1
|
Albadri S, Armant O, Aljand-Geschwill T, Del Bene F, Carl M, Strähle U, Poggi L. Expression of a Barhl1a reporter in subsets of retinal ganglion cells and commissural neurons of the developing zebrafish brain. Sci Rep 2020; 10:8814. [PMID: 32483163 PMCID: PMC7264323 DOI: 10.1038/s41598-020-65435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/05/2020] [Indexed: 12/03/2022] Open
Abstract
Promoting the regeneration or survival of retinal ganglion cells (RGCs) is one focus of regenerative medicine. Homeobox Barhl transcription factors might be instrumental in these processes. In mammals, only barhl2 is expressed in the retina and is required for both subtype identity acquisition of amacrine cells and for the survival of RGCs downstream of Atoh7, a transcription factor necessary for RGC genesis. The underlying mechanisms of this dual role of Barhl2 in mammals have remained elusive. Whole genome duplication in the teleost lineage generated the barhl1a and barhl2 paralogues. In the Zebrafish retina, Barhl2 functions as a determinant of subsets of amacrine cells lineally related to RGCs independently of Atoh7. In contrast, barhl1a expression depends on Atoh7 but its expression dynamics and function have not been studied. Here we describe for the first time a Barhl1a reporter line in vivo showing that barhl1a turns on exclusively in subsets of RGCs and their post-mitotic precursors. We also show transient expression of barhl1a:GFP in diencephalic neurons extending their axonal projections as part of the post-optic commissure, at the time of optic chiasm formation. This work sets the ground for future studies on RGC subtype identity, axonal projections and genetic specification of Barhl1a-positive RGCs and commissural neurons.
Collapse
Affiliation(s)
- Shahad Albadri
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany.,Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Olivier Armant
- Institute of Biological and Chemical Systems, Biological Information Processing Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Filippo Del Bene
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Matthias Carl
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Uwe Strähle
- Institute of Biological and Chemical Systems, Biological Information Processing Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Lucia Poggi
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany. .,Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
2
|
Treffkorn S, Mayer G. Expression of NK genes that are not part of the NK cluster in the onychophoran Euperipatoides rowelli (Peripatopsidae). BMC DEVELOPMENTAL BIOLOGY 2019; 19:7. [PMID: 30987579 PMCID: PMC6466738 DOI: 10.1186/s12861-019-0185-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/12/2019] [Indexed: 12/25/2022]
Abstract
Background NK genes are a group of homeobox transcription factors that are involved in various molecular pathways across bilaterians. They are typically divided into two subgroups, the NK cluster (NKC) and NK-linked genes (NKL). While the NKC genes have been studied in various bilaterians, corresponding data of many NKL genes are missing to date. To further investigate the ancestral roles of NK family genes, we analyzed the expression patterns of NKL genes in the onychophoran Euperipatoides rowelli. Results The NKL gene complement of E. rowelli comprises eight genes, including BarH, Bari, Emx, Hhex, Nedx, NK2.1, vax and NK2.2, of which only NK2.2 was studied previously. Our data for the remaining seven NKL genes revealed expression in different structures associated with the developing nervous system in embryos of E. rowelli. While NK2.1 and vax are expressed in distinct medial regions of the developing protocerebrum early in development, BarH, Bari, Emx, Hhex and Nedx are expressed in late developmental stages, after all major structures of the nervous system have been established. Furthermore, BarH and Nedx are expressed in distinct mesodermal domains in the developing limbs. Conclusions Comparison of our expression data to those of other bilaterians revealed similar patterns of NK2.1, vax, BarH and Emx in various aspects of neural development, such as the formation of anterior neurosecretory cells mediated by a conserved molecular mechanism including NK2.1 and vax, and the development of the central and peripheral nervous system involving BarH and Emx. A conserved role in neural development has also been reported from NK2.2, suggesting that the NKL genes might have been primarily involved in neural development in the last common ancestor of bilaterians or at least nephrozoans (all bilaterians excluding xenacoelomorphs). The lack of comparative data for many of the remaining NKL genes, including Bari, Hhex and Nedx currently hampers further evolutionary conclusions. Hence, future studies should focus on the expression of these genes in other bilaterians, which would provide a basis for comparative studies and might help to better understand the role of NK genes in the diversification of bilaterians. Electronic supplementary material The online version of this article (10.1186/s12861-019-0185-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Treffkorn
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany.
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
3
|
Cang J, Savier E, Barchini J, Liu X. Visual Function, Organization, and Development of the Mouse Superior Colliculus. Annu Rev Vis Sci 2018; 4:239-262. [PMID: 29852095 DOI: 10.1146/annurev-vision-091517-034142] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The superior colliculus (SC) is the most prominent visual center in mice. Studies over the past decade have greatly advanced our understanding of the function, organization, and development of the mouse SC, which has rapidly become a popular model in vision research. These studies have described the diverse and cell-type-specific visual response properties in the mouse SC, revealed their laminar and topographic organizations, and linked the mouse SC and downstream pathways with visually guided behaviors. Here, we summarize these findings, compare them with the rich literature of SC studies in other species, and highlight important gaps and exciting future directions. Given its clear importance in mouse vision and the available modern neuroscience tools, the mouse SC holds great promise for understanding the cellular, circuit, and developmental mechanisms that underlie visual processing, sensorimotor transformation, and, ultimately, behavior.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA;
| | - Elise Savier
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA;
| | - Jad Barchini
- Department of Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - Xiaorong Liu
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA;
| |
Collapse
|
4
|
Parish EV, Mason JO, Price DJ. Expression of Barhl2 and its relationship with Pax6 expression in the forebrain of the mouse embryo. BMC Neurosci 2016; 17:76. [PMID: 27887593 PMCID: PMC5124293 DOI: 10.1186/s12868-016-0311-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The transcription factor Barhl2 is an antiproneural transcription factor with roles in neuronal differentiation. The functions of its homologue in Drosophila development are better understood than its functions in mammalian brain development. Existing evidence suggests that its expression in the embryonic forebrain of the mouse is regional and may complement that of another transcription factor that is important for forebrain development, Pax6. The aim of this study is to provide a more detailed description of the Barhl2 expression pattern in the embryonic forebrain than is currently available, to relate its expression domains to those of Pax6 and to examine the effects of Pax6 loss on Barhl2 expression. RESULTS We found that Barhl2 is expressed in the developing diencephalon from the time of anterior neural tube closure. Its expression initially overlaps that of Pax6 in a central region of the alar diencephalon but over the following days their domains of expression become complementary in most forebrain regions. The exceptions are the thalamus and pretectum, where countergradients of Pax6 and Barhl2 expression are established by embryonic day 12.5, before overall Pax6 levels in these regions decline greatly while Barhl2 levels remain relatively high. We found that Barhl2 expression becomes upregulated in specifically the thalamus and pretectum in Pax6-null mice. CONCLUSIONS The region-specific expression pattern of Barhl2 makes it likely to be an important player in the development of region-specific differences in embryonic mouse forebrain. Repression of its expression in the thalamus and pretectum by Pax6 may be crucial for allowing proneural factors to promote normal neuronal differentiation in this region.
Collapse
Affiliation(s)
- Elisa V Parish
- Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK
| | - John O Mason
- Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK
| | - David J Price
- Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
5
|
Barhl2 Determines the Early Patterning of the Diencephalon by Regulating Shh. Mol Neurobiol 2016; 54:4414-4420. [PMID: 27349434 DOI: 10.1007/s12035-016-0001-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
The diencephalon is the primary relay network transmitting sensory information to the anterior forebrain. During development, distinct progenitor domains in the diencephalon give rise to the pretectum (p1), the thalamus and epithalamus (p2), and the prethalamus (p3), respectively. Shh plays a significant role in establishing the progenitor domains. However, the upstream events influencing the expression of Shh are largely unknown. Here, we show that Barhl2 homeobox gene is expressed in the p1 and p2 progenitor domains and the in zona limitans intrathalamica (ZLI) and regulates the acquisition of identity of progenitor cells in the developing diencephalon. Targeted deletion of Barhl2 results in the ablation of Shh expression in the dorsal portion of ZLI and causes thalamic p2 progenitors to take the fate of p1 progenitors and form pretectal neurons. Moreover, loss of Barhl2 leads to the absence of thalamocortical axon projections, the loss of habenular afferents and efferents, and a gross diminution of the pineal gland. Thus, by acting upstream of Shh signaling pathway, Barhl2 plays a crucial role in patterning the progenitor domains and establishing the positional identities of progenitor cells in the diencephalon.
