1
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
2
|
Aguilar Díaz de león JS, Glenn HL, Knappenberger M, Borges CR. Oxidized-Desialylated Low-Density Lipoprotein Inhibits the Antitumor Functions of Lymphokine Activated Killer Cells. J Cancer 2021; 12:4993-5004. [PMID: 34234868 PMCID: PMC8247392 DOI: 10.7150/jca.55526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/19/2021] [Indexed: 11/09/2022] Open
Abstract
Elevated concentrations of circulating low density lipoprotein (LDL) that is abnormally oxidized and desialylated is both a precursor to and a hallmark of atherosclerosis. Peripheral blood mononuclear cells (PBMCs) treated in vitro with interleukin-2 (IL-2) become lymphokine activated killer (LAK) cells, the primary effectors of which are NK cells and NKT cells. LAK cells display antitumor functions such as increased cytotoxicity and IFN-γ production, and they have been evaluated as a potential cancer therapeutic. Atherosclerotic processes may influence innate immunity against cancer. Because prior studies have shown that low density lipoprotein (LDL) reduces T-cell and NK cell antitumor functions, we asked whether oxidized-desialylated LDL affects the functionality of LAK cells in vitro. We show here that LAK cells take up oxidized-desialylated LDL to a significantly greater extent than native LDL over a period of 72 hours. This resulted in a significant downregulation of LAK cell cytotoxicity against K562 cells. In particular, the expression of IFN-γ, CD56, and NKG2D were reduced upon oxidized-desialylated LDL treatment of LAK cells and, conversely, their expression was enhanced with native LDL. It was also observed that as the number of CD56 and NKG2D positive cells decreased upon treatment with oxidized-desialylated LDL, the number of CD3 positive cells increased in proportion. Additionally, only a slight inhibition of LAK cell cytotoxicity was observed with desialylation alone of LDL, and no significant inhibition was observed with oxidation alone of LDL. Thus, this study describes a new role of oxidized-desialylated LDL as an inhibitor of the antitumor functions of LAK cells. These observations have implications for how atherosclerosis processes, namely oxidation and desialylation of LDL, may influence LAK cell antitumor activity.
Collapse
Affiliation(s)
- Jesús S Aguilar Díaz de león
- School of Molecular Sciences and The Biodesign Institute - Center for Personalized Diagnostics, Arizona State University, P.O. Box 876401, Tempe, AZ 85287, USA
| | - Honor L Glenn
- School of Life Sciences and The Biodesign Institute - Center for Immunotherapy, Vaccines and Virotherapy, Tempe, AZ 85287, USA
| | - Mark Knappenberger
- School of Life Sciences and The Biodesign Institute - Center for Personalized Diagnostics, Arizona State University, P.O. Box 876401, Tempe, AZ 85287, USA
| | - Chad R Borges
- School of Molecular Sciences and The Biodesign Institute - Center for Personalized Diagnostics, Arizona State University, P.O. Box 876401, Tempe, AZ 85287, USA
| |
Collapse
|
3
|
Wang J, Liu T, Chen J. Oncolytic Measles Virus Encoding Interleukin-12 Mediated Antitumor Activity and Immunologic Control of Colon Cancer In Vivo and Ex Vivo. Cancer Biother Radiopharm 2020; 36:774-782. [PMID: 32783751 DOI: 10.1089/cbr.2019.3084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: In this study, we used an oncolytic measles virus encoding interleukin 12 (IL-12) to treat colon cancer in vivo and ex vivo to investigate its effect on the viability and apoptosis of colon cancer cells. Method: A rat model was established to evaluate the immunostimulatory capabilities and therapeutic efficacy of vectors encoding an IL-12 fusion protein (MeVac FmIL-12 vectors). TUNEL staining, western blot, and enzyme-linked immunosorbent assay were performed to examine the impacts of MeVac FmIL-12 on the expression of inflammatory cytokines. Cell transfection was carried out to validate the anti-tumor role of MeVac FmIL-12 in vitro. Flow cytometry and MTT assay were performed to assess the effects of MeVac FmIL-12 on cell apoptosis and viability. Result: High concentrations (10-1000 ng/mL) of murine IL-12 fusion protein (FmIL-12) decreased the production of interferon γ (IFN-γ) in a concentration-dependent manner and reflected FmIL-12-induced overstimulation. Rats treated with MeVac vectors encoding FmIL-12 showed a significantly increased level of FmIL-12 overtime and a concentration-dependent (0.01-10 ng/mL) increase in IFN-γ production. MeVac FmIL-12 also increased the expression of inflammatory cytokines (IFN-γ, tumor necrosis factor α, and IL-6) both in vivo and in vitro. MeVac FmIL-12 promoted cell apoptosis and reduced cell viability, which helped to trigger a systemic anti-tumor immune response, both in vivo and in vitro. Conclusion: In this study, we suggested that MeVac FmIL-12 enhanced the therapeutic efficacy of tumor treatment by improving anti-tumor immunity.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Tao Liu
- Department of Medical Oncology, and The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jie Chen
- Department of Pathology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
4
|
Gender-Specific Differences of Oxidative Processes in the Population of Circulating Neutrophils of Rats in a Setting of Prolonged Administration of Monosodium Glutamate. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2019. [DOI: 10.2478/rjdnmd-2019-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background and aims: Monosodium salt of glutamic acid (MSG) is one of the most common food additives. The aim of study was to assess, in gender-specific terms, how prolonged administration of MSG effects on reactive oxygen and nitrogen species formation and the apoptotic/necrotic processes in the population of rats circulating neutrophils.
Material and methods: Experimental studies were conducted on 32 mature white rats. MSG was administered intragastrical at a dose of 30 mg/kg body weight for 30 days. The analysis of cell samples to determine neutrophils with overproduction of reactive oxygen species (ROS) and signs of apoptosis\necrosis was evaluated with flow laser cytometry method. The total nitric oxide synthase (NOS) activity was determined by monitoring the rate of conversion of L-arginine into citrulline. The total quantity of NO metabolites was assessed by evaluating of nitrite and nitrate ions.
Results: We found a significant increase in generation of ROS, intensification of nitroxydergic processes, an increase in the percentage of apoptotic neutrophils and no changes in the percentage of necrotic neutrophils.
