1
|
Yan Z, Pu X, Chang X, Liu Z, Liu R. Genetic basis and causal relationship between atrial fibrillation and sinus node dysfunction: Evidence from comprehensive genetic analysis. Int J Cardiol 2025; 418:132609. [PMID: 39389108 DOI: 10.1016/j.ijcard.2024.132609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) and sinus node dysfunction (SND) are commonly observed together clinically. However, little is known about the genetic background and causal relationship between the two. METHODS Firstly, we investigated the global and local genetic correlations between AF and SND using LDSC and HESS. Then, we identified shared "Novel SNPs" between AF and SND through two complementary cross-trait meta-analyses and mapped the "pleiotropic genes" behind these SNPs, validated by colocalization analysis. Additionally, we explored the degree of genetic enrichment of SNPs in specific tissues using LDSC-SEG and MAGMA, and identified potential functional genes in tissues using summary data-based Mendelian randomization (SMR). Finally, two-sample Mendelian randomization (TSMR) and multivariable Mendelian randomization (MVMR) were used to explore the causal relationship between AF and SND. RESULTS Both global and local genetic correlation analyses revealed a high positive genetic correlation between AF and SND. HESS identified 9 shared loci, with chr4(q25-q26) and chr11(p11.12-q11) being prominent. Cross-trait meta-analysis and colocalization analysis identified ENPEP and PITX2 as novel pleiotropic genes. MAGMA revealed genetic enrichment of SNPs for AF and SND in the "Heart Left Ventricle" and "Heart Atrial Appendage" tissues, with CEP68 and BEST3 identified as potential functional genes through SMR. MR analysis indicated that AF increases the risk of SND, even after adjusting for confounding factors. CONCLUSION This study provides genetic evidence for the increased risk of SND associated with AF, identifying multiple shared risk loci and enriched tissues, and discovering 2 novel pleiotropic genes and 2 new functional genes.
Collapse
Affiliation(s)
- Zhaoqi Yan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Heriot-Watt University, Edinburgh, United Kingdom
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Reyat JS, Sommerfeld LC, O’Reilly M, Roth Cardoso V, Thiemann E, Khan AO, O’Shea C, Harder S, Müller C, Barlow J, Stapley RJ, Chua W, Kabir SN, Grech O, Hummel O, Hübner N, Kääb S, Mont L, Hatem SN, Winters J, Zeemering S, Morgan NV, Rayes J, Gehmlich K, Stoll M, Brand T, Schweizer M, Piasecki A, Schotten U, Gkoutos GV, Lorenz K, Cuello F, Kirchhof P, Fabritz L. PITX2 deficiency leads to atrial mitochondrial dysfunction. Cardiovasc Res 2024; 120:1907-1923. [PMID: 39129206 PMCID: PMC11630043 DOI: 10.1093/cvr/cvae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/27/2024] [Accepted: 05/23/2024] [Indexed: 08/13/2024] Open
Abstract
AIMS Reduced left atrial PITX2 is associated with atrial cardiomyopathy and atrial fibrillation (AF). PITX2 is restricted to left atrial cardiomyocytes (aCMs) in the adult heart. The links between PITX2 deficiency, atrial cardiomyopathy, and AF are not fully understood. METHODS AND RESULTS To identify mechanisms linking PITX2 deficiency to AF, we generated and characterized PITX2-deficient human aCMs derived from human induced pluripotent stem cells (hiPSC) and their controls. PITX2-deficient hiPSC-derived atrial cardiomyocytes showed shorter and disorganized sarcomeres and increased mononucleation. Electron microscopy found an increased number of smaller mitochondria compared with isogenic controls. Mitochondrial protein expression was altered in PITX2-deficient hiPSC-derived atrial cardiomyocytes. Single-nuclear RNA-sequencing found differences in cellular respiration pathways and differentially expressed mitochondrial and ion channel genes in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2 repression in hiPSC-derived atrial cardiomyocytes replicated dysregulation of cellular respiration. Mitochondrial respiration was shifted to increased glycolysis in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2-deficient human hiPSC-derived atrial cardiomyocytes showed higher spontaneous beating rates. Action potential duration was more variable with an overall prolongation of early repolarization, consistent with metabolic defects. Gene expression analyses confirmed changes in mitochondrial genes in left atria from 42 patients with AF compared with 43 patients with sinus rhythm. Dysregulation of left atrial mitochondrial (COX7C) and metabolic (FOXO1) genes was associated with PITX2 expression in human left atria. CONCLUSION PITX2 deficiency causes atrial mitochondrial dysfunction and a metabolic shift to glycolysis in human aCMs. PITX2-dependent metabolic changes can contribute to the structural and functional defects found in PITX2-deficient atria.
Collapse
Affiliation(s)
- Jasmeet S Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK
| | - Laura C Sommerfeld
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- University Center of Cardiovascular Sciences, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Molly O’Reilly
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Victor Roth Cardoso
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Institute of Cancer Genomics, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Ellen Thiemann
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Sönke Harder
- Institut für Klinische Chemie und Laboratoriumsmedizin, Massenspektrometrische Proteomanalytik, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christian Müller
- UKE Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jonathan Barlow
- Cellular Health and Metabolism Facility, College of Life and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Rachel J Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Winnie Chua
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Olivia Grech
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Oliver Hummel
- Max Delbrück Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Norbert Hübner
- Max Delbrück Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charite—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University of Munich (LMU), Marchioninistraße 15, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Lluis Mont
- Hospital Clínic, Universitat de Barcelona, Villarroel, 170, 08036, Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica, August Pi- i Sunyer, Roselló, 149-153, 08036 Barcelona, Catalonia, Spain
- Centro Investigación Biomedica en Red Cardiovascular, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Stéphane N Hatem
- INSERM UMRS1166, ICAN—Institute of Cardiometabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, 91 Boulevard de l’Hôpital, 75013 Paris, France
| | - Joris Winters
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Minderbroedersberg 4-66211 LK Maastricht, The Netherlands
| | - Stef Zeemering
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Minderbroedersberg 4-66211 LK Maastricht, The Netherlands
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, WWU Münster, Albert-Schweitzer-Campus 1, D3, Domagkstraße 3, 48149 Münster, Germany
- Cardiovascular Research Institute Maastricht, Genetic Epidemiology and Statistical Genetics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Michaela Schweizer
- Department of Morphology and Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Angelika Piasecki
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Minderbroedersberg 4-66211 LK Maastricht, The Netherlands
| | - Georgios V Gkoutos
- Institute of Cancer Genomics, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., ISAS City, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Friederike Cuello
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Wolfson Drive, B15 2TT Birmingham, UK
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- University Center of Cardiovascular Sciences, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Caño-Carrillo S, Garcia-Padilla C, Aranega AE, Lozano-Velasco E, Franco D. Mef2c- and Nkx2-5-Divergent Transcriptional Regulation of Chick WT1_76127 and Mouse Gm14014 lncRNAs and Their Implication in Epicardial Cell Migration. Int J Mol Sci 2024; 25:12904. [PMID: 39684625 DOI: 10.3390/ijms252312904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium. A subset of these embryonic epicardial cells migrate and colonize the embryonic myocardium, contributing to the formation of distinct cell types. In recent years, our understanding of the molecular mechanisms that govern proepicardium and embryonic epicardium formation has greatly increased. We have recently witnessed the discovery of a novel layer of complexity governing gene regulation with the discovery of non-coding RNAs. Our laboratory recently identified three distinct lncRNAs, adjacent to the Wt1, Bmp4 and Fgf8 chicken gene loci, with enhanced expression in the proepicardium that are distinctly regulated by Bmp, Fgf and thymosin β4, providing support for their plausible implication in epicardial formation. The expression of lncRNAs was analyzed in different chicken and mouse tissues as well as their subcellular distribution in chicken proepicardial, epicardial, ventricle explants and in different murine cardiac cell types. lncRNA transcriptional regulation was analyzed by using siRNAs and expression vectors of different transcription factors in chicken and mouse models, whereas antisense oligonucleotides were used to inhibit Gm14014 expression. Furthermore, RT-qPCR, immunocytochemistry, RNA pulldown, Western blot, viability and cell migration assays were conducted to investigate the biological functions of Wt1_76127 and Gm14014. We demonstrated that Wt1_76127 in chicken and its putative conserved homologue Gm14014 in mice are widely distributed in different embryonic and adult tissues and distinctly regulated by cardiac-enriched transcription factors, particularly Mef2c and Nkx2.5. Furthermore, silencing assays demonstrated that mouse Gm14014, but not chicken Wt1_76127, is essential for epicardial, but not endocardial or myocardial, cell migration. Such processes are governed by partnering with Myl9, promoting cytoskeletal remodeling. Our data show that Gm14014 plays a pivotal role in epicardial cell migration essential for heart regeneration under these experimental conditions.
Collapse
Affiliation(s)
- Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Amelia E Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| |
Collapse
|
4
|
Iwamiya S, Ihara K, Nitta G, Sasano T. Atrial Fibrillation and Underlying Structural and Electrophysiological Heterogeneity. Int J Mol Sci 2024; 25:10193. [PMID: 39337682 PMCID: PMC11432636 DOI: 10.3390/ijms251810193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
As atrial fibrillation (AF) progresses from initial paroxysmal episodes to the persistent phase, maintaining sinus rhythm for an extended period through pharmacotherapy and catheter ablation becomes difficult. A major cause of the deteriorated treatment outcome is the atrial structural and electrophysiological heterogeneity, which AF itself can exacerbate. This heterogeneity exists or manifests in various dimensions, including anatomically segmental structural features, the distribution of histological fibrosis and the autonomic nervous system, sarcolemmal ion channels, and electrophysiological properties. All these types of heterogeneity are closely related to the development of AF. Recognizing the heterogeneity provides a valuable approach to comprehending the underlying mechanisms in the complex excitatory patterns of AF and the determining factors that govern the seemingly chaotic propagation. Furthermore, substrate modification based on heterogeneity is a potential therapeutic strategy. This review aims to consolidate the current knowledge on structural and electrophysiological atrial heterogeneity and its relation to the pathogenesis of AF, drawing insights from clinical studies, animal and cell experiments, molecular basis, and computer-based approaches, to advance our understanding of the pathophysiology and management of AF.
