1
|
Lu X, Wang X, Li B, Wang X, Duan X, Liu D. Monocyte-Derived cxcl12 Guides a Directional Migration of Blood Vessels in Zebrafish. Arterioscler Thromb Vasc Biol 2025; 45:386-397. [PMID: 39846165 PMCID: PMC11855996 DOI: 10.1161/atvbaha.124.321588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Sprouting blood vessels, reaching the aimed location, and establishing the proper connections are vital for building vascular networks. Such biological processes are subject to precise molecular regulation. So far, the mechanistic insights into understanding how blood vessels grow to the correct position are limited. In particular, the guide cues and the signaling-originating cells remain elusive. METHODS Live imaging analysis was used to observe the vascular developmental process of zebrafish. Whole-mount in situ hybridization and fluorescent in situ hybridization were used to detect the expression profiles of the genes. Single-cell sequencing analysis was conducted to identify the guiding protein and its originating cells. RESULTS Taking advantage of live imaging analysis, we described a directional blood vessel migration in the vascularization process of zebrafish pectoral fins. We demonstrated that pectoral fin vessel c migrated over long distances and was anastomosed with the second pair of intersegmental vessels. Furthermore, we found the cxcl12a-cxcr4a axis specifically guided this long-distance extension of pectoral fin vessel c-intersegmental vessel, and either inhibition or overexpression of cxcl12a-cxcr4a signaling both mislead the growth of pectoral fin vessel c to ectopic areas. Finally, based on an analysis of single-cell sequencing data, we revealed that a population of monocytes expresses the Cxcl12a, which guides the migration of the vascular sprout. CONCLUSIONS Our study identified Cxcl12a as the signaling molecule for orchestrating the organotypic-specific long-distance migration and anastomosis of the pectoral fin vessel and the intersegmental vessels in zebrafish. We discovered a specific cluster of gata1 (globin transcription factor 1)-positive monocytes responsible for expressing Cxcl12a. The findings offer novel insights into the mechanisms underlying organotypic vascularization in vertebrates.
Collapse
Affiliation(s)
- Xiaofeng Lu
- School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China
| | - Xiaoning Wang
- School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China
| | - Bowen Li
- School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China
| | - Xin Wang
- School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China
| | - Xuchu Duan
- School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China
| |
Collapse
|
2
|
Gupta S, Sharma A, Petrovski G, Verma RS. Vascular reconstruction of the decellularized biomatrix for whole-organ engineering-a critical perspective and future strategies. Front Bioeng Biotechnol 2023; 11:1221159. [PMID: 38026872 PMCID: PMC10680456 DOI: 10.3389/fbioe.2023.1221159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Whole-organ re-engineering is the most challenging goal yet to be achieved in tissue engineering and regenerative medicine. One essential factor in any transplantable and functional tissue engineering is fabricating a perfusable vascular network with macro- and micro-sized blood vessels. Whole-organ development has become more practical with the use of the decellularized organ biomatrix (DOB) as it provides a native biochemical and structural framework for a particular organ. However, reconstructing vasculature and re-endothelialization in the DOB is a highly challenging task and has not been achieved for constructing a clinically transplantable vascularized organ with an efficient perfusable capability. Here, we critically and articulately emphasized factors that have been studied for the vascular reconstruction in the DOB. Furthermore, we highlighted the factors used for vasculature development studies in general and their application in whole-organ vascular reconstruction. We also analyzed in detail the strategies explored so far for vascular reconstruction and angiogenesis in the DOB for functional and perfusable vasculature development. Finally, we discussed some of the crucial factors that have been largely ignored in the vascular reconstruction of the DOB and the future directions that should be addressed systematically.
Collapse
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, India
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Akriti Sharma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, India
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
3
|
Pibouin-Fragner L, Eichmann A, Pardanaud L. Environmental and intrinsic modulations of venous differentiation. Cell Mol Life Sci 2022; 79:491. [PMID: 35987946 PMCID: PMC11072674 DOI: 10.1007/s00018-022-04470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
Endothelial cells in veins differ in morphology, function and gene expression from those in arteries and lymphatics. Understanding how venous and arterial identities are induced during development is required to understand how arterio-venous malformations occur, and to improve the outcome of vein grafts in surgery by promoting arterialization of veins. To identify factors that promote venous endothelial cell fate in vivo, we isolated veins from quail embryos, at different developmental stages, that were grafted into the coelom of chick embryos. Endothelial cells migrated out from the grafted vein and their colonization of host veins and/or arteries was quantified. We show that venous fate is promoted by sympathetic vessel innervation at embryonic day 11. Removal of sympathetic innervation decreased vein colonization, while norepinephrine enhanced venous colonization. BMP treatment or inhibition of ERK enhanced venous fate, revealing environmental neurotransmitter and BMP signaling and intrinsic ERK inhibition as actors in venous fate acquisition. We also identify the BMP antagonist Noggin as a potent mediator of venous arterialization.
Collapse
Affiliation(s)
| | - Anne Eichmann
- Université de Paris Cité, Inserm, PARCC, 75015, Paris, France.
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Luc Pardanaud
- Université de Paris Cité, Inserm, PARCC, 75015, Paris, France.
| |
Collapse
|
4
|
Cell-based therapies for vascular regeneration: Past, present and future. Pharmacol Ther 2021; 231:107976. [PMID: 34480961 DOI: 10.1016/j.pharmthera.2021.107976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
Tissue vascularization remains one of the outstanding challenges in regenerative medicine. Beyond its role in circulating oxygen and nutrients, the vasculature is critical for organ development, function and homeostasis. Importantly, effective vascular regeneration is key in generating large 3D tissues for regenerative medicine applications to enable the survival of cells post-transplantation, organ growth, and integration into the host system. Therefore, the absence of clinically applicable means of (re)generating vessels is one of the main obstacles in cell replacement therapy. In this review, we highlight cell-based vascularization strategies which demonstrate clinical potential, discuss their strengths and limitations and highlight the main obstacles hindering cell-based therapeutic vascularization.
Collapse
|
5
|
Detection of pro angiogenic and inflammatory biomarkers in patients with CKD. Sci Rep 2021; 11:8786. [PMID: 33888746 PMCID: PMC8062467 DOI: 10.1038/s41598-021-87710-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 03/30/2021] [Indexed: 11/08/2022] Open
Abstract
Cardiovascular disease (CVD) is the most common cause of death in patients with native and post-transplant chronic kidney disease (CKD). To identify new biomarkers of vascular injury and inflammation, we analyzed the proteome of plasma and circulating extracellular vesicles (EVs) in native and post-transplant CKD patients utilizing an aptamer-based assay. Proteins of angiogenesis were significantly higher in native and post-transplant CKD patients versus healthy controls. Ingenuity pathway analysis (IPA) indicated Ephrin receptor signaling, serine biosynthesis, and transforming growth factor-β as the top pathways activated in both CKD groups. Pro-inflammatory proteins were significantly higher only in the EVs of native CKD patients. IPA indicated acute phase response signaling, insulin-like growth factor-1, tumor necrosis factor-α, and interleukin-6 pathway activation. These data indicate that pathways of angiogenesis and inflammation are activated in CKD patients' plasma and EVs, respectively. The pathways common in both native and post-transplant CKD may signal similar mechanisms of CVD.
Collapse
|
6
|
Etchevers HC. Pericyte Ontogeny: The Use of Chimeras to Track a Cell Lineage of Diverse Germ Line Origins. Methods Mol Biol 2021; 2235:61-87. [PMID: 33576971 DOI: 10.1007/978-1-0716-1056-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The goal of lineage tracing is to understand body formation over time by discovering which cells are the progeny of a specific, identified, ancestral progenitor. Subsidiary questions include unequivocal identification of what they have become, how many descendants develop, whether they live or die, and where they are located in the tissue or body at the end of the window examined. A classical approach in experimental embryology, lineage tracing continues to be used in developmental biology and stem cell and cancer research, wherever cellular potential and behavior need to be studied in multiple dimensions, of which one is time. Each technical approach has its advantages and drawbacks. This chapter, with some previously unpublished data, will concentrate nonexclusively on the use of interspecies chimeras to explore the origins of perivascular (or mural) cells, of which those adjacent to the vascular endothelium are termed pericytes for this purpose. These studies laid the groundwork for our understanding that pericytes derive from progenitor mesenchymal pools of multiple origins in the vertebrate embryo, some of which persist into adulthood. The results obtained through xenografting, like in the methodology described here, complement those obtained through genetic lineage-tracing techniques within a given species.