Conclusions: We observed activation of oxidative and nitroxydergic processes in rats with prolonged administration of MSG, which initiate apoptosis. In gender-specific terms, a more pronounced changes were seen in male rats.
Collapse
|
5
|
|
6
|
Speranza L, De Lutiis M, Shaik Y, Felaco M, Patruno A, Tetè A, Mastrangelo F, Madhappan B, Castellani M, Conti F, Vecchiet J, Theoharides T, Conti P, Grilli A. Localization and Activity of iNOS in Normal Human Lung Tissue and Lung Cancer Tissue. Int J Biol Markers 2018; 22:226-31. [DOI: 10.1177/172460080702200311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is one of three enzymes generating nitric oxide (NO) from the amino acid L-arginine. iNOS-derived NO plays an important role in several physiological and pathophysiological conditions. NO is a free radical which produces many reactive intermediates that account for its bioactivity. In the human lung, the alveolar macrophage is an important producer of cytokines and this production may be modified by NO. Moreover, high concentrations of NO have been shown to increase nuclear factor KB (NF-kB) activation. Recent investigations of NO expression in tumor tissue indicated that, at least for certain tumors, NO may mediate one or more roles during the growth of human cancer. We have studied iNOS in two tissue groups: normal human lung tissue and human lung cancer tissue. We localized iNOS in these tissues by immunohistochemistry and tested the mRNA expression by RT-PCR, the protein level by Western blot, and the protein activity by radiometric analysis. The results demonstrate different expression, localization and activity of iNOS in normal versus tumor tissue. This is suggestive of a role for NO production from iNOS in human lung cancer because high concentrations of this short molecule may transform to highly reactive compounds such as peroxynitrite (ONOO-); moreover, through the upregulator NF-kB, they can induce a chronic inflammatory state representing an elevated risk for cell transformation to cancer.
Collapse
Affiliation(s)
- L. Speranza
- Department of Human Dynamics, University of Chieti, Chieti - Italy
| | - M.A. De Lutiis
- Department of Human Dynamics, University of Chieti, Chieti - Italy
| | - Y.B. Shaik
- Department of Oral Biology and Periodontology Boston University School of Dental Medicine, Boston, MA - USA
| | - M. Felaco
- Department of Human Dynamics, University of Chieti, Chieti - Italy
| | - A. Patruno
- Department of Human Dynamics, University of Chieti, Chieti - Italy
| | - A. Tetè
- Department of Oral Sciences, University of Chieti, Chieti - Italy
| | - F. Mastrangelo
- Department of Oral Sciences, University of Chieti, Chieti - Italy
| | - B. Madhappan
- Pharmacology Department, Tufts University, New England Medical Center, Boston, MA - USA
| | | | - F. Conti
- Gynecology Section, University of Chieti, Chieti
| | - J. Vecchiet
- Section of Infectious Diseases, University of Chieti, Chieti
| | - T.C. Theoharides
- Pharmacology Department, Tufts University, New England Medical Center, Boston, MA - USA
| | - P. Conti
- Immunology Division, University of Chieti, Chieti
| | - A. Grilli
- Department of Human Dynamics, University of Chieti, Chieti - Italy
- Leonardo da Vinci Telematic University, Torrevecchia Teatina (Chieti) - Italy
| |
Collapse
|
7
|
Bongiorno EK, Garcia SA, Sauma S, Hooper DC. Type 1 Immune Mechanisms Driven by the Response to Infection with Attenuated Rabies Virus Result in Changes in the Immune Bias of the Tumor Microenvironment and Necrosis of Mouse GL261 Brain Tumors. THE JOURNAL OF IMMUNOLOGY 2017; 198:4513-4523. [PMID: 28461570 DOI: 10.4049/jimmunol.1601444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/03/2017] [Indexed: 12/23/2022]
Abstract
Immunotherapeutic strategies for malignant glioma have to overcome the immunomodulatory activities of M2 monocytes that appear in the circulation and as tumor-associated macrophages (TAMs). M2 cell products contribute to the growth-promoting attributes of the tumor microenvironment (TME) and bias immunity toward type 2, away from the type 1 mechanisms with antitumor properties. To drive type 1 immunity in CNS tissues, we infected GL261 tumor-bearing mice with attenuated rabies virus (RABV). These neurotropic viruses spread to CNS tissues trans-axonally, where they induce a strong type 1 immune response that involves Th1, CD8, and B cell entry across the blood-brain barrier and virus clearance in the absence of overt sequelae. Intranasal infection with attenuated RABV prolonged the survival of mice bearing established GL261 brain tumors. Despite the failure of virus spread to the tumor, infection resulted in significantly enhanced tumor necrosis, extensive CD4 T cell accumulation, and high levels of the proinflammatory factors IFN-γ, TNF-α, and inducible NO synthase in the TME merely 4 d postinfection, before significant virus spread or the appearance of RABV-specific immune mechanisms in CNS tissues. Although the majority of infiltrating CD4 cells appeared functionally inactive, the proinflammatory changes in the TME later resulted in the loss of accumulating M2 and increased M1 TAMs. Mice deficient in the Th1 transcription factor T-bet did not gain any survival advantage from RABV infection, exhibiting only limited tumor necrosis and no change in TME cytokines or TAM phenotype and highlighting the importance of type 1 mechanisms in this process.
Collapse
Affiliation(s)
- Emily K Bongiorno
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Samantha A Garcia
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Sami Sauma
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107
| | - D Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; and .,Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
8
|
Change in peripheral blood lymphocyte count in dogs following adoptive immunotherapy using lymphokine-activated T killer cells combined with palliative tumor resection. Vet Immunol Immunopathol 2016; 177:58-63. [DOI: 10.1016/j.vetimm.2016.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/11/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
|
9
|
Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol 2015; 6:334-343. [PMID: 26335399 PMCID: PMC4565017 DOI: 10.1016/j.redox.2015.08.009] [Citation(s) in RCA: 384] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO) is one of the 10 smallest molecules found in nature. It is a simple gaseous free radical whose predominant functions is that of a messenger through cGMP. In mammals, NO is synthesized by the enzyme nitric oxide synthase (NOS) of which there are three isoforms. Neuronal (nNOS, NOS1) and endothelial (eNOS, NOS3) are constitutive calcium-dependent forms of the enzyme that regulate neural and vascular function respectively. The third isoform (iNOS, NOS2), is calcium-independent and is inducible. In many tumors, iNOS expression is high, however, the role of iNOS during tumor development is very complex and quite perplexing, with both promoting and inhibiting actions having been described. This review will aim to summarize the dual actions of iNOS-derived NO showing that the microenvironment of the tumor is a contributing factor to these observations and ultimately to cellular outcomes. NO is pro- and anti-tumorigenic. High concentrations of NO maybe anti-tumorigenic. iNOS produces high concentrations of NO and relates to tumor growth or its inhibition. iNOS is associated with cytotoxicity, apoptosis and bystander anti-tumor effects. Tumor- and stromal-iNOS, and the ‘cell situation’ contribute to anti or pro-tumor effects. Dual role of iNOS is influenced by the cell situation and is environment dependent.
