1
|
Brooks ER, Moorman AR, Bhattacharya B, Prudhomme IS, Land M, Alcorn HL, Sharma R, Pe'er D, Zallen JA. A single-cell atlas of spatial and temporal gene expression in the mouse cranial neural plate. eLife 2025; 13:RP102819. [PMID: 40192104 PMCID: PMC11975377 DOI: 10.7554/elife.102819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.
Collapse
Affiliation(s)
- Eric R Brooks
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Andrew R Moorman
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Bhaswati Bhattacharya
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Ian S Prudhomme
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Max Land
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Heather L Alcorn
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Roshan Sharma
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Dana Pe'er
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| |
Collapse
|
2
|
Choi JS, Kim JY, Ahn MJ, Song S, Kim D, Choi SH, Park YS, Kim TJ, Jo S, Kim TH, Shim SC. Celecoxib is the only nonsteroidal anti-inflammatory drug to inhibit bone progression in spondyloarthritis. BMB Rep 2025; 58:140-145. [PMID: 39757202 PMCID: PMC11955732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/10/2024] [Accepted: 07/11/2024] [Indexed: 01/07/2025] Open
Abstract
Spondyloarthritis (SpA) is a chronic inflammatory disease that leads to ankylosis of the axial skeleton. Celecoxib (cyclooxygenase-2 inhibitor, COX-2i) inhibited radiographic progression in a clinical study of SpA, but in the following study, diclofenac (COX-2 non-selective) failed to show that inhibition. Our study aimed to investigate whether nonsteroidal anti-inflammatory drugs (NSAIDs) inhibited bone progression in SpA, and whether celecoxib had a unique function (independent of the COX-inhibitor), compared with the other NSAIDs. We investigated the efficacy of various NSAIDs in curdlan-injected SKG mice (SKGc), an animal model of SpA, analyzed by bone micro-CT and immunohistochemistry. We also tested the effect of NSAIDs on osteoblast (OB) differentiation and bone mineralization in primary bone-derived cells (BdCs) from mice, and in ankylosing spondylitis (AS) patients and human osteosarcoma cell line (SaOS2). Celecoxib significantly inhibited clinical arthritis and bone progression in the joints of SKGc, but not etoricoxib (another COX-2i), nor naproxen (COX-2 nonselective). Both DM-celecoxib, not inhibiting COX-2, and celecoxib, inhibited OB differentiation and bone mineralization in the BdCs of mice and AS patients, and in SaOS2, but etoricoxib or naproxen did not. The in silico study indicated that celecoxib and 2,5-dimethyl-celecoxib (DM-celecoxib) would bind to cadherin-11 (CDH11) with higher affinity than etoricoxib and naproxen. Celecoxib suppressed CDH11-mediated β-catenin signaling in the joints of SKGc, primary mice cells, and SaOS2 cells. Of the NSAIDs, only celecoxib inhibited bone progression in SKGc and OB differentiation and bone mineralization in the BdCs of mice and AS patients via CDH11/WNT signaling, independent of the COX-2 inhibition. [BMB Reports 2025; 58(3): 140-145].
Collapse
Affiliation(s)
- Jin Sun Choi
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Ji-Young Kim
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Min-joo Ahn
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Seungtaek Song
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Doyoun Kim
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Sung Hoon Choi
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul 04763, Korea
| | - Ye-Soo Park
- Department of Orthopedic Surgery, Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea
| | - Tae-Jong Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul 04763, Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul 04763, Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon 35015, Korea
| |
Collapse
|
3
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Kim RT, Whited JL. Putative epithelial-mesenchymal transitions during salamander limb regeneration: Current perspectives and future investigations. Ann N Y Acad Sci 2024; 1540:89-103. [PMID: 39269330 PMCID: PMC11471381 DOI: 10.1111/nyas.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Previous studies have implicated epithelial-mesenchymal transition (EMT) in salamander limb regeneration. In this review, we describe putative roles for EMT during each stage of limb regeneration in axolotls and other salamanders. We hypothesize that EMT and EMT-like gene expression programs may regulate three main cellular processes during limb regeneration: (1) keratinocyte migration during wound closure; (2) transient invasion of the stump by epithelial cells undergoing EMT; and (3) use of EMT-like programs by non-epithelial blastemal progenitor cells to escape the confines of their niches. Finally, we propose nontraditional roles for EMT during limb regeneration that warrant further investigation, including alternative EMT regulators, stem cell activation, and fibrosis induced by aberrant EMT.
Collapse
Affiliation(s)
- Ryan T Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Liu J, Prahl LS, Huang AZ, Hughes AJ. Measurement of adhesion and traction of cells at high yield reveals an energetic ratchet operating during nephron condensation. Proc Natl Acad Sci U S A 2024; 121:e2404586121. [PMID: 39292750 PMCID: PMC11441508 DOI: 10.1073/pnas.2404586121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Developmental biology-inspired strategies for tissue-building have extraordinary promise for regenerative medicine, spurring interest in the relationship between cell biophysical properties and morphological transitions. However, mapping gene or protein expression data to cell biophysical properties to physical morphogenesis remains challenging with current techniques. Here, we present multiplexed adhesion and traction of cells at high yield (MATCHY). MATCHY advances the multiplexing and throughput capabilities of existing traction force and cell-cell adhesion assays using microfabrication and a semiautomated computation scheme with machine learning-driven cell segmentation. Both biophysical assays are coupled with serial downstream immunofluorescence to extract cell type/signaling state information. MATCHY is especially suited to complex primary tissue-, organoid-, or biopsy-derived cell mixtures since it does not rely on a priori knowledge of cell surface markers, cell sorting, or use of lineage-specific reporter animals. We first validate MATCHY on canine kidney epithelial cells engineered for rearranged during transfection (RET) tyrosine kinase expression and quantify a relationship between downstream signaling and cell traction. We then use MATCHY to create a biophysical atlas of mouse embryonic kidney primary cells and identify distinct biophysical states along the nephron differentiation trajectory. Our data complement expression-level knowledge of adhesion molecule changes that accompany nephron differentiation with quantitative biophysical information. These data reveal an "energetic ratchet" that accounts for spatial trends in nephron progenitor cell condensation as they differentiate into early nephron structures, which we validate through agent-based computational simulation. MATCHY offers semiautomated cell biophysical characterization at >10,000-cell throughput, an advance benefiting fundamental studies and new synthetic tissue strategies for regenerative medicine.
Collapse
Affiliation(s)
- Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA19104
| | - Louis S. Prahl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA19104
| | - Aria Zheyuan Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA19104
| | - Alex J. Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA19104
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA19104
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA19104
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA19104
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, PA19104
- Materials Research Science and Engineering Center, University of Pennsylvania, Philadelphia, PA19104
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
6
|
Li XX, Zhang DC, Wang Y, Wen J, Wang XJ, Cao YL, Jiang R, Li JR, Li YN, Liu HH, Xie WH, Xu ZF, Hu P, Zou K. Cadherin-18 loss in prospermatogonia and spermatogonial stem cells enhances cell adhesion through a compensatory mechanism. Zool Res 2024; 45:1048-1060. [PMID: 39147719 PMCID: PMC11491781 DOI: 10.24272/j.issn.2095-8137.2023.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 08/17/2024] Open
Abstract
Extracellular membrane proteins are crucial for mediating cell attachment, recognition, and signal transduction in the testicular microenvironment, particularly germline stem cells. Cadherin 18 (CDH18), a type II classical cadherin, is primarily expressed in the nervous and reproductive systems. Here, we investigated the expression of CDH18 in neonatal porcine prospermatogonia (ProSGs) and murine spermatogonial stem cells (SSCs). Disruption of CDH18 expression did not adversely affect cell morphology, proliferation, self-renewal, or differentiation in cultured porcine ProSGs, but enhanced cell adhesion and prolonged cell maintenance. Transcriptomic analysis indicated that the down-regulation of CDH18 in ProSGs significantly up-regulated genes and signaling pathways associated with cell adhesion. To further elucidate the function of CDH18 in germ cells, Cdh18 knockout mice were generated, which exhibited normal testicular morphology, histology, and spermatogenesis. Transcriptomic analysis showed increased expression of genes associated with adhesion, consistent with the observations in porcine ProSGs. The interaction of CDH18 with β-catenin and JAK2 in both porcine ProSGs and murine SSCs suggested an inhibitory effect on the canonical Wnt and JAK-STAT signaling pathways during CDH18 deficiency. Collectively, these findings highlight the crucial role of CDH18 in regulating cell adhesion in porcine ProSGs and mouse SSCs. Understanding this regulatory mechanism provides significant insights into the testicular niche.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dan-Chen Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Jian Wen
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xing-Ju Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu-Lu Cao
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ru Jiang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Rui Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi-Nuo Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - He-He Liu
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wen-Hai Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Zheng-Feng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China. E-mail:
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China. E-mail:
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China. E-mail:
| |
Collapse
|
7
|
Mozin E, Massouridès E, Mournetas V, Lièvre C, Bourdon A, Jackson DL, Packer JS, Seong J, Trapnell C, Le Guiner C, Adjali O, Pinset C, Mack DL, Dupont JB. Dystrophin deficiency impairs cell junction formation during embryonic myogenesis from pluripotent stem cells. iScience 2024; 27:110242. [PMID: 39040067 PMCID: PMC11261405 DOI: 10.1016/j.isci.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/02/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Mutations in the DMD gene lead to Duchenne muscular dystrophy (DMD), a severe neuromuscular disorder affecting young boys as they acquire motor functions. DMD is typically diagnosed at 2-4 years of age, but the absence of dystrophin has negative impacts on skeletal muscles before overt symptoms appear in patients, which poses a serious challenge in current standards of care. Here, we investigated the consequences of dystrophin deficiency during skeletal muscle development. We used single-cell transcriptome profiling to characterize the myogenic trajectory of human pluripotent stem cells and showed that DMD cells bifurcate to an alternative branch when they reach the somite stage. Dystrophin deficiency was linked to marked dysregulations of cell junction proteins involved in the cell state transitions characteristic of embryonic somitogenesis. Altogether, this work demonstrates that in vitro, dystrophin deficiency has deleterious effects on cell-cell communication during myogenic development, which should be considered in future therapeutic strategies for DMD.