Collapse
|
7
|
Hsu CPD, Hutcheson JD, Ramaswamy S. Oscillatory fluid-induced mechanobiology in heart valves with parallels to the vasculature. VASCULAR BIOLOGY 2020; 2:R59-R71. [PMID: 32923975 PMCID: PMC7439923 DOI: 10.1530/vb-19-0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
Forces generated by blood flow are known to contribute to cardiovascular development and remodeling. These hemodynamic forces induce molecular signals that are communicated from the endothelium to various cell types. The cardiovascular system consists of the heart and the vasculature, and together they deliver nutrients throughout the body. While heart valves and blood vessels experience different environmental forces and differ in morphology as well as cell types, they both can undergo pathological remodeling and become susceptible to calcification. In addition, while the plaque morphology is similar in valvular and vascular diseases, therapeutic targets available for the latter condition are not effective in the management of heart valve calcification. Therefore, research in valvular and vascular pathologies and treatments have largely remained independent. Nonetheless, understanding the similarities and differences in development, calcific/fibrous pathologies and healthy remodeling events between the valvular and vascular systems can help us better identify future treatments for both types of tissues, particularly for heart valve pathologies which have been understudied in comparison to arterial diseases.
Collapse
Affiliation(s)
- Chia-Pei Denise Hsu
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| | - Joshua D Hutcheson
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| | - Sharan Ramaswamy
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| |
Collapse
|
8
|
Etchevers HC, Dupin E, Le Douarin NM. The diverse neural crest: from embryology to human pathology. Development 2019; 146:146/5/dev169821. [PMID: 30858200 DOI: 10.1242/dev.169821] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/07/2019] [Indexed: 01/13/2023]
Abstract
We review here some of the historical highlights in exploratory studies of the vertebrate embryonic structure known as the neural crest. The study of the molecular properties of the cells that it produces, their migratory capacities and plasticity, and the still-growing list of tissues that depend on their presence for form and function, continue to enrich our understanding of congenital malformations, paediatric cancers and evolutionary biology. Developmental biology has been key to our understanding of the neural crest, starting with the early days of experimental embryology and through to today, when increasingly powerful technologies contribute to further insight into this fascinating vertebrate cell population.
Collapse
Affiliation(s)
- Heather C Etchevers
- Aix-Marseille Université, INSERM, MMG, U1251, 27 boulevard Jean Moulin 13005 Marseille, France
| | - Elisabeth Dupin
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Nicole M Le Douarin
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| |
Collapse
|
9
|
Schlegel F, Appler M, Halling M, Smit FE, Mohr FW, Dhein S, Dohmen PM. Reprogramming Bone Marrow Stem Cells to Functional Endothelial Cells in a Mini Pig Animal Model. Med Sci Monit Basic Res 2017; 23:285-294. [PMID: 28814711 PMCID: PMC5572781 DOI: 10.12659/msmbr.905081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background The aims of this study were to compare the morphological, biochemical, and functional properties of reprogrammed bone marrow stem cell (BMSC)-derived arterial endothelial cells (AECs) and venous endothelial cells (VECs), following adenosine triphosphate (ATP)-stimulation in a mini pig animal model. Material/Methods Bone marrow aspiration was performed in six adult mini pigs. Harvested mononuclear cells were isolated, cultured, and treated with vascular endothelial growth factor (VEGF) (16 μg/ml). Transformed cells were characterized using immunofluorescence staining for CD31 and von Willebrandt factor (vWF) and expression of endothelial nitric oxide synthase (eNOS). Cell release of nitric oxide (cNO) was measured using spectrophotometry. Matrigel assays were used to investigate angiogenesis in transformed BMSCs. Results Reprogrammed BMSCs in culture showed a typical cobblestone-like pattern of growth. Immunofluorescence staining was positive for CD31 and vWF expression. Expression of eNOS, using immunofluorescence staining and Western blot, showed no difference between the reprogrammed BMSCs and VECs. Spectrophotometric examination following stimulation with 10mmol/l ATP, showed comparable cNO release for reprogrammed BMSCs (10.87±1.76 pmol/106 cells/min) and VECs (13.23±2.16 pmol/106 cells/min), but reduced cNO release for AECS (3.44±0.75 pmol/106 cells/min). Matrigel assay for angiogenesis showed vascular tube formation of differentiated BMSC endothelial cells (grade 3.25). BMSCs cultured without VEGF did not demonstrate vascular tube formation. Conclusions The findings of this study showed that eNOS expression and release of NO could be used to show that BMSCs can be reprogrammed to functional VECs and AECs.
Collapse
Affiliation(s)
- Franziska Schlegel
- Department of Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Leipzig, Germany
| | - Marco Appler
- Department of Cardiac Surgery, Heart Center Rostock, University of Rostock, Rostock, Germany
| | - Michelle Halling
- Department of Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Leipzig, Germany
| | - Francis Edwin Smit
- Department of Cardiothoracic Surgery, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| | - Friedrich-Wilhelm Mohr
- Department of Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Leipzig, Germany
| | - Stefan Dhein
- Department of Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Leipzig, Germany
| | - Pascal Maria Dohmen
- Department of Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Leipzig, Germany.,Department of Cardiac Surgery, Heart Center Rostock, University of Rostock, Rostock, Germany.,Department of Cardiothoracic Surgery, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
10
|
Altalhi W, Sun X, Sivak JM, Husain M, Nunes SS. Diabetes impairs arterio-venous specification in engineered vascular tissues in a perivascular cell recruitment-dependent manner. Biomaterials 2016; 119:23-32. [PMID: 27988406 DOI: 10.1016/j.biomaterials.2016.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022]
Abstract
Cell-based tissue engineering is a potential treatment alternative for organ replacement. However, the lack of a robust vasculature, especially in the context of diseases such as diabetes, is a major hindrance to its success. Despite extensive research on the effects of diabetes in angiogenic sprouting, its effects on vessel arterio-venous (AV) specification have not been addressed. Using an engineered tissue that yields functional vessels with characteristic AV identities, we demonstrate that type 1 diabetes negatively affects vessel AV specification and perivascular cell (PVC) coverage. Blockage of PVC recruitment in normoglycemia does not affect blood flow parameters, but recapitulates the vascular immaturity found in diabetes, suggesting a role for PVCs in AV specification. The downregulation of Jagged1 and Notch3, key modulators of endothelial-perivascular interaction, observed in diabetes support this assertion. Co-culture assays indicate that PVCs induce arterial identity specification by inducing EphrinB2 and downregulating EphB4. This is antagonized by high glucose or blockage of endothelial Jagged1. Engineered tissues composed of microvessels from diabetic mice display normal PVC coverage and Jagged1/Notch3 gene expression when implanted into non-diabetic hosts. These indicate a lack of legacy effect and support the use of a more aggressive treatment of diabetes in patients undergoing revascularization therapies.
Collapse
Affiliation(s)
- Wafa Altalhi
- Toronto General Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Xuetao Sun
- Toronto General Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Jeremy M Sivak
- Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Mansoor Husain
- Toronto General Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Canada
| | - Sara S Nunes
- Toronto General Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
EphrinB2/EphB4 pathway in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease. Angiogenesis 2016; 19:297-309. [PMID: 27216867 DOI: 10.1007/s10456-016-9514-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/13/2016] [Indexed: 01/12/2023]
Abstract
Ischemic cardiovascular disease remains one of the leading causes of morbidity and mortality in the world. Proangiogenic therapy appears to be a promising and feasible strategy for the patients with ischemic cardiovascular disease, but the results of preclinical and clinical trials are limited due to the complicated mechanisms of angiogenesis. Facilitating the formation of functional vessels is important in rescuing the ischemic cardiomyocytes. EphrinB2/EphB4, a novel pathway in angiogenesis, plays a critical role in both microvascular growth and neovascular maturation. Hence, investigating the mechanisms of EphrinB2/EphB4 pathway in angiogenesis may contribute to the development of novel therapeutics for ischemic cardiovascular disease. Previous reviews mainly focused on the role of EphrinB2/EphB4 pathway in embryo vascular development, but their role in postnatal angiogenesis in ischemic heart disease has not been fully illustrated. Here, we summarized the current knowledge of EphrinB2/EphB4 in angiogenesis and their interaction with other angiogenic pathways in ischemic cardiovascular disease.