Collapse
|
6
|
Su YX, Hou CC, Yang WX. Control of hair cell development by molecular pathways involving Atoh1, Hes1 and Hes5. Gene 2014; 558:6-24. [PMID: 25550047 DOI: 10.1016/j.gene.2014.12.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/23/2014] [Accepted: 12/25/2014] [Indexed: 01/14/2023]
Abstract
Atoh1, Hes1 and Hes5 are crucial for normal inner ear hair cell development. They regulate the expression of each other in a complex network, while they also interact with many other genes and pathways, such as Notch, FGF, SHH, WNT, BMP and RA. This paper summarized molecular pathways that involve Atoh1, Hes1, and Hes5. Some of the pathways and gene regulation mechanisms discussed here were studied in other tissues, yet they might inspire studies in inner ear hair cell development. Thereby, we presented a complex regulatory network involving these three genes, which might be crucial for proliferation and differentiation of inner ear hair cells.
Collapse
Affiliation(s)
- Yi-Xun Su
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Dunlap WC, Starcevic A, Baranasic D, Diminic J, Zucko J, Gacesa R, van Oppen MJH, Hranueli D, Cullum J, Long PF. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome. BMC Genomics 2013; 14:509. [PMID: 23889801 PMCID: PMC3750612 DOI: 10.1186/1471-2164-14-509] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. DESCRIPTION Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. CONCLUSIONS We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of evolutionary, developmental, metabolic, and environmental perspectives.
Collapse
Affiliation(s)
- Walter C Dunlap
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Antonio Starcevic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Damir Baranasic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Janko Diminic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jurica Zucko
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ranko Gacesa
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Madeleine JH van Oppen
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
| | - Daslav Hranueli
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - John Cullum
- Department of Genetics, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | - Paul F Long
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
- Department of Chemistry King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
8
|
Schuhmacher LN, Albadri S, Ramialison M, Poggi L. Evolutionary relationships and diversification of barhl genes within retinal cell lineages. BMC Evol Biol 2011; 11:340. [PMID: 22103894 PMCID: PMC3235082 DOI: 10.1186/1471-2148-11-340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 11/21/2011] [Indexed: 12/13/2022] Open
Abstract
Background Basic helix-loop-helix and homeodomain transcription factors have been shown to specify all different neuronal cell subtypes composing the vertebrate retina. The appearance of gene paralogs of such retina-specific transcription factors in lower vertebrates, with differently evolved function and/or conserved non-coding elements, might provide an important source for the generation of neuronal diversity within the vertebrate retinal architecture. In line with this hypothesis, we investigated the evolution of the homeobox Barhl family of transcription factors, barhl1 and barhl2, in the teleost and tetrapod lineages. In tetrapod barhl2, but not barhl1, is expressed in the retina and is important for amacrine cell specification. Zebrafish has three barhl paralogs: barhl1.1, barhl1.2 and barhl2, but their precise spatio-temporal retinal expression, as well as their function is yet unknown. Results Here we performed a meticulous expression pattern comparison of all known barhl fish paralogs and described a novel barhl paralog in medaka. Our detailed analysis of zebrafish barhl gene expression in wild type and mutant retinas revealed that only barhl1.2 and barhl2 are present in the retina. We also showed that these two paralogs are expressed in distinct neuronal lineages and are differently regulated by Atoh7, a key retinal-specific transcription factor. Finally, we found that the two retained medaka fish barhl paralogs, barhl1 and barhl2, are both expressed in the retina, in a pattern reminiscent of zebrafish barhl1.2 and barhl2 respectively. By performing phylogenetic and synteny analysis, we provide evidence that barhl retinal expression domain is an ancestral feature, probably lost in tetrapods due to functional redundancy. Conclusions Functional differences among retained paralogs of key retina-specific transcription factors between teleosts and tetrapods might provide important clues for understanding their potential impact on the generation of retinal neuronal diversity. Intriguingly, within teleosts, retention of zebrafish barhl1.2 and its medaka ortholog barhl1 appears to correlate with the acquisition of distinct signalling mechanisms by the two genes within distinct retinal cell lineages. Our findings provide a starting point for the study of barhl gene evolution in relation to the generation of cell diversity in the vertebrate retina.
Collapse
|
9
|
Strickler AG, Jeffery WR. Differentially expressed genes identified by cross-species microarray in the blind cavefish Astyanax. Integr Zool 2011; 4:99-109. [PMID: 21392280 DOI: 10.1111/j.1749-4877.2008.00139.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Changes in gene expression were examined by microarray analysis during development of the eyed surface dwelling (surface fish) and blind cave-dwelling (cavefish) forms of the teleost Astyanax mexicanus De Filippi, 1853. The cross-species microarray used surface and cavefish RNA hybridized to a DNA chip prepared from a closely related species, the zebrafish Danio rerio Hamilton, 1822. We identified a total of 67 differentially expressed probe sets at three days post-fertilization: six upregulated and 61 downregulated in cavefish relative to surface fish. Many of these genes function either in eye development and/or maintenance, or in programmed cell death. The upregulated probe set showing the highest mean fold change was similar to the human ubiquitin specific protease 53 gene. The downregulated probe sets showing some of the highest fold changes corresponded to genes with roles in eye development, including those encoding gamma crystallins, the guanine nucleotide binding proteins Gnat1 and Gant2, a BarH-like homeodomain transcription factor, and rhodopsin. Downregulation of gamma-crystallin and rhodopsin was confirmed by in situ hybridization and immunostaining with specific antibodies. Additional downregulated genes encode molecules that inhibit or activate programmed cell death. The results suggest that cross-species microarray can be used for identifying differentially expressed genes in cavefish, that many of these genes might be involved in eye degeneration via apoptotic processes, and that more genes are downregulated than upregulated in cavefish, consistent with the predominance of morphological losses over gains during regressive evolution.
Collapse
|
10
|
Kawauchi D, Muroyama Y, Sato T, Saito T. Expression of major guidance receptors is differentially regulated in spinal commissural neurons transfated by mammalian Barh genes. Dev Biol 2010; 344:1026-34. [PMID: 20599893 DOI: 10.1016/j.ydbio.2010.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 12/29/2022]
Abstract
During development, commissural neurons in the spinal cord project their axons across the ventral midline, floor plate, via multiple interactions among temporally controlled molecular guidance cues and receptors. The transcriptional regulation of commissural axon-associated receptors, however, is not well characterized. Spinal dorsal cells are transfated into commissural neurons by misexpression of Mbh1, a Bar-class homeobox gene. We examined the function of another Bar-class homeobox gene, Mbh2, and how Mbh1 and Mbh2 modulate expression of the receptors, leading to midline crossing of axons. Misexpression of Mbh1 and Mbh2 showed the same effects in the spinal cord. The competence of spinal dorsal cells to become commissural neurons was dependent on the embryonic stage, during which misexpression of the Mbh genes was able to activate guidance receptor genes such as Rig1 and Nrp2. Misexpression of Lhx2, which has been recently shown to be involved in Rig1 expression, activated Rig1 but not Nrp2, and was less effective in generating commissural neurons. Moreover, expression of Lhx2 was activated by and required the Mbh genes. These findings have revealed a transcriptional cascade, in which Lhx2-dependent and -independent pathways leading to expression of guidance receptors branch downstream of the Mbh genes.
Collapse
Affiliation(s)
- Daisuke Kawauchi
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | |
Collapse
|
11
|
Storm R, Cholewa-Waclaw J, Reuter K, Bröhl D, Sieber M, Treier M, Müller T, Birchmeier C. The bHLH transcription factor Olig3 marks the dorsal neuroepithelium of the hindbrain and is essential for the development of brainstem nuclei. Development 2008; 136:295-305. [PMID: 19088088 DOI: 10.1242/dev.027193] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Olig3 gene encodes a bHLH factor that is expressed in the ventricular zone of the dorsal alar plate of the hindbrain. We found that the Olig3(+) progenitor domain encompassed subdomains that co-expressed Math1, Ngn1, Mash1 and Ptf1a. Olig3(+) cells give rise to neuronal types in the dorsal alar plate that we denote as class A neurons. We used genetic lineage tracing to demonstrate that class A neurons contribute to the nucleus of the solitary tract and to precerebellar nuclei. The fate of class A neurons was not correctly determined in Olig3 mutant mice. As a consequence, the nucleus of the solitary tract did not form, and precerebellar nuclei, such as the inferior olivary nucleus, were absent or small. At the expense of class A neurons, ectopic Lbx1(+) neurons appeared in the alar plate in Olig3 mutant mice. By contrast, electroporation of an Olig3 expression vector in the chick hindbrain suppressed the emergence of Lbx1(+) neurons. Climbing fiber neurons of the inferior olivary nucleus express Foxd3 and require Olig3 as well as Ptf1a for the determination of their fate. We observed that electroporation of Olig3 and Ptf1a expression vectors, but not either alone, induced Foxd3. We therefore propose that Olig3 can cooperate with Ptf1a to determine the fate of climbing fiber neurons of the inferior olivary nucleus.