Collapse
Affiliation(s)
- Satoshi Iwamiya
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kensuke Ihara
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Giichi Nitta
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
5
|
Vetriselvan Y, Manoharan A, Murugan M, Jayakumar S, Govindasamy C, Ravikumar S. In Silico Characterization of Pathogenic Homeodomain Missense Mutations in the PITX2 Gene. Biochem Genet 2024:10.1007/s10528-024-10836-z. [PMID: 38802693 DOI: 10.1007/s10528-024-10836-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Paired homologous domain transcription factor 2 (PITX2) is critically involved in ocular and cardiac development. Mutations in PITX2 are consistently reported in association with Axenfeld-Rieger syndrome, an autosomal dominant genetic disorder and atrial fibrillation, a common cardiac arrhythmia. In this study, we have mined missense mutations in PITX2 gene from NCBI-dbSNP and Ensembl databases, evaluated the pathogenicity of the missense variants in the homeodomain and C-terminal region using five in silico prediction tools SIFT, PolyPhen2, GERP, Mutation Assessor and CADD. Fifteen homeodomain mutations G42V, G42R, R45W, S49Y, R53W, E53D, E55V, R62H, P65S, R69H, G75R, R84G, R86K, R87W, R91P were found to be highly pathogenic by both SIFT, PolyPhen2 were further functionally characterized using I-Mutant 2.0, Consurf, MutPred and Project Hope. The findings of the study can be used for prioritizing mutations in the context of genetic studies.
Collapse
Affiliation(s)
- Yogesh Vetriselvan
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India
| | - Aarthi Manoharan
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India
| | - Manoranjani Murugan
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India
| | - Swetha Jayakumar
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, 11433, Riyadh, Saudi Arabia
| | - Sambandam Ravikumar
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India.
| |
Collapse
|
6
|
Lee C, Xu S, Samad T, Goodyer WR, Raissadati A, Heinrich P, Wu SM. The cardiac conduction system: History, development, and disease. Curr Top Dev Biol 2024; 156:157-200. [PMID: 38556422 DOI: 10.1016/bs.ctdb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The heart is the first organ to form during embryonic development, establishing the circulatory infrastructure necessary to sustain life and enable downstream organogenesis. Critical to the heart's function is its ability to initiate and propagate electrical impulses that allow for the coordinated contraction and relaxation of its chambers, and thus, the movement of blood and nutrients. Several specialized structures within the heart, collectively known as the cardiac conduction system (CCS), are responsible for this phenomenon. In this review, we discuss the discovery and scientific history of the mammalian cardiac conduction system as well as the key genes and transcription factors implicated in the formation of its major structures. We also describe known human diseases related to CCS development and explore existing challenges in the clinical context.
Collapse
Affiliation(s)
- Carissa Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Sidra Xu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Tahmina Samad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States; Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - William R Goodyer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alireza Raissadati
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Paul Heinrich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Cardiology, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
7
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. Human Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:3-55. [PMID: 38884703 DOI: 10.1007/978-3-031-44087-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Many aspects of heart development are topographically complex and require three-dimensional (3D) reconstruction to understand the pertinent morphology. We have recently completed a comprehensive primer of human cardiac development that is based on firsthand segmentation of structures of interest in histological sections. We visualized the hearts of 12 human embryos between their first appearance at 3.5 weeks and the end of the embryonic period at 8 weeks. The models were presented as calibrated, interactive, 3D portable document format (PDF) files. We used them to describe the appearance and the subsequent remodeling of around 70 different structures incrementally for each of the reconstructed stages. In this chapter, we begin our account by describing the formation of the single heart tube, which occurs at the end of the fourth week subsequent to conception. We describe its looping in the fifth week, the formation of the cardiac compartments in the sixth week, and, finally, the septation of these compartments into the physically separated left- and right-sided circulations in the seventh and eighth weeks. The phases are successive, albeit partially overlapping. Thus, the basic cardiac layout is established between 26 and 32 days after fertilization and is described as Carnegie stages (CSs) 9 through 14, with development in the outlet component trailing that in the inlet parts. Septation at the venous pole is completed at CS17, equivalent to almost 6 weeks of development. During Carnegie stages 17 and 18, in the seventh week, the outflow tract and arterial pole undergo major remodeling, including incorporation of the proximal portion of the outflow tract into the ventricles and transfer of the spiraling course of the subaortic and subpulmonary channels to the intrapericardial arterial trunks. Remodeling of the interventricular foramen, with its eventual closure, is complete at CS20, which occurs at the end of the seventh week. We provide quantitative correlations between the age of human and mouse embryos as well as the Carnegie stages of development. We have also set our descriptions in the context of variations in the timing of developmental features.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Present address: Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. A pictorial account of the human embryonic heart between 3.5 and 8 weeks of development. Commun Biol 2022; 5:226. [PMID: 35277594 PMCID: PMC8917235 DOI: 10.1038/s42003-022-03153-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is topographically complex and requires visualization to understand its progression. No comprehensive 3-dimensional primer of human cardiac development is currently available. We prepared detailed reconstructions of 12 hearts between 3.5 and 8 weeks post fertilization, using Amira® 3D-reconstruction and Cinema4D®-remodeling software. The models were visualized as calibrated interactive 3D-PDFs. We describe the developmental appearance and subsequent remodeling of 70 different structures incrementally, using sequential segmental analysis. Pictorial timelines of structures highlight age-dependent events, while graphs visualize growth and spiraling of the wall of the heart tube. The basic cardiac layout is established between 3.5 and 4.5 weeks. Septation at the venous pole is completed at 6 weeks. Between 5.5 and 6.5 weeks, as the outflow tract becomes incorporated in the ventricles, the spiraling course of its subaortic and subpulmonary channels is transferred to the intrapericardial arterial trunks. The remodeling of the interventricular foramen is complete at 7 weeks.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
10
|
Mohenska M, Tan NM, Tokolyi A, Furtado MB, Costa MW, Perry AJ, Hatwell-Humble J, van Duijvenboden K, Nim HT, Ji YMM, Charitakis N, Bienroth D, Bolk F, Vivien C, Knaupp AS, Powell DR, Elliott DA, Porrello ER, Nilsson SK, Del Monte-Nieto G, Rosenthal NA, Rossello FJ, Polo JM, Ramialison M. 3D-cardiomics: A spatial transcriptional atlas of the mammalian heart. J Mol Cell Cardiol 2021; 163:20-32. [PMID: 34624332 DOI: 10.1016/j.yjmcc.2021.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022]
Abstract
Understanding the spatial gene expression and regulation in the heart is key to uncovering its developmental and physiological processes, during homeostasis and disease. Numerous techniques exist to gain gene expression and regulation information in organs such as the heart, but few utilize intuitive true-to-life three-dimensional representations to analyze and visualise results. Here we combined transcriptomics with 3D-modelling to interrogate spatial gene expression in the mammalian heart. For this, we microdissected and sequenced transcriptome-wide 18 anatomical sections of the adult mouse heart. Our study has unveiled known and novel genes that display complex spatial expression in the heart sub-compartments. We have also created 3D-cardiomics, an interface for spatial transcriptome analysis and visualization that allows the easy exploration of these data in a 3D model of the heart. 3D-cardiomics is accessible from http://3d-cardiomics.erc.monash.edu/.
Collapse
Affiliation(s)
- Monika Mohenska
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Nathalia M Tan
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Alex Tokolyi
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Milena B Furtado
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; The Jackson Laboratory, Bar Harbor, ME, USA
| | - Mauro W Costa
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; The Jackson Laboratory, Bar Harbor, ME, USA
| | - Andrew J Perry
- Monash Bioinformatics Platform, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Jessica Hatwell-Humble
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Australia
| | | | - Hieu T Nim
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; Faculty of Information Technology, Monash University, Clayton, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Systems Biology Institute Australia, Clayton, Victoria, Australia
| | - Yuan M M Ji
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Natalie Charitakis
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Denis Bienroth
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Francesca Bolk
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Celine Vivien
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Anja S Knaupp
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - David A Elliott
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - Susan K Nilsson
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; Biomedical Manufacturing, CSIRO Manufacturing, Bag 10, Clayton South, Australia
| | - Gonzalo Del Monte-Nieto
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Nadia A Rosenthal
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; The Jackson Laboratory, Bar Harbor, ME, USA; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia.
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia.
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia; The Jackson Laboratory, Bar Harbor, ME, USA; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Systems Biology Institute Australia, Clayton, Victoria, Australia.
| |
Collapse
|
11
|
Shewale B, Dubois N. Of form and function: Early cardiac morphogenesis across classical and emerging model systems. Semin Cell Dev Biol 2021; 118:107-118. [PMID: 33994301 PMCID: PMC8434962 DOI: 10.1016/j.semcdb.2021.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022]
Abstract
The heart is the earliest organ to develop during embryogenesis and is remarkable in its ability to function efficiently as it is being sculpted. Cardiac heart defects account for a high burden of childhood developmental disorders with many remaining poorly understood mechanistically. Decades of work across a multitude of model organisms has informed our understanding of early cardiac differentiation and morphogenesis and has simultaneously opened new and unanswered questions. Here we have synthesized current knowledge in the field and reviewed recent developments in the realm of imaging, bioengineering and genetic technology and ex vivo cardiac modeling that may be deployed to generate more holistic models of early cardiac morphogenesis, and by extension, new platforms to study congenital heart defects.
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
12
|
Differential Spatio-Temporal Regulation of T-Box Gene Expression by microRNAs during Cardiac Development. J Cardiovasc Dev Dis 2021; 8:jcdd8050056. [PMID: 34068962 PMCID: PMC8156480 DOI: 10.3390/jcdd8050056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular development is a complex process that starts with the formation of symmetrically located precardiac mesodermal precursors soon after gastrulation and is completed with the formation of a four-chambered heart with distinct inlet and outlet connections. Multiple transcriptional inputs are required to provide adequate regional identity to the forming atrial and ventricular chambers as well as their flanking regions; i.e., inflow tract, atrioventricular canal, and outflow tract. In this context, regional chamber identity is widely governed by regional activation of distinct T-box family members. Over the last decade, novel layers of gene regulatory mechanisms have been discovered with the identification of non-coding RNAs. microRNAs represent the most well-studied subcategory among short non-coding RNAs. In this study, we sought to investigate the functional role of distinct microRNAs that are predicted to target T-box family members. Our data demonstrated a highly dynamic expression of distinct microRNAs and T-box family members during cardiogenesis, revealing a relatively large subset of complementary and similar microRNA-mRNA expression profiles. Over-expression analyses demonstrated that a given microRNA can distinctly regulate the same T-box family member in distinct cardiac regions and within distinct temporal frameworks, supporting the notion of indirect regulatory mechanisms, and dual luciferase assays on Tbx2, Tbx3 and Tbx5 3' UTR further supported this notion. Overall, our data demonstrated a highly dynamic microRNA and T-box family members expression during cardiogenesis and supported the notion that such microRNAs indirectly regulate the T-box family members in a tissue- and time-dependent manner.