Collapse
|
12
|
Tonna S, Poulton IJ, Taykar F, Ho PWM, Tonkin B, Crimeen-Irwin B, Tatarczuch L, McGregor NE, Mackie EJ, Martin TJ, Sims NA. Chondrocytic ephrin B2 promotes cartilage destruction by osteoclasts in endochondral ossification. Development 2016; 143:648-57. [PMID: 26755702 DOI: 10.1242/dev.125625] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 12/24/2015] [Indexed: 12/17/2022]
Abstract
The majority of the skeleton arises by endochondral ossification, whereby cartilaginous templates expand and are resorbed by osteoclasts then replaced by osteoblastic bone formation. Ephrin B2 is a receptor tyrosine kinase expressed by osteoblasts and growth plate chondrocytes that promotes osteoblast differentiation and inhibits osteoclast formation. We investigated the role of ephrin B2 in endochondral ossification using Osx1Cre-targeted gene deletion. Neonatal Osx1Cre.Efnb2(Δ/Δ) mice exhibited a transient osteopetrosis demonstrated by increased trabecular bone volume with a high content of growth plate cartilage remnants and increased cortical thickness, but normal osteoclast numbers within the primary spongiosa. Osteoclasts at the growth plate had an abnormal morphology and expressed low levels of tartrate-resistant acid phosphatase; this was not observed in more mature bone. Electron microscopy revealed a lack of sealing zones and poor attachment of Osx1Cre.Efnb2(Δ/Δ) osteoclasts to growth plate cartilage. Osteoblasts at the growth plate were also poorly attached and impaired in their ability to deposit osteoid. By 6 months of age, trabecular bone mass, osteoclast morphology and osteoid deposition by Osx1Cre.Efnb2(Δ/Δ) osteoblasts were normal. Cultured chondrocytes from Osx1Cre.Efnb2(Δ/Δ) neonates showed impaired support of osteoclastogenesis but no significant change in Rankl (Tnfsf11) levels, whereas Adamts4 levels were significantly reduced. A population of ADAMTS4(+) early hypertrophic chondrocytes seen in controls was absent from Osx1Cre.Efnb2(Δ/Δ) neonates. This suggests that Osx1Cre-expressing cells, including hypertrophic chondrocytes, are dependent on ephrin B2 for their production of cartilage-degrading enzymes, including ADAMTS4, and this might be required for attachment of osteoclasts and osteoblasts to the cartilage surface during endochondral ossification.
Collapse
Affiliation(s)
- Stephen Tonna
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia The University of Melbourne, Department of Medicine at St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Ingrid J Poulton
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Farzin Taykar
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Patricia W M Ho
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Brett Tonkin
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | | | - Liliana Tatarczuch
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville 3010, Australia
| | - Narelle E McGregor
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Eleanor J Mackie
- The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, Parkville 3010, Australia
| | - T John Martin
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia The University of Melbourne, Department of Medicine at St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Natalie A Sims
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia The University of Melbourne, Department of Medicine at St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
13
|
Fish JE, Wythe JD. The molecular regulation of arteriovenous specification and maintenance. Dev Dyn 2015; 244:391-409. [PMID: 25641373 DOI: 10.1002/dvdy.24252] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 12/21/2022] Open
Abstract
The formation of a hierarchical vascular network, composed of arteries, veins, and capillaries, is essential for embryogenesis and is required for the production of new functional vasculature in the adult. Elucidating the molecular mechanisms that orchestrate the differentiation of vascular endothelial cells into arterial and venous cell fates is requisite for regenerative medicine, as the directed formation of perfused vessels is desirable in a myriad of pathological settings, such as in diabetes and following myocardial infarction. Additionally, this knowledge will enhance our understanding and treatment of vascular anomalies, such as arteriovenous malformations (AVMs). From studies in vertebrate model organisms, such as mouse, zebrafish, and chick, a number of key signaling pathways have been elucidated that are required for the establishment and maintenance of arterial and venous fates. These include the Hedgehog, Vascular Endothelial Growth Factor (VEGF), Transforming Growth Factor-β (TGF-β), Wnt, and Notch signaling pathways. In addition, a variety of transcription factor families acting downstream of, or in concert with, these signaling networks play vital roles in arteriovenous (AV) specification. These include Notch and Notch-regulated transcription factors (e.g., HEY and HES), SOX factors, Forkhead factors, β-Catenin, ETS factors, and COUP-TFII. It is becoming apparent that AV specification is a highly coordinated process that involves the intersection and carefully orchestrated activity of multiple signaling cascades and transcriptional networks. This review will summarize the molecular mechanisms that are involved in the acquisition and maintenance of AV fate, and will highlight some of the limitations in our current knowledge of the molecular machinery that directs AV morphogenesis.
Collapse
Affiliation(s)
- Jason E Fish
- Toronto General Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
| | | |
Collapse
|
14
|
Kaufman R, Weiss O, Sebbagh M, Ravid R, Gibbs-Bar L, Yaniv K, Inbal A. Development and origins of zebrafish ocular vasculature. BMC DEVELOPMENTAL BIOLOGY 2015; 15:18. [PMID: 25888280 PMCID: PMC4406013 DOI: 10.1186/s12861-015-0066-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/28/2015] [Indexed: 01/26/2023]
Abstract
Background The developing eye receives blood supply from two vascular systems, the intraocular hyaloid system and the superficial choroidal vessels. In zebrafish, a highly stereotypic and simple set of vessels develops on the surface of the eye prior to development of choroidal vessels. The origins and formation of this so-called superficial system have not been described. Results We have analyzed the development of superficial vessels by time-lapse imaging and identified their origins by photoconversion experiments in kdrl:Kaede transgenic embryos. We show that the entire superficial system is derived from a venous origin, and surprisingly, we find that the hyaloid system has, in addition to its previously described arterial origin, a venous origin for specific vessels. Despite arising solely from a vein, one of the vessels in the superficial system, the nasal radial vessel (NRV), appears to acquire an arterial identity while growing over the nasal aspect of the eye and this happens in a blood flow-independent manner. Conclusions Our results provide a thorough analysis of the early development and origins of zebrafish ocular vessels and establish the superficial vasculature as a model for studying vascular patterning in the context of the developing eye. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0066-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rivka Kaufman
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Omri Weiss
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Meyrav Sebbagh
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Revital Ravid
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Liron Gibbs-Bar
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel. .,Department of Medical Neurobiology, Hebrew University Medical School, Ein-Kerem, Jerusalem, 9112002, Israel.
| |
Collapse
|
15
|
Kametani Y, Chi NC, Stainier DYR, Takada S. Notch signaling regulates venous arterialization during zebrafish fin regeneration. Genes Cells 2015; 20:427-38. [PMID: 25810153 DOI: 10.1111/gtc.12234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 02/06/2023]
Abstract
To protect against blood pressure, a mature artery is supported by mural cells which include vascular smooth muscle cells and pericytes. To regenerate a functional vascular system, arteries should be properly reconstructed with mural cells although the mechanisms underlying artery reconstruction remain unclear. In this study, we examined the process of artery reconstruction during regeneration of the zebrafish caudal fin as a model to study arterial formation in an adult setting. During fin regeneration, the arteries and veins form a net-like vasculature called the vascular plexus, and this plexus undergoes remodeling to form a new artery and two flanking veins. We found that the new vascular plexus originates mainly from venous cells in the stump but very rarely from the arterial cells. Interestingly, these vein-derived cells contributed to the reconstructed arteries. This arterialization was dependent on Notch signaling, and further analysis showed that Notch signaling was required for the initiation of arterial gene expression. In contrast, venous remodeling did not require Notch signaling. These results provide new insights toward understanding mechanisms of vascular regeneration and illustrate the utility of the adult zebrafish fin to study this process.