Collapse
Affiliation(s)
- Robert Storm
- Max-Delbrück-Centrum for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wilson SI, Shafer B, Lee KJ, Dodd J. A molecular program for contralateral trajectory: Rig-1 control by LIM homeodomain transcription factors. Neuron 2008; 59:413-24. [PMID: 18701067 DOI: 10.1016/j.neuron.2008.07.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 06/03/2008] [Accepted: 07/14/2008] [Indexed: 12/21/2022]
Abstract
Despite increasing evidence for transcriptional control of neural connectivity, how transcription factors regulate discrete steps in axon guidance remains obscure. Projection neurons in the dorsal spinal cord relay sensory signals to higher brain centers. Some projection neurons send their axons ipsilaterally, whereas others, commissural neurons, send axons contralaterally. We show that two closely related LIM homeodomain proteins, Lhx2 and Lhx9, are expressed by a set of commissural relay neurons (dI1c neurons) and are required for the dI1c axon projection. Midline crossing by dI1c axons is lost in Lhx2/9 double mutants, a defect that results from loss of expression of Rig-1 from dI1c axons. Lhx2 binds to a conserved motif in the Rig-1 gene, suggesting that Lhx2/9 regulate directly the expression of Rig-1. Our findings reveal a link between the transcriptional programs that define neuronal subtype identity and the expression of receptors that guide distinctive aspects of their trajectory.
Collapse
Affiliation(s)
- Sara I Wilson
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
13
|
Kawauchi D, Saito T. Transcriptional cascade from Math1 to Mbh1 and Mbh2 is required for cerebellar granule cell differentiation. Dev Biol 2008; 322:345-54. [PMID: 18723012 DOI: 10.1016/j.ydbio.2008.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 08/01/2008] [Accepted: 08/01/2008] [Indexed: 01/13/2023]
Abstract
Cerebellar granule cells (CGCs) are the most abundant neuronal type in the mammalian brain, and their differentiation is regulated by the basic helix-loop-helix gene, Math1. However, little is known about downstream genes of Math1 and their functions in the cerebellum. To investigate them, we have here established an electroporation-based in vivo gene transfer method in the developing mouse cerebellum. Misexpression of Math1 ectopically induced expression of Bar-class homeobox genes, Mbh1 and Mbh2, which are expressed by CGCs. Conversely, their expression was repressed in CGCs by knockdown of Math1. These findings, taken together with chromatin immunoprecipitation assays, suggest that Math1 directly regulates the Mbh genes in CGCs. Furthermore, a dominant-negative form of the Mbh proteins disrupted proper formation of the external granule layer and differentiation of CGCs, whereas misexpression of the Mbh genes ectopically induced expression of a CGC marker in nonneuronal cells, indicating that the Mbh proteins are required for the differentiation of CGCs.
Collapse
Affiliation(s)
- Daisuke Kawauchi
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | |
Collapse
|
14
|
Chellappa R, Li S, Pauley S, Jahan I, Jin K, Xiang M. Barhl1 regulatory sequences required for cell-specific gene expression and autoregulation in the inner ear and central nervous system. Mol Cell Biol 2008; 28:1905-14. [PMID: 18212062 PMCID: PMC2268402 DOI: 10.1128/mcb.01454-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 09/08/2007] [Accepted: 01/01/2008] [Indexed: 12/12/2022] Open
Abstract
The development of the nervous system requires the concerted actions of multiple transcription factors, yet the molecular events leading to their expression remain poorly understood. Barhl1, a mammalian homeodomain transcription factor of the BarH class, is expressed by developing inner ear hair cells, cerebellar granule cells, precerebellar neurons, and collicular neurons. Targeted gene inactivation has demonstrated a crucial role for Barhl1 in the survival and/or migration of these sensory cells and neurons. Here we report the regulatory sequences of Barhl1 necessary for directing its proper spatiotemporal expression pattern in the inner ear and central nervous system (CNS). Using a transgenic approach, we have found that high-level and cell-specific expression of Barhl1 within the inner ear and CNS depends on both its 5' promoter and 3' enhancer sequences. Further transcriptional, binding, and mutational analyses of the 5' promoter have identified two homeoprotein binding motifs that can be occupied and activated by Barhl1. Moreover, proper Barhl1 expression in inner ear hair cells and cerebellar and precerebellar neurons requires the presence of Atoh1. Together, these data delineate useful Barhl1 regulatory sequences that direct strong and specific gene expression to inner ear hair cells and CNS sensory neurons, establish a role for autoregulation in the maintenance of Barhl1 expression, and identify Atoh1 as a key upstream regulator.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/deficiency
- Basic Helix-Loop-Helix Transcription Factors/physiology
- Binding Sites
- Brain/embryology
- Brain/metabolism
- Cerebellum/embryology
- Cerebellum/metabolism
- Cochlea/embryology
- Cochlea/metabolism
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Outer/metabolism
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/physiology
- Inferior Colliculi/embryology
- Inferior Colliculi/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Organ Specificity
- Promoter Regions, Genetic/genetics
- Protein Binding
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Superior Colliculi/embryology
- Superior Colliculi/metabolism
- Transcription Factor Brn-3C/physiology
Collapse
Affiliation(s)
- Ramesh Chellappa
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
15
|
Schwartz HT, Horvitz HR. The C. elegans protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9. Genes Dev 2008; 21:3181-94. [PMID: 18056428 DOI: 10.1101/gad.1607007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The developmental control of apoptosis is fundamental and important. We report that the Caenorhabditis elegans Bar homeodomain transcription factor CEH-30 is required for the sexually dimorphic survival of the male-specific CEM (cephalic male) sensory neurons; the homologous cells of hermaphrodites undergo programmed cell death. We propose that the cell-type-specific anti-apoptotic gene ceh-30 is transcriptionally repressed by the TRA-1 transcription factor, the terminal regulator of sexual identity in C. elegans, to cause hermaphrodite-specific CEM death. The established mechanism for the regulation of specific programmed cell deaths in C. elegans is the transcriptional control of the BH3-only gene egl-1, which inhibits the Bcl-2 homolog ced-9; similarly, most regulation of vertebrate apoptosis involves the Bcl-2 superfamily. In contrast, ceh-30 acts within the CEM neurons to promote their survival independently of both egl-1 and ced-9. Mammalian ceh-30 homologs can substitute for ceh-30 in C. elegans. Mice lacking the ceh-30 homolog Barhl1 show a progressive loss of sensory neurons and increased sensory-neuron cell death. Based on these observations, we suggest that the function of Bar homeodomain proteins as cell-type-specific inhibitors of apoptosis is evolutionarily conserved.
Collapse
Affiliation(s)
- Hillel T Schwartz
- Howard Hughes Medical Institute and MIT Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
16
|
Abstract
Climbing fiber (CF) neurons in the inferior olivary nucleus (ION) extend their axons to Purkinje cells, playing a crucial role in regulating cerebellar function. However, little is known about their precise place of birth and developmental molecular machinery. Here, we describe the origin of the CF neuron lineage and the involvement of Ptf1a (pancreatic transcription factor 1a) in CF neuron development. Ptf1a protein was found to be expressed in a discrete dorsolateral region of the embryonic caudal hindbrain neuroepithelium. Because expression of Ptf1a is not overlapping other transcription factors such as Math1 (mouse atonal homolog 1) and Neurogenin1, which are suggested to define domains within caudal hindbrain neuroepithelium (Landsberg et al., 2005), we named the neuroepithelial region the Ptf1a domain. Analysis of mice that express beta-galactosidase from the Ptf1a locus revealed that CF neurons are derived from the Ptf1a domain. In contrast, retrograde labeling of precerebellar neurons indicated that mossy fiber neurons are not derived from Ptf1a-expressing progenitors. We could observe a detailed migratory path of CF neurons from the Ptf1a domain to the ION during embryogenesis. In Ptf1a null mutants, putative immature CF neurons produced from this domain were unable to migrate or differentiate appropriately, resulting in a failure of ION formation. Apoptotic cells were observed in the mutant hindbrain. Furthermore, the fate of some cells in the Ptf1a lineage were changed to mossy fiber neurons in Ptf1a null mutants. These findings clarify the precise origin of CF neurons and suggest that Ptf1a controls their fate, survival, differentiation, and migration during development.
Collapse
|
17
|
Sander V, Reversade B, De Robertis EM. The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. EMBO J 2007; 26:2955-65. [PMID: 17525737 PMCID: PMC1894760 DOI: 10.1038/sj.emboj.7601705] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 04/05/2007] [Indexed: 02/02/2023] Open
Abstract
We present a loss-of-function study using antisense morpholino (MO) reagents for the organizer-specific gene Goosecoid (Gsc) and the ventral genes Vent1 and Vent2. Unlike in the mouse Gsc is required in Xenopus for mesodermal patterning during gastrulation, causing phenotypes ranging from reduction of head structures-including cyclopia and holoprosencephaly-to expansion of ventral tissues in MO-injected embryos. The overexpression effects of Gsc mRNA require the expression of the BMP antagonist Chordin, a downstream target of Gsc. Combined Vent1 and Vent2 MOs strongly dorsalized the embryo. Unexpectedly, simultaneous depletion of all three genes led to a rescue of almost normal development in a variety of embryological assays. Thus, the phenotypic effects of depleting Gsc or Vent1/2 are caused by the transcriptional upregulation of their opposing counterparts. A principal function of Gsc and Vent1/2 homeobox genes might be to mediate a self-adjusting mechanism that restores the basic body plan when deviations from the norm occur, rather than generating individual cell types. The results may shed light on the molecular mechanisms of genetic redundancy.