Collapse
Affiliation(s)
- Federica Vannini
- Department of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY 10031, United States
| | - Khosrow Kashfi
- Department of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY 10031, United States
| | - Niharika Nath
- Department of Life Sciences, New York Institute of Technology, NY 10023, United States.
| |
Collapse
|
10
|
Lee KS, Lee DH, Kwon YS, Chun SY, Nam KS. Deep-sea water inhibits metastatic potential in HT-29 human colorectal adenocarcinomas via MAPK/NF-κB signaling pathway. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0210-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Yuan Y, Duff ML, Sammons DL, Wu S. Retrospective chart review of skin cancer presence in the wide excisions. World J Clin Cases 2014; 2:52-56. [PMID: 24653985 PMCID: PMC3955800 DOI: 10.12998/wjcc.v2.i3.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/21/2014] [Accepted: 02/20/2014] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate cancer cell absence or presence in wide excision after biopsy of squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) patients.
METHODS: 200 patients (100 BCC and 100 SCC) from the same dermatology clinic, who had positive margin upon biopsy, were selected from a computer generated randomized report. All selected patients had wide excision following biopsy. To determine the correlation of gender, age distribution and cancer absence, BCC and SCC cases were separated based on excision-cancer absent or present after wide excision. χ2 tests, Fisher’s exact tests were used to analyze the ratio of male to female between excision-cancer absent and excision-cancer present patients, while Mann-Whitney U test were used to compare the age distribution in the two groups. Statistical analyses were performed using SPSS version 16.0 for Windows.
RESULTS: Our retrospective chart review of the patients showed that cancer cells were absent in 49% of BCC patients (n = 100) and 64% of SCC patients (n = 100) who had previously had positive margins upon biopsy. Gender analysis showed the ratio of male to female (M/F) in the BCC arm was significantly higher compared with the SCC arm in those with excision-cancer absent (2.06 vs 0.66; P = 0.004; χ2 test). But M/F of excision-cancer absent and excision-cancer present in neither BCC nor SCC patients was statistically significant. Age adjustment showed no significant difference between excision-cancer absent and excision-cancer present in BCC and SCC patients. Nevertheless, in excision-cancer absent cases, the age distribution showed that the BCC patients were younger than SCC patients (average age 67 vs 74; P < 0.001; Mann-Whitney U test). In addition, our data also indicated that in the patient group of 71-80 years old, there were more SCC patients who showed excision-cancer absence (67.6% vs 39.4%; P = 0.02; χ2 test).
CONCLUSION: Our study indicates that approximately 50% or more of BCC and SCC patients with positive margins found on biopsies did not have cancer cells present at the time of wide excisions.
Collapse
|
12
|
Lymphocyte-mediated macrophage apoptosis during IL-12 stimulation. Cytokine 2013; 64:62-70. [DOI: 10.1016/j.cyto.2013.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/05/2013] [Accepted: 07/23/2013] [Indexed: 01/31/2023]
|
13
|
Ma C, Armstrong AW. Severe adverse events from the treatment of advanced melanoma: a systematic review of severe side effects associated with ipilimumab, vemurafenib, interferon alfa-2b, dacarbazine and interleukin-2. J DERMATOL TREAT 2013; 25:401-8. [PMID: 23763243 DOI: 10.3109/09546634.2013.813897] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Current immunomodulatory agents for stage III and IV melanoma exert different mechanisms of action that manifest in distinct adverse events. OBJECTIVE This systematic review aims to synthesize safety data from clinical trials on ipilimumab, vemurafenib, interferon (IFN) alfa-2b, dacarbazine and interleukin (IL)-2 to elucidate the severe adverse events associated with each melanoma therapy. METHODS Through a systematic search using MEDLINE, EMBASE and the Cochrane Central Register between January 1, 2010 and June 1, 2012, we identified 32 clinical trials with 5802 subjects that met the inclusion criteria. RESULTS Ipilimumab was associated with immune-mediated diarrhea and colitis, with an incidence rate of 0.0017 cases per 100 person-years. Patients receiving vemurafenib developed keratoacanthomas and cutaneous squamous cell carcinoma at an incidence rate of 0.0025 cases per 100 person-years. Treatment with IFN alfa-2b precipitated depression at an incidence rate of 0.0002 cases per 100 person-years. Dacarbazine was associated with respiratory toxicity and dyspnea, with incidence rates of 0.0001 and 0.00008 cases per 100 person-years, respectively. IL-2 treatment induced vascular leak syndrome (VLS), with symptoms of hypotension and oliguria, was observed at incidence rates of 0.17 and 0.15 cases per 100 person-years, respectively. Findings may serve as a foundation for future research in this area and guide clinical recommendations.