Collapse
Affiliation(s)
- Elise Mozin
- Nantes Université, CHU Nantes, INSERM, TARGET, F-44000 Nantes, France
| | | | | | - Clémence Lièvre
- Nantes Université, CHU Nantes, INSERM, TARGET, F-44000 Nantes, France
| | - Audrey Bourdon
- Nantes Université, CHU Nantes, INSERM, TARGET, F-44000 Nantes, France
| | - Dana L. Jackson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Jonathan S. Packer
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Juyoung Seong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
- Institute for Stem Cell and Regenerative Medicine, Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98109, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | | | - Oumeya Adjali
- Nantes Université, CHU Nantes, INSERM, TARGET, F-44000 Nantes, France
| | - Christian Pinset
- Centre d’Etude des Cellules Souches, I-Stem, AFM, F-91100 Corbeil-Essonnes, France
| | - David L. Mack
- Institute for Stem Cell and Regenerative Medicine, Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
8
|
Seto Y, Ogihara R, Takizawa K, Eiraku M. In vitro induction of patterned branchial arch-like aggregate from human pluripotent stem cells. Nat Commun 2024; 15:1351. [PMID: 38355589 PMCID: PMC10867012 DOI: 10.1038/s41467-024-45285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Early patterning of neural crest cells (NCCs) in the craniofacial primordium is important for subsequent development of proper craniofacial structures. However, because of the complexity of the environment of developing tissues, surveying the early specification and patterning of NCCs is difficult. In this study, we develop a simplified in vitro 3D model using human pluripotent stem cells to analyze the early stages of facial development. In this model, cranial NCC-like cells spontaneously differentiate from neural plate border-like cells into maxillary arch-like mesenchyme after a long-term culture. Upon the addition of EDN1 and BMP4, these aggregates are converted into a mandibular arch-like state. Furthermore, temporary treatment with EDN1 and BMP4 induces the formation of spatially separated domains expressing mandibular and maxillary arch markers within a single aggregate. These results suggest that this in vitro model is useful for determining the mechanisms underlying cell fate specification and patterning during early facial development.
Collapse
Affiliation(s)
- Yusuke Seto
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Ryoma Ogihara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Kaori Takizawa
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
9
|
Liu Y, Lei P, Samuel RZ, Kashyap AM, Groth T, Bshara W, Neelamegham S, Andreadis ST. Cadherin-11 increases tumor cell proliferation and metastatic potential via Wnt pathway activation. Mol Oncol 2023; 17:2056-2073. [PMID: 37558205 PMCID: PMC10552893 DOI: 10.1002/1878-0261.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 08/11/2023] Open
Abstract
During epithelial-mesenchymal transition (EMT) in cancer progression, tumor cells switch cadherin profile from E-cadherin to cadherin-11 (CDH11), which is accompanied by increased invasiveness and metastatic activity. However, the mechanism through which CDH11 may affect tumor growth and metastasis remains elusive. Here, we report that CDH11 was highly expressed in multiple human tumors and was localized on the membrane, in the cytoplasm and, surprisingly, also in the nucleus. Interestingly, β-catenin remained bound to carboxy-terminal fragments (CTFs) of CDH11, the products of CDH11 cleavage, and co-localized with CTFs in the nucleus in the majority of breast cancer samples. Binding of β-catenin to CTFs preserved β-catenin activity, whereas inhibiting CDH11 cleavage led to β-catenin phosphorylation and diminished Wnt signaling, similar to CDH11 knockout. Our data elucidate a previously unknown role of CDH11, which serves to stabilize β-catenin in the cytoplasm and facilitates its translocation to the nucleus, resulting in activation of Wnt signaling, with subsequent increased proliferation, migration and invasion potential.
Collapse
Affiliation(s)
- Yayu Liu
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Ronel Z. Samuel
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Anagha M. Kashyap
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Theodore Groth
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Wiam Bshara
- Roswell Park Comprehensive Cancer Center Pathology Resource NetworkBuffaloNYUSA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
- Department of Biomedical Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
- New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloNYUSA
- Center for Cell, Gene and Tissue Engineering (CGTE), University at BuffaloThe State University of New YorkAmherstNYUSA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
- Department of Biomedical Engineering, University at BuffaloThe State University of New YorkAmherstNYUSA
- New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloNYUSA
- Center for Cell, Gene and Tissue Engineering (CGTE), University at BuffaloThe State University of New YorkAmherstNYUSA
| |
Collapse
|
10
|
Watson CJ, Tang WJ, Rojas MF, Fiedler IAK, Morfin Montes de Oca E, Cronrath AR, Callies LK, Swearer AA, Ahmed AR, Sethuraman V, Addish S, Farr GH, Gómez AE, Rai J, Monstad-Rios AT, Gardiner EM, Karasik D, Maves L, Busse B, Hsu YH, Kwon RY. wnt16 regulates spine and muscle morphogenesis through parallel signals from notochord and dermomyotome. PLoS Genet 2022; 18:e1010496. [PMID: 36346812 PMCID: PMC9674140 DOI: 10.1371/journal.pgen.1010496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/18/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Bone and muscle are coupled through developmental, mechanical, paracrine, and autocrine signals. Genetic variants at the CPED1-WNT16 locus are dually associated with bone- and muscle-related traits. While Wnt16 is necessary for bone mass and strength, this fails to explain pleiotropy at this locus. Here, we show wnt16 is required for spine and muscle morphogenesis in zebrafish. In embryos, wnt16 is expressed in dermomyotome and developing notochord, and contributes to larval myotome morphology and notochord elongation. Later, wnt16 is expressed at the ventral midline of the notochord sheath, and contributes to spine mineralization and osteoblast recruitment. Morphological changes in wnt16 mutant larvae are mirrored in adults, indicating that wnt16 impacts bone and muscle morphology throughout the lifespan. Finally, we show that wnt16 is a gene of major effect on lean mass at the CPED1-WNT16 locus. Our findings indicate that Wnt16 is secreted in structures adjacent to developing bone (notochord) and muscle (dermomyotome) where it affects the morphogenesis of each tissue, thereby rendering wnt16 expression into dual effects on bone and muscle morphology. This work expands our understanding of wnt16 in musculoskeletal development and supports the potential for variants to act through WNT16 to influence bone and muscle via parallel morphogenetic processes.
Collapse
Affiliation(s)
- Claire J. Watson
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - W. Joyce Tang
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Maria F. Rojas
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Imke A. K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ernesto Morfin Montes de Oca
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Andrea R. Cronrath
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Lulu K. Callies
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Avery Angell Swearer
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Ali R. Ahmed
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Visali Sethuraman
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Sumaya Addish
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Gist H. Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Arianna Ericka Gómez
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Jyoti Rai
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Adrian T. Monstad-Rios
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Edith M. Gardiner
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - David Karasik
- Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, United States of America
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, Division of Cardiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Bjorn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yi-Hsiang Hsu
- Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts, United States of America
| | - Ronald Young Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| |
Collapse
|
11
|
Tang WJ, Watson CJ, Olmstead T, Allan CH, Kwon RY. Single-cell resolution of MET- and EMT-like programs in osteoblasts during zebrafish fin regeneration. iScience 2022; 25:103784. [PMID: 35169687 PMCID: PMC8829776 DOI: 10.1016/j.isci.2022.103784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/15/2021] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Zebrafish regenerate fin rays following amputation through epimorphic regeneration, a process that has been proposed to involve the epithelial-to-mesenchymal transition (EMT). We performed single-cell RNA sequencing (scRNA-seq) to elucidate osteoblastic transcriptional programs during zebrafish caudal fin regeneration. We show that osteoprogenitors are enriched with components associated with EMT and its reverse, mesenchymal-to-epithelial transition (MET), and provide evidence that the EMT markers cdh11 and twist2 are co-expressed in dedifferentiating cells at the amputation stump at 1 dpa, and in differentiating osteoblastic cells in the regenerate, the latter of which are enriched in EMT signatures. We also show that esrp1, a regulator of alternative splicing in epithelial cells that is associated with MET, is expressed in a subset of osteoprogenitors during outgrowth. This study provides a single cell resource for the study of osteoblastic cells during zebrafish fin regeneration, and supports the contribution of MET- and EMT-associated components to this process.
Collapse
Affiliation(s)
- W. Joyce Tang
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Claire J. Watson
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Theresa Olmstead
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Christopher H. Allan
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Ronald Y. Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
12
|
Linde-Medina M, Smit TH. Molecular and Mechanical Cues for Somite Periodicity. Front Cell Dev Biol 2021; 9:753446. [PMID: 34901002 PMCID: PMC8663771 DOI: 10.3389/fcell.2021.753446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Somitogenesis refers to the segmentation of the paraxial mesoderm, a tissue located on the back of the embryo, into regularly spaced and sized pieces, i.e., the somites. This periodicity is important to assure, for example, the formation of a functional vertebral column. Prevailing models of somitogenesis are based on the existence of a gene regulatory network capable of generating a striped pattern of gene expression, which is subsequently translated into periodic tissue boundaries. An alternative view is that the pre-pattern that guides somitogenesis is not chemical, but of a mechanical origin. A striped pattern of mechanical strain can be formed in physically connected tissues expanding at different rates, as it occurs in the embryo. Here we argue that both molecular and mechanical cues could drive somite periodicity and suggest how they could be integrated.
Collapse
Affiliation(s)
| | - Theodoor H. Smit
- Department of Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam University Medical Centres, Amsterdam, Netherlands
- Department of Medical Biology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| |
Collapse
|
13
|
Abstract
Fibroblasts are important cells for the support of homeostatic tissue function. In inflammatory diseases such as rheumatoid arthritis and inflammatory bowel disease, fibroblasts take on different roles (a) as inflammatory cells themselves and (b) in recruiting leukocytes, driving angiogenesis, and enabling chronic inflammation in tissues. Recent advances in single-cell profiling techniques have transformed the ability to examine fibroblast states and populations in inflamed tissues, providing evidence of previously underappreciated heterogeneity and disease-associated fibroblast populations. These studies challenge the preconceived notion that fibroblasts are homogeneous and provide new insights into the role of fibroblasts in inflammatory pathology. In addition, new molecular insights into the mechanisms of fibroblast activation reveal powerful cell-intrinsic amplification loops that synergize with primary fibroblast stimuli to result in striking responses. In this Review, we focus on recent developments in our understanding of fibroblast heterogeneity and fibroblast pathology across tissues and diseases in rheumatoid arthritis and inflammatory bowel diseases. We highlight new approaches to, and applications of, single-cell profiling techniques and what they teach us about fibroblast biology. Finally, we address how these insights could lead to the development of novel therapeutic approaches to targeting fibroblasts in disease.