Collapse
Affiliation(s)
- Veronika Sander
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - Bruno Reversade
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - E M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Okada T, Keino-Masu K, Masu M. Migration and nucleogenesis of mouse precerebellar neurons visualized by in utero electroporation of a green fluorescent protein gene. Neurosci Res 2006; 57:40-9. [PMID: 17084476 DOI: 10.1016/j.neures.2006.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 09/09/2006] [Accepted: 09/13/2006] [Indexed: 12/29/2022]
Abstract
Neural migration is a critical step for accurate CNS development, but the molecular mechanisms that regulate migration, settlement and nucleogenesis remain largely unknown. The precerebellar neurons (PCNs), generated in the lower rhombic lip (LRL), migrate towards their destinations: some neurons form the pontine gray nucleus (PGN) and reticulotegmental nucleus (RTN) in the ipsilateral pons, while others form the lateral reticular and external cuneate nuclei in the contralateral medulla after crossing the midline. Here, by introducing an EGFP gene into a unilateral LRL of mouse embryos by in utero electroporation, we specifically labeled and tracked the PCNs in vivo. We found that a substantial number of the labeled neurons crossed the midline and formed PGN/RTN on the contralateral side. In addition, we found that a subpopulation of the interpolar subnucleus of the spinal trigeminal nucleus, which projects the axons to the cerebellum, was one of the PCNs derived from the LRL. Furthermore, because the electroporated mice were born and grew up healthy, we could visualize the PCNs and their mossy fibers in the adult brain. Therefore, the EGFP labeling of PCNs can be applied to studying the physiology of the mossy fiber system as well as PCN development in embryos.
Collapse
Affiliation(s)
- Takuya Okada
- Department of Molecular Neurobiology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | | | | |
Collapse
|
19
|
Reig G, Cabrejos ME, Concha ML. Functions of BarH transcription factors during embryonic development. Dev Biol 2006; 302:367-75. [PMID: 17098224 DOI: 10.1016/j.ydbio.2006.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/06/2006] [Accepted: 10/05/2006] [Indexed: 10/24/2022]
Abstract
This paper reviews the developmental role of a group of homeobox-containing genes firstly described in the early nineties as critical factors regulating eye development in Drosophila. These genes received the name of BarH due to the Drosophila "Bar" mutant phenotype and, since then, vertebrate homologues (named BarH-like or Barhl) have been described in a number of species of fish, amphibians and mammals. During embryonic development, BarH/Barhl are expressed primarily in the central nervous system where they play essential roles in decisions of cell fate, migration and survival. Transcriptional regulation mediated by these proteins involves either repression or activation mechanisms. In Drosophila, BarH is involved in morphogenesis and fate determination of the eye and external sensory organs, in regional prepatterning of the notum, and in formation and specification of distal leg segments. Vertebrate Barhl shares some functional properties with the fly counterparts, such as the ability to interact with basic helix-loop-helix (bHLH) proneural proteins, and plays crucial roles during cell type specification within the retina, acquisition of commissural neuron identity in the spinal cord, migration of cerebellar cells, and in cell survival within the neural plate, cochlea and cerebellum.
Collapse
Affiliation(s)
- Germán Reig
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, Chile
| | | | | |
Collapse
|
20
|
Li S, Xiang M. Barhl1 is required for maintenance of a large population of neurons in the zonal layer of the superior colliculus. Dev Dyn 2006; 235:2260-5. [PMID: 16752387 PMCID: PMC2570113 DOI: 10.1002/dvdy.20858] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The mammalian superior colliculus of the midbrain is a brainstem center that integrates sensorimotor signals involved in the control of orienting behaviors. Its structure is characterized by seven well-organized cellular and fibrous layers associated with distinct physiological properties. To date, however, little is known about the molecular bases governing the lamination, differentiation, and survival of superior collicular neurons. Barhl1 is a homeodomain transcription factor that has been demonstrated to play an essential role in maintaining inner ear hair cells, cerebellar granule cells, and precerebellar neurons. We show here that Barhl1 exhibits a select expression pattern in the superior colliculus with positive neurons largely restricted to the zonal layer, as visualized by the beta-galactosidase activity expressed from the lacZ reporter knocked in the Barhl1 locus. Targeted disruption of Barhl1 results in the loss of a large population of neurons from the zonal layer of the superior colliculus, as indicated by reduced beta-galactosidase staining and marker gene expression as well as by increased apoptotic cell death. Taken together, these data suggest that Barhl1 is crucially required for the survival but not for the specification of zonal layer neurons in the superior colliculus.
Collapse
Affiliation(s)
- Shengguo Li
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
| | - Mengqing Xiang
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
| |
Collapse
|
21
|
Kawauchi D, Taniguchi H, Watanabe H, Saito T, Murakami F. Direct visualization of nucleogenesis by precerebellar neurons: involvement of ventricle-directed, radial fibre-associated migration. Development 2006; 133:1113-23. [PMID: 16501169 DOI: 10.1242/dev.02283] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nuclei are aggregates of neurons distributed in the central nervous system and are fundamental functional units that share anatomical and physiological features. Despite their importance, the cellular basis that leads to nucleogenesis is only poorly understood. Using exo utero electroporation with an enhanced yellow fluorescent protein (EYFP) gene, we show that the precerebellar neurons derived from the lower rhombic lip (lRL) undergo multiple migration steps to form nuclei. After the unilateral transfer of EYFP to the lRL of embryonic day 12.5 mice, EYFP-labelled neurons migrate tangentially from the lRL in two distinct streams, one towards the ventral metencephalon and the other towards the ventral myelencephalon. These neurons cross the ventral midline and then become radially directed. Labelled neurons in the tangential migratory streams form contralateral clusters in the external cuneate nucleus (ECN) and lateral reticular nucleus (LRN) in the myelencephalon, and bilateral clusters in the pontine grey nucleus (PGN) and reticulotegmental nucleus (RTN) in the metencephalon. Before forming the clusters, EYFP-labelled neurons begin to migrate radially towards the ventricle in close apposition to nestin-positive radial fibres, and then they aggregate as they detach from the fibres. Inhibition of cadherin function in ECN and LRN progenitors caused ipsilateral formation of the ECN and LRN, implying that the transition of their migration from tangential to radial involves a cell-intrinsic mechanism. These observations suggest that nucleogenesis of precerebellar neurons is a result of multi-phasic migration, and that ventricle-directed radial glia-guided migration is a key step for nucleogenesis.
Collapse
Affiliation(s)
- Daisuke Kawauchi
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
22
|
Colombo A, Reig G, Mione M, Concha ML. Zebrafish BarH-like genes define discrete neural domains in the early embryo. Gene Expr Patterns 2006; 6:347-52. [PMID: 16448861 DOI: 10.1016/j.modgep.2005.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/27/2005] [Accepted: 09/28/2005] [Indexed: 12/24/2022]
Abstract
BarH (Barhl) genes encode for highly conserved homeodomain-containing transcription factors involved in critical functions during development, including cell fate specification, migration and survival. Here, we report the dynamic and restricted expression of three zebrafish barhl within the developing central nervous system. barhl2 becomes expressed in the late gastrula as a transverse diencephalic domain located immediately caudal to the prospective eyes. At early somitogenesis, barhl1.1 and barhl1.2 are expressed in the diencephalon in domains that partially overlap with the ventral and dorsal aspects of barhl2 expression, respectively. At later stages, expression of all zebrafish barhl shows large extent of overlap in the pretectum, tectum and dorsal hindbrain. The presence of a unique territory of barhl2 expression in the dorsal telencephalon and the high levels of expression in the retina are both consistent with expression reports of other Barhl2 orthologues, and support the subdivision of vertebrate Barhl into two paralogue groups based on the phylogenetic analysis of nucleotide and amino acid sequences.
