1
|
Rollins J, Worthington T, Dransfield A, Whitney J, Stanford J, Hooke E, Hobson J, Wengler J, Hope S, Mizrachi D. Expression of Cell-Adhesion Molecules in E. coli: A High Throughput Screening to Identify Paracellular Modulators. Int J Mol Sci 2023; 24:9784. [PMID: 37372932 DOI: 10.3390/ijms24129784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Cell-adhesion molecules (CAMs) are responsible for cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Claudins (CLDNs), occludin (OCLN), and junctional adhesion molecules (JAMs) are CAMs' components of the tight junction (TJ), the single protein structure tasked with safeguarding the paracellular space. The TJ is responsible for controlling paracellular permeability according to size and charge. Currently, there are no therapeutic solutions to modulate the TJ. Here, we describe the expression of CLDN proteins in the outer membrane of E. coli and report its consequences. When the expression is induced, the unicellular behavior of E. coli is replaced with multicellular aggregations that can be quantified using Flow Cytometry (FC). Our method, called iCLASP (inspection of cell-adhesion molecules aggregation through FC protocols), allows high-throughput screening (HTS) of small-molecules for interactions with CAMs. Here, we focused on using iCLASP to identify paracellular modulators for CLDN2. Furthermore, we validated those compounds in the mammalian cell line A549 as a proof-of-concept for the iCLASP method.
Collapse
Affiliation(s)
- Jay Rollins
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Tyler Worthington
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Allison Dransfield
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jordan Whitney
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jordan Stanford
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Emily Hooke
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Joseph Hobson
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jacob Wengler
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Dario Mizrachi
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
2
|
Gennarini G, Bizzoca A, Picocci S, Puzzo D, Corsi P, Furley AJW. The role of Gpi-anchored axonal glycoproteins in neural development and neurological disorders. Mol Cell Neurosci 2016; 81:49-63. [PMID: 27871938 DOI: 10.1016/j.mcn.2016.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023] Open
Abstract
This review article focuses on the Contactin (CNTN) subset of the Immunoglobulin supergene family (IgC2/FNIII molecules), whose components share structural properties (the association of Immunoglobulin type C2 with Fibronectin type III domains), as well as a general role in cell contact formation and axonal growth control. IgC2/FNIII molecules include 6 highly related components (CNTN 1-6), associated with the cell membrane via a Glycosyl Phosphatidyl Inositol (GPI)-containing lipid tail. Contactin 1 and Contactin 2 share ~50 (49.38)% identity at the aminoacid level. They are components of the cell surface, from which they may be released in soluble forms. They bind heterophilically to multiple partners in cis and in trans, including members of the related L1CAM family and of the Neurexin family Contactin-associated proteins (CNTNAPs or Casprs). Such interactions are important for organising the neuronal membrane, as well as for modulating the growth and pathfinding of axon tracts. In addition, they also mediate the functional maturation of axons by promoting their interactions with myelinating cells at the nodal, paranodal and juxtaparanodal regions. Such interactions also mediate differential ionic channels (both Na+ and K+) distribution, which is of critical relevance in the generation of the peak-shaped action potential. Indeed, thanks to their interactions with Ankyrin G, Na+ channels map within the nodal regions, where they drive axonal depolarization. However, no ionic channels are found in the flanking Contactin1-containing paranodal regions, where CNTN1 interactions with Caspr1 and with the Ig superfamily component Neurofascin 155 in cis and in trans, respectively, build a molecular barrier between the node and the juxtaparanode. In this region K+ channels are clustered, depending upon molecular interactions with Contactin 2 and with Caspr2. In addition to these functions, the Contactins appear to have also a role in degenerative and inflammatory disorders: indeed Contactin 2 is involved in neurodegenerative disorders with a special reference to the Alzheimer disease, given its ability to work as a ligand of the Alzheimer Precursor Protein (APP), which results in increased Alzheimer Intracellular Domain (AICD) release in a γ-secretase-dependent manner. On the other hand Contactin 1 drives Notch signalling activation via the Hes pathway, which could be consistent with its ability to modulate neuroinflammation events, and with the possibility that Contactin 1-dependent interactions may participate to the pathogenesis of the Multiple Sclerosis and of other inflammatory disorders.