Collapse
|
14
|
González-Martínez S, Pérez-Mies B, Pizarro D, Caniego-Casas T, Cortés J, Palacios J. Epithelial Mesenchymal Transition and Immune Response in Metaplastic Breast Carcinoma. Int J Mol Sci 2021; 22:ijms22147398. [PMID: 34299016 PMCID: PMC8306902 DOI: 10.3390/ijms22147398] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Metaplastic breast carcinoma (MBC) is a heterogeneous group of infrequent triple negative (TN) invasive carcinomas with poor prognosis. MBCs have a different clinical behavior from other types of triple negative breast cancer (TNBC), being more resistant to standard chemotherapy. MBCs are an example of tumors with activation of epithelial–mesenchymal transition (EMT). The mechanisms involved in EMT could be responsible for the increase in the infiltrative and metastatic capacity of MBCs and resistance to treatments. In addition, a relationship between EMT and the immune response has been seen in these tumors. In this sense, MBC differ from other TN tumors showing a lower number of tumor-infiltrating lymphocytes (TILS) and a higher percentage of tumor cells expressing programmed death-ligand 1 (PD-L1). A better understanding of the relationship between the immune system and EMT could provide new therapeutic approaches in MBC.
Collapse
Affiliation(s)
| | - Belén Pérez-Mies
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain;
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
| | - David Pizarro
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
| | - Tamara Caniego-Casas
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
| | - Javier Cortés
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, 28670 Madrid, Spain
- International Breast Cancer Center (IBCC), Quironsalud Group, 08017 Barcelona, Spain
- Medica Scientia Innovation Research, 08007 Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, NJ 07450, USA
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
- Correspondence: (J.C.); (J.P.)
| | - José Palacios
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain;
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
- Correspondence: (J.C.); (J.P.)
| |
Collapse
|
15
|
Punovuori K, Malaguti M, Lowell S. Cadherins in early neural development. Cell Mol Life Sci 2021; 78:4435-4450. [PMID: 33796894 PMCID: PMC8164589 DOI: 10.1007/s00018-021-03815-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022]
Abstract
During early neural development, changes in signalling inform the expression of transcription factors that in turn instruct changes in cell identity. At the same time, switches in adhesion molecule expression result in cellular rearrangements that define the morphology of the emerging neural tube. It is becoming increasingly clear that these two processes influence each other; adhesion molecules do not simply operate downstream of or in parallel with changes in cell identity but rather actively feed into cell fate decisions. Why are differentiation and adhesion so tightly linked? It is now over 60 years since Conrad Waddington noted the remarkable "Constancy of the Wild Type" (Waddington in Nature 183: 1654-1655, 1959) yet we still do not fully understand the mechanisms that make development so reproducible. Conversely, we do not understand why directed differentiation of cells in a dish is sometimes unpredictable and difficult to control. It has long been suggested that cells make decisions as 'local cooperatives' rather than as individuals (Gurdon in Nature 336: 772-774, 1988; Lander in Cell 144: 955-969, 2011). Given that the cadherin family of adhesion molecules can simultaneously influence morphogenesis and signalling, it is tempting to speculate that they may help coordinate cell fate decisions between neighbouring cells in the embryo to ensure fidelity of patterning, and that the uncoupling of these processes in a culture dish might underlie some of the problems with controlling cell fate decisions ex-vivo. Here we review the expression and function of cadherins during early neural development and discuss how and why they might modulate signalling and differentiation as neural tissues are formed.
Collapse
Affiliation(s)
- Karolina Punovuori
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
16
|
Li D, March ME, Fortugno P, Cox LL, Matsuoka LS, Monetta R, Seiler C, Pyle LC, Bedoukian EC, Sánchez-Soler MJ, Caluseriu O, Grand K, Tam A, Aycinena ARP, Camerota L, Guo Y, Sleiman P, Callewaert B, Kumps C, Dheedene A, Buckley M, Kirk EP, Turner A, Kamien B, Patel C, Wilson M, Roscioli T, Christodoulou J, Cox TC, Zackai EH, Brancati F, Hakonarson H, Bhoj EJ. Pathogenic variants in CDH11 impair cell adhesion and cause Teebi hypertelorism syndrome. Hum Genet 2021; 140:1061-1076. [PMID: 33811546 DOI: 10.1007/s00439-021-02274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
Teebi hypertelorism syndrome (THS; OMIM 145420) is a rare craniofacial disorder characterized by hypertelorism, prominent forehead, short nose with broad or depressed nasal root. Some cases of THS have been attributed to SPECC1L variants. Homozygous variants in CDH11 truncating the transmembrane and intracellular domains have been implicated in Elsahy-Waters syndrome (EWS; OMIM 211380) with hypertelorism. We report THS due to CDH11 heterozygous missense variants on 19 subjects from 9 families. All affected residues in the extracellular region of Cadherin-11 (CHD11) are highly conserved across vertebrate species and classical cadherins. Six of the variants that cluster around the EC2-EC3 and EC3-EC4 linker regions are predicted to affect Ca2+ binding that is required for cadherin stability. Two of the additional variants [c.164G > C, p.(Trp55Ser) and c.418G > A, p.(Glu140Lys)] are also notable as they are predicted to directly affect trans-homodimer formation. Immunohistochemical study demonstrates that CDH11 is strongly expressed in human facial mesenchyme. Using multiple functional assays, we show that five variants from the EC1, EC2-EC3 linker, and EC3 regions significantly reduced the cell-substrate trans adhesion activity and one variant from EC3-EC4 linker results in changes in cell morphology, focal adhesion, and migration, suggesting dominant negative effect. Characteristic features in this cohort included depressed nasal root, cardiac and umbilical defects. These features distinguished this phenotype from that seen in SPECC1L-related hypertelorism syndrome and CDH11-related EWS. Our results demonstrate heterozygous variants in CDH11, which decrease cell-cell adhesion and increase cell migratory behavior, cause a form of THS, as termed CDH11-related THS.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paola Fortugno
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Liza L Cox
- Departments of Oral and Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, 64108, USA
| | - Leticia S Matsuoka
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rosanna Monetta
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Christoph Seiler
- Zebrafish Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Louise C Pyle
- Individualized Medical Genetics Center, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emma C Bedoukian
- Individualized Medical Genetics Center, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - María José Sánchez-Soler
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, España
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,The Stollery Pediatric Hospital, Edmonton, AB, T6G 2H7, Canada
| | - Katheryn Grand
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Allison Tam
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Alicia R P Aycinena
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Letizia Camerota
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Yiran Guo
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Candy Kumps
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Michael Buckley
- NSW Health Pathology Genomics Laboratory, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Edwin P Kirk
- NSW Health Pathology Genomics Laboratory, Prince of Wales Hospital, Randwick, NSW, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Anne Turner
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Benjamin Kamien
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Tony Roscioli
- NSW Health Pathology Genomics Laboratory, Prince of Wales Hospital, Randwick, NSW, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia.,Neuroscience Research Australia and Prince of Wales Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Timothy C Cox
- Departments of Oral and Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, 64108, USA
| | - Elaine H Zackai
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Francesco Brancati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy.,IRCCS San Raffaele Pisana, Rome, Italy
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth J Bhoj
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Ikuta R, Myoenzono K, Wasano J, Hamaguchi-Hamada K, Hamada S, Kurumata-Shigeto M. N-cadherin localization in taste buds of mouse circumvallate papillae. J Comp Neurol 2020; 529:2227-2242. [PMID: 33319419 DOI: 10.1002/cne.25090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023]
Abstract
Taste buds, the receptor organs for taste, contain 50-100 taste bud cells. Although these cells undergo continuous turnover, the structural and functional integrity of taste buds is maintained. The molecular mechanisms by which synaptic connectivity between taste buds and afferent fibers is formed and maintained remain ambiguous. In the present study, we examined the localization of N-cadherin in the taste buds of the mouse circumvallate papillae because N-cadherin, one of the classical cadherins, is important for the formation and maintenance of synapses. At the light microscopic level, N-cadherin was predominantly detected in type II cells and nerve fibers in the connective tissues in and around the vallate papillae. At the ultrastructural level, N-cadherin immunoreactivity appears along the cell membrane and in the intracellular vesicles of type II cells. N-cadherin immunoreactivity also is evident in the membranes of afferent terminals at the contact sites to N-cadherin-positive type II cells. At channel type synapses between type II cells and nerve fibers, N-cadherin is present surrounding, but not within, the presumed neurotransmitter release zone, identified by large mitochondria apposed to the taste cells. The present results suggest that N-cadherin is important for the formation or maintenance of type II cell afferent synapses in taste buds.
Collapse
Affiliation(s)
- Rio Ikuta
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan
| | - Kanae Myoenzono
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan.,Humanome Lab., Inc., Tokyo, Japan
| | - Jun Wasano
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan
| | | | - Shun Hamada
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan
| | - Mami Kurumata-Shigeto
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan
| |
Collapse
|
18
|
Manohar S, Camacho-Magallanes A, Echeverria C, Rogers CD. Cadherin-11 Is Required for Neural Crest Specification and Survival. Front Physiol 2020; 11:563372. [PMID: 33192560 PMCID: PMC7662130 DOI: 10.3389/fphys.2020.563372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/06/2020] [Indexed: 01/06/2023] Open
Abstract
Neural crest (NC) cells are multipotent embryonic cells that form melanocytes, craniofacial bone and cartilage, and the peripheral nervous system in vertebrates. NC cells express many cadherin proteins, which control their specification, epithelial to mesenchymal transition (EMT), migration, and mesenchymal to epithelial transition. Abnormal NC development leads to congenital defects including craniofacial clefts as well as NC-derived cancers. Here, we identify the role of the type II cadherin protein, Cadherin-11 (CDH11), in early chicken NC development. CDH11 is known to play a role in NC cell migration in amphibian embryos as well as cell survival, proliferation, and migration in cancer cells. It has also been linked to the complex neurocristopathy disorder, Elsahy-Waters Syndrome, in humans. In this study, we knocked down CDH11 translation at the onset of its expression in the NC domain during NC induction. Loss of CDH11 led to a reduction of bonafide NC cells in the dorsal neural tube combined with defects in cell survival and migration. Loss of CDH11 increased p53-mediated programmed-cell death, and blocking the p53 pathway rescued the NC phenotype. Our findings reveal an early requirement for CDH11 in NC development and demonstrated the complexity of the mechanisms that regulate NC development, where a single cell-cell adhesion protein simultaneous controls multiple essential cellular functions to ensure proper specification, survival, and transition to a migratory phase in the dorsal neural tube. Our findings may also increase our understanding of early cadherin-related NC developmental defects.