Collapse
|
13
|
Novel PITX2 Homeodomain-Contained Mutations from ATRIAL Fibrillation Patients Deteriorate Calcium Homeostasis. HEARTS 2021. [DOI: 10.3390/hearts2020020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia in the human population, with an estimated incidence of 1–2% in young adults but increasing to more than 10% in 80+ years patients. Pituitary Homeobox 2, Paired Like Homeodomain 2 (PITX2c) loss-of-function in mice revealed that this homeodomain (HD)-containing transcription factor plays a pivotal role in atrial electrophysiology and calcium homeostasis and point to PITX2 as a candidate gene for AF. To address this issue, we recruited 31 AF patients for genetic analyses of both the known risk alleles and PITX2c open reading frame (ORF) re-sequencing. We found two-point mutations in the homedomain of PITX2 and three other variants in the 5’untranslated region. A 65 years old male patient without 4q25 risk variants but with recurrent AF displayed two distinct HD-mutations, NM_000325.5:c.309G>C (Gln103His) and NM_000325.5:c.370G>A (Glu124Lys), which both resulted in a change within a highly conserved amino acid position. To address the functional impact of the PITX2 HD mutations, we generated plasmid constructs with mutated version of each nucleotide variant (MD4 and MD5, respectively) as well as a dominant negative control construct in which the PITX2 HD was lacking (DN). Functional analyses demonstrated PITX2c MD4 and PITX2c MD5 decreased Nppa-luciferase transactivation by 50% and 40%, respectively, similar to the PITX2c DN (50%), while Shox2 promoter repression was also impaired. Co-transactivation with other cardiac-enriched co-factors, such as Gata4 and Nkx2.5, was similarly impaired, further supporting the pivotal role of these mutations for correct PITX2c function. Furthermore, when expressed in HL1 cardiomyocyte cultures, the PITX2 mutants impaired endogenous expression of calcium regulatory proteins and induced alterations in sarcoplasmic reticulum (SR) calcium accumulation. This favored alternating and irregular calcium transient amplitudes, causing deterioration of the beat-to-beat stability upon elevation of the stimulation frequency. Overall this data demonstrate that these novel PITX2c HD-mutations might be causative of atrial fibrillation in the carrier.
Collapse
|
14
|
Piroddi N, Pesce P, Scellini B, Manzini S, Ganzetti GS, Badi I, Menegollo M, Cora V, Tiso S, Cinquetti R, Monti L, Chiesa G, Bleyl SB, Busnelli M, Dellera F, Bruno D, Caicci F, Grimaldi A, Taramelli R, Manni L, Sacerdoti D, Tesi C, Poggesi C, Ausoni S, Acquati F, Campione M. Myocardial overexpression of ANKRD1 causes sinus venosus defects and progressive diastolic dysfunction. Cardiovasc Res 2021; 116:1458-1472. [PMID: 31688894 DOI: 10.1093/cvr/cvz291] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS Increased Ankyrin Repeat Domain 1 (ANKRD1) levels linked to gain of function mutations have been associated to total anomalous pulmonary venous return and adult cardiomyopathy occurrence in humans. The link between increased ANKRD1 level and cardiac structural and functional disease is not understood. To get insight into this problem, we have generated a gain of function ANKRD1 mouse model by overexpressing ANKRD1 in the myocardium. METHODS AND RESULTS Ankrd1 is expressed non-homogeneously in the embryonic myocardium, with a dynamic nucleo-sarcomeric localization in developing cardiomyocytes. ANKRD1 transgenic mice present sinus venosus defect, which originates during development by impaired remodelling of early embryonic heart. Adult transgenic hearts develop diastolic dysfunction with preserved ejection fraction, which progressively evolves into heart failure, as shown histologically and haemodynamically. Transgenic cardiomyocyte structure, sarcomeric assembly, and stability are progressively impaired from embryonic to adult life. Postnatal transgenic myofibrils also present characteristic functional alterations: impaired compliance at neonatal stage and impaired lusitropism in adult hearts. Altogether, our combined analyses suggest that impaired embryonic remodelling and adult heart dysfunction in ANKRD1 transgenic mice present a common ground of initial cardiomyocyte defects, which are exacerbated postnatally. Molecular analysis showed transient activation of GATA4-Nkx2.5 transcription in early transgenic embryos and subsequent dynamic transcriptional modulation within titin gene. CONCLUSIONS ANKRD1 is a fine mediator of cardiomyocyte response to haemodynamic load in the developing and adult heart. Increased ANKRD1 levels are sufficient to initiate an altered cellular phenotype, which is progressively exacerbated into a pathological organ response by the high ventricular workload during postnatal life. Our study defines for the first time a unifying picture for ANKRD1 role in heart development and disease and provides the first mechanistic link between ANKRD1 overexpression and cardiac disease onset.
Collapse
Affiliation(s)
- Nicoletta Piroddi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Paola Pesce
- Department of Medicine, University of Padua, 35121 Padua, Italy
| | - Beatrice Scellini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Giulia S Ganzetti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Ileana Badi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy.,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Michela Menegollo
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Virginia Cora
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Simone Tiso
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Laura Monti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Steven B Bleyl
- Department of Pediatrics, University of Utah, Salt Lake City, 84132 UT, USA
| | - Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Federica Dellera
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Federico Caicci
- Department of Biology, University of Padua, 35121 Padua, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Roberto Taramelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Lucia Manni
- Department of Biology, University of Padua, 35121 Padua, Italy
| | - David Sacerdoti
- Department of Medicine, University of Padua, 35121 Padua, Italy
| | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Simonetta Ausoni
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Francesco Acquati
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Marina Campione
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy.,CNR-Neuroscience Institute, 35121 Padua, Italy
| |
Collapse
|
15
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
16
|
The Axenfeld-Rieger Syndrome Gene FOXC1 Contributes to Left-Right Patterning. Genes (Basel) 2021; 12:genes12020170. [PMID: 33530637 PMCID: PMC7912076 DOI: 10.3390/genes12020170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left–right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 independently cause a multi-system disorder known as Axenfeld–Rieger syndrome (ARS). Since cardiac involvement is an established ARS phenotype and because disrupted left–right patterning can cause congenital heart defects, we investigated in zebrafish whether foxc1 contributes to organ laterality or situs. We demonstrate that CRISPR/Cas9-generated foxc1a and foxc1b mutants exhibit abnormal cardiac looping and that the prevalence of cardiac situs defects is increased in foxc1a−/−; foxc1b−/− homozygotes. Similarly, double homozygotes exhibit isomerism of the liver and pancreas, which are key features of abnormal gut situs. Placement of the asymmetric visceral organs relative to the midline was also perturbed by mRNA overexpression of foxc1a and foxc1b. In addition, an analysis of the left–right patterning components, identified in the lateral plate mesoderm of foxc1 mutants, reduced or abolished the expression of the NODAL antagonist lefty2. Together, these data reveal a novel contribution from foxc1 to left–right patterning, demonstrating that this role is sensitive to foxc1 gene dosage, and provide a plausible mechanism for the incidence of congenital heart defects in Axenfeld–Rieger syndrome patients.
Collapse
|
17
|
Transient Nodal Signaling in Left Precursors Coordinates Opposed Asymmetries Shaping the Heart Loop. Dev Cell 2020; 55:413-431.e6. [PMID: 33171097 DOI: 10.1016/j.devcel.2020.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/17/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
The secreted factor Nodal, known as a major left determinant, is associated with severe heart defects. Yet, it has been unclear how it regulates asymmetric morphogenesis such as heart looping, which align cardiac chambers to establish the double blood circulation. Here, we report that Nodal is transiently active in precursors of the mouse heart tube poles, before looping. In conditional mutants, we show that Nodal is not required to initiate asymmetric morphogenesis. We provide evidence of a heart-specific random generator of asymmetry that is independent of Nodal. Using 3D quantifications and simulations, we demonstrate that Nodal functions as a bias of this mechanism: it is required to amplify and coordinate opposed left-right asymmetries at the heart tube poles, thus generating a robust helical shape. We identify downstream effectors of Nodal signaling, regulating asymmetries in cell proliferation, differentiation, and extracellular matrix composition. Our study uncovers how Nodal regulates asymmetric organogenesis.
Collapse
|
18
|
Spontaneous Left Cardiac Isomerism in Chick Embryos: Case Report, Review of the Literature, and Possible Significance for the Understanding of Ventricular Non-Compaction Cardiomyopathy in the Setting of Human Heterotaxy Syndromes. J Cardiovasc Dev Dis 2019; 6:jcdd6040040. [PMID: 31717331 PMCID: PMC6955803 DOI: 10.3390/jcdd6040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022] Open
Abstract
The outer shape of most vertebrates is normally characterized by bilateral symmetry. The inner organs, on the other hand, are normally arranged in bilaterally asymmetric patterns. Congenital deviations from the normal organ asymmetry can occur in the form of mirror imagery of the normal arrangement (situs inversus), or in the form of arrangements that have the tendency for the development of bilateral symmetry, either in a pattern of bilateral left-sidedness (left isomerism) or bilateral right-sidedness (right isomerism). The latter two forms of visceral situs anomalies are called “heterotaxy syndromes”. During the past 30 years, remarkable progress has been made in uncovering the genetic etiology of heterotaxy syndromes. However, the pathogenetic mechanisms causing the spectrum of cardiovascular defects found in these syndromes remain poorly understood. In the present report, a spontaneous case of left cardiac isomerism found in an HH-stage 23 chick embryo is described. The observations made in this case confirmed the existence of molecular isomerism in the ventricular chambers previously noted in mouse models. They, furthermore, suggest that hearts with left cardiac isomerism may have the tendency for the development of non-compaction cardiomyopathy caused by defective development of the proepicardium.