Collapse
Affiliation(s)
- Chelsea Ma
- Department of Dermatology, University of California Davis , Sacramento, CA , USA
| | | |
Collapse
|
14
|
Koskela LR, Poljakovic M, Ehrén I, Wiklund NP, de Verdier PJ. Localization and expression of inducible nitric oxide synthase in patients after BCG treatment for bladder cancer. Nitric Oxide 2012; 27:185-91. [PMID: 22819699 DOI: 10.1016/j.niox.2012.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/25/2012] [Accepted: 07/10/2012] [Indexed: 11/17/2022]
Affiliation(s)
- Lotta Renström Koskela
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
15
|
Matijevic T, Pavelic J. The dual role of TLR3 in metastatic cell line. Clin Exp Metastasis 2011; 28:701-12. [PMID: 21735101 DOI: 10.1007/s10585-011-9402-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/20/2011] [Indexed: 12/15/2022]
Abstract
Toll-like receptors (TLRs) are members of transmembrane proteins that recognize conserved molecular motifs of viral and bacterial origin and initiate innate immune response. As the role of TLRs in tumors cells is still not clear, our aim was to investigate the role of TLR3 in primary tumor and metastatic cells (SW480, SW620, FaDu and Detroit 562). We have reported here on the dual role of TLR3 in pharynx metastatic cell line (Detroit 562); on one hand TLR3 activation drove cells to apoptosis while on the other its stimulation contributed to tumor progression by altering the expression of tumor promoting genes (PLAUR, RORB) and enhancing the cell migration potential. In addition, we have shown TLR3 signaling pathway is functional in another metastatic cancer cell line (SW620) suggesting TLR3 might be important in the process of tumor metastasis. Since TLR3 agonists have been used in tumor therapy with the aim to activate immune system, scientific contribution of this work is drawing attention to the importance of further work on this topic, especially pro-tumor effect of TLR3, in order to avoid possible side-effects.
Collapse
Affiliation(s)
- Tanja Matijevic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka, Zagreb, Croatia
| | | |
Collapse
|
16
|
Nageshwar Rao B, Satish Rao BS. Antagonistic effects of Zingerone, a phenolic alkanone against radiation-induced cytotoxicity, genotoxicity, apoptosis and oxidative stress in Chinese hamster lung fibroblast cells growing in vitro. Mutagenesis 2010; 25:577-87. [DOI: 10.1093/mutage/geq043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Abstract
Abstract
A blueprint for the ideal anticancer molecule would include most of the properties of nitric oxide (NO•), but the ability to exploit these characteristics in a therapeutic setting requires a detailed understanding of the biology and biochemistry of the molecule. These properties include the ability of NO• to affect tumour angiogenesis, metastasis, blood flow and immuno surveillance. Furthermore NO• also has the potential to enhance both radio- and chemotherapy. However, all of these strategies are dependent on achieving appropriate levels of NO•, since endogenous levels of NO• appear to have a clear role in tumour progression. This review aims to summarize the role of NO• in cancer with particular emphasis on how the properties of NO• can be exploited for therapy.
Collapse
Affiliation(s)
- David Hirst
- School of Pharmacy, Queen's University Belfast, Belfast BT15 4DY, UK.
| | | |
Collapse
|
18
|
Adams C, McCarthy HO, Coulter JA, Worthington J, Murphy C, Robson T, Hirst DG. Nitric oxide synthase gene therapy enhances the toxicity of cisplatin in cancer cells. J Gene Med 2009; 11:160-8. [PMID: 19062185 DOI: 10.1002/jgm.1280] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nitric oxide (NO.) derived from donor drugs has been shown to be an effective chemosensitizer in vitro. We investigated the combination of inducible nitric oxide synthase (iNOS) gene transfer, driven by a strong constitutive promoter (cytomegalovirus; CMV) with the DNA cross-linking agent cisplatin in mouse and human tumour cell lines. METHODS Proof of principal experiments were performed in the radiation-induced fibrosarcoma-1 (RIF-1) murine cell line. Cells were transfected with constitutively expressed CMV/iNOS plasmid DNA using a cationic lipid vector, before exposure to cisplatin. In vivo efficacy was determined in an intradermal RIF-1 tumour model, with intraperitoneal administration of cisplatin. Additionally, treatment potential was investigated in various human tumour cell lines including human prostate (DU145 and PC3) and human colon (HT29 and HCT116) cancer cell lines. Experimental endpoints were established using western blot, Greiss test, clonogenic assay and tumour growth delay. RESULTS Transfection of RIF-1 tumour cells in vitro with the CMV/iNOS significantly enhanced the cytotoxicity of cisplatin (0.2-1.0 microM). In vivo transfer of CMV/iNOS by direct injection into established RIF-1 tumours caused a significant (p = 0.0027) delay in tumour growth. CMV/iNOS gene transfer in vitro resulted in the strong expression of iNOS DNA in all cell lines, and significantly increased levels of NO. in all cell lines except HCT116. CONCLUSIONS Significant chemosensitization of cisplatin cytotoxicity was observed in the presence of NO. derived from the overexpression iNOS. We conclude that p53 status of the various cell lines was unlikely to be responsible for cisplatin-induced apoptosis.
Collapse
|
19
|
Blokzijl H, van Steenpaal A, Vander Borght S, Bok LIH, Libbrecht L, Tamminga M, Geuken M, Roskams TAD, Dijkstra G, Moshage H, Jansen PLM, Faber KN. Up-regulation and cytoprotective role of epithelial multidrug resistance-associated protein 1 in inflammatory bowel disease. J Biol Chem 2008; 283:35630-7. [PMID: 18838379 DOI: 10.1074/jbc.m804374200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
MRP1 (multidrug resistance-associated protein 1) is well known for its role in providing multidrug resistance to cancer cells. In addition, MRP1 has been associated with both pro- and anti-inflammatory functions in nonmalignant cells. The pro-inflammatory function is evident from the fact that MRP1 is a high affinity transporter for cysteinyl-leukotriene C4 (LTC4), a lipid mediator of inflammation. It remains unexplained, however, why the absence of Mrp1 leads to increased intestinal epithelial damage in mice treated with dextran-sodium sulfate, a model for inflammatory bowel disease (IBD). We found that MRP1 expression is induced in the inflamed intestine of IBD patients, e.g. Crohn disease and ulcerative colitis. Increased MRP1 expression was detected at the basolateral membrane of intestinal epithelial cells. To study a putative role for MRP1 in protecting epithelial cells against inflammatory cues, we manipulated MRP1 levels in human epithelial DLD-1 cells and exposed these cells to cytokines and anti-Fas. Inhibition of MRP1 (by MK571 or RNA interference) resulted in increased cytokine- and anti-Fas-induced apoptosis of DLD-1 cells. Opposite effects, e.g. protection of DLD-1 cells against cytokine- and anti-Fas-induced apoptosis, were observed after recombinant MRP1 overexpression. Inhibition of LTC4 synthesis reduced anti-Fas-induced apoptosis when MRP1 function was blocked, suggesting that LTC4 is the pro-apoptotic compound exported by epithelial MRP1 during inflammation. These data show that MRP1 protects intestinal epithelial cells against inflammation-induced apoptotic cell death and provides a functional role for MRP1 in the inflamed intestinal epithelium of IBD patients.