Collapse
Affiliation(s)
- Yoshiko Kametani
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA; Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | | | | | | |
Collapse
|
16
|
Morin KT, Dries-Devlin JL, Tranquillo RT. Engineered microvessels with strong alignment and high lumen density via cell-induced fibrin gel compaction and interstitial flow. Tissue Eng Part A 2013; 20:553-65. [PMID: 24083839 DOI: 10.1089/ten.tea.2013.0262] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of engineered microvessels with clinically relevant characteristics is a critical step toward the creation of engineered myocardium. Alignment is one such characteristic that must be achieved, as it both mimics native capillary beds and provides natural inlet and outlet sides for perfusion. A second characteristic that is currently deficient is cross-sectional lumen density, typically under 100 lumens/mm²; the equivalent value for human myocardium is 2000 lumens/mm². Therefore, this study examined the effects of gel compaction and interstitial flow on microvessel alignment and lumen density. Strong microvessel alignment was achieved via mechanically constrained cell-induced fibrin gel compaction following vasculogenesis, and high lumen density (650 lumens/mm²) was achieved by the subsequent application of low levels of interstitial flow. Low interstitial flow also conferred microvessel barrier function.
Collapse
Affiliation(s)
- Kristen T Morin
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | | | | |
Collapse
|
17
|
Gore AV, Monzo K, Cha YR, Pan W, Weinstein BM. Vascular development in the zebrafish. Cold Spring Harb Perspect Med 2013; 2:a006684. [PMID: 22553495 DOI: 10.1101/cshperspect.a006684] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The zebrafish has emerged as an excellent vertebrate model system for studying blood and lymphatic vascular development. The small size, external and rapid development, and optical transparency of zebrafish embryos are some of the advantages the zebrafish model system offers. Multiple well-established techniques have been developed for imaging and functionally manipulating vascular tissues in zebrafish embryos, expanding on and amplifying these basic advantages and accelerating use of this model system for studying vascular development. In the past decade, studies performed using zebrafish as a model system have provided many novel insights into vascular development. In this article we discuss the amenability of this model system for studying blood vessel development and review contributions made by this system to our understanding of vascular development.
Collapse
Affiliation(s)
- Aniket V Gore
- Program in Genomics of Differentiation, Laboratory of Molecular Genetics, Section on Vertebrate Organogenesis, NICHD, NIH, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
18
|
Lucitti JL, Mackey JK, Morrison JC, Haigh JJ, Adams RH, Faber JE. Formation of the collateral circulation is regulated by vascular endothelial growth factor-A and a disintegrin and metalloprotease family members 10 and 17. Circ Res 2012; 111:1539-50. [PMID: 22965144 DOI: 10.1161/circresaha.112.279109] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE The density of native (preexisting) collaterals varies widely and is a significant determinant of variation in severity of stroke, myocardial infarction, and peripheral artery disease. However, little is known about mechanisms responsible for formation of the collateral circulation in healthy tissues. OBJECTIVE We previously found that variation in vascular endothelial growth factor (VEGF) expression causes differences in collateral density of newborn and adult mice. Herein, we sought to determine mechanisms of collaterogenesis in the embryo and the role of VEGF in this process. METHODS AND RESULTS Pial collaterals begin forming between embryonic day 13.5 and 14.5 as sprout-like extensions from arterioles of existing cerebral artery trees. Global VEGF-A overexpressing mice (Vegf(hi/+)) formed more, and Vegf(lo/+) formed fewer, collaterals during embryogenesis, in association with differences in vascular patterning. Conditional global reduction of Vegf or Flk1 only during collaterogenesis significantly reduced collateral formation, but now without affecting vascular patterning, and the effects remained in adulthood. Endothelial-specific Vegf reduction had no effect on collaterogenesis. Endothelial-specific reduction of a disintegrin-and-metalloprotease-domain-10 (Adam10) and inhibition of γ-secretase increased collateral formation, consistent with their roles in VEGF-induced Notch1 activation and suppression of prosprouting signals. Endothelial-specific knockdown of Adam17 reduced collateral formation, consistent with its roles in endothelial cell migration and embryonic vascular stabilization, but not in activation of ligand-bound Notch1. These effects also remained in adulthood. CONCLUSIONS Formation of pial collaterals occurs during a narrow developmental window via a sprouting angiogenesis-like mechanism, requires paracrine VEGF stimulation of fetal liver kinase 1-Notch signaling, and adult collateral number is dependent on embryonic collaterogenesis.
Collapse
Affiliation(s)
- Jennifer L Lucitti
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
19
|
Mechanotransduction in embryonic vascular development. Biomech Model Mechanobiol 2012; 11:1149-68. [PMID: 22744845 DOI: 10.1007/s10237-012-0412-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/09/2012] [Indexed: 12/25/2022]
Abstract
A plethora of biochemical signals provides spatial and temporal cues that carefully orchestrate the complex process of vertebrate embryonic development. The embryonic vasculature develops not only in the context of these biochemical cues, but also in the context of the biomechanical forces imparted by blood flow. In the mature vasculature, different blood flow regimes induce distinct genetic programs, and significant progress has been made toward understanding how these forces are perceived by endothelial cells and transduced into biochemical signals. However, it cannot be assumed that paradigms that govern the mature vasculature are pertinent to the developing embryonic vasculature. The embryonic vasculature can respond to the mechanical forces of blood flow, and these responses are critical in vascular remodeling, certain aspects of sprouting angiogenesis, and maintenance of arterial-venous identity. Here, we review data regarding mechanistic aspects of endothelial cell mechanotransduction, with a focus on the response to shear stress, and elaborate upon the multifarious effects of shear stress on the embryonic vasculature. In addition, we discuss emerging predictive vascular growth models and highlight the prospect of combining signaling pathway information with computational modeling. We assert that correlation of precise measurements of hemodynamic parameters with effects on endothelial cell gene expression and cell behavior is required for fully understanding how blood flow-induced loading governs normal vascular development and shapes congenital cardiovascular abnormalities.
Collapse
|
20
|
Abstract
The mammalian vascular system consists of two distinct, but closely related, networks: the blood vasculature (itself divided into arterial and venous networks) and the lymphatic vasculature. EC (endothelial cell) lineage specification has been proposed to be determined during embryonic development, after which the ECs are committed to their fate. However, increasing evidence suggests that ECs retain various degrees of plasticity, and have the ability to express characteristics of alternative cell lineages. Therapeutic control of endothelial plasticity will allow greater understanding of the genesis and treatment of several vascular diseases.
Collapse
|
21
|
Atkins GB, Jain MK, Hamik A. Endothelial differentiation: molecular mechanisms of specification and heterogeneity. Arterioscler Thromb Vasc Biol 2011; 31:1476-84. [PMID: 21677290 DOI: 10.1161/atvbaha.111.228999] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A complex and diverse vascular system is requisite for the survival of higher organisms. The process of vascular development is highly regulated, involving the de novo formation of vessels (vasculogenesis), followed by expansion and remodeling of the primitive vasculature (angiogenesis), culminating in differentiation of endothelial phenotypes, as found in the mature vascular system. Over the last decade, significant advances have been made in understanding the molecular regulation of endothelial cell development and differentiation. Endothelial development, in particular the mechanisms in play during vasculogenesis and angiogenesis, is discussed in a sister review to this article. This review highlights the key pathways governing in endothelial differentiation, with a focus on the major molecular mechanisms of endothelial specification and heterogeneity.
Collapse
Affiliation(s)
- G Brandon Atkins
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Harrington-McLaughlin Heart and Vascular Institute, Cleveland, OH, USA
| | | | | |
Collapse
|
22
|
Abstract
The development, homeostasis, and regeneration of complex organ systems require extensive cell-cell communication to ensure that different cells proliferate, migrate, differentiate, assemble, and function in a coordinated and timely fashion. Eph receptor tyrosine kinases and their ephrin ligands are critical regulators of cell contact-dependent signaling and patterning. Eph/ephrin binding can lead to very diverse biological readouts such as adhesion versus repulsion, or increased versus decreased motility. Accordingly, depending on cell type and context, a limited and conserved set of receptor-ligand interactions is translated into a large variety of downstream signaling processes. Recent evidence indicates that the endocytosis of Eph/ephrin molecules, together with the internalization of various associated tissue-specific effectors, might be one of the key principles responsible for such highly diverse and adaptable biological roles. Here, we summarize recent insights into Eph/ephrin signaling and endocytosis in three biological systems; i.e., the brain, intestine, and vasculature.