Collapse
|
19
|
MicroRNAs Establish the Right-Handed Dominance of the Heart Laterality Pathway in Vertebrates. Dev Cell 2019; 51:446-459.e5. [DOI: 10.1016/j.devcel.2019.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 08/16/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
|
20
|
Nöthe-Menchen T, Wallmeier J, Pennekamp P, Höben IM, Olbrich H, Loges NT, Raidt J, Dougherty GW, Hjeij R, Dworniczak B, Omran H. Randomization of Left-right Asymmetry and Congenital Heart Defects: The Role of DNAH5 in Humans and Mice. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2019; 12:10.1161/CIRCGEN.119.002686. [PMID: 31638833 PMCID: PMC7174103 DOI: 10.1161/circgen.119.002686] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background - Nearly one in 100 live births presents with congenital heart defects (CHD). CHD are frequently associated with laterality defects, such as situs inversus totalis (SIT), a mirrored positioning of internal organs. Body laterality is established by a complex process: monocilia at the embryonic left-right organizer (LRO) facilitate both the generation and sensing of a leftward fluid flow. This induces the conserved left-sided Nodal signaling cascade to initiate asymmetric organogenesis. Primary ciliary dyskinesia (PCD) originates from dysfunction of motile cilia, causing symptoms such as chronic sinusitis, bronchiectasis and frequently SIT. The most frequently mutated gene in PCD, DNAH5 is associated with randomization of body asymmetry resulting in SIT in half of the patients; however, its relation to CHD occurrence in humans has not been investigated in detail so far. Methods - We performed genotype / phenotype correlations in 132 PCD patients carrying disease-causing DNAH5 mutations, focusing on situs defects and CHD. Using high speed video microscopy-, immunofluorescence-, and in situ hybridization analyses, we investigated the initial steps of left-right axis establishment in embryos of a Dnah5 mutant mouse model. Results - 65.9% (87 / 132) of the PCD patients carrying disease-causing DNAH5 mutations had laterality defects: 88.5% (77 / 87) presented with SIT, 11.5% (10 / 87) presented with situs ambiguus; and 6.1% (8 / 132) presented with CHD. In Dnah5mut/mut mice, embryonic LRO monocilia lack outer dynein arms resulting in immotile cilia, impaired flow at the LRO, and randomization of Nodal signaling with normal, reversed or bilateral expression of key molecules. Conclusions - For the first time, we directly demonstrate the disease-mechanism of laterality defects linked to DNAH5 deficiency at the molecular level during embryogenesis. We highlight that mutations in DNAH5 are not only associated with classical randomization of left-right body asymmetry but also with severe laterality defects including CHD.
Collapse
Affiliation(s)
- Tabea Nöthe-Menchen
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Julia Wallmeier
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Inga M Höben
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Niki T Loges
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Johanna Raidt
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Rim Hjeij
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Bernd Dworniczak
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| |
Collapse
|
21
|
García-Padilla C, Domínguez JN, Aránega AE, Franco D. Differential chamber-specific expression and regulation of long non-coding RNAs during cardiac development. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:194435. [PMID: 31678627 DOI: 10.1016/j.bbagrm.2019.194435] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular development is governed by a complex interplay between inducting signals such as Bmps and Fgfs leading to activation of cardiac specific transcription factors such as Nkx2.5, Mef2c and Srf that orchestrate the initial steps of cardiogenesis. Over the last decade we have witnessed the discovery of novel layers of gene regulation, i.e. post-transcriptional regulation exerted by non-coding RNAs. The function role of small non coding RNAs has been widely demonstrated, e.g. miR-1 knockout display several cardiovascular abnormalities during embryogenesis. More recently long non-coding RNAs have been also reported to modulate gene expression and function in the developing heart, as exemplified by the embryonic lethal phenotypes of Fendrr and Braveheart knock out mice, respectively. In this study, we investigated the differential expression profile during cardiogenesis of previously reported lncRNAs in heart development. Our data revealed that Braveheart, Fendrr, Carmen display a preferential adult expression while Miat, Alien, H19 preferentially display chamber-specific expression at embryonic stages. We also demonstrated that these lncRNAs are differentially regulated by Nkx2.5, Srf and Mef2c, Pitx2 > Wnt > miRNA signaling pathway and angiotensin II and thyroid hormone administration. Importantly isoform-specific expression and distinct nuclear vs cytoplasmic localization of Braveheart, Carmen and Fendrr during chamber morphogenesis is observed, suggesting distinct functional roles of these lncRNAs in atrial and ventricular chambers. Furthermore, we demonstrate by in situ hybridization a dynamic epicardial, myocardial and endocardial expression of H19 during cardiac development. Overall our data support novel roles of these lncRNAs in different temporal and tissue-restricted fashion during cardiogenesis.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Jorge N Domínguez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Amelia E Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain.
| |
Collapse
|
22
|
Poelmann RE, Gittenberger-de Groot AC. Development and evolution of the metazoan heart. Dev Dyn 2019; 248:634-656. [PMID: 31063648 PMCID: PMC6767493 DOI: 10.1002/dvdy.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of the evolution and development of the heart in metazoans are highlighted, starting with the evolutionary origin of the contractile cell, supposedly the precursor of cardiomyocytes. The last eukaryotic common ancestor is likely a combination of several cellular organisms containing their specific metabolic pathways and genetic signaling networks. During evolution, these tool kits diversified. Shared parts of these conserved tool kits act in the development and functioning of pumping hearts and open or closed circulations in such diverse species as arthropods, mollusks, and chordates. The genetic tool kits became more complex by gene duplications, addition of epigenetic modifications, influence of environmental factors, incorporation of viral genomes, cardiac changes necessitated by air‐breathing, and many others. We evaluate mechanisms involved in mollusks in the formation of three separate hearts and in arthropods in the formation of a tubular heart. A tubular heart is also present in embryonic stages of chordates, providing the septated four‐chambered heart, in birds and mammals passing through stages with first and second heart fields. The four‐chambered heart permits the formation of high‐pressure systemic and low‐pressure pulmonary circulation in birds and mammals, allowing for high metabolic rates and maintenance of body temperature. Crocodiles also have a (nearly) separated circulation, but their resting temperature conforms with the environment. We argue that endothermic ancestors lost the capacity to elevate their body temperature during evolution, resulting in ectothermic modern crocodilians. Finally, a clinically relevant paragraph reviews the occurrence of congenital cardiac malformations in humans as derailments of signaling pathways during embryonic development. The cardiac regulatory toolkit contains many factors including epigenetic, genetic, viral, hemodynamic, and environmental factors, but also transcriptional activators, repressors, duplicated genes, redundancies and dose‐dependancies. Numerous toolkits regulate mechanisms including cell‐cell interactions, EMT, mitosis patterns, cell migration and differentiation and left/right sidedness involved in the development of endocardial cushions, looping, septum complexes, pharyngeal arch arteries, chamber and valve formation and conduction system. Evolutionary development of the yolk sac circulation likely preceded the advent of endothermy in amniotes. Parallel evolutionary traits regulate the development of contractile pumps in various taxa often in conjunction with the gut, lungs and excretory organs.
Collapse
Affiliation(s)
- Robert E Poelmann
- Institute of Biology, Department of Animal Sciences and Health, Leiden University, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
23
|
Desgrange A, Le Garrec JF, Meilhac SM. Left-right asymmetry in heart development and disease: forming the right loop. Development 2018; 145:145/22/dev162776. [PMID: 30467108 DOI: 10.1242/dev.162776] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Extensive studies have shown how bilateral symmetry of the vertebrate embryo is broken during early development, resulting in a molecular left-right bias in the mesoderm. However, how this early asymmetry drives the asymmetric morphogenesis of visceral organs remains poorly understood. The heart provides a striking model of left-right asymmetric morphogenesis, undergoing rightward looping to shape an initially linear heart tube and align cardiac chambers. Importantly, abnormal left-right patterning is associated with severe congenital heart defects, as exemplified in heterotaxy syndrome. Here, we compare the mechanisms underlying the rightward looping of the heart tube in fish, chick and mouse embryos. We propose that heart looping is not only a question of direction, but also one of fine-tuning shape. This is discussed in the context of evolutionary and clinical perspectives.
Collapse
Affiliation(s)
- Audrey Desgrange
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Jean-François Le Garrec
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France .,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| |
Collapse
|
24
|
Tomomori S, Nakano Y, Ochi H, Onohara Y, Sairaku A, Tokuyama T, Motoda C, Matsumura H, Amioka M, Hironobe N, Okubo Y, Okamura S, Kawazoe H, Nishiyama Y, Tahara H, Chayama K, Kihara Y. Chromosome 4q25 Variant rs6817105 Bring Sinus Node Dysfunction and Left Atrial Enlargement. Sci Rep 2018; 8:14565. [PMID: 30275471 PMCID: PMC6167315 DOI: 10.1038/s41598-018-32453-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 09/05/2018] [Indexed: 11/24/2022] Open
Abstract
Genome-wide association studies have reported a strong association of the single nucleotide polymorphism (SNP) rs6817105 (T > C) on chromosome 4q25 with atrial fibrillation (AF), but phenotype alterations conferred by this SNP have not been described. We genotyped SNP rs6817105 and examined the relationships among rs6817105 genotype, clinical characteristics, echocardiographic parameters, and electrophysiological parameters in 574 AF patients and 1,554 non-AF controls. Further, multiple microRNAs (miRNAs) are reported to be involved in atrial remodeling and AF pathogenesis, so we investigated relationships between rs6817105 genotype and serum concentrations of 2555 miRNAs. The rs6817105 minor allele frequency was significantly higher in AF patients than non-AF controls (66% vs. 47%, odds ratio 2.12, p = 4.9 × 10−26). Corrected sinus node recovery time (CSRT) was longer and left atrial volume index (LAVI) was larger in AF patients with the rs6817105 minor allele than patient non-carriers (CSRT: CC 557 ± 315 ms, CT 486 ± 273 ms, TT 447 ± 234 ms, p = 0.001; LAVI: CC 43.6 ± 12.1, CT 42.4 ± 13.6, TT 39.8 ± 11.6, p = 0.030). There were no significant differences between rs6817105 genotype and the serum concentrations of miRNAs. These findings strongly implicate rs6817105 minor allele in sinus node dysfunction and left atrial enlargement.