Collapse
Affiliation(s)
- Alicia Colombo
- Anatomy and Developmental Biology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Independencia 1027, Santiago, Chile
| | | | | | | |
Collapse
|
23
|
Rachidi M, Lopes C. Differential transcription ofBarhl1homeobox gene in restricted functional domains of the central nervous system suggests a role in brain patterning. Int J Dev Neurosci 2005; 24:35-44. [PMID: 16384683 DOI: 10.1016/j.ijdevneu.2005.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 11/02/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022] Open
Abstract
The mouse Barhl1 homeogene, member of the BarH subfamily, play a crucial role in the cerebellum development and its human ortholog BARHL1 has been proposed as a positional and functional candidate gene for the Joubert syndrome, a form of cerebellar ataxia. The Barhl1 expression has been demonstrated to be induced by the transcription factor Math1 involved in BMP responses. We isolated the mouse Barhl1 by screening of a cDNA library with the Xenopus Xvent-2, member of the BarH subfamily, which acts in the BMP4 pathway during embryonic patterning and neural plate differentiation. We studied the detailed Barhl1 expression pattern and showed its transcription in spatio-temporally and functionally restricted domains of the developing central nervous system (CNS). Using our new optical microscopy technology, we compare the transcript steady state level and cell density in the Barhl1-expressing regions. We found that Barhl1 was transcribed in superior and inferior colliculi in the dorsal mesencephalon at a relatively low transcriptional level. In the diencephalon, Barhl1 was found higher expressed first within the basal plate and later in the mammillary region. In the cerebellum, Barhl1 showed the highest transcriptional level restricted to the anterior and posterior rhombic lips giving rise to the external and internal cerebellar granular cells and to the deep nuclei. In the spinal cord, Barhl1 showed similar expression level than in the cerebellum and is delimited to a subset of dorsal interneurons. Therefore, our results indicated that Barhl1 homeodomain gene is exclusively transcribed in restricted CNS domain at differential transcription levels which suggest a highly regulated transcriptional mechanism. In addition, these regional and cellular specificities indicated that Barhl1 may be involved in the differentiation of the specific subsets of neuronal progenitors.
Collapse
Affiliation(s)
- Mohammed Rachidi
- Institut d'Embryologie Cellulaire et Moléculaire, CNRS UMR 7128, Collège de France, 94736 Nogent-sur-Marne, France.
| | | |
Collapse
|
24
|
Sud R, Jones CM, Banfi S, Dawson SJ. Transcriptional regulation by Barhl1 and Brn-3c in organ-of-Corti-derived cell lines. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2005; 141:174-80. [PMID: 16226339 DOI: 10.1016/j.molbrainres.2005.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 08/22/2005] [Accepted: 09/05/2005] [Indexed: 11/30/2022]
Abstract
Barhl1 and Brn-3c have been identified as transcription factors that are essential for survival and maintenance of hair cells of the inner ear. Little is known about the mechanism of how Brn-3c or Barhl1 may regulate transcription in the inner ear. In this study, the transcriptional function of both Brn-3c and Barhl1 was investigated in the organ-of-Corti-derived cell lines, OC-1 and OC-2. We examined regulatory domains in these transcription factors by linking regions of Barhl1 and Brn-3c to the DNA binding domain of the heterologous transcription factor GAL4 and assayed their effect on a heterologous promoter containing GAL4 DNA binding sites by co-transfection into OC-1 and OC-2 cell lines. Brn-3c was found to contain an independent N-terminal activation domain that is sufficient to activate gene transcription in the organ of corti derived cell lines. Barhl1 on the other hand was found to act as a transcriptional repressor with repressive activity not restricted to a particular domain of Barhl1. In addition, we analyzed the effect of Barhl1 on the promoters of the neurotrophin genes NT-3 and BDNF in OC-1 and OC-2 cell lines. However, Barhl1 was not found to directly regulate neurotrophin promoter constructs in these cells.
Collapse
Affiliation(s)
- Richa Sud
- Molecular Audiology Group, Centre for Auditory Research, UCL Ear Institute, 332 Gray's Inn Rd, London WC1X 8EE, UK
| | | | | | | |
Collapse
|
25
|
Lopes C, Delezoide AL, Delabar JM, Rachidi M. BARHL1 homeogene, the human ortholog of the mouse Barhl1 involved in cerebellum development, shows regional and cellular specificities in restricted domains of developing human central nervous system. Biochem Biophys Res Commun 2005; 339:296-304. [PMID: 16307728 DOI: 10.1016/j.bbrc.2005.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Accepted: 11/01/2005] [Indexed: 01/28/2023]
Abstract
The mouse homeobox gene Barhl1 plays a central role in cerebellum development and its expression is activated by the transcription factor Math1 which is involved in bone morphogenetic protein response pathways. We studied the human ortholog BARHL1 and we found that human, mouse, monkey, rat, and zebrafish orthologs were highly conserved and are members of the BarH homeogene family, containing Drosophila BarH1 and BarH2. The N-terminus of BARHL1 protein presents two FIL domains and an acidic domain rich in serine/threonine and proline, while the C-terminus contains a canonical proline-rich domain. Secondary structure analysis showed that outside the three helixes of the homeodomain, BARHL1 protein has essentially random coil structure. We isolated BARHL1 and defined its expression pattern in human embryonic and fetal central nervous system (CNS) and compared it to the mouse Barhl1 transcription. BARHL1 mRNA was found exclusively in the CNS restricted to p1-p4 prosomeres of the diencephalon, to the dorsal cells of the mesencephalon, to the dorsal dl1 sensory neurons of the spinal cord, and to the rhombic lips yielding the cerebellar anlage. Detailed analysis of BARHL1 expression in fetal cerebellar cell layers using our new optic microscopy technology showed BARHL1 expression in external and internal granular cells and also in mouse adult granular cells, in agreement to Barhl1 null mouse phenotype affecting the differentiation and migration of granular cells. These findings indicate that the regional and cellular specificities of BARHL1 transcriptional control well correspond to the mouse Barhl1 transcription and suggest a potential role of this gene in the differentiation of BARHL1-expressing neuronal progenitors involved in the pattern formation of human cerebral and cerebellar structures.
Collapse
Affiliation(s)
- Carmela Lopes
- EA 3508 Université Paris 7-Denis Diderot, Paris, France
| | | | | | | |
Collapse
|
26
|
Saba R, Johnson JE, Saito T. Commissural neuron identity is specified by a homeodomain protein, Mbh1,that is directly downstream of Math1. Development 2005; 132:2147-55. [PMID: 15788459 DOI: 10.1242/dev.01781] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Proneural basic helix-loop-helix (bHLH) proteins are key regulators of neurogenesis. However, downstream target genes of the bHLH proteins remain poorly defined. Mbh1 confers commissural neuron identity in the spinal cord. Enhancer analysis using transgenic mice revealed that Mbh1 expression required an E-box 3′ of the Mbh1 gene. Mbh1 expression was lost in Math1 knockout mice, whereas misexpression of Math1 induced ectopic expression of Mbh1. Moreover, Math1 bound the Mbh1 enhancer containing the E-box in vivo and activated gene expression. Generation of commissural neurons by Math1 was inhibited by a dominant negative form of Mbh1. These findings indicate that Mbh1 is necessary and sufficient for the specification of commissural neurons,as a direct downstream target of Math1.
Collapse
Affiliation(s)
- Rie Saba
- Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
27
|
Offner N, Duval N, Jamrich M, Durand B. The pro-apoptotic activity of a vertebrate Bar-like homeobox gene plays a key role in patterning the Xenopus neural plate by limiting the number of chordin- and shh-expressing cells. Development 2005; 132:1807-18. [PMID: 15772136 DOI: 10.1242/dev.01712] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Targeted disruption of effectors molecules of the apoptotic pathway have demonstrated the occurrence and magnitude of early programmed cell death (EPCD), a form of apoptosis that affects proliferating and newly differentiated cells in vertebrates, and most dramatically cells of the central nervous system (CNS). Little is known about the molecular pathways controlling apoptosis at these early developmental stages, as the roles of EPCD during patterning of the developing nervous system. We describe a new function, in Xenopus neurodevelopment, for a highly conserved homeodomain protein Barhl2. Barhl2 promotes apoptosis in the Xenopus neuroectoderm and mesoderm, acting as a transcriptional repressor, through a mechanism that cannot be attributed to an unspecific cellular stress response. We show that the pro-apoptotic activity of Barhl2 is essential during normal neural plate formation as it limits the number of chordin- and Xshh-expressing cells in the prospective notochord and floorplate, which act as organizing centers. Our findings show that Barhl2 is part of a pathway regulating EPCD. They also provide evidence that apoptosis plays an important role in regulating the size of organizing centers.
Collapse
Affiliation(s)
- Nicolas Offner
- Unité Rétrovirus et Transfert Génétique, INSERM (U622). Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
28
|
Olson LE, Zhang J, Taylor H, Rose DW, Rosenfeld MG. Barx2 functions through distinct corepressor classes to regulate hair follicle remodeling. Proc Natl Acad Sci U S A 2005; 102:3708-13. [PMID: 15728386 PMCID: PMC553323 DOI: 10.1073/pnas.0500519102] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hair-growth cycle, a complex biological system requiring coordinate alterations in gene expression and cellular behavior, provides a challenging model for investigating the interplay of specific transcriptional regulation events. Here we report that the Barx2 homeodomain factor serves as a regulator of hair follicle remodeling (catagen), and loss of Barx2 in mice causes a defect both in the initiation and progression of catagen, resulting in a protracted first catagen, and later, causing short hair in adult gene-deleted mice. Barx2 negatively regulates its own promoter, and our study highlights the role of Barx2 as a repressor in the skin that can, unexpectedly, functionally interact with two WD40-domain factors distantly related to the yeast corepressor Tup1. These two corepressors, transducin-like enhancer of split and transducin beta-like 1, function through distinct and independent interactions with Barx2 for the repression of gene targets, including the Barx2 gene itself, emphasizing the roles of complementary repression strategies in engrailed homology-1 motif-containing homeodomain factors. Together, our data suggest that the hair-remodeling defect of Barx2 mutant mice could be explained, in part, by failure to repress one or more critical target genes.