Collapse
Affiliation(s)
- Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
De Ridder M, Jiang H, Van Esch G, Law K, Monsaert C, Van den Berge DL, Verellen D, Verovski VN, Storme GA. IFN-γ+ CD8+ T Lymphocytes: Possible Link Between Immune and Radiation Responses in Tumor-Relevant Hypoxia. Int J Radiat Oncol Biol Phys 2008; 71:647-51. [DOI: 10.1016/j.ijrobp.2008.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 02/15/2008] [Accepted: 03/17/2008] [Indexed: 11/28/2022]
|
21
|
Hur JM, Yun HJ, Yang SH, Lee WY, Joe MH, Kim D. Gliotoxin enhances radiotherapy via inhibition of radiation-induced GADD45a, p38, and NFκB activation. J Cell Biochem 2008; 104:2174-84. [DOI: 10.1002/jcb.21776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
HOSHINO Y, TAKAGI S, OSAKI T, OKUMURA M, FUJINAGA T. Phenotypic Analysis and Effects of Sequential Administration of Activated Canine Lymphocytes on Healthy Beagles. J Vet Med Sci 2008; 70:581-8. [DOI: 10.1292/jvms.70.581] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yuki HOSHINO
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Satoshi TAKAGI
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Tomohiro OSAKI
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University
| | - Masahiro OKUMURA
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Toru FUJINAGA
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| |
Collapse
|
23
|
Lymphokine-activated killer cell susceptibility in epirubicin-resistant and parental human non-small cell lung cancer (NSCLC). Biologia (Bratisl) 2007. [DOI: 10.2478/s11756-007-0040-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
De Ridder M, Verovski VN, Chiavaroli C, Van den Berge DL, Monsaert C, Law K, Storme GA. The radiosensitizing effect of immunoadjuvant OM-174 requires cooperation between immune and tumor cells through interferon-gamma and inducible nitric oxide synthase. Int J Radiat Oncol Biol Phys 2006; 66:1473-80. [PMID: 17056198 DOI: 10.1016/j.ijrobp.2006.07.1381] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/18/2006] [Accepted: 07/19/2006] [Indexed: 12/11/2022]
Abstract
PURPOSE To explore whether antitumor immunoadjuvant OM-174 can stimulate immune cells to produce interferon-gamma (IFN-gamma) and thereby radiosensitize tumor cells. METHODS AND MATERIALS Splenocytes from BALB/c mice were stimulated by OM-174 at plasma-achievable concentrations (0.03-3 mug/mL), and afterward analyzed for the expression and secretion of IFN-gamma by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Stimulated splenocytes were used as a source of IFN-gamma to radiosensitize hypoxic EMT-6 tumor cells through the cytokine-inducible isoform of nitric oxide synthase (iNOS). RESULTS OM-174 activated the production of IFN-gamma at high levels that reached 70 ng/mL in normoxia (21% oxygen) and 27 ng/mL in tumor-relevant hypoxia (1% oxygen). This caused up to 2.1-fold radiosensitization of EMT-6 tumor cells, which was associated with the iNOS-mediated production of the radiosensitizing molecule nitric oxide, as confirmed by accumulation of its oxidative metabolite nitrite, Western blot analysis, and reverse transcriptase-polymerase chain reaction. Both iNOS activation and radiosensitization were counteracted by neutralizing antibodies against IFN-gamma. The same mechanism of radiosensitization through the IFN-gamma secretion pathway was identified for IL-12 + IL-18, which are known to mediate IFN-gamma responses. Hypoxia displayed a dual effect on the immune-tumor cell interaction, by downregulating the expression of the IFN-gamma gene while upregulating iNOS at transcriptional level. CONCLUSION Immunoadjuvant OM-174 is an efficient radiosensitizer of tumor cells through activation of the IFN-gamma secretion pathway in immune cells. This finding indicates a rationale for combining immunostimulatory and radiosensitizing strategies and extends the potential therapeutic applications of OM-174.
Collapse
Affiliation(s)
- Mark De Ridder
- Academic Hospital Free University Brussels, Oncology Center, Cancer Research Unit, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
25
|
Moeslinger T, Friedl R, Spieckermann PG. Inhibition of inducible nitric oxide synthesis by azathioprine in a macrophage cell line. Life Sci 2006; 79:374-81. [PMID: 16473374 DOI: 10.1016/j.lfs.2006.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 01/11/2006] [Accepted: 01/12/2006] [Indexed: 11/18/2022]
Abstract
Azathioprine is used as an anti-inflammatory agent. Although there are numerous data demonstrating cytotoxic and immunosuppressive properties of azathioprine and its metabolite 6-mercaptopurine, the mechanism of the anti-inflammatory action of azathioprine has not yet been fully clarified. During our study, we investigated the effects of azathioprine on the inducible nitric oxide synthase (iNOS) in lipopolysaccharide stimulated murine macrophages (RAW 264.7) by measurement of iNOS protein (immunoblotting), iNOS mRNA (semiquantitative competitive RT-PCR), and NO production (nitrite levels). Azathioprine (0-210 muM) induces a concentration dependent inhibition of inducible nitric oxide synthesis (IC50: 33.5 muM). iNOS protein expression showed a concentration dependent reduction as revealed by immunoblotting when cells were incubated with increasing amounts of azathioprine. Azathioprine decreases iNOS mRNA levels as shown by semiquantitative competitive RT-PCR. In contrast, 6-mercaptopurine showed no inhibition of inducible nitric oxide synthesis. Azathioprine did not reduce iNOS mRNA stability after the addition of actinomycin D. Enzymatic activity assays with increasing concentrations of azathioprine (0-210 muM) showed no statistically significant inhibition of iNOS enzyme activity compared to cell lysates without azathioprine. Nuclear translocation of NF-kappaB p65 subunit and binding of NF-kappaB p50 subunit from nuclear extracts to a biotinylated-consensus sequence was unaffected by azathioprine treatment. iNOS inhibition by azathioprine was associated with a decreased expression of IRF-1 (interferon regulatory factor 1) and IFN-beta (beta-interferon) mRNA. Azathioprine induced iNOS inhibition seems to be associated with an action of the methylnitroimidazolyl substituent. This suggests a route to the rational design of nontoxic anti-inflammatory agents by replacing the 6-mercaptopurine component of azathioprine with other substituents. The inhibition of inducible nitric oxide synthesis might contribute to the anti-inflammatory activities of azathioprine.