Collapse
Affiliation(s)
- Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy.
| | - Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Sabrina Picocci
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Andrew J W Furley
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2NT, UK
| |
Collapse
|
3
|
Zhang S, Cui H, Wang L, Kang L, Huang G, Du J, Li S, Tanaka H, Su Y. Potential Involvement of Draxin in the Axonal Projection of Cranial Nerves, Especially Cranial Nerve X, in the Chick Hindbrain. J Histochem Cytochem 2016; 64:412-24. [PMID: 27199282 DOI: 10.1369/0022155416646538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/05/2016] [Indexed: 01/08/2023] Open
Abstract
The appropriate projection of axons within the nervous system is a crucial component of the establishment of neural circuitry. Draxin is a repulsive axon guidance protein. Draxin has important functions in the guidance of three commissures in the central nervous system and in the migration of neural crest cells and dI3 interneurons in the chick spinal cord. Here, we report that the distribution of the draxin protein and the location of 23C10-positive areas have a strong temporal and spatial correlation. The overexpression of draxin, especially transmembrane draxin, caused 23C10-positive axon bundles to misproject in the dorsal hindbrain. In addition, the overexpression of transmembrane draxin caused abnormal formation of the ganglion crest of the IX and X cranial nerves, misprojection of some anti-human natural killer-1 (HNK-1)-stained structures in the dorsal roof of the hindbrain, and a simultaneous reduction in the efferent nerves of some motoneuron axons inside the hindbrain. Our data reveal that draxin might be involved in the fascicular projection of cranial nerves in the hindbrain.
Collapse
Affiliation(s)
- Sanbing Zhang
- Department of Hand and Foot Surgery, The Third Hospital of Shijiazhuang City, Shijiazhuang, People's Republic of China (SZ)
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China (HC, LW, LK, JD, SL, YS)
| | - Lei Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China (HC, LW, LK, JD, SL, YS)
| | - Lin Kang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China (HC, LW, LK, JD, SL, YS)
| | - Guannan Huang
- Division of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan (GH, HT)
| | - Juan Du
- Department of Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China (HC, LW, LK, JD, SL, YS)
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China (HC, LW, LK, JD, SL, YS)
| | - Hideaki Tanaka
- Division of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan (GH, HT)
| | - Yuhong Su
- Department of Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China (HC, LW, LK, JD, SL, YS)
| |
Collapse
|
4
|
Sakurai T. The role of NrCAM in neural development and disorders--beyond a simple glue in the brain. Mol Cell Neurosci 2011; 49:351-63. [PMID: 22182708 DOI: 10.1016/j.mcn.2011.12.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/03/2011] [Accepted: 12/02/2011] [Indexed: 12/15/2022] Open
Abstract
NrCAM is a neuronal cell adhesion molecule of the L1 family of immunoglobulin super family. It plays a wide variety of roles in neural development, including cell proliferation and differentiation, axon growth and guidance, synapse formation, and the formation of the myelinated nerve structure. NrCAM functions in cell adhesion and modulates signaling pathways in neural development through multiple molecular interactions with guidance and other factors. Alterations in NrCAM structure/expression are associated with psychiatric disorders such as autism and drug addiction and with tumor progression. The mechanisms of NrCAM participation in development and how these might be perturbed in disorders are reviewed.
Collapse
Affiliation(s)
- Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
5
|
Komori T, Gyobu H, Ueno H, Kitamura T, Senba E, Morikawa Y. Expression of kin of irregular chiasm-like 3/mKirre in proprioceptive neurons of the dorsal root ganglia and its interaction with nephrin in muscle spindles. J Comp Neurol 2008; 511:92-108. [DOI: 10.1002/cne.21838] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Law CO, Kirby RJ, Aghamohammadzadeh S, Furley AJW. The neural adhesion molecule TAG-1 modulates responses of sensory axons to diffusible guidance signals. Development 2008; 135:2361-71. [DOI: 10.1242/dev.009019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
When the axons of primary sensory neurons project into the embryonic mammalian spinal cord, they bifurcate and extend rostrocaudally before sending collaterals to specific laminae according to neuronal subclass. The specificity of this innervation has been suggested to be the result both of differential sensitivity to chemorepellants expressed in the ventral spinal cord and of the function of Ig-like neural cell adhesion molecules in the dorsal horn. The relationship between these mechanisms has not been addressed. Focussing on the pathfinding of TrkA+ NGF-dependent axons, we demonstrate for the first time that their axons project prematurely into the dorsal horn of both L1 and TAG-1 knockout mice. We show that axons lacking TAG-1, similar to those lacking L1, are insensitive to wild-type ventral spinal cord(VSC)-derived chemorepellants, indicating that adhesion molecule function is required in the axons, and that this loss of response is explained in part by loss of response to Sema3A. We present evidence that TAG-1 affects sensitivity to Sema3A by binding to L1 and modulating the endocytosis of the L1/neuropilin 1 Sema3A receptor complex. However, TAG-1 appears to affect sensitivity to other VSC-derived chemorepellants via an L1-independent mechanism. We suggest that this dependence of chemorepellant sensitivity on the functions of combinations of adhesion molecules is important to ensure that axons project via specific pathways before extending to their final targets.