Collapse
Affiliation(s)
- Subrajaa Manohar
- Department of Biology, School of Math and Science, California State University Northridge, Northridge, CA, United States
| | - Alberto Camacho-Magallanes
- Department of Biology, School of Math and Science, California State University Northridge, Northridge, CA, United States
| | - Camilo Echeverria
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA, United States
| | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA, United States
| |
Collapse
|
19
|
Tsai TYC, Sikora M, Xia P, Colak-Champollion T, Knaut H, Heisenberg CP, Megason SG. An adhesion code ensures robust pattern formation during tissue morphogenesis. Science 2020; 370:113-116. [PMID: 33004519 PMCID: PMC7879479 DOI: 10.1126/science.aba6637] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Animal development entails the organization of specific cell types in space and time, and spatial patterns must form in a robust manner. In the zebrafish spinal cord, neural progenitors form stereotypic patterns despite noisy morphogen signaling and large-scale cellular rearrangements during morphogenesis and growth. By directly measuring adhesion forces and preferences for three types of endogenous neural progenitors, we provide evidence for the differential adhesion model in which differences in intercellular adhesion mediate cell sorting. Cell type-specific combinatorial expression of different classes of cadherins (N-cadherin, cadherin 11, and protocadherin 19) results in homotypic preference ex vivo and patterning robustness in vivo. Furthermore, the differential adhesion code is regulated by the sonic hedgehog morphogen gradient. We propose that robust patterning during tissue morphogenesis results from interplay between adhesion-based self-organization and morphogen-directed patterning.
Collapse
Affiliation(s)
- Tony Y-C Tsai
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115, USA
| | - Mateusz Sikora
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuberg, Austria
| | - Peng Xia
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuberg, Austria
| | - Tugba Colak-Champollion
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115, USA.
| |
Collapse
|
20
|
Chambers JM, Wingert RA. Advances in understanding vertebrate nephrogenesis. Tissue Barriers 2020; 8:1832844. [PMID: 33092489 PMCID: PMC7714473 DOI: 10.1080/21688370.2020.1832844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The kidney is a complex organ that performs essential functions such as blood filtration and fluid homeostasis, among others. Recent years have heralded significant advancements in our knowledge of the mechanisms that control kidney formation. Here, we provide an overview of vertebrate renal development with a focus on nephrogenesis, the process of generating the epithelialized functional units of the kidney. These steps begin with intermediate mesoderm specification and proceed all the way to the terminally differentiated nephron cell, with many detailed stages in between. The establishment of nephron architecture with proper cellular barriers is vital throughout these processes. Continuously striving to gain further insights into nephrogenesis can ultimately lead to a better understanding and potential treatments for developmental maladies such as Congenital Anomalies of the Kidney and Urinary Tract (CAKUT).
Collapse
Affiliation(s)
- Joseph M. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
21
|
Cell culture dimensionality influences mesenchymal stem cell fate through cadherin-2 and cadherin-11. Biomaterials 2020; 254:120127. [DOI: 10.1016/j.biomaterials.2020.120127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
|
22
|
Abstract
PURPOSE OF REVIEW Macrophages are key players in systemic sclerosis (SSc) and fibrosis. The mechanism by which macrophages regulate fibrogenesis is unclear and understanding the origin and function of macrophages is critical to developing effective therapeutics. Novel targets on macrophages are under investigation and recently, cadherins have emerged as a potential therapeutic target on macrophages. The current review will discuss the importance of macrophages in SSc and fibrosis and summarize recent studies on the role of cadherin-11 (Cdh11) on macrophages and fibrosis. RECENT FINDINGS Genome-wide expression studies demonstrate the importance of macrophages in SSc and fibrosis. Although M2 macrophages are associated with fibrosis, the presence of a mixed M1/M2 phenotype in fibrosis has recently been reported. Several studies aiming to identify macrophage subsets involved in fibrogenesis suggest that monocyte-derived alveolar macrophages are key players in the development of murine lung fibrosis. Recent functional studies show that Cdh11 regulates macrophages, fibroblast invasion, and adhesion of macrophages to myofibroblasts. SUMMARY Macrophages play an important role in SSc and fibrosis. New insights into the mechanisms by which macrophages regulate fibrogenesis have been discovered on the basis of Cdh11 studies and suggest that targeting Cdh11 may be an effective target to treat fibrosis.
Collapse
|
23
|
Soliman H, Rossi FMV. Cardiac fibroblast diversity in health and disease. Matrix Biol 2020; 91-92:75-91. [PMID: 32446910 DOI: 10.1016/j.matbio.2020.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
The cardiac stroma plays essential roles in health and following cardiac damage. The major player of the stroma with respect to extracellular matrix deposition, maintenance and remodeling is the poorly defined fibroblast. It has long been recognized that there is considerable variability to the fibroblast phenotype. With the advent of new, high throughput analytical methods our understanding and appreciation of this heterogeneity has grown dramatically. This review aims to explore the diversity of cardiac fibroblasts and highlights new insights into the diverse nature of these cells and their progenitors as revealed by single cell sequencing and fate mapping studies. We propose that at least in part the observed heterogeneity is related to the existence of a differentiation cascade within stromal cells. Beyond in-organ heterogeneity, we also discuss how the stromal response to damage differs between non-regenerating organs such as the heart and regenerating organs such as skeletal muscle. In exploring possible causes for these differences, we outline that although fibrogenic cells from different organs overlap in many properties, they still possess organ-specific transcriptional signatures and differentiation biases that make them functionally distinct.
Collapse
Affiliation(s)
- Hesham Soliman
- Biomedical Research Centre, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada; Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
24
|
Wang Q, Jia Y, Peng X, Li C. Clinical and prognostic association of oncogene cadherin 11 in gastric cancer. Oncol Lett 2020; 19:4011-4023. [PMID: 32391104 PMCID: PMC7204628 DOI: 10.3892/ol.2020.11531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
The abnormal expression of cadherin-11 (CDH11) affects the progression of several types of cancer. However, the expression pattern and prognostic value of CDH11 in gastric cancer (GC) have not been reported. In the present study, the expression of CDH11 in patients with GC and its effect on their survival were analyzed using public cancer databases. The expression of CDH11 in GC tissues was significantly higher compared with that in normal gastric tissues. The expression of CDH11 was higher in advanced GC compared with early GC, and increased CDH11 was associated with tumor progression and poor prognosis in patients with GC. The high level of methylation in the promoter of CDH11 in GC tissues was not sufficient to reverse the upregulation of CDH11 caused by transcriptional activation. Finally, the expression pattern and prognostic significance of CDH11 in GC were validated using data from patients with GC recruited for the present study. Collectively, the present results demonstrated that CDH11 was upregulated in GC tissues, and suggested that high CDH11 expression may be associated with progression and poor prognosis in GC.
Collapse
Affiliation(s)
- Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| | - Yingdong Jia
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| | - Xudong Peng
- Gastrointestinal Surgical Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, P.R. China
| | - Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| |
Collapse
|
25
|
Franzè E, Monteleone I, Laudisi F, Rizzo A, Dinallo V, Di Fusco D, Colantoni A, Ortenzi A, Giuffrida P, Di Carlo S, Sica GS, Di Sabatino A, Monteleone G. Cadherin-11 Is a Regulator of Intestinal Fibrosis. J Crohns Colitis 2020; 14:406-417. [PMID: 31504344 DOI: 10.1093/ecco-jcc/jjz147] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Although the mechanisms underlying the formation of intestinal fibrostrictures in Crohn's disease [CD] are not fully understood, activation of fibroblasts and excessive collagen deposition are supposed to contribute to the development of such complications. Here, we investigated the role of cadherin-11 [CDH-11], a fibroblast-derived protein that induces collagen production in various organs, in intestinal fibrosis. METHODS CDH-11 expression was evaluated in inflammatory [I] and fibrostricturing [FS] CD mucosal samples, ulcerative colitis [UC] mucosal samples, and ileal and colonic control samples, by real-time polymerase chain reaction, western blotting, and immunohistochemistry. CDH-11 expression was evaluated in normal and in CD intestinal fibroblasts stimulated with inflammatory/fibrogenic cytokines. FS CD fibroblasts were cultured either with a specific CDH-11 antisense oligonucleotide [AS], or activating CDH-11 fusion protein and activation of RhoA/ROCK, and TGF-β pathways and collagen production were evaluated by western blotting. Finally, we assessed the susceptibility of CDH-11-knockout [KO] mice to colitis-induced intestinal fibrosis. RESULTS CDH-11 RNA and protein expression were increased in both CD and UC as compared with controls. In CD, the greater expression of CDH-11 was seen in FS samples. Stimulation of fibroblasts with TNF-α, interleukin [IL]-6, IFN-γ, IL-13, and IL-1β enhanced CDH-11 expression. Knockdown of CDH-11 in FS CD fibroblasts impaired RhoA/ROCK/TGF-β signalling and reduced collagen synthesis, whereas activation of CDH-11 increased collagen secretion. CDH-11 KO mice were largely protected from intestinal fibrosis. CONCLUSIONS Data show that CDH-11 expression is up-regulated in inflammatory bowel disease [IBD] and suggest a role for this protein in the control of intestinal fibrosis.
Collapse
Affiliation(s)
- Eleonora Franzè
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Ivan Monteleone
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Angelamaria Rizzo
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Paolo Giuffrida
- Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Sara Di Carlo
- Department of Surgery, University 'TOR VERGATA' of Rome, Rome, Italy
| | - Giuseppe S Sica
- Department of Surgery, University 'TOR VERGATA' of Rome, Rome, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| |
Collapse
|
26
|
Mathematical modeling of chondrogenic pattern formation during limb development: Recent advances in continuous models. Math Biosci 2020; 322:108319. [PMID: 32001201 DOI: 10.1016/j.mbs.2020.108319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/20/2022]
Abstract
The phenomenon of chondrogenic pattern formation in the vertebrate limb is one of the best studied examples of organogenesis. Many different models, mathematical as well as conceptual, have been proposed for it in the last fifty years or so. In this review, we give a brief overview of the fundamental biological background, then describe in detail several models which aim to describe qualitatively and quantitatively the corresponding biological phenomena. We concentrate on several new models that have been proposed in recent years, taking into account recent experimental progress. The major mathematical tools in these approaches are ordinary and partial differential equations. Moreover, we discuss models with non-local flux terms used to account for cell-cell adhesion forces and a structured population model with diffusion. We also include a detailed list of gene products and potential morphogens which have been identified to play a role in the process of limb formation and its growth.