Collapse
Affiliation(s)
- Mara E Pitulescu
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, Münster, Germany
| | | |
Collapse
|
23
|
Melani M, Weinstein BM. Common factors regulating patterning of the nervous and vascular systems. Annu Rev Cell Dev Biol 2010; 26:639-65. [PMID: 19575651 DOI: 10.1146/annurev.cellbio.093008.093324] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vascular and the nervous systems of vertebrates share many features with similar and often overlapping anatomy. The parallels between these two systems extend to the molecular level, where recent work has identified ever-increasing similarities between the molecular mechanisms employed in the specification, differentiation, and patterning of both systems. This review discusses some of the most recent literature on this subject, with particular emphasis on the roles that the Ephrin, Semaphorin, Netrin, and Slit signaling pathways play in vascular development.
Collapse
Affiliation(s)
- Mariana Melani
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
24
|
Davies MH, Stempel AJ, Hubert KE, Powers MR. Altered vascular expression of EphrinB2 and EphB4 in a model of oxygen-induced retinopathy. Dev Dyn 2010; 239:1695-707. [PMID: 20503366 DOI: 10.1002/dvdy.22306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
EphrinB2 ligands and EphB4 receptors are expressed on endothelial cells (EC) of arteries and veins, respectively, and are essential for vascular development. To understand how these molecules regulate retinal neovascularization (NV), we evaluated their expression in a model of oxygen-induced retinopathy (OIR). EphrinB2 and EphB4 were expressed on arterial and venous trunks, respectively, and on a subset of deep capillary vessels. EphB4 expression was reduced following hyperoxia, while ephrinB2 expression remained unaltered. In addition, a subset of EphB4-positive veins regressed in a caspase-3-dependent manner during hyperoxia. Arteriovenous malformations were also observed with loss of arterial-venous boundaries. Finally, both ephrinB2 and EphB4 were expressed on a subset of neovascular tufts following hyperoxia. These data confirm the contribution of ECs from both venous and arterial origins to the development of retinal NV.
Collapse
Affiliation(s)
- Michael H Davies
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | |
Collapse
|
25
|
Yamamoto K, Ando J. Differentiation of stem/progenitor cells into vascular cells in response to fluid mechanical forces. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s12573-010-0017-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Kume T. Specification of arterial, venous, and lymphatic endothelial cells during embryonic development. Histol Histopathol 2010; 25:637-46. [PMID: 20238301 DOI: 10.14670/hh-25.637] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The groundbreaking discovery about arterial and venous expression of ephrinB2 and EphB4, respectively, in early embryonic development has led to a new paradigm for vascular research, providing compelling evidence that arterial and venous endothelial cells are established by genetic mechanisms before circulation begins. For arterial specification, vascular endothelial growth factor (VEGF) induces expression of Notch signaling genes, including Notch1 and its ligand, Delta-like 4 (Dll4), and Foxc1 and Foxc2 transcription factors directly regulate Dll4 expression. Upon activation of Notch signaling, the Notch downstream genes, Hey1/2 in mice or gridlock in zebrafish, further promote arterial differentiation. On the other hand, the orphan nuclear receptor COUP-TFII is a determinant factor for venous specification by inhibiting expression of arterial specific genes, including Nrp1 and Notch. After arterial and venous endothelial cells differentiate, a subpopulation of venous endothelial cells is thought to become competent to acquire lymphatic endothelial cell fate by progressively expressing the transcription factors Sox18 and Prox1 to differentiate into lymphatic endothelial cells. Therefore, it has now evident that arterial-venous cell fate determination and subsequent lymphatic development are regulated by the multi-step regulatory system associated with the key signaling pathways and transcription factors. Furthermore, new signaling molecules as additional regulators in these processes have recently been identified. As the mechanistic basis for a link between signaling pathways and transcriptional networks in arterial, venous and lymphatic endothelial cells begins to be uncovered, it is now time to summarize the literature on this exciting topic and provide perspectives for future research in the field.
Collapse
Affiliation(s)
- Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
27
|
Coronary arteries form by developmental reprogramming of venous cells. Nature 2010; 464:549-53. [PMID: 20336138 DOI: 10.1038/nature08873] [Citation(s) in RCA: 401] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/04/2010] [Indexed: 12/31/2022]
Abstract
Coronary artery disease is the leading cause of death worldwide. Determining the coronary artery developmental program could aid understanding of the disease and lead to new treatments, but many aspects of the process, including their developmental origin, remain obscure. Here we show, using histological and clonal analysis in mice and cardiac organ culture, that coronary vessels arise from angiogenic sprouts of the sinus venosus-the vein that returns blood to the embryonic heart. Sprouting venous endothelial cells dedifferentiate as they migrate over and invade the myocardium. Invading cells differentiate into arteries and capillaries; cells on the surface redifferentiate into veins. These results show that some differentiated venous cells retain developmental plasticity, and indicate that position-specific cardiac signals trigger their dedifferentiation and conversion into coronary arteries, capillaries and veins. Understanding this new reprogramming process and identifying the endogenous signals should suggest more natural ways of engineering coronary bypass grafts and revascularizing the heart.
Collapse
|
28
|
Abstract
The endothelium is composed of specialized epithelial cells that line the vasculature, the lymph vessels, and the heart. These endothelial cells are characterized by their stratification and are connected via intercellular junctions that confer specific permeability. Although all endothelium acts as a barrier, considerable heterogeneity exists among different organs and even within vessels. During development, the endothelial cells are specified before they migrate to their final destination, and then they commit to an arterial or venous fate. From the venous endothelial cell population, a subset of cells is further specified as lymphatic endothelium. The endothelium can be highly permeable, as in the lymph vessels, or impenetrable, as in the blood-brain barrier. These differences arise during development and are orchestrated through a series of signaling pathways. This review details how endothelial cells arise and are directed to their specific fate, specifically targeting what differentiates endothelial populations.
Collapse
Affiliation(s)
- Laura A. Dyer
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
29
|
Sohl M, Lanner F, Farnebo F. Sp1 mediate hypoxia induced ephrinB2 expression via a hypoxia-inducible factor independent mechanism. Biochem Biophys Res Commun 2009; 391:24-7. [PMID: 19883626 DOI: 10.1016/j.bbrc.2009.10.146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 10/28/2009] [Indexed: 12/24/2022]
Abstract
Environmental factors are instrumental in maintaining a healthy vasculature. Oxygen tension is higher in arteries than in veins and thus has the potential to be an instructive signal in arterial/venous specification. EphrinB2 is specifically expressed in arteries and required during embryonic vessel formation. In this study, we show that expression of ephrinB2 is oxygen dependent. Mutagenesis of hypoxia-responsive elements and transactivation experiments determined this regulation to be achieved in a hypoxia-inducible factor independent manner. MAZ and Sp1 are known to regulate transcription together and have been shown to bind to the same sites within promoters. Chromatin immunoprecipitation confirmed that binding of Sp1 to the ephrinB2 promoter was favored compared to MAZ under hypoxic relative to normoxic conditions. Furthermore, siRNA mediated knockdown of Sp1 attenuated this hypoxic response. These results indicate that hypoxia drives arterial differentiation by increasing ephrinB2 expression in endothelial cells through Sp1 activation.