Collapse
Affiliation(s)
- Chris O. Law
- Department of Biomedical Science, University of Sheffield, Western Bank,Sheffield S10 2TN, UK
| | - Rebecca J. Kirby
- Department of Biomedical Science, University of Sheffield, Western Bank,Sheffield S10 2TN, UK
| | | | - Andrew J. W. Furley
- Department of Biomedical Science, University of Sheffield, Western Bank,Sheffield S10 2TN, UK
| |
Collapse
|
7
|
Moon JI, Birren SJ. Target-dependent inhibition of sympathetic neuron growth via modulation of a BMP signaling pathway. Dev Biol 2008; 315:404-17. [PMID: 18272145 PMCID: PMC2287379 DOI: 10.1016/j.ydbio.2007.12.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 12/19/2007] [Accepted: 12/29/2007] [Indexed: 12/17/2022]
Abstract
Target-derived factors modulate many aspects of peripheral neuron development including neuronal growth, survival, and maturation. Less is known about how initial target contact regulates changes in gene expression associated with these developmental processes. One early consequence of contact between growing sympathetic neurons and their cardiac myocyte targets is the inhibition of neuronal outgrowth. Analysis of neuronal gene expression following this contact revealed coordinate regulation of a bone morphogenetic protein (BMP)-dependent growth pathway in which basic helix-loop-helix transcription factors and downstream neurofilament expression contribute to the growth dynamics of developing sympathetic neurons. BMP2 had dose-dependent growth-promoting effects on sympathetic neurons cultured in the absence, but not the presence, of myocyte targets, suggesting that target contact alters neuronal responses to BMP signaling. Target contact also induced the expression of matrix Gla protein (MGP), a regulator of BMP function in the vascular system. Increased MGP expression inhibited BMP-dependent neuronal growth and MGP expression increased in sympathetic neurons during the period of target contact in vivo. These experiments establish MGP as a novel regulator of BMP function in the nervous system, and define developmental transitions in BMP responses during sympathetic development.
Collapse
Affiliation(s)
- Jung-Il Moon
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02254-9110, USA
| | | |
Collapse
|
8
|
Chaudhry N, de Silva U, Smith GM. Cell adhesion molecule L1 modulates nerve-growth-factor-induced CGRP-IR fiber sprouting. Exp Neurol 2006; 202:238-49. [PMID: 16860320 DOI: 10.1016/j.expneurol.2006.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/16/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
Overexpression of nerve growth factor (NGF) using adenoviruses (Adts) after spinal cord injury induces extensive regeneration and sprouting of calcitonin-gene-related peptide immunoreactive (CGRP-IR) fibers, whereas overexpression of cell adhesion molecules (CAMs) has no effect on the normal distribution of these fibers. Interestingly, co-expression of cell adhesion molecule L1 and NGF significantly decreases (p<0.0001) CGRP-IR fiber sprouting within the spinal cord, when compared to NGF alone. Co-expression of cell adhesion molecules NCAM or N-cadherin had no effect on NGF-induced CGRP-IR fiber sprouting. These data demonstrate that reduced sprouting is specific to L1 co-expression and not other cell adhesion molecules. In vitro studies carried out to address potential mechanisms show that neurite outgrowth over astrocytes overexpressing L1 in the presence of NGF is comparable to controls, indicating that other factors present in vivo might be involved in the L1-mediated reduction in sprouting. One potential factor is semaphorin 3A (sema3A), which mediates growth cone collapse of CGRP-positive axons. Recent studies have shown that L1 is important in sema3A receptor signaling for cortical neurons. In our study, co-expression of sema3A indeed reduces neurite outgrowth from DRG neurons by about 40% on L1-expressing astrocytes. Based on these results, we hypothesize that overexpression of L1 potentiates sema3A signaling resulting in reduced sprouting.