Collapse
|
27
|
Liu Y, Lei P, Row S, Andreadis ST. Cadherin-11 binds to PDGFRβ and enhances cell proliferation and tissue regeneration via the PDGFR-AKT signaling axis. FASEB J 2020; 34:3792-3804. [PMID: 31930567 DOI: 10.1096/fj.201902613r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/11/2022]
Abstract
Intercellular adhesion through homotypic interaction between cadherins regulates multiple cellular processes including cytoskeletal organization, proliferation, and survival. In this paper, we provide evidence that cadherin-11 (CDH11) binds to and promotes cell proliferation both in vitro and in vivo in synergy with the platelet-derived growth factor receptor beta (PDGFRβ). Engagement of CDH11 increased the sensitivity of cells to PDGF-BB by 10- to 100-fold, resulting in rapid and sustained phosphorylation of AKT, ultimately promoting and cell proliferation and tissue regeneration. Indeed, wound healing experiments showed that healing was severely compromised in Cdh11-/- mice, as evidenced by significantly decreased proliferation, AKT phosphorylation, and extracellular matrix (ECM) synthesis of dermal cells. Our results shed light into understanding how intercellular adhesion can promote cell proliferation and may have implications for tissue regeneration and cancer progression.
Collapse
Affiliation(s)
- Yayu Liu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY
| | - Sindhu Row
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY
| | - Stelios T Andreadis
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY.,Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY.,Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
| |
Collapse
|
28
|
Abstract
Tendons connect muscles to bones to transfer the forces necessary for movement. Cell-cell junction proteins, cadherins and connexins, may play a role in tendon development and injury. In this review, we begin by highlighting current understanding of how cell-cell junctions may regulate embryonic tendon development and differentiation. We then examine cell-cell junctions in postnatal tendon, before summarizing the role of cadherins and connexins in adult tendons. More information exists regarding the role of cell-cell junctions in the formation and homeostasis of other musculoskeletal tissues, namely cartilage and bone. Therefore, to inform future tendon studies, we include a brief survey of cadherins and connexins in chondrogenesis and osteogenesis, and summarize how cell-cell junctions are involved in some musculoskeletal tissue pathologies. An enhanced understanding of how cell-cell junctions participate in tendon development, maintenance, and disease will benefit future regenerative strategies.
Collapse
Affiliation(s)
| | - Jett B Murray
- Biological Engineering, University of Idaho, Moscow, ID
| | | |
Collapse
|
29
|
Chatterjee S, Shivhare P, Verma SG. Chiari malformation and atlantoaxial instability: problems of co-existence. Childs Nerv Syst 2019; 35:1755-1761. [PMID: 31302728 DOI: 10.1007/s00381-019-04284-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Association of Chiari malformation and atlantoaxial subluxation varies. There is a complex relationship between the two, bony and soft tissue pathologies. METHODS This is a review of various articles available from the literature on the management of Chiari and its association with atlantoaxial instability. RESULTS We have an experience of operating on 86 cases of paediatric atlantoaxial subluxation, of which 12 had Chiari malformation diagnosed preoperatively (13.95%). Of the 76 children with Chiari malformations operated on by us, 11 had associated atlantoaxial subluxation diagnosed on imaging (14.47%). CONCLUSIONS Re-alignment and reduction with fixation may be effective in achieving decompression in cases where reduction is possible from posterior approach. In these cases, posterior fixation is all that is required. If reduction is not possible from posterior and there is "fixed" ventral compression, anterior decompression needs to be combined with posterior fixation. In most cases, direct posterior decompression is warranted.
Collapse
Affiliation(s)
- Sandip Chatterjee
- Department of Neurosurgery, VIMS and Park Clinic, Park Clinic, 4, Gorky Terrace road, Elgin, Kolkata, 700017, India.
| | | | | |
Collapse
|
30
|
Santos HP, Bhattacharya A, Martin EM, Addo K, Psioda M, Smeester L, Joseph RM, Hooper SR, Frazier JA, Kuban KC, O’Shea T, Fry RC. Epigenome-wide DNA methylation in placentas from preterm infants: association with maternal socioeconomic status. Epigenetics 2019; 14:751-765. [PMID: 31062658 PMCID: PMC6615526 DOI: 10.1080/15592294.2019.1614743] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
This study evaluated the hypothesis that prenatal maternal socioeconomic status (SES) adversity is associated with DNA methylation in the placenta. SES adversity was defined by the presence of, as well as a summative count of, four factors: less than college education, single marital status, food and nutritional service assistance, and public health insurance. Epigenome-wide DNA methylation was assessed using the Illumina EPIC array in 426 placentas from a sample of infants born < 28 weeks of gestation from the Extremely Low Gestational Age Newborn cohort. Associations between SES adversity and DNA methylation were assessed with robust linear regressions adjusted for covariates and controlled the false discovery rate at < 10%. We also examined whether such associations were sex specific. Indicators of SES adversity were associated with differential methylation at 33 CpG sites. Of the 33 identified CpG sites, 19 (57.6%) displayed increased methylation, and 14 (42.4%) displayed decreased methylation in association with at least one of the SES adversity factors. Sex differences were observed in DNA methylation associated with summative SES score; in which placentas derived from female pregnancies showed more robust differential CpG methylation than placentas from male pregnancies. Maternal SES adversity was associated with differential methylation of genes with key role in gene transcription and placental function, potentially altering immunity and stress response. Further investigation is needed to evaluate the role of epigenetic differences in mediating the association between maternal socioeconomic status during pregnancy and later life health outcomes in children.
Collapse
Affiliation(s)
- Hudson P. Santos
- School of Nursing, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Arjun Bhattacharya
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth M. Martin
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Kezia Addo
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Matt Psioda
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Lisa Smeester
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Stephen R. Hooper
- Department of Allied Health Sciences, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jean A. Frazier
- Eunice Kennedy Shriver Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Psychiatry, University of Massachusetts Medical School/University of Massachusetts Memorial Health Care, Worcester, MA, USA
| | - Karl C. Kuban
- Department of Pediatrics, Division of Pediatric Neurology, Boston University Medical Center, Boston, MA, USA
| | - T.Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
31
|
Cross-Talk between Fibroblast Growth Factor Receptors and Other Cell Surface Proteins. Cells 2019; 8:cells8050455. [PMID: 31091809 PMCID: PMC6562592 DOI: 10.3390/cells8050455] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute signaling circuits that transmit signals across the plasma membrane, regulating pivotal cellular processes like differentiation, migration, proliferation, and apoptosis. The malfunction of FGFs/FGFRs signaling axis is observed in numerous developmental and metabolic disorders, and in various tumors. The large diversity of FGFs/FGFRs functions is attributed to a great complexity in the regulation of FGFs/FGFRs-dependent signaling cascades. The function of FGFRs is modulated at several levels, including gene expression, alternative splicing, posttranslational modifications, and protein trafficking. One of the emerging ways to adjust FGFRs activity is through formation of complexes with other integral proteins of the cell membrane. These proteins may act as coreceptors, modulating binding of FGFs to FGFRs and defining specificity of elicited cellular response. FGFRs may interact with other cell surface receptors, like G-protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs). The cross-talk between various receptors modulates the strength and specificity of intracellular signaling and cell fate. At the cell surface FGFRs can assemble into large complexes involving various cell adhesion molecules (CAMs). The interplay between FGFRs and CAMs affects cell–cell interaction and motility and is especially important for development of the central nervous system. This review summarizes current stage of knowledge about the regulation of FGFRs by the plasma membrane-embedded partner proteins and highlights the importance of FGFRs-containing membrane complexes in pathological conditions, including cancer.
Collapse
|
32
|
Silva TP, Cotovio JP, Bekman E, Carmo-Fonseca M, Cabral JMS, Fernandes TG. Design Principles for Pluripotent Stem Cell-Derived Organoid Engineering. Stem Cells Int 2019; 2019:4508470. [PMID: 31149014 PMCID: PMC6501244 DOI: 10.1155/2019/4508470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/12/2019] [Accepted: 02/24/2019] [Indexed: 12/17/2022] Open
Abstract
Human morphogenesis is a complex process involving distinct microenvironmental and physical signals that are manipulated in space and time to give rise to complex tissues and organs. Advances in pluripotent stem cell (PSC) technology have promoted the in vitro recreation of processes involved in human morphogenesis. The development of organoids from human PSCs represents one reliable source for modeling a large spectrum of human disorders, as well as a promising approach for drug screening and toxicological tests. Based on the "self-organization" capacity of stem cells, different PSC-derived organoids have been created; however, considerable differences between in vitro-generated PSC-derived organoids and their in vivo counterparts have been reported. Advances in the bioengineering field have allowed the manipulation of different components, including cellular and noncellular factors, to better mimic the in vivo microenvironment. In this review, we focus on different examples of bioengineering approaches used to promote the self-organization of stem cells, including assembly, patterning, and morphogenesis in vitro, contributing to tissue-like structure formation.
Collapse
Affiliation(s)
- Teresa P. Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - João P. Cotovio
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| | - Evguenia Bekman
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - Maria Carmo-Fonseca
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
33
|
The cell-cell junctions of mammalian testes: II. The lamellar smooth muscle monolayer cells of the peritubular wall are laterally connected by vertical adherens junctions-a novel architectonic cell-cell junction system. Cell Tissue Res 2018; 375:451-482. [PMID: 30591979 DOI: 10.1007/s00441-018-2968-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
The testes of sexually mature males of six mammalian species (men, bulls, boars, rats, mice, guinea pigs) have been studied using biochemical as well as light and electron microscopical techniques, in particular immunolocalizations. In these tissues, the peritubular walls represent lamellar encasement structures wrapped around the seminiferous tubules as a bandage system of extracellular matrix layers, alternating with monolayers of very flat polyhedral "lamellar smooth muscle cells" (LSMCs), the number of which varies in different species from 1 to 5 or 6. These LSMCs are complete SMCs containing smooth muscle α-actin (SMA), myosin light and heavy chains, α-actinin, tropomyosin, smoothelin, intermediate-sized filament proteins desmin and/or vimentin, filamin, talin, dystrophin, caldesmon, calponin, and protein SM22α, often also cytokeratins 8 and 18. In the monolayers, the LSMCs are connected by adherens junctions (AJs) based on cadherin-11, in some species also with P-cadherin and/or E-cadherin, which are anchored in cytoplasmic plaques containing β-catenin and other armadillo proteins, in some species also striatin family proteins, protein myozap and/or LUMA. The LSMC cytoplasm is rich in myofilament bundles, which in many regions are packed in paracrystalline arrays, as well as in "dense bodies," "focal adhesions," and caveolae. In addition to some AJ-like end-on-end contacts, the LSMCs are laterally connected by numerous vertical AJ-like junctions located in variously sized and variously shaped, overlapping (alter super alterum) lamelliform cell protrusions. Consequently, the LSMCs of the peritubular wall monolayers are SMCs sensu stricto which are laterally connected by a novel architectonic system of arrays of vertical AJs located in overlapping cell protrusions.