Collapse
Affiliation(s)
- Shunsuke Tomomori
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Hidenori Ochi
- Department of Internal Medicine, Chuden Hospital, The Chugoku Electric Power Company, Hiroshima, Japan
| | - Yuko Onohara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Akinori Sairaku
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takehito Tokuyama
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Chikaaki Motoda
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroya Matsumura
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Michitaka Amioka
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naoya Hironobe
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yousaku Okubo
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shou Okamura
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroshi Kawazoe
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukie Nishiyama
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Division of Frontier Medical Science, Programs for Biomedical Research Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
25
|
Special Issue: Left-Right Asymmetry and Cardiac Morphogenesis. J Cardiovasc Dev Dis 2018; 5:jcdd5030040. [PMID: 30049992 PMCID: PMC6162801 DOI: 10.3390/jcdd5030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/17/2022] Open
|
26
|
A Requirement for Zic2 in the Regulation of Nodal Expression Underlies the Establishment of Left-Sided Identity. Sci Rep 2018; 8:10439. [PMID: 29992973 PMCID: PMC6041270 DOI: 10.1038/s41598-018-28714-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/25/2018] [Indexed: 12/26/2022] Open
Abstract
ZIC2 mutation is known to cause holoprosencephaly (HPE). A subset of ZIC2 HPE probands harbour cardiovascular and visceral anomalies suggestive of laterality defects. 3D-imaging of novel mouse Zic2 mutants uncovers, in addition to HPE, laterality defects in lungs, heart, vasculature and viscera. A strong bias towards right isomerism indicates a failure to establish left identity in the lateral plate mesoderm (LPM), a phenotype that cannot be explained simply by the defective ciliogenesis previously noted in Zic2 mutants. Gene expression analysis showed that the left-determining NODAL-dependent signalling cascade fails to be activated in the LPM, and that the expression of Nodal at the node, which normally triggers this event, is itself defective in these embryos. Analysis of ChiP-seq data, in vitro transcriptional assays and mutagenesis reveals a requirement for a low-affinity ZIC2 binding site for the activation of the Nodal enhancer HBE, which is normally active in node precursor cells. These data show that ZIC2 is required for correct Nodal expression at the node and suggest a model in which ZIC2 acts at different levels to establish LR asymmetry, promoting both the production of the signal that induces left side identity and the morphogenesis of the cilia that bias its distribution.
Collapse
|
27
|
Hippo Signaling Plays an Essential Role in Cell State Transitions during Cardiac Fibroblast Development. Dev Cell 2018; 45:153-169.e6. [PMID: 29689192 DOI: 10.1016/j.devcel.2018.03.019] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
Abstract
During development, progenitors progress through transition states. The cardiac epicardium contains progenitors of essential non-cardiomyocytes. The Hippo pathway, a kinase cascade that inhibits the Yap transcriptional co-factor, controls organ size in developing hearts. Here, we investigated Hippo kinases Lats1 and Lats2 in epicardial diversification. Epicardial-specific deletion of Lats1/2 was embryonic lethal, and mutant embryos had defective coronary vasculature remodeling. Single-cell RNA sequencing revealed that Lats1/2 mutant cells failed to activate fibroblast differentiation but remained in an intermediate cell state with both epicardial and fibroblast characteristics. Lats1/2 mutant cells displayed an arrested developmental trajectory with persistence of epicardial markers and expanded expression of Yap targets Dhrs3, an inhibitor of retinoic acid synthesis, and Dpp4, a protease that modulates extracellular matrix (ECM) composition. Genetic and pharmacologic manipulation revealed that Yap inhibits fibroblast differentiation, prolonging a subepicardial-like cell state, and promotes expression of matricellular factors, such as Dpp4, that define ECM characteristics.
Collapse
|
28
|
Guerra A, Germano RF, Stone O, Arnaout R, Guenther S, Ahuja S, Uribe V, Vanhollebeke B, Stainier DY, Reischauer S. Distinct myocardial lineages break atrial symmetry during cardiogenesis in zebrafish. eLife 2018; 7:32833. [PMID: 29762122 PMCID: PMC5953537 DOI: 10.7554/elife.32833] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
The ultimate formation of a four-chambered heart allowing the separation of the pulmonary and systemic circuits was key for the evolutionary success of tetrapods. Complex processes of cell diversification and tissue morphogenesis allow the left and right cardiac compartments to become distinct but remain poorly understood. Here, we describe an unexpected laterality in the single zebrafish atrium analogous to that of the two atria in amniotes, including mammals. This laterality appears to derive from an embryonic antero-posterior asymmetry revealed by the expression of the transcription factor gene meis2b. In adult zebrafish hearts, meis2b expression is restricted to the left side of the atrium where it controls the expression of pitx2c, a regulator of left atrial identity in mammals. Altogether, our studies suggest that the multi-chambered atrium in amniotes arose from a molecular blueprint present before the evolutionary emergence of cardiac septation and provide insights into the establishment of atrial asymmetry.
Collapse
Affiliation(s)
- Almary Guerra
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Raoul Fv Germano
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Bruxelles, Belgium
| | - Oliver Stone
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rima Arnaout
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Stefan Guenther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Suchit Ahuja
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Verónica Uribe
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Bruxelles, Belgium
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
29
|
Versacci P, Pugnaloni F, Digilio MC, Putotto C, Unolt M, Calcagni G, Baban A, Marino B. Some Isolated Cardiac Malformations Can Be Related to Laterality Defects. J Cardiovasc Dev Dis 2018; 5:jcdd5020024. [PMID: 29724030 PMCID: PMC6023464 DOI: 10.3390/jcdd5020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
Human beings are characterized by a left–right asymmetric arrangement of their internal organs, and the heart is the first organ to break symmetry in the developing embryo. Aberrations in normal left–right axis determination during embryogenesis lead to a wide spectrum of abnormal internal laterality phenotypes, including situs inversus and heterotaxy. In more than 90% of instances, the latter condition is accompanied by complex and severe cardiovascular malformations. Atrioventricular canal defect and transposition of the great arteries—which are particularly frequent in the setting of heterotaxy—are commonly found in situs solitus with or without genetic syndromes. Here, we review current data on morphogenesis of the heart in human beings and animal models, familial recurrence, and upstream genetic pathways of left–right determination in order to highlight how some isolated congenital heart diseases, very common in heterotaxy, even in the setting of situs solitus, may actually be considered in the pathogenetic field of laterality defects.
Collapse
Affiliation(s)
- Paolo Versacci
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Flaminia Pugnaloni
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Carolina Putotto
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Marta Unolt
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Anwar Baban
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Bruno Marino
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
30
|
Is an Appreciation of Isomerism the Key to Unlocking the Mysteries of the Cardiac Findings in Heterotaxy? J Cardiovasc Dev Dis 2018; 5:jcdd5010011. [PMID: 29415491 PMCID: PMC5872359 DOI: 10.3390/jcdd5010011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
Pediatric cardiologists treating patients with severe congenital cardiac defects define “visceral heterotaxy” on the basis of isomerism of the atrial appendages. The isomeric features represent an obvious manifestation of disruption of left-right asymmetry during embryonic development. Thus, there are two subsets of individuals within the overall syndrome, with features of either right or left isomerism. Within the heart, it is only the atrial appendages that are truly isomeric. The remainder of the cardiac components shows variable morphology, as does the arrangement of the remaining body organs. Order is provided in this potentially chaotic arrangement simply by describing the specific features of each of the systems. These features as defined by clinicians, however, seem less well recognized by those investigating the developmental origins of the disruption of symmetry. Developmental biologists place much greater emphasis on ventricular looping. Although the direction of the loop can certainly be interpreted as representing an example of asymmetry, it is not comparable to the isomeric features that underscore the clinical syndromes. This is because, thus far, there is no evidence of ventricular isomerism, with the ventricles distinguished one from the other on the basis of their disparate anatomical features. In similar fashion, some consider transposition to represent abnormal lateralization, but again, clinical diagnosis depends on recognition of the lateralized features. In this review, therefore, we discuss the key questions that currently underscore the mismatch in the approaches to “lateralization” as taken by clinicians and developmental biologists.
Collapse
|
31
|
Multiple Roles of Pitx2 in Cardiac Development and Disease. J Cardiovasc Dev Dis 2017; 4:jcdd4040016. [PMID: 29367545 PMCID: PMC5753117 DOI: 10.3390/jcdd4040016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
Cardiac development is a complex morphogenetic process initiated as bilateral cardiogenic mesoderm is specified at both sides of the gastrulating embryo. Soon thereafter, these cardiogenic cells fuse at the embryonic midline configuring a symmetrical linear cardiac tube. Left/right bilateral asymmetry is first detected in the forming heart as the cardiac tube bends to the right, and subsequently, atrial and ventricular chambers develop. Molecular signals emanating from the node confer distinct left/right signalling pathways that ultimately lead to activation of the homeobox transcription factor Pitx2 in the left side of distinct embryonic organ anlagen, including the developing heart. Asymmetric expression of Pitx2 has therefore been reported during different cardiac developmental stages, and genetic deletion of Pitx2 provided evidence of key regulatory roles of this transcription factor during cardiogenesis and thus congenital heart diseases. More recently, impaired Pitx2 function has also been linked to arrhythmogenic processes, providing novel roles in the adult heart. In this manuscript, we provide a state-of-the-art review of the fundamental roles of Pitx2 during cardiogenesis, arrhythmogenesis and its contribution to congenital heart diseases.
Collapse
|
32
|
Syeda F, Kirchhof P, Fabritz L. PITX2-dependent gene regulation in atrial fibrillation and rhythm control. J Physiol 2017; 595:4019-4026. [PMID: 28217939 PMCID: PMC5471504 DOI: 10.1113/jp273123] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/17/2017] [Indexed: 01/15/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. There are several major mechanisms that cause AF in patients, including a genetic predisposition to develop AF. Genome-wide association studies have identified genetic variants associated with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription factor PITX2. The effect of these common gene variants on cardiac PITX2 mRNA is currently under study. PITX2 protein regulates right-left differentiation of the embryonic heart, thorax and aorta. PITX2 is expressed in the adult left atrium, but much less so in other heart chambers. Pitx2 deficiency results in electrical and structural remodelling, and impaired repair of the heart in murine models, all of which may influence AF through divergent mechanisms. PITX2 levels and single nucleotide polymorphisms on chromosome 4q25 may also be a predictor of the effectiveness of anti-arrhythmic drug therapy.