Collapse
Affiliation(s)
- Nagarathnamma Chaudhry
- Department of Physiology, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0298, USA
| | | | | |
Collapse
|
9
|
Pruss T, Kranz EU, Niere M, Volkmer H. A regulated switch of chick neurofascin isoforms modulates ligand recognition and neurite extension. Mol Cell Neurosci 2006; 31:354-65. [PMID: 16314110 DOI: 10.1016/j.mcn.2005.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/30/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022] Open
Abstract
Neural cell adhesion molecule neurofascin regulates the induction of neurite outgrowth, the establishment of synaptic connectivity and myelination. Neurofascin isoforms are generated by spatially and temporally controlled alternative splicing. Isoform NF166 is predominantly expressed in dorsal root ganglia from embryonal day 5 (E5) to E8, and a further neurofascin isoform NF185 appears at E9. Expression of neurofascin and its binding partner axonin-1 on sensory fibers implies functional interactions for neurite outgrowth. E7 sensory neurons require NF166-axonin-1 interactions for neurite extension, accordingly. The contribution of NF166-axonin-1 interaction for neurite outgrowth decreases in parallel with the appearance of NF185 on sensory neurons at E9. This finding may be explained by (1) alleviated intrinsic capability to use axonin-1 as a cellular receptor and (2) reduced binding of axonin-1 to NF185. Finally, NF166, but not NF185, serves as a cellular receptor for neurite induction via homophilic interactions with a neurofascin substrate.
Collapse
Affiliation(s)
- Thomas Pruss
- NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, NMI, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | | | | | | |
Collapse
|
10
|
Masuda T, Shiga T. Chemorepulsion and cell adhesion molecules in patterning initial trajectories of sensory axons. Neurosci Res 2005; 51:337-47. [PMID: 15740797 DOI: 10.1016/j.neures.2005.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 01/06/2005] [Accepted: 01/07/2005] [Indexed: 02/02/2023]
Abstract
Research in the past decade has advanced our knowledge of the key role that diffusible cues play in axonal guidance during development. In higher vertebrates, dorsal root ganglion (DRG) neurons extend axons centrally to the spinal cord through the dorsal root entry zone and peripherally to muscle and skin targets. In this review, we focus on the role of proximate "non-target" tissues in the initial stages of DRG axonal growth. In the early stages of development, "non-target" tissues including the dermamyotome, the notochord, and the ventral spinal cord exert chemorepulsion for DRG axons. We describe how semaphorin 3A, chondroitin sulfate proteogrycans, and cell adhesion molecules participate in chemorepulsion and the way they provide spatio-temporal specificity to chemorepulsion. Axon chemorepulsion may act not only to shape DRG axonal trajectories but it also affects a variety of other axonal projections in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- Department of Anatomy, Fukushima Medical University, School of Medicine, Fukushima 960-1295, Japan
| | | |
Collapse
|
11
|
Masuda T, Tsuji H, Taniguchi M, Yagi T, Tessier-Lavigne M, Fujisawa H, Okado N, Shiga T. Differential non-target-derived repulsive signals play a critical role in shaping initial axonal growth of dorsal root ganglion neurons. Dev Biol 2003; 254:289-302. [PMID: 12591248 DOI: 10.1016/s0012-1606(02)00087-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Initial trajectories of dorsal root ganglion (DRG) axons are shaped by chemorepulsive signals from surrounding tissues. Although we have previously shown that axonin-1/SC2 expression on DRG axons is required to mediate a notochord-derived chemorepulsive signal, Dev. Biol. 224, 112-121), other molecules involved in the non-target-derived repulsive signals are largely unknown. Using coculture assays composed of tissues derived from the chick embryo or mutant mice treated with function-blocking antibodies and phosphatidylinositol-specific phospholipase C, we report here that the chemorepellent semaphorin 3A (Sema3A) and its receptor neuropilin-1 are required for mediating the dermamyotome- and notochord-derived, but not the ventral spinal cord-derived, chemorepulsive signal for DRG axons. The dermamyotome-derived chemorepulsion is exclusively dependent on Sema3A/neuropilin-1, whereas other molecules are also involved in the notochord-derived chemorepulsion. Chemorepulsion from the ventral spinal cord does not depend on Sema3A/neuropilin-1 but requires axonin-1/SC2 to repel DRG axons. Thus, differential chemorepulsive signals help shape the initial trajectories of DRG axons and are critical for the proper wiring of the nervous system.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- Department of Anatomy, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dionne MS, Brunet LJ, Eimon PM, Harland RM. Noggin is required for correct guidance of dorsal root ganglion axons. Dev Biol 2002; 251:283-93. [PMID: 12435358 DOI: 10.1006/dbio.2002.0829] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Members of the bone morphogenetic protein family of secreted protein signals have been implicated as axon guidance cues for specific neurons in Caenorhabditis elegans and in mammals. We have examined axonal pathfinding in mice lacking the secreted bone morphogenetic protein antagonist Noggin. We have found defects in projection of several groups of neurons, including the initial ascending projections from the dorsal root ganglia, motor axons innervating the distal forelimb, and cranial nerve VII. The case of the dorsal root ganglion defect is especially interesting: initial projections from the dorsal root ganglion enter the dorsal root entry zone, as normal, but then project directly into the gray matter of the spinal cord, rather than turning rostrally and caudally. Explant experiments suggest that the defect lies within the spinal cord and not the dorsal root ganglion itself. However, exogenous bone morphogenetic proteins are unable to attract or repel these axons, and the spinal cord shows only very subtle alterations in dorsal-ventral pattern in Noggin mutants. We suggest that the defect in projection into the spinal cord is likely the result of bone morphogenetic proteins disrupting the transduction of some unidentified repulsive signal from the spinal cord gray matter.