Collapse
Affiliation(s)
- Marcus Sohl
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
30
|
Masumura T, Yamamoto K, Shimizu N, Obi S, Ando J. Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways. Arterioscler Thromb Vasc Biol 2009; 29:2125-31. [PMID: 19797707 DOI: 10.1161/atvbaha.109.193185] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Arterial-venous specification in the embryo has been assumed to depend on the influence of fluid mechanical forces, but its cellular and molecular mechanisms are still poorly understood. Our previous in vitro study revealed that fluid shear stress induces endothelial cell (EC) differentiation by murine embryonic stem (ES) cells. In the present study we investigated whether shear stress regulates the arterial-venous specification of ES-cell-derived ECs. METHODS AND RESULTS When murine ES cell-derived VEGFR2(+) cells were exposed to shear stress, expression of the arterial EC marker protein ephrinB2 increased dose-dependently. The ephrinB2 mRNA levels also increased in response to shear stress, whereas the mRNA levels of the venous EC marker EphB4 decreased. Notch cleavage and translocation of the Notch intracellular domain (NICD) into the nucleus occurred as early as 30 minutes after the start of shear stress and increased with time. Gamma-Secretase inhibitors (DAPT and L685 458) and the recombinant extracellular domain of the Notch ligand DLL4 abolished the shear stress-induced NICD translocation, and that, in turn, blocked the shear stress-induced upregulation of ephrinB2 expression. In addition, the VEGF receptor kinase inhibitor SU1498 was found to suppress both the shear-stress-induced Notch cleavage and up-regulation of ephrinB2 expression. CONCLUSIONS Exposure to shear stress induces an increase in expression of ephrinB2 in murine ES cells via VEGF-Notch signaling pathways.
Collapse
Affiliation(s)
- Tomomi Masumura
- Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
31
|
Abstract
The major arteries and veins of the vertebrate circulatory system are formed early in embryonic development, before the onset of circulation, following de novo aggregation of "angioblast" progenitors in a process called vasculogenesis. Initial embryonic determination of artery or vein identity is regulated by variety of genetic factors that work in concert to specify endothelial cell fate, giving rise to 2 distinct components of the circulatory loop possessing unique structural characteristics. Work in multiple in vivo animal model systems has led to a detailed examination of the interacting partners that determine arterial and venous specification. We discuss the hierarchical arrangement of many signaling molecules, including Hedgehog (Hh), vascular endothelial growth factor (VEGF), Notch, and chicken ovalbumin upstream-transcription factor II (COUP-TFII) that promote or inhibit divergent pathways of endothelial cell fate. Elucidation of the functional role of these genetic determinants of blood vessel specification together with the epigenetic factors involved in subsequent modification of arterial-venous identity will allow for potential new therapeutic targets for vascular disorders.
Collapse
Affiliation(s)
- Matthew R Swift
- Laboratory of Molecular Genetics, NICHD, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
32
|
Aitsebaomo J, Portbury AL, Schisler JC, Patterson C. Brothers and sisters: molecular insights into arterial-venous heterogeneity. Circ Res 2008; 103:929-39. [PMID: 18948631 DOI: 10.1161/circresaha.108.184937] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The molecular differences between arteries and veins are genetically predetermined and are evident even before the first embryonic heart beat. Although ephrinB2 and EphB4 are expressed in cells that will ultimately differentiate into arteries and veins, respectively, many other genes have been shown to play a significant role in cell fate determination. The expression patterns of ephrinB2 and EphB4 are restricted to arterial-venous boundaries, and Eph/ephrin signaling provides repulsive cues at arterial-venous boundaries that are thought to prevent intermixing of arterial- and venous-fated cells. However, the maintenance of arterial-venous fate is susceptible to some degree of plasticity. Thus, in response to signals from the ambient microenvironment and shear stress, there is flow-mediated intercalation of the arteries and veins that ultimately leads to the formation of a functional, closed-loop circulation. In addition, cells in the blood vessels of each organ undergo epigenetic, morphological, and functional adaptive changes that are specific to the proximate function of their cognate organ(s). These adaptive changes result in an interorgan and intraorgan vessel heterogeneity that manifest clinically in a disparate response of different organs to identical risk factors and injury in the same animal. In this review, we focus on the molecular and physiological factors influencing arterial-venous heterogeneity between and within different organ(s). We explore arterial-venous differences in selected organs, as well as their respective endothelial cell architectural organization that results in their inter- and intraorgan heterogeneity.
Collapse
Affiliation(s)
- Julius Aitsebaomo
- Division of Cardiology and Carolina Cardiovascular Biology Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7126, USA
| | | | | | | |
Collapse
|
33
|
Arterial versus venous endothelial cells. Cell Tissue Res 2008; 335:5-16. [PMID: 18972135 DOI: 10.1007/s00441-008-0706-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 09/17/2008] [Indexed: 12/12/2022]
Abstract
Vascular endothelial cells (ECs) form the inner lining of all blood vessels from the largest artery and veins, viz., the aorta and venae cavae, respectively, to the capillaries that connect the arterial and venous systems. Because these two major conducting systems of the cardiovasculature differ functionally, it is not surprising that the physical makeup of arteries and veins, including the ECs that line their lumina, are also distinct. Although few would argue that the local environment contributes to the differences between arteries and veins, recent evidence has shown that the specification of arterial and venous identity is largely genetically determined.
Collapse
|
34
|
Hong CC, Kume T, Peterson RT. Role of crosstalk between phosphatidylinositol 3-kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase pathways in artery-vein specification. Circ Res 2008; 103:573-9. [PMID: 18796644 DOI: 10.1161/circresaha.108.180745] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Functional and structural differences between arteries and veins lie at the core of the circulatory system, both in health and disease. Therefore, understanding how artery and vein cell identities are established is a fundamental biological challenge with significant clinical implications. Molecular genetic studies in zebrafish and other vertebrates in the past decade have begun to reveal in detail the complex network of molecular pathways that specify artery and vein cell fates during embryonic development. Recently, a chemical genetic approach has revealed evidence that artery-vein specification is governed by cross talk between phosphoinositide 3-kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling in artery-vein specification. We discuss recent findings on the signaling pathways involved in artery-vein specification during zebrafish development and compare and contrast these results to those from mammalian systems. It is anticipated that the complementary approaches of genetics and chemical biology, involving a variety of model organisms and systems, will lead to a better understanding of artery-vein specification and possibly to novel therapeutic approaches to treat vascular diseases.
Collapse
Affiliation(s)
- Charles C Hong
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 383 PRB, 2220 Pierce Ave, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
35
|
Mellott DO, Burke RD. Divergent roles for Eph and ephrin in avian cranial neural crest. BMC DEVELOPMENTAL BIOLOGY 2008; 8:56. [PMID: 18495033 PMCID: PMC2405773 DOI: 10.1186/1471-213x-8-56] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 05/21/2008] [Indexed: 11/10/2022]
Abstract
Background As in other vertebrates, avian hindbrain neural crest migrates in streams to specific branchial arches. Signalling from Eph receptors and ephrins has been proposed to provide a molecular mechanism that guides the cells restricting them to streams. In mice and frogs, cranial neural crest express a combination of Eph receptors and ephrins that appear to exclude cells from adjacent tissues by forward and reverse signalling. The objective of this study was to provide comparative data on the distribution and function of Eph receptors and ephrins in avian embryos. Results To distinguish neural crest from bordering ectoderm and head mesenchyme, we have co-labelled embryos for Eph or ephrin RNA and a neural crest marker protein. Throughout their migration avian cranial neural crest cells express EphA3, EphA4, EphA7, EphB1, and EphB3 and move along pathways bordered by non-neural crest cells expressing ephrin-B1. In addition, avian cranial neural crest cells express ephrin-B2 and migrate along pathways bordered by non-neural crest cells expressing EphB2. Thus, the distribution of avian Eph receptors and ephrins differs from those reported in other vertebrates. In stripe assays when explanted cranial neural crest were given the choice between FN or FN plus clustered ephrin-B1 or EphB2 fusion protein, the cells strongly localize to lanes containing only FN. This preference is mitigated in the presence of soluble ephrin-B1 or EphB2 fusion protein. Conclusion These findings show that avian cranial neural crest use Eph and ephrin receptors as other vertebrates in guiding migration. However, the Eph receptors are expressed in different combinations by neural crest destined for each branchial arch and ephrin-B1 and ephrin-B2 appear to have opposite roles to those reported to guide cranial neural crest migration in mice. Unlike many of the signalling, specification, and effector pathways of neural crest, the roles of Eph receptors and ephrins have not been rigorously conserved. This suggests diversification of receptor and ligand expression is less constrained, possibly by promiscuous binding and use of common downstream pathways.