Collapse
Affiliation(s)
- Fahima Syeda
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
| | - Paulus Kirchhof
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Department of CardiologyUHB NHS TrustBirminghamUK
- Department of CardiologySWBTBirminghamUK
| | - Larissa Fabritz
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Department of CardiologyUHB NHS TrustBirminghamUK
- Department of Cardiovascular Medicine, Division of RhythmologyUniversity Hospital MünsterMünsterGermany
| |
Collapse
|
33
|
Abstract
The generation and propagation of the cardiac impulse is the central function of the cardiac conduction system (CCS). Impulse initiation occurs in nodal tissues that have high levels of automaticity, but slow conduction properties. Rapid impulse propagation is a feature of the ventricular conduction system, which is essential for synchronized contraction of the ventricular chambers. When functioning properly, the CCS produces ~2.4 billion heartbeats during a human lifetime and orchestrates the flow of cardiac impulses, designed to maximize cardiac output. Abnormal impulse initiation or propagation can result in brady- and tachy-arrhythmias, producing an array of symptoms, including syncope, heart failure or sudden cardiac death. Underlying the functional diversity of the CCS are gene regulatory networks that direct cell fate towards a nodal or a fast conduction gene program. In this review, we will discuss our current understanding of the transcriptional networks that dictate the components of the CCS, the growth factor-dependent signaling pathways that orchestrate some of these transcriptional hierarchies and the effect of aberrant transcription factor expression on mammalian conduction disease.
Collapse
|
34
|
Franco D, Bonet F, Hernandez-Torres F, Lozano-Velasco E, Esteban FJ, Aranega AE. Analysis of microRNA Microarrays in Cardiogenesis. Methods Mol Biol 2016; 1375:207-21. [PMID: 25971912 DOI: 10.1007/7651_2015_247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
microRNAs are a subclass of noncoding RNAs which have been demonstrated to play pivotal roles in multiple cellular mechanisms. microRNAs are small RNA molecules of 22-24 nt in length capable of modulating protein translation and/or RNA stability by base-priming with complementary sequences of the mRNAs, normally at the 3'untranslated region. To date, over 2,000 microRNAs have been already identified in humans, and orthologous microRNAs have been also identified in distinct animals and plants ranging a wide vast of species. High-throughput analyses by microarrays have become a gold standard to analyze the changes on microRNA expression in normal and pathological cellular or tissue conditions. In this chapter, we provide insights into the usage of this uprising technology in the context of cardiac development and disease.
Collapse
Affiliation(s)
- Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain.
| | - Fernando Bonet
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain
| | - Francisco Hernandez-Torres
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain
| | - Francisco J Esteban
- System Biology Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Amelia E Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Edificio B-3, Campus Las Lagunillas, Jaen, 23071, Spain
| |
Collapse
|
35
|
Current Perspectives in Cardiac Laterality. J Cardiovasc Dev Dis 2016; 3:jcdd3040034. [PMID: 29367577 PMCID: PMC5715725 DOI: 10.3390/jcdd3040034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
The heart is the first organ to break symmetry in the developing embryo and onset of dextral looping is the first indication of this event. Looping is a complex process that progresses concomitantly to cardiac chamber differentiation and ultimately leads to the alignment of the cardiac regions in their final topology. Generation of cardiac asymmetry is crucial to ensuring proper form and consequent functionality of the heart, and therefore it is a highly regulated process. It has long been known that molecular left/right signals originate far before morphological asymmetry and therefore can direct it. The use of several animal models has led to the characterization of a complex regulatory network, which invariably converges on the Tgf-β signaling molecule Nodal and its downstream target, the homeobox transcription factor Pitx2. Here, we review current data on the cellular and molecular bases of cardiac looping and laterality, and discuss the contribution of Nodal and Pitx2 to these processes. A special emphasis will be given to the morphogenetic role of Pitx2 and to its modulation of transcriptional and functional properties, which have also linked laterality to atrial fibrillation.
Collapse
|
36
|
Development of the cardiac pacemaker. Cell Mol Life Sci 2016; 74:1247-1259. [PMID: 27770149 DOI: 10.1007/s00018-016-2400-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 01/11/2023]
Abstract
The sinoatrial node (SAN) is the dominant pacemaker of the heart. Abnormalities in SAN formation and function can cause sinus arrhythmia, including sick sinus syndrome and sudden death. A better understanding of genes and signaling pathways that regulate SAN development and function is essential to develop more effective treatment to sinus arrhythmia, including biological pacemakers. In this review, we briefly summarize the key processes of SAN morphogenesis during development, and focus on the transcriptional network that drives SAN development.
Collapse
|
37
|
Santos R, Kawauchi S, Jacobs RE, Lopez-Burks ME, Choi H, Wikenheiser J, Hallgrimsson B, Jamniczky HA, Fraser SE, Lander AD, Calof AL. Conditional Creation and Rescue of Nipbl-Deficiency in Mice Reveals Multiple Determinants of Risk for Congenital Heart Defects. PLoS Biol 2016; 14:e2000197. [PMID: 27606604 PMCID: PMC5016002 DOI: 10.1371/journal.pbio.2000197] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/05/2016] [Indexed: 12/16/2022] Open
Abstract
Elucidating the causes of congenital heart defects is made difficult by the complex morphogenesis of the mammalian heart, which takes place early in development, involves contributions from multiple germ layers, and is controlled by many genes. Here, we use a conditional/invertible genetic strategy to identify the cell lineage(s) responsible for the development of heart defects in a Nipbl-deficient mouse model of Cornelia de Lange Syndrome, in which global yet subtle transcriptional dysregulation leads to development of atrial septal defects (ASDs) at high frequency. Using an approach that allows for recombinase-mediated creation or rescue of Nipbl deficiency in different lineages, we uncover complex interactions between the cardiac mesoderm, endoderm, and the rest of the embryo, whereby the risk conferred by genetic abnormality in any one lineage is modified, in a surprisingly non-additive way, by the status of others. We argue that these results are best understood in the context of a model in which the risk of heart defects is associated with the adequacy of early progenitor cell populations relative to the sizes of the structures they must eventually form.
Collapse
Affiliation(s)
- Rosaysela Santos
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America.,Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Shimako Kawauchi
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America.,Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Russell E Jacobs
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Martha E Lopez-Burks
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America.,Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Hojae Choi
- Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Jamie Wikenheiser
- Department of Anatomy and Neurobiology, University of California, Irvine, California, United States of America
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Scott E Fraser
- Departments of Biology and Bioengineering, University of Southern California, Los Angeles, California, United States of America
| | - Arthur D Lander
- Center for Complex Biological Systems, University of California, Irvine, California, United States of America.,Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Anne L Calof
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America.,Center for Complex Biological Systems, University of California, Irvine, California, United States of America.,Department of Anatomy and Neurobiology, University of California, Irvine, California, United States of America
| |
Collapse
|
38
|
Lozano-Velasco E, Hernández-Torres F, Daimi H, Serra SA, Herraiz A, Hove-Madsen L, Aránega A, Franco D. Pitx2 impairs calcium handling in a dose-dependent manner by modulating Wnt signalling. Cardiovasc Res 2016; 109:55-66. [PMID: 26243430 DOI: 10.1093/cvr/cvv207] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/16/2015] [Indexed: 01/02/2023] Open
Abstract
AIMS Atrial fibrillation (AF) is the most common type of arrhythmia in humans, yet the genetic cause of AF remains elusive. Genome-wide association studies (GWASs) have reported risk variants in four distinct genetic loci, and more recently, a meta-GWAS has further implicated six new loci in AF. However, the functional role of these AF GWAS-related genes in AF and their inter-relationship remain elusive. METHODS AND RESULTS To get further insights into the molecular mechanisms driven by Pitx2, calcium handling and novel AF GWAS-associated gene expression were analysed in two distinct Pitx2 loss-of-function models with distinct basal electrophysiological defects; a novel Pitx2 conditional mouse line, Sox2CrePitx2, and our previously reported atrial-specific NppaCrePitx2 line. Molecular analyses of the left atrial appendage in NppaCrePitx2(+/-) and NppaCrePitx2(-/-) adult mice demonstrate that AF GWAS-associated genes such as Zfhx3, Kcnn3, and Wnt8a are severely impaired but not Cav1, Synpo2l, nor Prrx1. In addition, multiple calcium-handling genes such as Atp2a2, Casq2, and Plb are severely altered in atrial-specific NppaCrePitx2 mice in a dose-dependent manner. Functional assessment of calcium homeostasis further underscores these findings. In addition, multiple AF-related microRNAs are also impaired. In vitro over-expression of Wnt8, but not Zfhx3, impairs calcium handling and modulates microRNA expression signature identified in Pitx2 loss-of-function models. CONCLUSION Our data demonstrate a dose-dependent relation between Pitx2 expression and the expression of AF susceptibility genes, calcium handling, and microRNAs and identify a complex regulatory network orchestrated by Pitx2 with large impact on atrial arrhythmogenesis susceptibility.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | | | - Houria Daimi
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Selma A Serra
- Cardiac Rhythm and Contraction Group, Cardiovascular Research Centre CSIC-ICCC and IIB Sant Pau, Barcelona, Spain
| | - Adela Herraiz
- Cardiac Rhythm and Contraction Group, Cardiovascular Research Centre CSIC-ICCC and IIB Sant Pau, Barcelona, Spain
| | - Leif Hove-Madsen
- Cardiac Rhythm and Contraction Group, Cardiovascular Research Centre CSIC-ICCC and IIB Sant Pau, Barcelona, Spain
| | - Amelia Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| |
Collapse
|
39
|
Ye W, Song Y, Huang Z, Zhang Y, Chen Y. Genetic Regulation of Sinoatrial Node Development and Pacemaker Program in the Venous Pole. J Cardiovasc Dev Dis 2015; 2:282-298. [PMID: 26682210 PMCID: PMC4679406 DOI: 10.3390/jcdd2040282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/24/2015] [Indexed: 12/23/2022] Open
Abstract
The definitive sinoatrial node (SAN), the primary pacemaker of the mammalian heart, develops from part of pro-pacemaking embryonic venous pole that expresses both Hcn4 and the transcriptional factor Shox2. It is noted that ectopic pacemaking activities originated from the myocardial sleeves of the pulmonary vein and systemic venous return, both derived from the Shox2+ pro-pacemaking cells in the venous pole, cause atrial fibrillation. However, the developmental link between the pacemaker properties in the embryonic venous pole cells and the SAN remains largely uncharacterized. Furthermore, the genetic program for the development of heterogeneous populations of the SAN is also under-appreciated. Here, we review the literature for a better understanding of the heterogeneous development of the SAN in relation to that of the sinus venosus myocardium and pulmonary vein myocardium. We also attempt to revisit genetic models pertinent to the development of pacemaker activities in the perspective of a Shox2-Nkx2-5 epistatic antagonism. Finally, we describe recent efforts in deciphering the regulatory networks for pacemaker development by genome-wide approaches.