Collapse
Affiliation(s)
- Marc S Dionne
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720-3202, USA
| | | | | | | |
Collapse
|
13
|
Murakami S, Arai Y. Migration of LHRH neurons into the spinal cord: evidence for axon-dependent migration from the transplanted chick olfactory placode. Eur J Neurosci 2002; 16:684-92. [PMID: 12270044 DOI: 10.1046/j.1460-9568.2002.02116.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the chick embryo, luteinizing hormone-releasing hormone (LHRH) neurons originate in the olfactory placode and migrate along the olfactory nerve to the forebrain. In previous studies, we demonstrated that LHRH neurons followed the trigeminal nerve when the olfactory nerve was physically interrupted. To examine whether LHRH neurons possess the capacity to migrate along the different type of axons, the olfactory placode was transplanted into the base of the forelimb. Three to five days after the transplantation, LHRH neurons were detectable in the spinal nerve, the dorsal root ganglion, the sympathetic ganglion and the spinal cord. Double or triple labelling studies for LHRH, somatostatin and/or axonin-1 showed that LHRH neurons entered the spinal nerve in contact with the olfactory axons, which are specifically immunoreactive to somatostatin. Migrating LHRH neurons continued to associate closely with the olfactory axons in the spinal nerve. However, some LHRH neurons often migrated along with the axonin-1 positive spinal sensory axons, maintaining a distance from the olfactory axons. Furthermore, a few LHRH neurons were observed in the ventral root and the ventral funiculus independent of olfactory axons. As LHRH neurons were observed in the motor component of the spinal nerve, it is probable that LHRH neurons also invaded the spinal cord using the motor axons as a guiding substrate for their migration. These results suggest that the migration mode of LHRH neurons is axon dependent in the peripheral region, however, chemical identity with regard to axonal substrate choice for migration was not specified in the present study.
Collapse
Affiliation(s)
- Shizuko Murakami
- Department of Anatomy, Juntendo University School of Medicine, Hongo, Tokyo 113-8421 Japan.
| | | |
Collapse
|
14
|
Perrin FE, Rathjen FG, Stoeckli ET. Distinct subpopulations of sensory afferents require F11 or axonin-1 for growth to their target layers within the spinal cord of the chick. Neuron 2001; 30:707-23. [PMID: 11430805 DOI: 10.1016/s0896-6273(01)00315-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dorsal root ganglion neurons project axons to specific target layers in the gray matter of the spinal cord, according to their sensory modality. Using an in vivo approach, we demonstrate an involvement of the two immunoglobulin superfamily cell adhesion molecules axonin-1/TAG-1 and F11/F3/contactin in subpopulation-specific sensory axon guidance. Proprioceptive neurons, which establish connections with motoneurons in the ventral horn, depend on F11 interactions. Nociceptive fibers, which target to layers in the dorsal horn, require axonin-1 for pathfinding. In vitro NgCAM and NrCAM were shown to bind to both axonin-1 and F11. However, despite this fact and despite their ubiquitous expression in the spinal cord, NgCAM and NrCAM are selective binding partners for axonin-1 and F11 in sensory axon guidance. Whereas nociceptive pathfinding depends on NgCAM and axonin-1, proprioceptive fibers require NrCAM and F11.