Collapse
Affiliation(s)
- Dan O Mellott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada.
| | | |
Collapse
|
36
|
Al-Kilani A, Lorthois S, Nguyen TH, Le Noble F, Cornelissen A, Unbekandt M, Boryskina O, Leroy L, Fleury V. During vertebrate development, arteries exert a morphological control over the venous pattern through physical factors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:051912. [PMID: 18643107 DOI: 10.1103/physreve.77.051912] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Indexed: 05/26/2023]
Abstract
The adult vasculature is comprised of three distinct compartments: the arteries, which carry blood away from the heart and display a divergent flow pattern; the capillaries, where oxygen and nutrient delivery from blood to tissues, as well as metabolic waste removal, occurs; and the veins, which carry blood back to the heart and are characterized by a convergent flow pattern. These compartments are organized in series as regard to flow, which proceeds from the upstream arteries to the downstream veins through the capillaries. However, the spatial organization is more complex, as veins may often be found paralleling the arteries. The factors that control the morphogenesis of this hierarchically branched vascular network are not well characterized. Here, we explain how arteries exert a morphological control on the venous pattern. Indeed, during vertebrate development, the following transition may be observed in the spatial organization of the vascular system: veins first develop in series with the arteries, the arterial and venous territories being clearly distinct in space (cis-cis configuration). But after some time, new veins grow parallel to the existing arteries, and the arterial and venous territories become overlapped, with extensive and complex intercalation and interdigitation. Using physical arguments, backed up by experimental evidence (biological data from the literature and in situ optical and mechanical measurements of the chick embryo yolk-sac and midbrain developing vasculatures), we explain how such a transition is possible and why it may be expected with generality, as organisms grow. The origin of this transition lies in the remodeling of the capillary tissue in the vicinity of the growing arteries. This remodeling lays down a prepattern for further venous growth, parallel to the existing arterial pattern. Accounting for the influence of tissue growth, we show that this prepatterned path becomes favored as the body extends. As a consequence, a second flow route with veins paralleling the arteries (cis-trans configuration) emerges when the tissue extends. Between the cis-cis and cis-trans configurations, all configurations are in principle possible, and self-organization of the vessels contributes to determining their exact pattern. However, the global aspect depends on the size at which the growth stops and on the growth rate.
Collapse
Affiliation(s)
- Alia Al-Kilani
- Groupe Matière Condensée et Matériaux, Université de Rennes 1, Campus de Beaulieu, Bâtiment 13A, 35 042 Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Deciphering arterial identity through gene expression, genetics, and chemical biology. Curr Opin Hematol 2008; 15:221-7. [DOI: 10.1097/moh.0b013e3282f97daa] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Role of ephrinB2 expression in endothelial cells during arteriogenesis: impact on smooth muscle cell migration and monocyte recruitment. Blood 2008; 112:73-81. [PMID: 18445690 DOI: 10.1182/blood-2007-12-128835] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Expression of the arterial marker molecule ephrinB2 in endothelial cells is a prerequisite for adequate remodeling processes of the developing or angiogenic vasculature. Although its role in these processes has been extensively studied, the impact of ephrinB2 on the remodeling of adult arteries is largely unknown. To this end, we analyzed its expression during a biomechanically induced arteriolar remodeling process known as arteriogenesis and noted a significant increase in ephrinB2 expression under these conditions. By examining those biomechanical forces presumed to drive arteriogenesis, we identified cyclic stretch as a critical inducer of ephrinB2 expression in endothelial cells. Subsequent functional analyses in vitro revealed that endothelial cells expressing ephrinB2 limit the migration of smooth muscle cells, thereby enhancing segregation of both cell types. Moreover, MCP-1 induced transmigration of monocytes through a monolayer of endothelial cells overexpressing a truncated variant of ephrinB2 was clearly impeded. Taken together, these data suggest that expression of ephrinB2 in adult endothelial cells is up-regulated during arterial remodeling and controlled by cyclic stretch, a well-known inducer of such processes. This stretch-induced ephrinB2 expression may be pivotal for arteriogenesis as it limits smooth muscle cell migration within defined borders and controls monocyte extravasation.
Collapse
|
39
|
Abstract
In recent decades, it has become evident that the endothelium is by no means a passive inner lining of blood vessels. This 'organ' with a large surface (approximately 350 m2) and a comparatively small total mass (approximately 110 g) is actively involved in vital functions of the cardiovascular system, including regulation of perfusion, fluid and solute exchange, haemostasis and coagulation, inflammatory responses, vasculogenesis and angiogenesis. The present chapter focusses on two central aspects of endothelial structure and function: (1) the heterogeneity in endothelial properties between species, organs, vessel classes and even within individual vessels and (2) the composition and role of the molecular layer on the luminal surface of endothelial cells. The endothelial lining of blood vessels in different organs differs with respect to morphology and permeability and is classified as 'continuous', 'fenestrated' or 'discontinuous'. Furthermore, the mediator release, antigen presentation or stress responses of endothelial cells vary between species, different organs and vessel classes. Finally there are relevant differences even between adjacent endothelial cells, with some cells exhibiting specific functional properties, e.g. as pacemaker cells for intercellular calcium signals. Organ-specific structural and functional properties of the endothelium are marked in the vascular beds of the lung and the brain. Pulmonary endothelium exhibits a high constitutive expression of adhesion molecules which may contribute to the margination of the large intravascular pool of leucocytes in the lung. Furthermore, the pulmonary microcirculation is less permeable to protein and water flux as compared to large pulmonary vessels. Endothelial cells of the blood-brain barrier exhibit a specialised phenotype with no fenestrations, extensive tight junctions and sparse pinocytotic vesicular transport. This barrier allows a strict control of exchange of solutes and circulating cells between the plasma and the interstitial space. It was observed that average haematocrit levels in muscle capillaries are much lower as compared to systemic haematocrit, and that flow resistance of microvascular beds is higher than expected from in vitro studies of blood rheology. This evidence stimulated the concept of a substantial layer on the luminal endothelial surface (endothelial surface layer, ESL) with a thickness in the range of 0.5-1 microm. In comparison, the typical thickness of the glycocalyx directly anchored in the endothelial plasma membrane, as seen in electron micrographs, amounts to only about 50-100 microm. Therefore it is assumed that additional components, e.g. adsorbed plasma proteins or hyaluronan, are essential in constituting the ESL. Functional consequences of the ESL presence are not yet sufficiently understood and acknowledged. However, it is evident that the thick endothelial surface layer significantly impacts haemodynamic conditions, mechanical stresses acting on red cells in microvessels, oxygen transport, vascular control, coagulation, inflammation and atherosclerosis.
Collapse
Affiliation(s)
- A R Pries
- Dept. of Physiology, Charité Berlin, Arnimallee 22, 14195 Berlin, Germany.
| | | |
Collapse
|
40
|
Abstract
Endothelial cells, which form the inner cellular lining of blood vessels and lymphatics, display remarkable heterogeneity in structure and function. This is the second of a 2-part review on the phenotypic heterogeneity of blood vessel endothelial cells. The first part discusses the scope, the underlying mechanisms, and the diagnostic and therapeutic implications of phenotypic heterogeneity. Here, these principles are applied to an understanding of organ-specific phenotypes in representative vascular beds including arteries and veins, heart, lung, liver, and kidney. The goal is to underscore the importance of site-specific properties of the endothelium in mediating homeostasis and focal vascular pathology, while at the same time emphasizing the value of approaching the endothelium as an integrated system.