Collapse
Affiliation(s)
- Thomas Moeslinger
- Institute of Physiology, Center for Physiology and Pathophysiology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | | | | |
Collapse
|
26
|
Su Z, Kuball J, Barreiros AP, Gottfried D, Ferreira EA, Theobald M, Galle PR, Strand D, Strand S. Nitric oxide promotes resistance to tumor suppression by CTLs. THE JOURNAL OF IMMUNOLOGY 2006; 176:3923-30. [PMID: 16547226 DOI: 10.4049/jimmunol.176.7.3923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many human tumors express inducible NO synthetase (NOS2), but the roles of NO in tumor development are not fully elucidated. An important step during tumor development is the acquisition of apoptosis resistance. We investigated the dose-dependent effects of endogenously produced NO on apoptosis using ecdysone-inducible NOS2 cell lines. Our results show that short-term NOS2 expression enhances CD95-mediated apoptosis and T cell cytotoxicity dose dependently. Furthermore, we could show that during chronic exposure to NO, besides the primary cytotoxic NO effect, there is selection of cell clones resistant to NO that show cross-resistance to CD95-induced apoptosis and the killing by CTLs. We propose that NO production could initially act as an autocrine suicide or paracrine killing mechanism in cells undergoing malignant transformation. However, once failed, the outcome is fatal. NO promotes tumor formation by enhancing the selection of cells that can evade immune attack by acquiring apoptosis resistance.
Collapse
Affiliation(s)
- Zhanhai Su
- Department of Internal Medicine, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol 2005; 15:277-89. [PMID: 15914026 DOI: 10.1016/j.semcancer.2005.04.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inducible nitric oxide synthase (iNOS) is one of three key enzymes generating nitric oxide (NO) from the amino acid l-arginine. iNOS-derived NO plays an important role in numerous physiological (e.g. blood pressure regulation, wound repair and host defence mechanisms) and pathophysiological (inflammation, infection, neoplastic diseases, liver cirrhosis, diabetes) conditions. iNOS is the synthase isoform most commonly associated with malignant disease. Nevertheless, the role of iNOS during tumor development is highly complex, and incompletely understood. Both promoting and deterring actions have been described, presumably depending upon the local concentration of iNOS within the tumor microenvironment. In particular, pivotal effects such as malingnant transformation, angiogenesis, and metastasis are modulated by iNOS. On the other hand, NO derived from macrophages has a potentially cytotoxic/cytostatic effect upon tumor cells. Hence, therapeutical interference with iNOS activity is of considerable interest, especially in tumors where metastatic activity, host defence mechanisms and the level of differentiation seem to be correlated to iNOS expression. This review will aim to summarize the dual actions of iNOS as simultaneous tumor promoter and suppressor.
Collapse
Affiliation(s)
- Matthias Lechner
- Clinical Division of General and Surgical Intensive Care Medicine, Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
28
|
Ozkan A, Ayhan A, Fiskin K. Combined effect of epirubicin and lymphokine-activated killer cells on the resistant human breast cancer cells. Cell Biol Toxicol 2005; 20:261-71. [PMID: 15685929 DOI: 10.1007/s10565-004-3471-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Accumulating evidence suggests the concept that epirubicin and lymphokine-activated killer (LAK) cells cytotoxicity may be mediated by free radicals generation and P-glycoprotein-positive (Pg-p+) cancer cells are more sensitive for LAK cells than their drug-sensitive parental lines. We tested this hypothesis further by exposing drug-sensitive (WT) and epirubicin-resistant MCF-7 human breast tumor cells to epirubicin and LAK cells. Subsequently, we monitored cell proliferation as a measure of cytotoxicity. The cytotoxicity of epirubicin, LAK, and LAK + epirubicin (1/10 of IC50) was evaluated in 400-fold epirubicin resistant MCF-7 EPI(R) (P-glycoprotein overexpressing) and drug-sensitive MCF-7 WT cells. IC50 values were measured using the MTT cytotoxicity test. The MCF-7 EPI(R) cells exhibited an increased susceptibility to LAK cells than did the MCF-7 WT cells. P-gp+ MCF-7 EPI(R) cells were lysed by human LAK cells to a greater extend than were their drug-sensitive counterparts. LAK + epirubicin combined treatment increased susceptibility of MCF-7 WT and MCF-7 EPI(R) cells to LAK cells cytotoxicity. For both cell lines, cytotoxicity was dependent upon the concentration of the epirubicin and effector cell/target cell (E/T) ratio. The resistance of MCF-7 EPI(R) cells to epirubicin appears to be associated with a developed tolerance to superoxide, most likely because of a tree-fold increase in superoxide dismutase (SOD) activity and 13-fold augmented selenium dependent glutathione peroxidase (GSH-Px) activity. Acting in concert, these two enzymes would decrease the formation of hydroxyl radical from reduced molecular oxygen intermediates. The addition of SOD decreased cytotoxicity of epirubicin and LAK cells. Taken together, these observations support the role of oxygen radicals in the cytotoxicity mechanism of epirubicin and suggest further that the development of resistance to this drug by the MCF-7 EPI(R) tumor cells may have a component linked to oxygen free radicals. It is proposed that production of reactive oxygen species by the treatment of epirubicin and LAK cells can cause cytotoxicity of MCF-7 WT and MCF-7 EPI(R) cells. SOD, catalase, GSH-Px, GST (glutathione S-transferase), and GSH (reduced glutathione) must be considered as part of the intracellular antioxidant defense mechanism of MCF-7 WT and MCF-7 EPI(R) cells against reactive oxygen species.