Collapse
Affiliation(s)
- F E Perrin
- Pharmacenter, University of Basel, CH-4056, Basel, Switzerland
| | | | | |
Collapse
|
15
|
Lustig M, Erskine L, Mason CA, Grumet M, Sakurai T. Nr-CAM expression in the developing mouse nervous system: ventral midline structures, specific fiber tracts, and neuropilar regions. J Comp Neurol 2001; 434:13-28. [PMID: 11329126 DOI: 10.1002/cne.1161] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nr-CAM is a member of the L1 subfamily of cell adhesion molecules (CAMs) that belong to the immunoglobulin superfamily. To explore the role of Nr-CAM in the developing nervous system, we prepared specific antibodies against both chick and mouse Nr-CAM using recombinant Fc fusion proteins of chick Nr-CAM and mouse Nr-CAM, respectively. First, we show the specificity of the new anti-chick Nr-CAM antibody compared with a previously employed antibody using the expression patterns of Nr-CAM in the chick spinal cord and floor plate and on commissural axons, where Nr-CAM has been implicated in axon guidance. Using the anti-mouse Nr-CAM antibody, we then studied the expression patterns of Nr-CAM in the developing mouse nervous system along with the patterns of two related CAMs, L1, which labels most growing axons, and TAG-1, which binds to Nr-CAM and has a more restricted distribution. Major sites that are positive for Nr-CAM are specialized glial formations in the ventral midline, including the floor plate in the spinal cord, the hindbrain and midbrain, the optic chiasm, and the median eminence in the forebrain. Similar to what is seen in the chick spinal cord, Nr-CAM is expressed on crossing fibers as they course through these areas. In addition, Nr-CAM is found in crossing fiber pathways, including the anterior commissure, corpus callosum, and posterior commissure, and in nondecussating pathways, such as the lateral olfactory tract and the habenulointerpeduncular tract. Nr-CAM, for the most part, is colocalized with TAG-1 in all of these systems. Based on in vitro studies indicating that the Nr-CAM-axonin-1/TAG-1 interaction is involved in peripheral axonal growth and guidance in the spinal cord [Lustig et al. (1999) Dev Biol 209:340-351; Fitzli et al. (2000) J Cell Biol 149:951-968], the expression patterns described herein implicate a role for this interaction in central nervous system axon growth and guidance, especially at points of decussation. Nr-CAM also is expressed in cortical regions, such as the olfactory bulb. In the hippocampus, however, TAG-1-positive areas are segregated from Nr-CAM-positive areas, suggesting that, in neuropilar regions, Nr-CAM interacts with molecules other than TAG-1.
Collapse
Affiliation(s)
- M Lustig
- Department of Pharmacology, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
16
|
Shiga T, Kawamoto M, Shirai T. Longitudinal elongation of primary afferent axons in the dorsal funiculus of the chick embryo spinal cord. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 124:25-31. [PMID: 11113508 DOI: 10.1016/s0165-3806(00)00100-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The longitudinal elongation of primary afferent axons (PAAs) in the dorsal funiculus of chick embryo spinal cord was examined using a lipophilic tracer, DiI and immunohistochemistry. The earliest developing PAAs in the brachial segments invaded the spinal cord around embryonic day (E) 3.5. Thereafter, they elongated both rostrally and caudally in the presumptive dorsal funiculus, with frequent contacts between pre-existing axons and later arriving growth cones. By E4, the PAAs had elongated 3 segments both rostrally and caudally. In the course of their longitudinal elongation, the PAAs shifted their trajectory dorsally within the dorsal funiculus. By E6-6.5, the PAAs had extended as far as 10 segments rostrally and 6 segments caudally in the dorsal funiculus, and collaterals began to enter the dorsal horn. By E9, the PAAs extended up to 13 segments rostrally and 7 segments caudally, and collaterals reached the ventral spinal cord. During their longitudinal course, the PAAs shifted their trajectory medially within the dorsal funiculus.