Collapse
Affiliation(s)
- Lorin E Olson
- Howard Hughes Medical Institute, Biomedical Sciences Graduate Program, University of California at San Diego School of Medicine, La Jolla, CA 92093-0648, USA
| | | | | | | | | |
Collapse
|
29
|
Lim J, Choi KW. Induction and autoregulation of the anti-proneural gene Bar during retinal neurogenesis in Drosophila. Development 2004; 131:5573-80. [PMID: 15496446 DOI: 10.1242/dev.01426] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurogenesis in Drosophila eye imaginal disc is controlled by interactions of positive and negative regulatory genes. The basic helix-loop-helix (bHLH) transcription factor Atonal (Ato) plays an essential proneural function in the morphogenetic furrow to induce the formation of R8 founder neurons. Bar homeodomain proteins are required for transcriptional repression of ato in the basal undifferentiated retinal precursor cells to prevent ectopic neurogenesis posterior to the furrow of the eye disc. Thus, precise regulation of Bar expression in the basal undifferentiated cells is crucial for neural patterning in the eye. We show evidence that Bar expression in the basal undifferentiated cells is regulated by at least three different pathways, depending on the developmental time and the position in the eye disc. First, at the time of furrow initiation, Bar expression is induced independent of Ato by Hedgehog (Hh) signaling from the posterior margin of the disc. Second, during furrow progression, Bar expression is also induced by Ato-dependent EGFR (epidermal growth factor receptor) signaling from the migrating furrow. Finally, once initiated, Bar expression can be maintained by positive autoregulation. Therefore, we propose that the domain of Bar expression for Ato repression is established and maintained by a combination of non autonomous Hh/EGFR signaling pathways and autoregulation of Bar.
Collapse
Affiliation(s)
- Janghoo Lim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
30
|
Yokota N, Mainprize TG, Taylor MD, Kohata T, Loreto M, Ueda S, Dura W, Grajkowska W, Kuo JS, Rutka JT. Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene 2004; 23:3444-53. [PMID: 15064731 DOI: 10.1038/sj.onc.1207475] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To increase our understanding of the molecular pathogenesis of medulloblastoma (MB), we utilized the technique of suppression subtractive hybridization (SSH) to identify genes that are dysregulated in MB when compared to cerebellum. SSH-enriched cDNA libraries from both human and Ptch+/- heterozygous murine MBs were generated by subtracting common cDNAs from corresponding non-neoplastic cerebellum. For the human classic MB library, total human cerebellar RNA was used as control tissue; for the Ptch+/- heterozygous MB, non-neoplastic cerebellum from an unaffected Ptch+/- littermate was used as the control. Through differential screening of these libraries, over 100 upregulated tumor cDNA fragments were isolated, sequenced and identified with the NCBI BLAST program. From these, we selected genes involved in cellular proliferation, antiapoptosis, and cerebellar differentiation for further analysis. Upregulated genes identified in the human MB library included Unc33-like protein (ULIP), SOX4, Neuronatin (NNAT), the mammalian homologue of Drosophila BarH-like 1(BARHL1), the nuclear matix protein NRP/B (ENC1), and the homeobox OTX2 gene. Genes found to be upregulated in the murine MB library included cyclin D2 (Ccnd2), thymopoietin (Tmpo), Musashi-1 (Msh1), protein phosphatase 2A inhibitor-2 (I-2pp2a), and Unc5h4(D). Using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR), the mRNA expression levels for these genes were markedly higher in human MBs than in cerebellum. Western blot analysis was used to further confirm the overexpression of a subset of these genes at the protein level. Notch pathway overactivity was demonstrated in the TE671 MB cell line expressing high levels of MSH1 through HES1-Luciferase transfections. This study has revealed a panel of developmentally regulated genes that may be involved in the pathogenesis of MB.
Collapse
Affiliation(s)
- Naoki Yokota
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li S, Qiu F, Xu A, Price SM, Xiang M. Barhl1 regulates migration and survival of cerebellar granule cells by controlling expression of the neurotrophin-3 gene. J Neurosci 2004; 24:3104-14. [PMID: 15044550 PMCID: PMC6729834 DOI: 10.1523/jneurosci.4444-03.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neurons generated at the germinal rhombic lip undergo long distance migration along divergent pathways to settle in widely dispersed locations within the hindbrain, giving rise to cerebellar granule cells and precerebellar nuclei. Neurotrophin-3 (NT-3) signaling has been shown to be required for proper migration and survival of cerebellar granule cells. The molecular bases that govern NT-3 expression within the cerebellum, however, remain unknown at present. Here we report that, during early mouse neurogenesis, the Barhl1 homeobox gene is highly expressed by the rhombic lip and rhombic lip-derived migratory neurons. Its expression is later restricted to cerebellar granule cells and precerebellar neurons extending mossy fibers, two groups of neurons that synaptically connect in the adult cerebellar system. Loss of Barhl1 function causes cerebellar phenotypes with a striking similarity to those of NT-3 conditional null mice, which include attenuated cerebellar foliation as well as defective radial migration and increased apoptotic death of granule cells. Correlating with these defects, we find that NT-3 expression is dramatically downregulated in granule cells of the posterior lobe of Barhl1(-)/- cerebella. Moreover, in the precerebellar system of Barhl1(-/-) mice, all five nuclei that project mossy fibers fail to form correctly because of aberrant neuronal migration and elevated apoptosis. These results suggest that Barhl1 plays an essential role in the migration and survival of cerebellar granule cells and precerebellar neurons and functionally link Barhl1 to the NT-3 signaling pathway during cerebellar development.
Collapse
Affiliation(s)
- Shengguo Li
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
32
|
Poggi L, Vottari T, Barsacchi G, Wittbrodt J, Vignali R. The homeobox gene Xbh1 cooperates with proneural genes to specify ganglion cell fate within the Xenopus neural retina. Development 2004; 131:2305-15. [PMID: 15102701 DOI: 10.1242/dev.01099] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies on vertebrate eye development have focused on the molecular mechanisms of specification of different retinal cell types during development. Only a limited number of genes involved in this process has been identified. In Drosophila, BarH genes are necessary for the correct specification of R1/R6 eye photoreceptors. Vertebrate Bar homologues have been identified and are expressed in vertebrate retinal ganglion cells during differentiation; however, their retinal function has not yet been addressed. In this study, we report on the role of the Xenopus Bar homologue Xbh1 in retinal ganglion cell development and its interaction with the proneural genes Xath5 and Xath3, whose ability to promote ganglion cell fate has been demonstrated. We show that XHB1plays a crucial role in retinal cell determination, acting as a switch towards ganglion cell fate. Detailed expression analysis, animal cap assays and in vivo lipofection assays, indicate that Xbh1 acts as a late transcriptional repressor downstream of the atonal genes Xath3 and Xath5. However, the action of Xbh1 on ganglion cell development is different and more specific than that of the Xath genes, and accounts for only a part of their activities during retinogenesis.
Collapse
Affiliation(s)
- Lucia Poggi
- Dipartimento di Fisiologia e Biochimica, Laboratorio di Biologia Cellulare e dello Sviluppo, Università di Pisa, 56010 Ghezzano, Pisa, Italy
| | | | | | | | | |
Collapse
|
33
|
Mo Z, Li S, Yang X, Xiang M. Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells. Development 2004; 131:1607-18. [PMID: 14998930 DOI: 10.1242/dev.01071] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mammalian retina contains numerous morphological and physiological subtypes of amacrine cells necessary for integrating and modulating visual signals presented to the output neurons. Among subtypes of amacrine cells grouped by neurotransmitter phenotypes, the glycinergic and gamma-aminobutyric acid (GABA)ergic amacrine cells constitute two major subpopulations. To date, the molecular mechanisms governing the specification of subtype identity of amacrine cells remain elusive. We report here that during mouse development, the Barhl2 homeobox gene displays an expression pattern in the nervous system that is distinct from that of its homologue Barhl1. In the developing retina, Barhl2 expression is found in postmitotic amacrine, horizontal and ganglion cells, while Barhl1 expression is absent. Forced expression of Barhl2 in retinal progenitors promotes the differentiation of glycinergic amacrine cells, whereas a dominant-negative form of Barhl2 has the opposite effect. By contrast, they exert no effect on the formation of GABAergic neurons. Moreover, misexpressed Barhl2 inhibits the formation of bipolar and Müller glial cells, indicating that Barhl2 is able to function both as a positive and negative regulator, depending on different types of cells. Taken together, our data suggest that Barhl2 may function to specify the identity of glycinergic amacrine cells from competent progenitors during retinogenesis.