Collapse
|
34
|
Ritter KE, Martin DM. Neural crest contributions to the ear: Implications for congenital hearing disorders. Hear Res 2018; 376:22-32. [PMID: 30455064 DOI: 10.1016/j.heares.2018.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Congenital hearing disorders affect millions of children worldwide and can significantly impact acquisition of speech and language. Efforts to identify the developmental genetic etiologies of conductive and sensorineural hearing losses have revealed critical roles for cranial neural crest cells (NCCs) in ear development. Cranial NCCs contribute to all portions of the ear, and defects in neural crest development can lead to neurocristopathies associated with profound hearing loss. The molecular mechanisms governing the development of neural crest derivatives within the ear are partially understood, but many questions remain. In this review, we describe recent advancements in determining neural crest contributions to the ear, how they inform our understanding of neurocristopathies, and highlight new avenues for further research using bioinformatic approaches.
Collapse
Affiliation(s)
- K Elaine Ritter
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donna M Martin
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
The adhesion molecule cadherin 11 is essential for acquisition of normal hearing ability through middle ear development in the mouse. J Transl Med 2018; 98:1364-1374. [PMID: 29967341 DOI: 10.1038/s41374-018-0083-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/07/2018] [Accepted: 04/24/2018] [Indexed: 01/29/2023] Open
Abstract
Cadherin 11 (Cdh11), a member of the cadherin adhesion molecule family, is expressed in various regions of the brain as well as the head and ear. To gain further insights into the roles of Cdh11 in the development of the ear, we performed behavioral tests using Cdh11 knockout (KO) mice. KO mice showed reduced acoustic startle responses and increased thresholds for auditory brainstem responses, indicating moderate hearing loss. The auditory bulla volume and ratio of air-filled to non-air-filled space in the middle ear cavity were reduced in KO mice, potentially causing conductive hearing loss. Furthermore, residual mesenchymal and inflammatory cells were observed in the middle ear cavity of KO mice. Cdh11 was expressed in developing mesenchymal cells just before the start of cavitation, indicating that Cdh11 may be directly involved in middle ear cavitation. Since the auditory bulla is derived from the neural crest, the regulation of neural crest-derived cells by Cdh11 may be responsible for structural development. This mutant mouse may be a promising animal model for elucidating the causes of conductive hearing loss and otitis media.
Collapse
|
36
|
Castori M, Ott CE, Bisceglia L, Leone MP, Mazza T, Castellana S, Tomassi J, Lanciotti S, Mundlos S, Hennekam RC, Kornak U, Brancati F. A novel mutation in CDH11, encoding cadherin-11, cause Branchioskeletogenital (Elsahy-Waters) syndrome. Am J Med Genet A 2018; 176:2028-2033. [PMID: 30194892 DOI: 10.1002/ajmg.a.40379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
Cadherins are cell-adhesion molecules that control morphogenesis, cell migration, and cell shape changes during multiple developmental processes. Until now four distinct cadherins have been implicated in human Mendelian disorders, mainly featuring skin, retinal and hearing manifestations. Branchio-skeleto-genital (or Elsahy-Waters) syndrome (BSGS) is an ultra-rare condition featuring a characteristic face, premature loss of teeth, vertebral and genital anomalies, and intellectual disability. We have studied two sibs with BSGS originally described by Castori et al. in 2010. Exome sequencing led to the identification of a novel homozygous nonsense variant in the first exon of the cadherin-11 gene (CDH11), which results in a prematurely truncated form of the protein. Recessive variants in CDH11 have been recently demonstrated in two other sporadic patients and a pair of sisters affected by BSGS. Although the function of this cadherin (also termed Osteoblast-Cadherin) is not completely understood, its prevalent expression in osteoblastic cell lines and up-regulation during differentiation suggest a specific function in bone formation and development. This study identifies a novel loss-of-function variant in CDH11 as a cause of BSGS and supports the role of cadherin-11 as a key player in axial and craniofacial malformations.
Collapse
Affiliation(s)
- Marco Castori
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Claus-Eric Ott
- Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luigi Bisceglia
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Pia Leone
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Jurgen Tomassi
- Neurological Rehabilitation Unit, San Raffaele Hospital, Cassino, Italy
| | - Silvia Lanciotti
- Medical Genetics Residency Programme, Tor Vergata University, Rome, Italy
| | - Stefan Mundlos
- Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Development and Disease Group, Berlin, Germany
| | - Raoul C Hennekam
- Department of Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Uwe Kornak
- Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Development and Disease Group, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Francesco Brancati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| |
Collapse
|
37
|
Cheng JC, Yi Y, Chang HM, Leung PC. TGF-β1 up-regulates cadherin-11 expression through Snail: A potential mechanism for human trophoblast cell differentiation. Cell Signal 2018; 43:55-61. [DOI: 10.1016/j.cellsig.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/17/2017] [Indexed: 11/16/2022]
|
38
|
Carlson JC, Standley J, Petrin A, Shaffer JR, Butali A, Buxó CJ, Castilla E, Christensen K, Deleyiannis FWD, Hecht JT, Field LL, Garidkhuu A, Moreno Uribe LM, Nagato N, Orioli IM, Padilla C, Poletta F, Suzuki S, Vieira AR, Wehby GL, Weinberg SM, Beaty TH, Feingold E, Murray JC, Marazita ML, Leslie EJ. Identification of 16q21 as a modifier of nonsyndromic orofacial cleft phenotypes. Genet Epidemiol 2017; 41:887-897. [PMID: 29124805 PMCID: PMC5728176 DOI: 10.1002/gepi.22090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
Abstract
Orofacial clefts (OFCs) are common, complex birth defects with extremely heterogeneous phenotypic presentations. Two common subtypes-cleft lip alone (CL) and CL plus cleft palate (CLP)-are typically grouped into a single phenotype for genetic analysis (i.e., CL with or without cleft palate, CL/P). However, mounting evidence suggests there may be unique underlying pathophysiology and/or genetic modifiers influencing expression of these two phenotypes. To this end, we performed a genome-wide scan for genetic modifiers by directly comparing 450 CL cases with 1,692 CLP cases from 18 recruitment sites across 13 countries from North America, Central or South America, Asia, Europe, and Africa. We identified a region on 16q21 that is strongly associated with different cleft type (P = 5.611 × 10-8 ). We also identified significant evidence of gene-gene interactions between this modifier locus and two recognized CL/P risk loci: 8q21 and 9q22 (FOXE1) (P = 0.012 and 0.023, respectively). Single nucleotide polymorphism (SNPs) in the 16q21 modifier locus demonstrated significant association with CL over CLP. The marker alleles on 16q21 that increased risk for CL were found at highest frequencies among individuals with a family history of CL (P = 0.003). Our results demonstrate the existence of modifiers for which type of OFC develops and suggest plausible elements responsible for phenotypic heterogeneity, further elucidating the complex genetic architecture of OFCs.
Collapse
Affiliation(s)
- Jenna C Carlson
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer Standley
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Aline Petrin
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, Iowa, United States of America
| | - John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Carmen J Buxó
- Dental and Craniofacial Genomics Center, School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Eduardo Castilla
- CEMIC: Center for Medical Education and Clinical Research, Buenos Aires, Argentina
| | - Kaare Christensen
- Department of Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Frederic W-D Deleyiannis
- Department of Surgery, Plastic and Reconstructive Surgery, University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School and School of Dentistry UT Health at Houston, Houston, Texas, United States of America
| | - L Leigh Field
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Ariuntuul Garidkhuu
- Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, Sendai, Japan
- School of Dentistry, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Lina M Moreno Uribe
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Natsume Nagato
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi-Gakuin University, Nisshin, Japan
| | - Ieda M Orioli
- ECLAMC (Latin American Collaborative Study of Congenital Malformations) at INAGEMP (National Institute of Population Medical Genetics), Rio de Janeiro, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carmencita Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Fernando Poletta
- CEMIC: Center for Medical Education and Clinical Research, Buenos Aires, Argentina
| | - Satoshi Suzuki
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, School of Dentistry, Aichi-Gakuin University, Nisshin, Japan
| | - Alexandre R Vieira
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - George L Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
| | - Seth M Weinberg
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Eleanor Feingold
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey C Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Mary L Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
39
|
Münst S, Koch P, Kesavan J, Alexander-Mays M, Münst B, Blaess S, Brüstle O. In vitro segregation and isolation of human pluripotent stem cell-derived neural crest cells. Methods 2017; 133:65-80. [PMID: 29037816 DOI: 10.1016/j.ymeth.2017.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/24/2017] [Accepted: 09/27/2017] [Indexed: 01/17/2023] Open
Abstract
The neural crest (NC) is a transient embryonic cell population with remarkable characteristics. After delaminating from the neural tube, NC cells (NCCs) migrate extensively, populate nearly every tissue of the body and differentiate into highly diverse cell types such as peripheral neurons and glia, but also mesenchymal cells including chondrocytes, osteocytes, and adipocytes. While the NC has been extensively studied in several animal models, little is known about human NC development. A number of methods have been established to derive NCCs in vitro from human pluripotent stem cells (hPSC). Typically, these protocols comprise several cell culture steps to enrich for NCCs in the neural derivatives of the differentiating hPSCs. Here we report on a remarkable and hitherto unnoticed in vitro segregation phenomenon that enables direct extraction of virtually pure NCCs during the earliest stages of hPSC differentiation. Upon aggregation to embryoid bodies (EB) and replating, differentiating hPSCs give rise to a population of NCCs, which spontaneously segregate from the EB outgrowth to form conspicuous, macroscopically visible atoll-shaped clusters in the periphery of the EB outgrowth. Isolation of these NC clusters yields p75NTR(+)/SOXE(+) NCCs, which differentiate to peripheral neurons and glia as well as mesenchymal derivatives. Our data indicate that differentiating hPSC cultures recapitulate, in a simplified manner, the physical segregation of central nervous system (CNS) tissue and NCCs. This phenomenon may be exploited for NCC purification and for studying segregation and differentiation processes observed during early human NC development in vitro.