Collapse
Affiliation(s)
- T Shiga
- Department of Anatomy, Institute of Basic Medical Sciences, University of Tsukuba, 305-8575, Tsukuba, Japan.
| | | | | |
Collapse
|
17
|
Masuda T, Okado N, Shiga T. The involvement of axonin-1/SC2 in mediating notochord-derived chemorepulsive activities for dorsal root ganglion neurites. Dev Biol 2000; 224:112-21. [PMID: 10926753 DOI: 10.1006/dbio.2000.9813] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous studies have suggested that the developing notochord secretes diffusible axon guidance molecules that repel dorsal root ganglion (DRG) neurites (R. Keynes et al., 1997, Neuron 18, 889-897; K. Nakamoto and T. Shiga, 1998, Dev. Biol. 202, 304-314). Neither notochord-derived chemorepellents nor their receptors on DRG neurites are, however, known. Here we investigated whether cell adhesion molecules (CAMs) of the immunoglobulin/fibronectin type III subfamily present on DRG neurites, including axonin-1/SC2, N-CAM, Ng-CAM, and Nr-CAM, are required for mediating the notochord-derived chemorepulsion. Using collagen gel cocultures of DRGs and notochord explants, we found that an antibody against axonin-1/SC2 diminished the effects of the chemorepulsive activity from the notochord, whereas antibodies against N-CAM, Ng-CAM, and Nr-CAM had no effect. We further showed that the removal of glycosylphosphatidylinositol-anchored cell surface molecules, including axonin-1/SC2, from DRG neurites diminished the effects of the notochord-derived chemorepulsive activity to an extent similar to that of treatment with the anti-axonin-1/SC2 antibody. These results suggest that axonin-1/SC2 expressed on DRG neurites may be involved in mediating the notochord-derived chemorepulsive activity.
Collapse
Affiliation(s)
- T Masuda
- Department of Anatomy, Institute of Basic Medical Sciences, Tsukuba, Japan
| | | | | |
Collapse
|
18
|
Lustig M, Sakurai T, Grumet M. Nr-CAM promotes neurite outgrowth from peripheral ganglia by a mechanism involving axonin-1 as a neuronal receptor. Dev Biol 1999; 209:340-51. [PMID: 10328925 DOI: 10.1006/dbio.1999.9250] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nr-CAM is a neuronal cell adhesion molecule (CAM) belonging to the immunoglobulin superfamily that has been implicated as a ligand for another CAM, axonin-1, in guidance of commissural axons across the floor plate in the spinal cord. Nr-CAM also serves as a neuronal receptor for several other cell surface molecules, but its role as a ligand in neurite outgrowth is poorly understood. We studied this problem using a chimeric Fc-fusion protein of the extracellular region of Nr-CAM (Nr-Fc) and investigated potential neuronal receptors in the developing peripheral nervous system. A recombinant Nr-CAM-Fc fusion protein, containing all six Ig domains and the first two fibronectin type III repeats of the extracellular region of Nr-CAM, retains cellular and molecular binding activities of the native protein. Injection of Nr-Fc into the central canal of the developing chick spinal cord in ovo resulted in guidance errors for commissural axons in the vicinity of the floor plate. This effect is similar to that resulting from treatment with antibodies against axonin-1, confirming that axonin-1/Nr-CAM interactions are important for guidance of commissural axons through a spatially and temporally restricted Nr-CAM positive domain in the ventral spinal cord. When tested as a substrate, Nr-Fc induced robust neurite outgrowth from dorsal root ganglion and sympathetic ganglion neurons, but it was not effective for tectal and forebrain neurons. The peripheral but not the central neurons expressed high levels of axonin-1 both in vitro and in vivo. Moreover, antibodies against axonin-1 inhibited Nr-Fc-induced neurite outgrowth, indicating that axonin-1 is a neuronal receptor for Nr-CAM on these peripheral ganglion neurons. The results demonstrate a role for Nr-CAM as a ligand in axon growth by a mechanism involving axonin-1 as a neuronal receptor and suggest that dynamic changes in Nr-CAM expression can modulate axonal growth and guidance during development.