Collapse
Affiliation(s)
- Zeqian Mo
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
34
|
Lim J, Choi KW. Bar homeodomain proteins are anti-proneural in the Drosophila eye: transcriptional repression of atonal by Bar prevents ectopic retinal neurogenesis. Development 2003; 130:5965-74. [PMID: 14573515 DOI: 10.1242/dev.00818] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Atonal (Ato)/Math (Mammalian atonal homolog) family proneural proteins are key regulators of neurogenesis in both vertebrates and invertebrates. In the Drosophila eye, Ato is essential for the generation of photoreceptor neurons. Ato expression is initiated at the anterior ridge of the morphogenetic furrow but is repressed in the retinal precursor cells behind the furrow to prevent ectopic neurogenesis. We show that Ato repression is mediated by the conserved homeobox proteins BarH1 and BarH2. Loss of Bar causes cell-autonomous ectopic Ato expression, resulting in excess photoreceptor clusters. The initial ommatidial spacing at the furrow occurs normally in the absence of Bar, suggesting that the ectopic neurogenesis within Bar mutant clones is not due to the lack of Notch (N)-dependent lateral inhibition. Targeted misexpression of Bar is sufficient to repress ato expression. Furthermore, we provide evidence that Bar represses ato expression at the level of transcription without affecting the expression of an ato activator, Cubitus interruptus (Ci). Thus, we propose that Bar is essential for transcriptional repression of ato and the prevention of ectopic neurogenesis behind the furrow.
Collapse
Affiliation(s)
- Janghoo Lim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
35
|
Cau E, Wilson SW. Ash1a and Neurogenin1 function downstream of Floating head to regulate epiphysial neurogenesis. Development 2003; 130:2455-66. [PMID: 12702659 DOI: 10.1242/dev.00452] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The homeodomain transcription factor Floating head (Flh) is required for the generation of neurones in the zebrafish epiphysis. It regulates expression of two basic helix loop helix (bHLH) transcription factor encoding genes, ash1a (achaete/scute homologue 1a) and neurogenin1 (ngn1), in epiphysial neural progenitors. We show that ash1a and ngn1 function in parallel redundant pathways to regulate neurogenesis downstream of flh. Comparison of the epiphysial phenotypes of flh mutant and of ash1a/ngn1 double morphants reveals that reduced expression of ash1a and ngn1 can account for most of the neurogenesis defects in the flh-mutant epiphysis but also shows that Flh has additional activities. Furthermore, different cell populations show different requirements for ash1a and ngn1 within the epiphysis. These populations do not simply correspond to the two described epiphysial cell types: photoreceptors and projection neurones. These results suggest that the genetic pathways that involve ash1a and ngn1 are common to both neuronal types.
Collapse
Affiliation(s)
- Elise Cau
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
36
|
Abstract
Commissural neurons in the spinal cord project their axons through the floor plate using a number of molecular interactions, such as netrins and their receptor DCC (deleted in colorectal cancer). However, the molecular cascades that control differentiation of commissural neurons are less characterized. A homeobox gene, MBH1 (mammalian BarH1) was expressed specifically in a subset of dorsal cells in the developing spinal cord. Transgenic mice that carried lacZ and MBH1-flanking genome sequences demonstrated that MBH1 was expressed by commissural neurons. To analyze the function of MBH1, we established an in vivo electroporation method for the transfer of DNA into the mouse spinal cord. Ectopic expression of MBH1 drove dorsal cells into the fate of commissural neurons with concomitant expression of TAG-1 (transiently expressed axonal surface glycoprotein 1) and DCC. Cells ectopically expressing MBH1 migrated to the deep dorsal horn, in which endogenous MBH1-positive cells accumulated. These results suggest that MBH1 functions upstream of TAG-1 and DCC and is involved in the fate determination of commissural neurons in the spinal cord.
Collapse
|
37
|
Poggi L, Carl M, Vignali R, Barsacchi G, Wittbrodt J. Expression of a medaka (Oryzias latipes) Bar homologue in the differentiating central nervous system and retina. Mech Dev 2002; 114:193-6. [PMID: 12175510 DOI: 10.1016/s0925-4773(02)00054-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Bar homeobox genes play an essential role during nervous system and eye development in Drosophila. We isolated a medaka Bar gene closely related to the Drosophila and mammalian Bar genes. In the medaka embryo, OlBar is expressed from gastrula stages onwards, in a region demarcating the presumptive prosencephalic-mesencephalic boundary. Later in development, OlBar transcripts are found in populations of differentiating neuronal cells of the brain and the retina.
Collapse
Affiliation(s)
- Lucia Poggi
- Dipartimento di Fisiologia e Biochimica, Laboratori di Biologia Cellulare e dello Sviluppo, Universita di Pisa, Via G. Carducci 13, Pisa, Italy
| | | | | | | | | |
Collapse
|
38
|
Takebayashi H, Ohtsuki T, Uchida T, Kawamoto S, Okubo K, Ikenaka K, Takeichi M, Chisaka O, Nabeshima YI. Non-overlapping expression of Olig3 and Olig2 in the embryonic neural tube. Mech Dev 2002; 113:169-74. [PMID: 11960707 DOI: 10.1016/s0925-4773(02)00021-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Olig family is a novel sub-family of basic helix-loop-helix transcription factors recently identified. Olig1 and Olig2 were first reported to promote oligodendrocyte differentiation, and later Olig2 was reported to be involved in motoneuron specification as well. Olig3 was isolated as a third member of Olig family, but its precise expression pattern is poorly understood. Here, we describe detailed Olig3 expression analyses in the neural tube of embryonic mice. Olig3 was first detected in the dorsal neural tube from the midbrain/hindbrain boundary to the spinal cord. In E11.5 spinal cord, Olig3 was transiently expressed in the lateral margin of the subventricular zone as three ventral clusters at the level of the p3, p2 and p0 domains, as well as in the dorsal neural tube. Olig3 was co-expressed with Nkx2.2 in the lateral margin of the p3 domain. In forebrain, Olig3 was expressed in the dorsal thalamus while Olig2 was complementarily expressed in the ventral thalamus with an adjacent boundary at E12.5. Olig3 is specifically and transiently expressed in different types of progenitors of embryonic central nervous system and then disappears in the course of development.
Collapse
Affiliation(s)
- Hirohide Takebayashi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Yoshida, Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mina M. Regulation of mandibular growth and morphogenesis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:276-300. [PMID: 11603502 DOI: 10.1177/10454411010120040101] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The development of the vertebrate face is a dynamic process that starts with the formation of facial processes/prominences. Facial processes are small buds made up of mesenchymal masses enclosed by an epithelial layer that surround the primitive mouth. The 2 maxillary processes, the 2 lateral nasal processes, and the frontonasal processes form the upper jaw. The lower jaw is formed by the 2 mandibular processes. Although the question of the embryonic origin of facial structures has received considerable attention, the mechanisms that control differential growth of the facial processes and patterning of skeletal tissues within these structures have been difficult to study and still are not well-understood. This has been partially due to the lack of readily identifiable morphologically discrete regions in the developing face that regulate patterning of the face. Nonetheless, in recent years there has been significant progress in the understanding of the signaling network controlling the patterning and development of the face (for review, see Richman et al., 1991; Francis-West et al., 1998). This review focuses on current understanding of the processes and signaling molecules that are involved in the formation of the mandibular arch.
Collapse
Affiliation(s)
- M Mina
- Department of Pediatric Dentistry, School of Dental Medicine, University of Connecticut Health Center, Farmington 06030, USA.
| |
Collapse
|
40
|
Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY. Proprioceptor pathway development is dependent on Math1. Neuron 2001; 30:411-22. [PMID: 11395003 DOI: 10.1016/s0896-6273(01)00305-1] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proprioceptive system provides continuous positional information on the limbs and body to the thalamus, cortex, pontine nucleus, and cerebellum. We showed previously that the basic helix-loop-helix transcription factor Math1 is essential for the development of certain components of the proprioceptive pathway, including inner-ear hair cells, cerebellar granule neurons, and the pontine nuclei. Here, we demonstrate that Math1 null embryos lack the D1 interneurons and that these interneurons give rise to a subset of proprioceptor interneurons and the spinocerebellar and cuneocerebellar tracts. We also identify three downstream genes of Math1 (Lh2A, Lh2B, and Barhl1) and establish that Math1 governs the development of multiple components of the proprioceptive pathway.