Collapse
Affiliation(s)
- Wenduo Ye
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; E-Mails: (Y.S.); (Z.H.)
| | - Yingnan Song
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; E-Mails: (Y.S.); (Z.H.)
- Southern Center for Biomedical Research, Fujian Normal University, Fuzhou 350108, China; E-Mail:
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou 350108, China
| | - Zhen Huang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; E-Mails: (Y.S.); (Z.H.)
- Southern Center for Biomedical Research, Fujian Normal University, Fuzhou 350108, China; E-Mail:
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou 350108, China
| | - Yanding Zhang
- Southern Center for Biomedical Research, Fujian Normal University, Fuzhou 350108, China; E-Mail:
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou 350108, China
| | - Yiping Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA; E-Mails: (Y.S.); (Z.H.)
- Southern Center for Biomedical Research, Fujian Normal University, Fuzhou 350108, China; E-Mail:
| |
Collapse
|
40
|
Zhang R, Cao P, Yang Z, Wang Z, Wu JL, Chen Y, Pan Y. Heparan Sulfate Biosynthesis Enzyme, Ext1, Contributes to Outflow Tract Development of Mouse Heart via Modulation of FGF Signaling. PLoS One 2015; 10:e0136518. [PMID: 26295701 PMCID: PMC4546591 DOI: 10.1371/journal.pone.0136518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 08/05/2015] [Indexed: 11/19/2022] Open
Abstract
Glycosaminoglycans are important regulators of multiple signaling pathways. As a major constituent of the heart extracellular matrix, glycosaminoglycans are implicated in cardiac morphogenesis through interactions with different signaling morphogens. Ext1 is a glycosyltransferase responsible for heparan sulfate synthesis. Here, we evaluate the function of Ext1 in heart development by analyzing Ext1 hypomorphic mutant and conditional knockout mice. Outflow tract alignment is sensitive to the dosage of Ext1. Deletion of Ext1 in the mesoderm induces a cardiac phenotype similar to that of a mutant with conditional deletion of UDP-glucose dehydrogenase, a key enzyme responsible for synthesis of all glycosaminoglycans. The outflow tract defect in conditional Ext1 knockout(Ext1f/f:Mesp1Cre) mice is attributable to the reduced contribution of second heart field and neural crest cells. Ext1 deletion leads to downregulation of FGF signaling in the pharyngeal mesoderm. Exogenous FGF8 ameliorates the defects in the outflow tract and pharyngeal explants. In addition, Ext1 expression in second heart field and neural crest cells is required for outflow tract remodeling. Our results collectively indicate that Ext1 is crucial for outflow tract formation in distinct progenitor cells, and heparan sulfate modulates FGF signaling during early heart development.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Peijuan Cao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Zhongzhou Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Zhenzhen Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Jiu-Lin Wu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Yan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
- * E-mail: (YC); (YP)
| | - Yi Pan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
- * E-mail: (YC); (YP)
| |
Collapse
|
41
|
The pattern of congenital heart defects arising from reduced Tbx5 expression is altered in a Down syndrome mouse model. BMC DEVELOPMENTAL BIOLOGY 2015. [PMID: 26208718 PMCID: PMC4514943 DOI: 10.1186/s12861-015-0080-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nearly half of all individuals with Down Syndrome (DS) have some type of congenital heart defect (CHD), suggesting that DS sensitizes to CHD but does not cause it. We used a common mouse model of DS, the Ts65Dn mouse, to study the contribution of Tbx5, a known modifier of CHD, to heart defects on a trisomic backgroun. Mice that were heterozygous for a Tbx5 null allele were crossed with Ts65Dn mice. Thoraxes of progeny were fixed in 10% formalin, embedded in paraffin, and sectioned for analysis of CHD. Gene expression in embryonic hearts was examined by quantitative PCR and in situ hybridization. A TBX5 DNA binding site was verified by luciferase assays. METHODS Mice that were heterozygous for a Tbx5 null allele were crossed with Ts65Dn mice. Thoraxes of progeny were fixed in 10% formalin, embedded in paraffin, and sectioned for analysis of CHD. Gene expression in embryonic hearts was examined by quantitative PCR and in situ hybridization. A TBX5 DNA binding site was verified by luciferase assays. RESULTS We crossed mice that were heterozygous for a Tbx5 null allele with Ts65Dn mice. Mice that were trisomic and carried the Tbx5 mutation (Ts65Dn;Tbx5 (+/-) ) had a significantly increased incidence of overriding aorta compared to their euploid littermates. Ts65Dn;Tbx5 (+/-) mice also showed reduced expression of Pitx2, a molecular marker for the left atrium. Transcript levels of the trisomic Adamts1 gene were decreased in Tbx5 (+/-) mice compared to their euploid littermates. Evidence of a valid binding site for TBX5 upstream of the trisomic Adamts1 locus was also shown. CONCLUSION Haploinsufficiency of Tbx5 and trisomy affects alignment of the aorta and this effect may stem from deviations from normal left-right patterning in the heart. We have unveiled a previously unknown interaction between the Tbx5 gene and trisomy, suggesting a connection between Tbx5 and trisomic genes important during heart development.
Collapse
|
42
|
Aguirre LA, Alonso ME, Badía-Careaga C, Rollán I, Arias C, Fernández-Miñán A, López-Jiménez E, Aránega A, Gómez-Skarmeta JL, Franco D, Manzanares M. Long-range regulatory interactions at the 4q25 atrial fibrillation risk locus involve PITX2c and ENPEP. BMC Biol 2015; 13:26. [PMID: 25888893 PMCID: PMC4416339 DOI: 10.1186/s12915-015-0138-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/10/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recent genome-wide association studies have uncovered genomic loci that underlie an increased risk for atrial fibrillation, the major cardiac arrhythmia in humans. The most significant locus is located in a gene desert at 4q25, approximately 170 kilobases upstream of PITX2, which codes for a transcription factor involved in embryonic left-right asymmetry and cardiac development. However, how this genomic region functionally and structurally relates to PITX2 and atrial fibrillation is unknown. RESULTS To characterise its function, we tested genomic fragments from 4q25 for transcriptional activity in a mouse atrial cardiomyocyte cell line and in transgenic mouse embryos, identifying a non-tissue-specific potentiator regulatory element. Chromosome conformation capture revealed that this region physically interacts with the promoter of the cardiac specific isoform of Pitx2. Surprisingly, this regulatory region also interacts with the promoter of the next neighbouring gene, Enpep, which we show to be expressed in regions of the developing mouse heart essential for cardiac electrical activity. CONCLUSIONS Our data suggest that de-regulation of both PITX2 and ENPEP could contribute to an increased risk of atrial fibrillation in carriers of disease-associated variants, and show the challenges that we face in the functional analysis of genome-wide disease associations.
Collapse
Affiliation(s)
- Luis A Aguirre
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| | - M Eva Alonso
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| | - Claudio Badía-Careaga
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| | - Isabel Rollán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| | - Cristina Arias
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| | - Ana Fernández-Miñán
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, ctra. de Utrera km1, 41013, Seville, Spain.
| | - Elena López-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| | - Amelia Aránega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje de las Lagunillas s/n, 23071, Jaén, Spain.
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, ctra. de Utrera km1, 41013, Seville, Spain.
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje de las Lagunillas s/n, 23071, Jaén, Spain.
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
43
|
Iyer D, Gambardella L, Bernard WG, Serrano F, Mascetti VL, Pedersen RA, Talasila A, Sinha S. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development 2015; 142:1528-41. [PMID: 25813541 PMCID: PMC4392600 DOI: 10.1242/dev.119271] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/25/2015] [Indexed: 12/21/2022]
Abstract
The epicardium has emerged as a multipotent cardiovascular progenitor source with therapeutic potential for coronary smooth muscle cell, cardiac fibroblast (CF) and cardiomyocyte regeneration, owing to its fundamental role in heart development and its potential ability to initiate myocardial repair in injured adult tissues. Here, we describe a chemically defined method for generating epicardium and epicardium-derived smooth muscle cells (EPI-SMCs) and CFs from human pluripotent stem cells (HPSCs) through an intermediate lateral plate mesoderm (LM) stage. HPSCs were initially differentiated to LM in the presence of FGF2 and high levels of BMP4. The LM was robustly differentiated to an epicardial lineage by activation of WNT, BMP and retinoic acid signalling pathways. HPSC-derived epicardium displayed enhanced expression of epithelial- and epicardium-specific markers, exhibited morphological features comparable with human foetal epicardial explants and engrafted in the subepicardial space in vivo. The in vitro-derived epicardial cells underwent an epithelial-to-mesenchymal transition when treated with PDGF-BB and TGFβ1, resulting in vascular SMCs that displayed contractile ability in response to vasoconstrictors. Furthermore, the EPI-SMCs displayed low density lipoprotein uptake and effective lowering of lipoprotein levels upon treatment with statins, similar to primary human coronary artery SMCs. Cumulatively, these findings suggest that HPSC-derived epicardium and EPI-SMCs could serve as important tools for studying human cardiogenesis, and as a platform for vascular disease modelling and drug screening.