Collapse
Affiliation(s)
- A Ozkan
- Department of Biology, Faculty of Art and Science, Akdeniz University, Antalya, Turkey.
| | | | | |
Collapse
|
29
|
Mitropoulos D, Petsis D, Kyroudi-Voulgari A, Kouloukoussa M, Zervas A, Dimopoulos C. The effect of intravesical Bacillus Calmette–Guerin instillations on the expression of inducible nitric oxide synthase in humans. Nitric Oxide 2005; 13:36-41. [PMID: 15964223 DOI: 10.1016/j.niox.2005.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2004] [Revised: 04/16/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
The activation of the inducible isoform of nitric oxide synthase (NOS) is associated with the production of large quantities of nitric oxide in response to cytokine stimulation. Bacillus Calmette-Guerin (BCG) mode of action against bladder carcinoma remains unclear, although a plethora of local and systemic events may follow its intravesical instillation. The present study was designed to investigate the expression of inducible NOS in normal and neoplastic urothelium and its alteration following tumor resection and subsequent intravesical immunotherapy. Bladder carcinoma and autologous normal bladder tissue specimens were procured from 36 patients undergoing transurethral resection. Tissue specimens were obtained from the same patients at first cystoscopy following six weekly intravesical instillations. Inducible NOS protein expression was assessed by immunohistochemistry in all tissue specimens. Immunostaining of normal urothelium for iNOS before treatment was negative in all but four cases. BCG treatment induced iNOS expression in tumor-free bladder tissue in 24 cases (66.6%). There were only four early tumor recurrences; interestingly, they corresponded to the cases with tumor cells expressing iNOS before BCG treatment, while novel tumors were also iNOS immunoreactive. BCG upregulated iNOS expression in normal human urothelial cells in vivo suggesting a role for nitric oxide in BCG mediated antitumor activity. Inducible NOS was detected in certain tumor specimens before and after BCG treatment implying a possible involvement in pro-tumor action.
Collapse
|
30
|
Hu DE, Brindle KM. Immune cell-induced synthesis of NO and reactive oxygen species in lymphoma cells causes their death by apoptosis. FEBS Lett 2005; 579:2833-41. [PMID: 15907488 DOI: 10.1016/j.febslet.2005.03.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/05/2005] [Accepted: 03/18/2005] [Indexed: 11/25/2022]
Abstract
Induction of apoptosis in a lymphoma cell line using immune cell-conditioned medium, etoposide or an nitric oxide (NO) donor, resulted in the production of reactive oxygen species (ROS). Agents that inhibited NO production or scavenged ROS or species formed by reaction of NO with ROS, protected the cells from apoptosis. These data support the suggestion that immune rejection of an immunogenic derivative of this lymphoma in vivo involves the induced synthesis of both NO and ROS by the tumour cells.
Collapse
Affiliation(s)
- De-En Hu
- Department of Biochemistry, University of Cambridge, UK
| | | |
Collapse
|
31
|
Mocellin S, Provenzano M, Rossi CR, Pilati P, Scalerta R, Lise M, Nitti D. Induction of endothelial nitric oxide synthase expression by melanoma sensitizes endothelial cells to tumor necrosis factor-driven cytotoxicity. Clin Cancer Res 2004; 10:6879-86. [PMID: 15501965 DOI: 10.1158/1078-0432.ccr-04-0791] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The cascade of molecular events leading to tumor necrosis factor (TNF)-mediated tumor regression is still incompletely elucidated. We investigated the role of endothelial nitric oxide synthase in determining the tumor-selective activity of TNF. EXPERIMENTAL DESIGN Using quantitative real-time PCR, endothelial nitric oxide synthase gene levels were measured in melanoma metastases of the skin and normal skin biopsies obtained from 12 patients before undergoing TNF-based therapy. In vitro, the ability of melanoma cells supernatant to affect endothelial nitric oxide synthase transcription by endothelial cells and the influence of nitric oxide synthase inhibition on TNF cytotoxicity toward endothelial cells was evaluated. RESULTS Endothelial nitric oxide synthase transcript abundance resulted significantly greater in tumor samples rather than in normal skin samples and in patients showing complete response to TNF-based treatment rather than in those showing partial/minimal response. In vitro, melanoma cells' supernatant induced endothelial nitric oxide synthase gene expression by endothelial cells. Nitric oxide synthase inhibition slowed endothelial cells proliferation and, if induced before TNF administration, decreased the cytokine-mediated cytotoxicity on endothelial cells. CONCLUSIONS Taken together, these findings support the hypothesis that high expression of endothelial nitric oxide synthase in the tumor microenvironment might increase or be a marker for endothelial cells sensitivity to TNF. These observations may have important prognostic and/or therapeutic implications in the clinical setting.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hu DE, Dyke SOM, Moore AM, Thomsen LL, Brindle KM. Tumor Cell-Derived Nitric Oxide Is Involved in the Immune-Rejection of an Immunogenic Murine Lymphoma. Cancer Res 2004; 64:152-61. [PMID: 14729619 DOI: 10.1158/0008-5472.can-03-1807] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The roles played by host-derived nitric oxide (NO) in the growth and subsequent immune rejection of a immunogenic murine lymphoma were investigated by growing the tumor in mice in which the gene for either inducible NO synthase (iNOS) or endothelial NOS (eNOS) had been ablated. This showed that NO from tumor-infiltrating host cells had no significant effect on either tumor growth or immune rejection, although measurements of tumor nitrite levels and protein nitration showed that there had been significant NO production in the rejected tumors, in both the eNOS and iNOS knockout mice. Inhibition of both tumor and host NOS activities, with an iNOS-selective inhibitor (1400W), a nonselective NOS inhibitor [Nomega-nitro-L-arginine methyl ester (L-NAME)], or scavenging NO with a ruthenium-based scavenger, significantly delayed tumor rejection, while having no appreciable effect on tumor growth. Incubation of tumor cells with medium taken from cultured splenocytes, that had been isolated from immunized animals and activated by incubating them with irradiated tumor cells, resulted in an increase in tumor cell NOS activity and an increase in tumor cell apoptosis, which could be inhibited using L-NAME. We propose that, during the immune rejection of this tumor model, there is induction of tumor NOS activity by cytokines secreted by activated lymphocytes within the tumor and that this results in increased levels of tumor NO that induce tumor cell apoptosis and facilitate immune rejection of the tumor.