Collapse
Affiliation(s)
- M Lustig
- Department of Pharmacology, NYU Medical Center, 550 First Avenue, New York, New York, 10016, USA
| | | | | |
Collapse
|
19
|
Takahashi M, Yamagata M, Noda M. Specific expression of ezrin, a cytoskeletal-membrane linker protein, in a subset of chick retinotectal and sensory projections. Eur J Neurosci 1999; 11:545-58. [PMID: 10051754 DOI: 10.1046/j.1460-9568.1999.00460.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lamina-specific neuronal connections are a fundamental feature in many parts of the vertebrate central nervous system. In the chick, the optic tectum is the primary visual centre, and it has a multilaminated structure consisting of 15 laminae, of which only three or four receive retinal projections. Each of the retinorecipient laminae establishes synaptic connections selectively from one of a few subsets of retinal ganglion cells (RGCs). We have generated a series of monoclonal antibodies that appear to stain only one of the retinorecipient laminae. One of these, TB4, stained lamina F which receives inputs from a subpopulation of approximately 10-20% of RGCs which express the presynaptic acetylcholine receptor beta2-subunit. TB4 recognized a single 79-kDa protein on immunoblotting. cDNA cloning and immunochemical analysis revealed that the TB4 antigen molecule was ezrin, a cytoskeletal-membrane linker molecule belonging to the ezrin-radixin-moesin family. Unilateral enucleation of the eye, both prior to and after the establishment of retinotectal projections, attenuated the lamina-selective staining with TB4 in the contralateral tectum, suggesting that ezrin is anterogradely transported from RGCs to lamina F. Ezrin was thus expressed in a subset of RGCs that project to lamina F. Similar subset-selective expression and resultant lamina-selective distribution of ezrin were also observed in the lamina-specific central projections from the dorsal root ganglia. The staining pattern with TB4 in the dorsal root ganglia and spinal cord indicated that high expression of ezrin was restricted in cutaneous sensory neurons, but not in muscle sensory neurons. Since ezrin modulates cell morphology and cell adhesion profiles by linking membrane proteins with the cytoskeleton, it was suggested that ezrin is involved in the formation and/or maintenance of lamina-specific connections for neuronal subpopulations in the visual and somatosensory systems.
Collapse
Affiliation(s)
- M Takahashi
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | | | | |
Collapse
|
20
|
Kunz S, Spirig M, Ginsburg C, Buchstaller A, Berger P, Lanz R, Rader C, Vogt L, Kunz B, Sonderegger P. Neurite fasciculation mediated by complexes of axonin-1 and Ng cell adhesion molecule. J Cell Biol 1998; 143:1673-90. [PMID: 9852159 PMCID: PMC2132982 DOI: 10.1083/jcb.143.6.1673] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1-NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM-NgCAM interaction could be established simultaneously with the axonin-1-NgCAM interaction. In contrast, the axonin-1-NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Binding Sites
- Cell Adhesion Molecules, Neuron-Glia/chemistry
- Cell Adhesion Molecules, Neuron-Glia/genetics
- Cell Adhesion Molecules, Neuron-Glia/physiology
- Cell Adhesion Molecules, Neuronal/chemistry
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/physiology
- Chickens
- Contactin 2
- Extracellular Space/physiology
- Ganglia, Spinal/physiology
- Mice
- Mice, Inbred ICR
- Models, Molecular
- Mutagenesis
- Neurites/physiology
- Neurons/cytology
- Neurons/physiology
- Organ Culture Techniques
- Point Mutation
- Polymerase Chain Reaction
- Protein Conformation
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Deletion
- Transfection
Collapse
Affiliation(s)
- S Kunz
- Institute of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nakamoto K, Shiga T. Tissues exhibiting inhibitory [correction of inhibiory] and repulsive activities during the initial stages of neurite outgrowth from the dorsal root ganglion in the chick embryo. Dev Biol 1998; 202:304-14. [PMID: 9769181 DOI: 10.1006/dbio.1998.9012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the mechanisms underlying the projection of dorsal root ganglion (DRG) axons into the dorsal root entry zone in the dorsolateral region of the spinal cord, we examined tissue interactions which affect neurite outgrowth from DRG. We cultured explants or dissociated cells of DRG from embryonic day 4 (E4) chick embryos in combination with E3 spinal cord, notochord, and dermomyotome in three-dimensional collagen gels. The ventral spinal cord, notochord, and dermomyotome, which are located close to the initial projection pathway of DRG but do not receive direct innervation, strongly inhibited DRG neurite outgrowth and repelled DRG neurites. These inhibitory/repulsive cues appear diffusible in nature, because this activity was observed in the absence of direct contacts between tissue explants and DRG neurites. Furthermore, in heterochronic cultures, E9 DRG lost its responsiveness to inhibitory/repulsive factors from E3 ventral spinal cord, while retaining responsiveness to E3 notochord and dermomyotome, suggesting that the E3 ventral spinal cord may secrete a different inhibitory/repulsive signal than notochord and dermomyotome. Putative inhibitory/repulsive signals secreted from tissues along the axonal pathway may serve to guide growing DRG axons to the dorsal root entry zone.
Collapse
Affiliation(s)
- K Nakamoto
- Department of Anatomy, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, 305-8575, Japan
| | | |
Collapse
|