Collapse
Affiliation(s)
- Sabine Münst
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Philipp Koch
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Jaideep Kesavan
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Michael Alexander-Mays
- Institute of Human Genetics, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Bernhard Münst
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany.
| |
Collapse
|
40
|
Oswald F, Klöble P, Ruland A, Rosenkranz D, Hinz B, Butter F, Ramljak S, Zechner U, Herlyn H. The FOXP2-Driven Network in Developmental Disorders and Neurodegeneration. Front Cell Neurosci 2017; 11:212. [PMID: 28798667 PMCID: PMC5526973 DOI: 10.3389/fncel.2017.00212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/04/2017] [Indexed: 12/24/2022] Open
Abstract
The transcription repressor FOXP2 is a crucial player in nervous system evolution and development of humans and songbirds. In order to provide an additional insight into its functional role we compared target gene expression levels between human neuroblastoma cells (SH-SY5Y) stably overexpressing FOXP2 cDNA of either humans or the common chimpanzee, Rhesus monkey, and marmoset, respectively. RNA-seq led to identification of 27 genes with differential regulation under the control of human FOXP2, which were previously reported to have FOXP2-driven and/or songbird song-related expression regulation. RT-qPCR and Western blotting indicated differential regulation of additional 13 new target genes in response to overexpression of human FOXP2. These genes may be directly regulated by FOXP2 considering numerous matches of established FOXP2-binding motifs as well as publicly available FOXP2-ChIP-seq reads within their putative promoters. Ontology analysis of the new and reproduced targets, along with their interactors in a network, revealed an enrichment of terms relating to cellular signaling and communication, metabolism and catabolism, cellular migration and differentiation, and expression regulation. Notably, terms including the words "neuron" or "axonogenesis" were also enriched. Complementary literature screening uncovered many connections to human developmental (autism spectrum disease, schizophrenia, Down syndrome, agenesis of corpus callosum, trismus-pseudocamptodactyly, ankyloglossia, facial dysmorphology) and neurodegenerative diseases and disorders (Alzheimer's, Parkinson's, and Huntington's diseases, Lewy body dementia, amyotrophic lateral sclerosis). Links to deafness and dyslexia were detected, too. Such relations existed for single proteins (e.g., DCDC2, NURR1, PHOX2B, MYH8, and MYH13) and groups of proteins which conjointly function in mRNA processing, ribosomal recruitment, cell-cell adhesion (e.g., CDH4), cytoskeleton organization, neuro-inflammation, and processing of amyloid precursor protein. Conspicuously, many links pointed to an involvement of the FOXP2-driven network in JAK/STAT signaling and the regulation of the ezrin-radixin-moesin complex. Altogether, the applied phylogenetic perspective substantiated FOXP2's importance for nervous system development, maintenance, and functioning. However, the study also disclosed new regulatory pathways that might prove to be useful for understanding the molecular background of the aforementioned developmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - Patricia Klöble
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - André Ruland
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center UlmUlm, Germany
| | - David Rosenkranz
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
| | - Bastian Hinz
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
- Institute of Human Genetics, University Medical Center MainzMainz, Germany
| | - Falk Butter
- Institute of Molecular BiologyMainz, Germany
| | | | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center MainzMainz, Germany
- Dr. Senckenbergisches Zentrum für HumangenetikFrankfurt, Germany
| | - Holger Herlyn
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-University MainzMainz, Germany
| |
Collapse
|
41
|
Sfikakis PP, Vlachogiannis NI, Christopoulos PF. Cadherin-11 as a therapeutic target in chronic, inflammatory rheumatic diseases. Clin Immunol 2017; 176:107-113. [DOI: 10.1016/j.clim.2017.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 12/17/2022]
|
42
|
Schaarschuch A, Redies C, Hertel N. Unspecific binding of cRNA probe to plaques in two mouse models for Alzheimer's disease. J Negat Results Biomed 2016; 15:22. [PMID: 27978824 PMCID: PMC5159973 DOI: 10.1186/s12952-016-0065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/14/2016] [Indexed: 12/04/2022] Open
Abstract
Background Alzheimer’s disease (AD) is characterized by the pathological deposition of amyloid-β (Aβ) protein-containing plaques. Microglia and astrocytes are commonly attracted to the plaques by an unknown mechanism that may involve cell adhesion. One cell adhesion family of proteins, the cadherins, are widely expressed in the central nervous system. Therefore, our study was designed to map the expression of cadherins in AD mouse brains. A particular focus was on plaques because diverse mRNA-species were found in plaques and their surrounding area in brains of AD patients. Methods In this study, we used in situ hybridization to visualize cadherin expression in brains of two mouse models for AD (APP/PS1 and APP23). Results A variable number of plaques was detected in transgenic brain sections, depending on the probe used. Our first impression was that the cadherin probes visualized specific mRNA expression in plaques and that endogenous staining was unaffected. However, control experiments revealed unspecific binding with sense probes. Further experiments with variations in probe length, probe sequence, molecular tag and experimental procedure lead us to conclude that cRNA probes bind generally and in an unspecific manner to plaques. Conclusions We demonstrate unspecific binding of cRNA probes to plaques in two mouse models for AD. The widespread and general staining of the plaques prevented us from studying endogenous expression of cadherins in transgenic brain by in situ hybridization. Electronic supplementary material The online version of this article (doi:10.1186/s12952-016-0065-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Schaarschuch
- Institute of Anatomy I, Friedrich Schiller University School of Medicine, Jena University Hospital, 07743, Jena, Germany
| | - Christoph Redies
- Institute of Anatomy I, Friedrich Schiller University School of Medicine, Jena University Hospital, 07743, Jena, Germany
| | - Nicole Hertel
- Institute of Anatomy I, Friedrich Schiller University School of Medicine, Jena University Hospital, 07743, Jena, Germany.
| | | |
Collapse
|
43
|
Spemann organizer gene Goosecoid promotes delamination of neuroblasts from the otic vesicle. Proc Natl Acad Sci U S A 2016; 113:E6840-E6848. [PMID: 27791112 DOI: 10.1073/pnas.1609146113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons of the Statoacoustic Ganglion (SAG), which innervate the inner ear, originate as neuroblasts in the floor of the otic vesicle and subsequently delaminate and migrate toward the hindbrain before completing differentiation. In all vertebrates, locally expressed Fgf initiates SAG development by inducing expression of Neurogenin1 (Ngn1) in the floor of the otic vesicle. However, not all Ngn1-positive cells undergo delamination, nor has the mechanism controlling SAG delamination been elucidated. Here we report that Goosecoid (Gsc), best known for regulating cellular dynamics in the Spemann organizer, regulates delamination of neuroblasts in the otic vesicle. In zebrafish, Fgf coregulates expression of Gsc and Ngn1 in partially overlapping domains, with delamination occurring primarily in the zone of overlap. Loss of Gsc severely inhibits delamination, whereas overexpression of Gsc greatly increases delamination. Comisexpression of Ngn1 and Gsc induces ectopic delamination of some cells from the medial wall of the otic vesicle but with a low incidence, suggesting the action of a local inhibitor. The medial marker Pax2a is required to restrict the domain of gsc expression, and misexpression of Pax2a is sufficient to block delamination and fully suppress the effects of Gsc The opposing activities of Gsc and Pax2a correlate with repression or up-regulation, respectively, of E-cadherin (cdh1). These data resolve a genetic mechanism controlling delamination of otic neuroblasts. The data also elucidate a developmental role for Gsc consistent with a general function in promoting epithelial-to-mesenchymal transition (EMT).
Collapse
|
44
|
Row S, Liu Y, Alimperti S, Agarwal SK, Andreadis ST. Cadherin-11 is a novel regulator of extracellular matrix synthesis and tissue mechanics. J Cell Sci 2016; 129:2950-61. [PMID: 27311482 DOI: 10.1242/jcs.183772] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/10/2016] [Indexed: 01/20/2023] Open
Abstract
We discovered that Cadherin-11 (CDH11) regulates collagen and elastin synthesis, both affecting the mechanical properties and contractile function of animal tissues. Using a Cdh11-null mouse model, we observed a significant reduction in the mechanical properties [Youngs' modulus and ultimate tensile strength (UTS)] of Cdh11(-/-) as compared to wild-type (WT) mouse tissues, such as the aorta, bladder and skin. The deterioration of mechanical properties (Youngs' modulus and UTS) was accompanied by reduced collagen and elastin content in Cdh11(-/-) mouse tissues as well as in cells in culture. Similarly, knocking down CDH11 abolished collagen and elastin synthesis in human cells, and consequently reduced their ability to generate force. Conversely, engagement of CDH11 through homophilic interactions, led to swift activation of the TGF-β and ROCK pathways as evidenced by phosphorylation of downstream effectors. Subsequently, activation of the key transcription factors, MRTF-A (also known as MKL1) and MYOCD led to significant upregulation of collagen and elastin genes. Taken together, our results demonstrate a novel role of adherens junctions in regulating extracellular matrix (ECM) synthesis with implications for many important biological processes, including maintenance of tissue integrity, wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Sindhu Row
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Yayu Liu
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Stella Alimperti
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Sandeep K Agarwal
- Section of Allergy, Immunology, and Rheumatology Biology, Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260, USA Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY 14260, USA Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
45
|
Peng B, Zhu H, Ma L, Wang YL, Klausen C, Leung PCK. AP-1 Transcription Factors c-FOS and c-JUN Mediate GnRH-Induced Cadherin-11 Expression and Trophoblast Cell Invasion. Endocrinology 2015; 156:2269-77. [PMID: 25794160 DOI: 10.1210/en.2014-1871] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
GnRH is expressed in first-trimester human placenta and increases cell invasion in extravillous cytotrophoblasts (EVTs). Invasive phenotypes have been reported to be regulated by transcription factor activator protein 1 (AP-1) and mesenchymal cadherin-11. The aim of our study was to investigate the roles of AP-1 components (c-FOS/c-JUN) and cadherin-11 in GnRH-induced cell invasion in human EVT cells. Phosphorylated c-FOS and phosphorylated c-JUN were detected in the cell column regions of human first-trimester placental villi by immunohistochemistry. GnRH treatment increased c-FOS, c-JUN, and cadherin-11 mRNA and protein levels in immortalized EVT (HTR-8/SVneo) cells. Moreover, GnRH treatment induced c-FOS and c-JUN protein phosphorylation and nuclear accumulation. Pretreatment with antide, a GnRH antagonist, attenuated GnRH-induced cadherin-11 expression. Importantly, basal and GnRH-induced cadherin-11 expression and cell invasion were reduced by small interfering RNA-mediated knockdown of c-FOS, c-JUN, and cadherin-11 in HTR-8/SVneo cells. Our results suggest that GnRH induces the expression and phosphorylation of the AP-1 transcription factors c-FOS and c-JUN in trophoblast cells, which contributes to GnRH-induced elevation of cadherin-11 expression and cell invasion.
