better characterize Vt-lipid specificity, we conducted a series of lipid co-sedimentation experiments and find that Vt shows specific association with phosphatidylinositol 4,5-bisphosphate (PIP2), compared with phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), or phosphatidylinositol (PI) in the context of mixed lipid vesicles. The C terminus of Vt has been proposed to be important for PIP2 association, as various mutations and deletions within the C-terminal reduce PIP2 association. Lipid co-sedimentation and NMR analyses indicate that removal of the hydrophobic hairpin does not alter Vt structure or PIP2 association. However, more extensive deletions within the C-terminal introduce Vt structural perturbations and reduce PIP2 binding. Intriguingly, a significant increase in PIP2 binding was observed for multiple Vt variants that perturb interactions between the N-terminal strap and helix bundle, suggesting that a rearrangement of this N-terminal strap may be required for PIP2 binding.
Collapse
Affiliation(s)
- Sean M Palmer
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
50
|
Over-expression of alpha-actinin with a GFP fusion protein is sufficient to increase whole-cell stiffness in human osteoblasts. Ann Biomed Eng 2008; 36:1605-14. [PMID: 18636329 DOI: 10.1007/s10439-008-9533-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
Abstract
Osteoblasts respond to shear stress by simultaneously increasing their whole-cell stiffness and up-regulating the cytoskeletal crosslinking protein alpha-actinin. The stiffness of reconstituted cytoskeletal networks increases following the addition of alpha-actinin, but the effect of alpha-actinin on whole-cell mechanical behavior has not been investigated. The hypothesis of this study was that increasing alpha-actinin in the cytoskeleton would be sufficient to increase whole-cell stiffness. hFOB osteoblasts were transfected with a plasmid for GFP-tagged alpha-actinin, resulting in a 150% increase in the amount of alpha-actinin. The GFP-alpha-actinin fusion protein co-fractionated with the cytoskeleton and co-localized to the same regions of the cytoskeleton as endogenous alpha-actinin. Whole-cell mechanical behavior was measured by atomic force microscopy using a 25 mum diameter microsphere as an indenter. The whole-cell stiffness of cells over-expressing GFP-alpha-actinin was 60% higher than cells expressing only endogenous alpha-actinin (p < 0.002), which was within the range of mechanical behavior observed in osteoblastic cells exposed to 1 and 2 Pa of fluid shear. These results indicate that the up-regulation of alpha-actinin synthesis in osteoblasts is sufficient to alter the whole-cell mechanical behavior and highlights the potential role of alpha-actinin to reinforce cells against mechanical loads.
Collapse
|