Collapse
Affiliation(s)
- De-En Hu
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
33
|
Mocellin S, Provenzano M, Lise M, Nitti D, Rossi CR. Increased TIA-1 gene expression in the tumor microenvironment after locoregional administration of tumor necrosis factor-alpha to patients with soft tissue limb sarcoma. Int J Cancer 2003; 107:317-22. [PMID: 12949814 DOI: 10.1002/ijc.11369] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although it is known that TNF-alpha is effective in the treatment of advanced solid tumors such as melanoma and soft tissue sarcoma, the molecular mechanism underlying its anticancer activity remains unclear. Nineteen patients with locally advanced soft tissue sarcoma underwent isolated limb perfusion with doxorubicin alone (n = 9) or combined with TNF-alpha (n = 10). mRNA from posttreatment tumor biopsies was linearly amplified to create an RNA bank. The transcriptional levels of 22 genes were analyzed by qrt-PCR. On the basis of in vivo findings, we investigated the in vitro gene expression of different cell types representing the tumor microenvironment cell population. TIA-1, which encodes an RNA-binding protein with translation-regulatory functions, was the only gene differentially expressed between the 2 study groups, its transcriptional levels in tumor biopsies from patients receiving TNF-alpha being higher than in those from patients not given the cytokine. In vitro, TIA-1 was expressed by endothelial cells, fibroblasts, CTLs and NK cells. TNF-alpha significantly upregulated TIA-1 gene expression only in endothelial and NK cells. Furthermore, TIA-1 transcriptional levels significantly increased during NK activity, which was enhanced by TNF-alpha. These findings support the hypothesis that TNF-alpha-induced TIA-1 overexpression might sensitize endothelial cells to proapoptotic stimuli present in the tumor microenvironment and enhance NK cell cytotoxic activity against cancer cells.
Collapse
Affiliation(s)
- Simone Mocellin
- Surgery Branch, Department of Oncological and Surgical Sciences, University of Padua, Padua, Italy
| | | | | | | | | |
Collapse
|
34
|
Barceló-Batllori S, André M, Servis C, Lévy N, Takikawa O, Michetti P, Reymond M, Felley-Bosco E. Proteomic analysis of cytokine induced proteins in human intestinal epithelial cells: implications for inflammatory bowel diseases. Proteomics 2002; 2:551-60. [PMID: 11987129 DOI: 10.1002/1615-9861(200205)2:5<551::aid-prot551>3.0.co;2-o] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A role for cytokine regulated proteins in epithelial cells has been suggested in the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to identify such cytokine regulated targets using a proteomic functional approach. Protein patterns from (35)S-radiolabeled homogenates of cultured colon epithelial cells were compared before and after exposure to interferon-gamma, interleukin-1beta and interleukin-6. Proteins were separated by two-dimensional polyacrylamide gel electrophoresis. Both autoradiographies and silver stained gels were analyzed. Proteins showing differential expression were identified by tryptic in-gel digestion and mass spectrometry. Metabolism related proteins were also investigated by Western blot analysis. Tryptophanyl-tRNA synthetase, indoleamine-2,3-dioxygenase, heterogeneous nuclear ribonucleoprotein JKTBP, interferon-induced 35kDa protein, proteasome subunit LMP2 and arginosuccinate synthetase were identified as cytokine modulated proteins in vitro. Using purified epithelial cells from patients, overexpression of indoleamine-2,3-dioxygenase, an enzyme involved in tryptophan metabolism, was confirmed in Crohn's disease as well as in ulcerative colitis, as compared to normal mucosa. No such difference was found in diverticulitis. Potentially, this observation opens new avenues in the treatment of IBD.
Collapse
|
35
|
Kakuta S, Tagawa YI, Shibata S, Nanno M, Iwakura Y. Inhibition of B16 melanoma experimental metastasis by interferon-gamma through direct inhibition of cell proliferation and activation of antitumour host mechanisms. Immunology 2002; 105:92-100. [PMID: 11849319 PMCID: PMC1782640 DOI: 10.1046/j.0019-2805.2001.01342.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Interferon-gamma (IFN-gamma) has pleiotropic activities other than its antivirus action, including cell growth inhibition, natural killer (NK) cell and cytotoxic T lymphocyte (CTL) activation, and angiogenesis inhibitory activity, and these activities are supposed to be involved in its antitumour activity. However, it has not been completely elucidated which activity is mainly involved in the tumour suppression in vivo. In this study, we analysed inhibitory mechanisms of endogenous IFN-gamma against B16 melanoma experimental metastasis. After intravenous injection of tumour cells, tumour deposits in the lungs and liver were increased and life span was shorter in IFN-gamma(-/-) mice, indicating important roles for IFN-gamma in antitumour mechanisms. Interestingly, tumour deposits were not increased in IFN-gamma receptor (R)(-/-) mice. Furthermore, only low levels of cell-mediated immunity against the tumour and activation of NK cells were observed, indicating that antimetastatic effects of IFN-gamma is not mediated by host cells. The survival period of B16 melanoma-bearing IFN-gamma R(-/-) mice was, however, shorter than wild-type mice. These observations suggest that IFN-gamma prevents B16 melanoma experimental metastasis by directly inhibiting the cell growth, although antitumour host functions may also be involved in a later phase.
Collapse
Affiliation(s)
- Shigeru Kakuta
- Center for Experimental Medicine, Insitute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
36
|
Abstract
During the past two decades, nitric oxide (NO) has been recognized as one of the most versatile players in the immune system. It is involved in the pathogenesis and control of infectious diseases, tumors, autoimmune processes and chronic degenerative diseases. Because of its variety of reaction partners (DNA, proteins, low-molecular weight thiols, prosthetic groups, reactive oxygen intermediates), its widespread production (by three different NO synthases (NOS) and the fact that its activity is strongly influenced by its concentration, NO continues to surprise and perplex immunologists. Today, there is no simple, uniform picture of the function of NO in the immune system. Protective and toxic effects of NO are frequently seen in parallel. Its striking inter- and intracellular signaling capacity makes it extremely difficult to predict the effect of NOS inhibitors and NO donors, which still hampers therapeutic applications.
Collapse
Affiliation(s)
- C Bogdan
- Institute of Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University of Erlangen-Nuremberg, Wasserturmstrasse 3-5, D-91054 Erlangen, Germany.
| |
Collapse
|