Collapse
Affiliation(s)
- Bo Peng
- Department of Obstetrics and Gynaecology (B.P., H.Z., C.K., P.C.K.L.), Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and State Key Laboratory of Reproductive Biology (L.M., Y.W.), Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Shyamala K, Yanduri S, Girish HC, Murgod S. Neural crest: The fourth germ layer. J Oral Maxillofac Pathol 2015; 19:221-9. [PMID: 26604500 PMCID: PMC4611932 DOI: 10.4103/0973-029x.164536] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/01/2015] [Indexed: 12/14/2022] Open
Abstract
The neural crest cells (NCCs), a transient group of cells that emerges from the dorsal aspect of the neural tube during early vertebrate development has been a fascinating group of cells because of its multipotency, long range migration through embryo and its capacity to generate a prodigious number of differentiated cell types. For these reasons, although derived from the ectoderm, the neural crest (NC) has been called the fourth germ layer. The non neural ectoderm, the neural plate and the underlying mesoderm are needed for the induction and formation of NC cells. Once formed, NC cells start migrating as a wave of cells, moving away from the neuroepithelium and quickly splitting into distinct streams. These migrating NCCs home in to different regions and give rise to plethora of tissues. Umpteen number of signaling molecules are essential for formation, epithelial mesenchymal transition, delamination, migration and localization of NCC. Authors believe that a clear understanding of steps and signals involved in NC formation, migration, etc., may help in understanding the pathogenesis behind cancer metastasis and many other diseases. Hence, we have taken this review to discuss the various aspects of the NC cells.
Collapse
Affiliation(s)
- K Shyamala
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital No. 14, Ramohally Cross, Kumbalgodu, Mysore Road, Bengaluru - 560 060, Karnataka, India
| | - Sarita Yanduri
- Department of Oral and Maxillofacial Pathology, DAPMRV Dental College and Hospital, J P Nagar, Bengaluru, Karnataka, India
| | - HC Girish
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital No. 14, Ramohally Cross, Kumbalgodu, Mysore Road, Bengaluru - 560 060, Karnataka, India
| | - Sanjay Murgod
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital No. 14, Ramohally Cross, Kumbalgodu, Mysore Road, Bengaluru - 560 060, Karnataka, India
| |
Collapse
|
47
|
Balint B, Yin H, Chakrabarti S, Chu MW, Sims SM, Pickering JG. Collectivization of Vascular Smooth Muscle Cells via TGF-β–Cadherin-11–Dependent Adhesive Switching. Arterioscler Thromb Vasc Biol 2015; 35:1254-64. [DOI: 10.1161/atvbaha.115.305310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 02/27/2015] [Indexed: 01/26/2023]
Abstract
Objective—
Smooth muscle cells (SMCs) in healthy arteries are arranged as a collective. However, in diseased arteries, SMCs commonly exist as individual cells, unconnected to each other. The purpose of this study was to elucidate the events that enable individualized SMCs to enter into a stable and interacting cell collective.
Approach and Results—
Human SMCs stimulated to undergo programmed collectivization were tracked by time-lapse microscopy. We uncovered a switch in the behavior of contacting SMCs from semiautonomous motility to cell–cell adherence. Central to the cell-adherent phenotype was the formation of uniquely elongated adherens junctions, up to 60 μm in length, which appeared to strap adjacent SMCs to each other. Remarkably, these junctions contained both N-cadherin and cadherin-11. Ground-state depletion super-resolution microscopy revealed that these hybrid assemblies were comprised of 2 parallel nanotracks of each cadherin, separated by 50 nm. Blocking either N-cadherin or cadherin-11 inhibited collectivization. Cell–cell adhesion and adherens junction elongation were associated with reduced transforming growth factor-β signaling, and exogenous transforming growth factor-β1 suppressed junction elongation via the noncanonical p38 pathway. Imaging of fura-2–loaded SMCs revealed that SMC assemblies displayed coordinated calcium oscillations and cell–cell transmission of calcium waves which, together with increased connexin 43–containing junctions, depended on cadherin-11 and N-cadherin function.
Conclusions—
SMCs can self-organize, structurally and functionally, via transforming growth factor-β–p38–dependent adhesive switching and a novel adherens junction architecture comprised of hybrid nanotracks of cadherin-11 and N-cadherin. The findings define a mechanism for the assembly of SMCs into networks, a process that may be relevant to the stability and function of blood vessels.
Collapse
Affiliation(s)
- Brittany Balint
- From the Robarts Research Institute (B.B., H.Y., J.G.P.), Departments of Medicine (Cardiology) (J.G.P.), Biochemistry (J.G.P.), Medical Biophysics (B.B., J.G.P.), Pathology and Laboratory Medicine (S.C.), Surgery (M.W.A.C.), and Physiology and Pharmacology (S.M.S.), University of Western Ontario, London Health Sciences Centre (S.C., J.G.P.), London, Ontario, Canada
| | - Hao Yin
- From the Robarts Research Institute (B.B., H.Y., J.G.P.), Departments of Medicine (Cardiology) (J.G.P.), Biochemistry (J.G.P.), Medical Biophysics (B.B., J.G.P.), Pathology and Laboratory Medicine (S.C.), Surgery (M.W.A.C.), and Physiology and Pharmacology (S.M.S.), University of Western Ontario, London Health Sciences Centre (S.C., J.G.P.), London, Ontario, Canada
| | - Subrata Chakrabarti
- From the Robarts Research Institute (B.B., H.Y., J.G.P.), Departments of Medicine (Cardiology) (J.G.P.), Biochemistry (J.G.P.), Medical Biophysics (B.B., J.G.P.), Pathology and Laboratory Medicine (S.C.), Surgery (M.W.A.C.), and Physiology and Pharmacology (S.M.S.), University of Western Ontario, London Health Sciences Centre (S.C., J.G.P.), London, Ontario, Canada
| | - Michael W.A. Chu
- From the Robarts Research Institute (B.B., H.Y., J.G.P.), Departments of Medicine (Cardiology) (J.G.P.), Biochemistry (J.G.P.), Medical Biophysics (B.B., J.G.P.), Pathology and Laboratory Medicine (S.C.), Surgery (M.W.A.C.), and Physiology and Pharmacology (S.M.S.), University of Western Ontario, London Health Sciences Centre (S.C., J.G.P.), London, Ontario, Canada
| | - Stephen M. Sims
- From the Robarts Research Institute (B.B., H.Y., J.G.P.), Departments of Medicine (Cardiology) (J.G.P.), Biochemistry (J.G.P.), Medical Biophysics (B.B., J.G.P.), Pathology and Laboratory Medicine (S.C.), Surgery (M.W.A.C.), and Physiology and Pharmacology (S.M.S.), University of Western Ontario, London Health Sciences Centre (S.C., J.G.P.), London, Ontario, Canada
| | - J. Geoffrey Pickering
- From the Robarts Research Institute (B.B., H.Y., J.G.P.), Departments of Medicine (Cardiology) (J.G.P.), Biochemistry (J.G.P.), Medical Biophysics (B.B., J.G.P.), Pathology and Laboratory Medicine (S.C.), Surgery (M.W.A.C.), and Physiology and Pharmacology (S.M.S.), University of Western Ontario, London Health Sciences Centre (S.C., J.G.P.), London, Ontario, Canada
| |
Collapse
|
48
|
Alimperti S, Andreadis ST. CDH2 and CDH11 act as regulators of stem cell fate decisions. Stem Cell Res 2015; 14:270-82. [PMID: 25771201 DOI: 10.1016/j.scr.2015.02.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/24/2015] [Accepted: 02/10/2015] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that the mechanical and biochemical signals originating from cell-cell adhesion are critical for stem cell lineage specification. In this review, we focus on the role of cadherin mediated signaling in development and stem cell differentiation, with emphasis on two well-known cadherins, cadherin-2 (CDH2) (N-cadherin) and cadherin-11 (CDH11) (OB-cadherin). We summarize the existing knowledge regarding the role of CDH2 and CDH11 during development and differentiation in vivo and in vitro. We also discuss engineering strategies to control stem cell fate decisions by fine-tuning the extent of cell-cell adhesion through surface chemistry and microtopology. These studies may be greatly facilitated by novel strategies that enable monitoring of stem cell specification in real time. We expect that better understanding of how intercellular adhesion signaling affects lineage specification may impact biomaterial and scaffold design to control stem cell fate decisions in three-dimensional context with potential implications for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Stella Alimperti
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
49
|
Abstract
The mammalian kidney forms via cell-cell interactions between an epithelial outgrowth of the nephric duct and the surrounding nephrogenic mesenchyme. Initial morphogenetic events include ureteric bud branching to form the collecting duct (CD) tree and mesenchymal-to-epithelial transitions to form the nephrons, requiring reciprocal induction between adjacent mesenchyme and epithelial cells. Within the tips of the branching ureteric epithelium, cells respond to mesenchyme-derived trophic factors by proliferation, migration, and mitosis-associated cell dispersal. Self-inhibition signals from one tip to another play a role in branch patterning. The position, survival, and fate of the nephrogenic mesenchyme are regulated by ECM and secreted signals from adjacent tip and stroma. Signals from the ureteric tip promote mesenchyme self-renewal and trigger nephron formation. Subsequent fusion to the CDs, nephron segmentation and maturation, and formation of a patent glomerular basement membrane also require specialized cell-cell interactions. Differential cadherin, laminin, nectin, and integrin expression, as well as intracellular kinesin and actin-mediated regulation of cell shape and adhesion, underlies these cell-cell interactions. Indeed, the capacity for the kidney to form via self-organization has now been established both via the recapitulation of expected morphogenetic interactions after complete dissociation and reassociation of cellular components during development as well as the in vitro formation of 3D kidney organoids from human pluripotent stem cells. As we understand more about how the many cell-cell interactions required for kidney formation operate, this enables the prospect of bioengineering replacement structures based on these self-organizing properties.
Collapse
|
50
|
Fagotto F. Regulation of Cell Adhesion and Cell Sorting at Embryonic Boundaries. Curr Top Dev Biol 2015; 112:19-64. [DOI: 10.1016/bs.ctdb.2014.11.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|