Collapse
Affiliation(s)
- N A Bermingham
- Howard Hughes Medical Institute, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Nakamura M, Nishida W, Mori S, Hiwada K, Hayashi K, Sobue K. Transcriptional Activation of β-Tropomyosin Mediated by Serum Response Factor and a Novel Barx Homologue, Barx1b, in Smooth Muscle Cells. J Biol Chem 2001; 276:18313-20. [PMID: 11359793 DOI: 10.1074/jbc.m101127200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tropomyosin (TM) is a regulatory protein of actomyosin system. Muscle type-specific expression of TM isoforms is generated from different genes and by alternative splicing. beta-TM isoforms in chicken skeletal and smooth muscles are encoded by a single gene and transcribed from the same promoter. We previously reported a smooth muscle cell (SMC) phenotype-dependent change in beta-TM expression (Kashiwada, K., Nishida, W., Hayashi, K., Ozawa, K., Yamanaka, Y., Saga, H., Yamashita, T., Tohyama, M., Shimada, S., Sato, K., and Sobue, K. (1997) J. Biol. Chem. 272, 15396-15404), and identified beta-TM as an SMC-differentiation marker. Here, we characterized the transcriptional machinery of the beta-TM gene in SMCs. Promoter and gel mobility shift analyses revealed an obligatory role for serum response factor and its interaction with the CArG box sequence in the SMC-specific transcription of the beta-TM gene in differentiated SMCs. We further isolated a novel homologue of the Barx homeoprotein family, Barx1b, from chicken gizzard. Barx1b was exclusively localized to SMCs of the upper digestive organs and their attached arteries and to craniofacial structures. Serum response factor and Barx1b bound each other directly, coordinately transactivated the beta-TM gene in differentiated SMCs and heterologous cells, and formed a ternary complex with a CArG probe. Taken together, these results suggest that SRF and Barx1b are coordinately involved in the SMC-specific transcription of the beta-TM gene in the upper digestive organs and their attached arteries.
Collapse
Affiliation(s)
- M Nakamura
- Department of Neuroscience (D13), Biomedical Research Center, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Gould DB, Walter MA. Cloning, characterization, localization, and mutational screening of the human BARX1 gene. Genomics 2000; 68:336-42. [PMID: 10995576 DOI: 10.1006/geno.2000.6307] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Bar subclass of homeodomain proteins was first identified for its role in Drosophila eye development. The Bar subclass homolog, Barx1, has since been cloned in mouse and in chick. The expression of Barx1 in developing teeth and craniofacial mesenchyme of neural crest origin makes it a strong candidate for the related human disorders of Axenfeld-Reiger syndrome (ARS) and iridogoniodysgenesis syndrome (IGDS). Here we report the cloning and characterization of a novel human Bar class gene, human BARX1. Screening of a human fetal craniofacial library resulted in the isolation of a 1.6-kb full-length transcript. Sequence analysis indicated that human BARX1, mouse Barx1, and chick Barx1 show 100% identity at the amino acid level within their homeodomains. Human BARX1 is expressed in a number of tissues including testis and heart by Northern analysis and in iris and craniofacial tissues by PCR of cDNA libraries. BARX1 chromosomal localization to 9q12 was determined by radiation hybrid mapping. Intron/exon boundaries were established, and primers were generated to PCR amplify all four exons. A mutation screen was conducted in 55 patients affected with ARS, IGDS, or related ocular malformations. While six sequence polymorphisms were detected, no disease-causing mutations of BARX1 were observed.
Collapse
Affiliation(s)
- D B Gould
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | |
Collapse
|
43
|
Edelman DB, Meech R, Jones FS. The homeodomain protein Barx2 contains activator and repressor domains and interacts with members of the CREB family. J Biol Chem 2000; 275:21737-45. [PMID: 10781615 DOI: 10.1074/jbc.m909998199] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Barx1 and Barx2 are homeodomain proteins originally identified using regulatory elements of genes encoding certain cell adhesion molecules (CAMs). In the present study, we characterize regions of Barx2 that bind to regulatory elements of genes encoding three CAMs, L1, neuron-glia CAM (Ng-CAM), and neural CAM (N-CAM), and identify domains of Barx2 that regulate N-CAM transcription. The homeodomain of Barx2 was sufficient for binding to homeodomain binding sites (HBS) from all three CAM genes. The presence of a 17-amino acid Barx basic region resulted in a 2-fold decrease in binding to HBS sequences from the Ng-CAM and L1 genes, whereas it led to a 6.5-fold increase in binding to the HBS from the N-CAM promoter. Thus, the Barx basic region influences the strength and specificity of Barx2 binding to DNA. In co-transfection experiments, Barx2 repressed N-CAM promoter activity. A 24-residue N-terminal region of Barx2 was essential for repression. When this region was absent, Barx2 activated the N-CAM promoter. A 63-residue C-terminal domain was required for this activation. In GST pull-down experiments, Barx2 bound to proteins of the CREB family, CREB1 and ATF2. Overall, these findings provide a framework for understanding developmental and physiological contexts that influence repressor or activator functions of Barx2.
Collapse
Affiliation(s)
- D B Edelman
- Neurosciences Institute, San Diego, California 92121 and the Department of Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
44
|
White PM, Anderson DJ. In vivo transplantation of mammalian neural crest cells into chick hosts reveals a new autonomic sublineage restriction. Development 1999; 126:4351-63. [PMID: 10477302 DOI: 10.1242/dev.126.19.4351] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The study of mammalian neural crest development has been limited by the lack of an accessible system for in vivo transplantation of these cells. We have developed a novel transplantation system to study lineage restriction in the rodent neural crest. Migratory rat neural crest cells (NCCs), transplanted into chicken embryos, can differentiate into sensory, sympathetic, and parasympathetic neurons, as shown by the expression of neuronal subtype-specific and pan-neuronal markers, as well as into Schwann cells and satellite glia. In contrast, an immunopurified population of enteric neural precursors (ENPs) from the fetal gut can also generate neurons in all of these ganglia, but only expresses appropriate neuronal subtype markers in Remak's and associated pelvic parasympathetic ganglia. ENPs also appear restricted in the kinds of glia they can generate in comparison to NCCs. Thus ENPs have parasympathetic and presumably enteric capacities, but not sympathetic or sensory capacities. These results identify a new autonomic lineage restriction in the neural crest, and suggest that this restriction preceeds the choice between neuronal and glial fates.
Collapse
Affiliation(s)
- P M White
- Division of Biology 216-76, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
45
|
Abstract
Reports from the past year have demonstrated that neural basic helix-loop-helix genes and LIM homeobox genes contribute to neuronal subtype specification in vertebrates and invertebrates, that Notch signaling specifies cell fates in the developing vertebrate inner ear, and that the organization of the central nervous system into three columns is shared by vertebrates and invertebrates. These findings pave the way for future work that will help to establish the extent to which these similarities represent evolutionary conservation.
Collapse
Affiliation(s)
- Y M Chan
- Howard Hughes Medical Institute Departments of Physiology and Biochemistry University of California, San Francisco 94143-0725, USA.
| | | |
Collapse
|
46
|
Smith DM, Tabin CJ. Chick Barx2b, a marker for myogenic cells also expressed in branchial arches and neural structures. Mech Dev 1999; 80:203-6. [PMID: 10072789 DOI: 10.1016/s0925-4773(98)00216-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have isolated a new chicken gene, cBarx2b, which is related to mBarx2 in sequence, although the expression patterns of the two genes are quite different from one another. The cBarx2b gene is expressed in craniofacial structures, regions of the neural tube, and muscle groups in the limb, neck and cloaca. Perturbation of anterior muscle pattern by application of Sonic Hedgehog protein results in a posteriorization of cBarx2b expression.
Collapse
Affiliation(s)
- D M Smith
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
47
|
Patterson KD, Krieg PA. Hox11-family genes XHox11 and XHox11L2 in xenopus: XHox11L2 expression is restricted to a subset of the primary sensory neurons. Dev Dyn 1999; 214:34-43. [PMID: 9915574 DOI: 10.1002/(sici)1097-0177(199901)214:1<34::aid-dvdy4>3.0.co;2-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The mouse genome contains a small family of homeobox genes related to Hox11, but relatively little is known about the expression of these genes during early development. Hox11 itself is expressed in the embryonic spleen, among other tissues, and is required for its formation. No description of Hox11L2 expression has been presented previously. We have isolated the Xenopus orthologs of Hox11 and Hox11L2 and have carefully compared their expression patterns during embryogenesis. The localization of Xhox11 transcripts in the branchial arches, cranial sensory ganglia and spinal cord is similar, but not identical, to that of mouse Hox11. Xhox11 expression is not detected in the developing spleen. XHox11L2 is expressed exclusively in a portion of the primary sensory system in the frog embryo, including the cranial sensory ganglia and the Rohon-Beard sensory neurons. There is significant overlap in the patterns of Xhox11 and XHox11L2 expression in the spinal cord and cranial sensory ganglia during early development, suggesting that they may function redundantly in these tissues. The timing of Xhox11 and Xhox11L2 expression indicates that Hox11-family members may participate in the final stages of the differentiation process.
Collapse
Affiliation(s)
- K D Patterson
- Center for Developmental Biology, Zoology Department, University of Texas at Austin, 78712, USA
| | | |
Collapse
|