Collapse
MESH Headings
- Blotting, Western
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Cells, Cultured
- Flow Cytometry
- Humans
- Immunohistochemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Pericardium/cytology
- Pericardium/metabolism
- Pluripotent Stem Cells/cytology
- Pluripotent Stem Cells/metabolism
- Pluripotent Stem Cells/physiology
- Real-Time Polymerase Chain Reaction
Collapse
Affiliation(s)
- Dharini Iyer
- Anne McLaren Laboratory for Regenerative Medicine and Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge, West Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Laure Gambardella
- Anne McLaren Laboratory for Regenerative Medicine and Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge, West Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - William G Bernard
- Anne McLaren Laboratory for Regenerative Medicine and Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge, West Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Felipe Serrano
- Anne McLaren Laboratory for Regenerative Medicine and Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge, West Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Victoria L Mascetti
- Anne McLaren Laboratory for Regenerative Medicine and Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge, West Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Roger A Pedersen
- Anne McLaren Laboratory for Regenerative Medicine and Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge, West Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Amarnath Talasila
- Anne McLaren Laboratory for Regenerative Medicine and Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge, West Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Sanjay Sinha
- Anne McLaren Laboratory for Regenerative Medicine and Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge, West Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| |
Collapse
|
44
|
Liu Y, Wang F, Wu Y, Tan S, Wen Q, Wang J, Zhu X, Wang X, Li C, Ma X, Pan H. Variations of CITED2 are associated with congenital heart disease (CHD) in Chinese population. PLoS One 2014; 9:e98157. [PMID: 24848765 PMCID: PMC4029912 DOI: 10.1371/journal.pone.0098157] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/29/2014] [Indexed: 01/27/2023] Open
Abstract
CITED2 was identified as a cardiac transcription factor which is essential to the heart development. Cited2-deficient mice showed cardiac malformations, adrenal agenesis and neural crest defects. To explore the potential impact of mutations in CITED2 on congenital heart disease (CHD) in humans, we screened the coding region of CITED2 in a total of 700 Chinese people with congenital heart disease and 250 healthy individuals as controls. We found five potential disease-causing mutations, p.P140S, p.S183L, p.S196G, p.Ser161delAGC and p. Ser192_Gly193delAGCGGC. Two mammalian two-hybrid assays showed that the last four mutations significantly affected the interaction between p300CH1 and CITED2 or HIF1A. Further studies showed that four CITED2 mutations recovered the promoter activity of VEGF by decreasing its competitiveness with HIF1A for binding to p300CH1 and three mutations decreased the consociation of TFAP2C and CITED2 in the transactivation of PITX2C. Both VEGF and PITX2C play very important roles in cardiac development. In conclusion, we demonstrated that CITED2 has a potential causative impact on congenital heart disease.
Collapse
Affiliation(s)
- Yan Liu
- Graduate School, Peking Union Medical College, Beijing, China
- National Research Institute for Family Planning, Beijing, China
| | - Fengyu Wang
- Henan Research Institute of Population and Family Planning, Key Laboratory of Population Defects Intervention Technology of Henan Province, Zhengzhou, China
| | - Yuan Wu
- Cardiac Surgery Department, Xiamen Heart Center, Organ Transplantation Institute of Xiamen University, Xiang'an District, Xiamen, China
| | - Sainan Tan
- Key Laboratory of Genetics and Birth Health of Hunan Province, Family Planning Institute of Hunan Province, Chang sha, China
| | - Qiaolian Wen
- Graduate School, Peking Union Medical College, Beijing, China
- National Research Institute for Family Planning, Beijing, China
| | - Jing Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaomei Zhu
- Graduate School, Peking Union Medical College, Beijing, China
- National Research Institute for Family Planning, Beijing, China
| | - Xi Wang
- Graduate School, Peking Union Medical College, Beijing, China
- National Research Institute for Family Planning, Beijing, China
| | - Congmin Li
- Henan Research Institute of Population and Family Planning, Key Laboratory of Population Defects Intervention Technology of Henan Province, Zhengzhou, China
- * E-mail: (CL); (HP); (XM)
| | - Xu Ma
- Graduate School, Peking Union Medical College, Beijing, China
- National Research Institute for Family Planning, Beijing, China
- World Health Organization Collaborating Centre for Research in Human Reproduction, Beijing, China
- * E-mail: (CL); (HP); (XM)
| | - Hong Pan
- Graduate School, Peking Union Medical College, Beijing, China
- National Research Institute for Family Planning, Beijing, China
- * E-mail: (CL); (HP); (XM)
| |
Collapse
|
45
|
Yao M, Cao Y, Zhu H, Chen Y, Zhu T, Xiao J. Paired-like homeodomain 2: a novel therapeutic target for atrial fibrillation? Front Genet 2014; 5:74. [PMID: 24782888 PMCID: PMC3997000 DOI: 10.3389/fgene.2014.00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/24/2014] [Indexed: 01/19/2023] Open
Affiliation(s)
- Mengchao Yao
- Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University Shanghai, China ; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University Shanghai, China
| | - Yujie Cao
- Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University Shanghai, China ; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University Shanghai, China
| | - Hui Zhu
- Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University Shanghai, China ; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University Shanghai, China
| | - Yao Chen
- Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University Shanghai, China ; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University Shanghai, China
| | - Tianhao Zhu
- Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University Shanghai, China ; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University Shanghai, China
| | - Junjie Xiao
- Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University Shanghai, China ; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University Shanghai, China ; Innovative Drug Research Center of Shanghai University Shanghai, China
| |
Collapse
|
46
|
Franco D, Christoffels VM, Campione M. Homeobox transcription factor Pitx2: The rise of an asymmetry gene in cardiogenesis and arrhythmogenesis. Trends Cardiovasc Med 2014; 24:23-31. [PMID: 23953978 DOI: 10.1016/j.tcm.2013.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 01/05/2023]
Abstract
The homeobox transcription factor Pitx2 displays a highly specific expression pattern during embryogenesis. Gain and loss of function experiments have unraveled its pivotal role in left-right signaling. Conditional deletion in mice has demonstrated a complex and intricate role for Pitx2 in distinct aspects of cardiac development and more recently a link to atrial fibrillation has been proposed based on genome-wide association studies. In this review we will revise the role of Pitx2 in the developing heart, starting from the early events of left-right determination followed by its role in cardiac morphogenesis and ending with its role in cardiac arrhythmogenesis.
Collapse
Affiliation(s)
- Diego Franco
- Department of Experimental Biology B3-362, University of Jaén, Jaen 23071, Spain.
| | | | - Marina Campione
- CNR-Institute of Neurosciences, Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
47
|
|
48
|
Parvez B, Shoemaker MB, Muhammad R, Richardson R, Jiang L, Blair MA, Roden DM, Darbar D. Common genetic polymorphism at 4q25 locus predicts atrial fibrillation recurrence after successful cardioversion. Heart Rhythm 2013; 10:849-55. [PMID: 23428961 PMCID: PMC3690553 DOI: 10.1016/j.hrthm.2013.02.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Genome-wide association studies have identified numerous common polymorphisms associated with atrial fibrillation (AF). The 3 loci most strongly associated with AF occur at chromosome 4q25 (near PITX2), 16q22 (in ZFHX3), and 1q21 (in KCNN3). OBJECTIVE To evaluate whether timing of AF recurrence after direct current cardioversion (DCCV) is modulated by common AF susceptibility alleles. METHODS A total of 208 patients (age 65 ± 11 years; 77% men) with persistent AF underwent successful DCCV and were prospectively evaluated at 3, 6, and 12 months for AF recurrence. Four single nucleotide polymorphisms--rs2200733 and rs10033464 at 4q25, rs7193343 in ZFHX3, and rs13376333 in KCNN3--were genotyped. RESULTS The final study cohort consisted of 184 patients. In 162 (88%) patients, sinus rhythm was restored with DCCV, of which 108 (67%) had AF recurrence at a median of 60 (interquartile range 29-176) days. In multivariable analysis, the presence of any common single nucleotide polymorphism (rs2200733, rs10033464) at the 4q25 locus was an independent predictor of AF recurrence (hazard ratio 2.1; 95% confidence interval 1.21-3.30; P = .008). Furthermore, rs2200733 exhibited a graded allelic dose response for early AF recurrence (homozygous variants: 7 [interquartile range 4-56] days; heterozygous variants: 54 [28-135] days; and wild type: 64 [29-180] days; P = .03). CONCLUSIONS To our knowledge, this is the first study to evaluate whether genomic markers can predict timing of AF recurrence in patients undergoing elective DCCV. Our findings show that a common polymorphism on chromosome 4q25 (rs2200733) is an independent predictor of AF recurrence after DCCV and point to a potential role of stratification by genotype.
Collapse
Affiliation(s)
- Babar Parvez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37323- 6602, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ma HY, Xu J, Eng D, Gross MK, Kioussi C. Pitx2-mediated cardiac outflow tract remodeling. Dev Dyn 2013; 242:456-68. [PMID: 23361844 PMCID: PMC3673775 DOI: 10.1002/dvdy.23934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Heart morphogenesis involves sequential anatomical changes from a linear tube of a single channel peristaltic pump to a four-chamber structure with two channels controlled by one-way valves. The developing heart undergoes continuous remodeling, including septation. RESULTS Pitx2-null mice are characterized by cardiac septational defects of the atria, ventricles, and outflow tract. Pitx2-null mice also exhibited a short outflow tract, including unseptated conus and deformed endocardial cushions. Cushions were characterized with a jelly-like structure, rather than the distinct membrane-looking leaflets, indicating that endothelial mesenchymal transition was impaired in Pitx2(-/-) embryos. Mesoderm cells from the branchial arches and neural crest cells from the otic region contribute to the development of the endocardial cushions, and both were reduced in number. Members of the Fgf and Bmp families exhibited altered expression levels in the mutants. CONCLUSIONS We suggest that Pitx2 is involved in the cardiac outflow tract septation by promoting and/or maintaining the number and the remodeling process of the mesoderm progenitor cells. Pitx2 influences the expression of transcription factors and signaling molecules involved in the differentiation of the cushion mesenchyme during heart development.
Collapse
Affiliation(s)
- Hsiao-Yen Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Jun Xu
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Diana Eng
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Michael K. Gross
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
50
|
Sylva M, van den Hoff MJB, Moorman AFM. Development of the human heart. Am J Med Genet A 2013; 164A:1347-71. [PMID: 23633400 DOI: 10.1002/ajmg.a.35896] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/07/2013] [Indexed: 11/12/2022]
Abstract
Molecular and genetic studies around the turn of this century have revolutionized the field of cardiac development. We now know that the primary heart tube, as seen in the early embryo contains little more than the precursors for the left ventricle, whereas the precursor cells for the remainder of the cardiac components are continuously added, to both the venous and arterial pole of the heart tube, from a single center of growth outside the heart. While the primary heart tube is growing by addition of cells, it does not show significant cell proliferation, until chamber differentiation and expansion starts locally in the tube, by which the chambers balloon from the primary heart tube. The transcriptional repressors Tbx2 and Tbx3 locally repress the chamber-specific program of gene expression, by which these regions are allowed to differentiate into the distinct components of the conduction system. Molecular genetic lineage analyses have been extremely valuable to assess the distinct developmental origin of the various component parts of the heart, which currently can be unambiguously identified by their unique molecular phenotype. Despite the enormous advances in our knowledge on cardiac development, even the most common congenital cardiac malformations are only poorly understood. The challenge of the newly developed molecular genetic techniques is to unveil the basic gene regulatory networks underlying cardiac morphogenesis.
Collapse
Affiliation(s)
- Marc Sylva
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|