Collapse
Affiliation(s)
- William C Aird
- Division of Molecular and Vascular Medicine, Department of Medicine, and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass 02215, USA.
| |
Collapse
|
41
|
Aranguren XL, Luttun A, Clavel C, Moreno C, Abizanda G, Barajas MA, Pelacho B, Uriz M, Araña M, Echavarri A, Soriano M, Andreu EJ, Merino J, Garcia-Verdugo JM, Verfaillie CM, Prósper F. In vitro and in vivo arterial differentiation of human multipotent adult progenitor cells. Blood 2006; 109:2634-42. [PMID: 17090652 DOI: 10.1182/blood-2006-06-030411] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many stem cell types have been shown to differentiate into endothelial cells (ECs); however, their specification to arterial or venous endothelium remains unexplored. We tested whether a specific arterial or venous EC fate could be induced in human multipotent adult progenitor cells (hMAPCs) and AC133(+) cells (hAC133(+)). In vitro, in the presence of VEGF(165), hAC133(+) cells only adopted a venous and microvascular EC phenotype, while hMAPCs differentiated into both arterial and venous ECs, possibly because hMAPCs expressed significantly more sonic hedgehog (Shh) and its receptors as well as Notch 1 and 3 receptors and some of their ligands. Accordingly, blocking either of those pathways attenuated in vitro arterial EC differentiation from hMAPCs. Complementarily, stimulating these pathways by addition of Delta-like 4 (Dll-4), a Notch ligand, and Shh to VEGF(165) further boosted arterial differentiation in hMAPCs both in vitro and in an in vivo Matrigel model. These results represent the first demonstration of adult stem cells with the potential to be differentiated into different types of ECs in vitro and in vivo and provide a useful human model to study arteriovenous specification.
Collapse
Affiliation(s)
- Xabier L Aranguren
- Hematology Service and Cell Therapy, Clínica Universitaria, Foundation for Applied Medical Research, Division of Cancer, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hirashima M, Suda T. Differentiation of arterial and venous endothelial cells and vascular morphogenesis. ACTA ACUST UNITED AC 2006; 13:137-45. [PMID: 16728330 DOI: 10.1080/10623320600698078] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The vascular system is comprised of an organized hierarchical structure of arteries, veins, and capillaries. Recent studies in zebrafish, chick, and mouse reveal that the identity of artery and vein is governed by genetic factors as well as blood flow. The ephrin/Eph system establishes arterial and venous endothelial cell identity, and is important for structural segregation between arteries and veins. Analyses using loss- or gain-of-function mutations in zebrafish and mice show that Su(H)/RBP-J-dependent Delta/Notch signaling is a key mediator of arterial endothelial cell fate decision and vascular patterning. Vascular endothelial growth factor has also been shown to work upstream of Notch and is a key player in arteriogenesis. On the other hand, an orphan nuclear receptor, COUP-TFII, induces venous endothelial cell differentiation by suppressing the Notch signaling. Arteriovenous malformations are frequently induced by a loss of arterial and venous cell specification. These insights indicate that the balance of these genetic factors and modification by epigenetic factors such as hemodynamics and oxygen tension are important for proper endothelial cell identities in vascular morphogenesis.
Collapse
Affiliation(s)
- Masanori Hirashima
- The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, Tokyo, Japan.
| | | |
Collapse
|
43
|
Abstract
The cardiovascular system plays a critical role in vertebrate development and homeostasis. Vascular development is a highly organized sequence of events that requires the correct spatial and temporal expression of specific sets of genes leading to the development of a primary vascular network. There have been intensive efforts to determine the molecular mechanisms regulating vascular growth and development, and much of the rationale for this has stemmed from the increasing clinical importance and therapeutic potential of modulating vascular formation during various disease states.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Italy.
| |
Collapse
|
44
|
Davey MG, James J, Paton IR, Burt DW, Tickle C. Analysis of talpid3 and wild-type chicken embryos reveals roles for Hedgehog signalling in development of the limb bud vasculature. Dev Biol 2006; 301:155-65. [PMID: 16959240 DOI: 10.1016/j.ydbio.2006.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 07/19/2006] [Accepted: 08/04/2006] [Indexed: 12/28/2022]
Abstract
Chicken talpid(3) mutant embryos have a wide range of Hedgehog-signalling related defects and it is now known that the talpid(3) gene product encodes a novel protein essential for Hedgehog signalling which is required for both activator and repressor functions of Gli transcription factors (Davey, M.G., Paton, I.R., Yin, Y., Schmidt, M., Bangs, F.K., Morrice, D.R., Gordon-Smith, T., Buxton, P., Stamataki, D., Tanaka, M., Münsterberg, A.E., Briscoe, J., Tickle, C., Burt, D.W. (2006). The chicken talpid(3) gene encodes a novel protein essential for Hedgehog signalling. Genes Dev 20 1365-77). Haemorrhaging, oedema and other severe vascular defects are a central aspect of the talpid(3) phenotype (Ede, D.A. and Kelly, W.A (1964a). Developmental abnormalities in the head region of the talpid(3) mutant fowl. J. Embryol. exp. Morp. 12:161-182) and, as Hedgehog (Hh) signalling has been implicated in every stage of development of the vascular system, the vascular defects seen in talpid(3) are also likely to be attributable to abnormal Hedgehog signalling. Gene expression of members of the VEGF and Angiopoietin families of angiogenic growth factors has been linked to haemorrhaging and oedema and we find widespread expression of VEGF-D, rigf and Ang2a in the talpid(3) limb. Furthermore, ectopic expression of these genes in talpid(3) limbs points to regulation via Gli repression rather than activation. We monitored specification of vessel identity in talpid(3) limb vasculature by examining expression of artery-specific genes, Np1 and EphrinB2, and the vein-specific genes, Np2a and Tie2. We show that there are supernumerary subclavian arteries in talpid(3) limb buds and abnormal expression of an artery-specific gene in the venous submarginal sinus, despite the direction of blood flow being normal. Furthermore, we show that Shh can induce Np1 expression but has no effect on Np2a. Finally, we demonstrate that induction of VEGF and Ang2a expression by Shh in normal limb buds is accompanied by vascular remodelling. Thus Hedgehog signalling has a pivotal role in the cascade of angiogenic events in a growing embryonic organ which is similar to that proposed in tumours.
Collapse
Affiliation(s)
- M G Davey
- Division of Cell and Developmental Biology, WTB, University of Dundee, Dundee, UK
| | | | | | | | | |
Collapse
|
45
|
Murfee WL, Rehorn MR, Peirce SM, Skalak TC. Perivascular Cells Along Venules Upregulate NG2 Expression During Microvascular Remodeling. Microcirculation 2006; 13:261-73. [PMID: 16627368 DOI: 10.1080/10739680600559153] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Recently the authors have shown that neuron-glial antigen 2 (NG2) is expressed by perivascular cells along arterioles and capillaries, but not along venules in quiescent rat mesenteric microvascular networks. To investigate how the spatial distribution of this proteoglycan changes during microvascular remodeling, the objective of this study was to characterize the expression of NG2 in adult rat mesenteric microvascular networks undergoing active remodeling. METHODS The distribution of NG2 expression was evaluated in adult rat mesenteric microvascular networks. Tissues were harvested from 250 g, female, Sprague-Dawley rats at 1, 3, and 5 days poststimulation and double immunolabeled for NG2 and CD31 (endothelial cell marker). RESULTS After 1 day, NG2 expression was observed along 27 +/- 11% of network draining venules (14-55 microm) and after 3 days, 59 +/- 10% of draining venules (13-59 microm) stained positive for the proteoglycan. By 5 days poststimulation, the percentage of network draining venules (18-59 microm) staining positive for NG2 returned to 18 +/- 7%, indicating a downregulation of the proteoglycan toward quiescent levels along larger-sized venules. CONCLUSIONS The results suggest that NG2 proteoglycan expression is transiently upregulated along venules during microvascular remodeling, implicating NG2 as a marker of activated venules.
Collapse
Affiliation(s)
- Walter L Murfee
- Department of Biomedical Engineering, University of Virginia, Health System, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The tyrosine kinase Tie2/Tek (the receptor for angiopoietins) is considered one of the most reliable markers of the endothelial phenotype, across organisms, organs, and developmental stages. However, endothelium is intrinsically heterogeneous in origin, composition and function, presenting an arteriolar/venular asymmetry. In this regard, the expression of Tie2 along the vascular tree, although thought to be homogenous, has not been systematically investigated. Therefore we questioned whether the activity of Tie2 promoter is uniform in the microvascular endothelium. To this end, we analyzed in situ the expression of the markers beta-galactosidase [LacZ(Tie2)] and green fluorescent protein (GFP) [GFP(Tie2)], placed under the Tie2 promoter in transgenic mice, in whole mount tissue samples, which allow the simultaneous evaluation of its relative distribution in various microvascular compartments. In the mesenteries of LacZ(Tie2) and GFP(Tie2) mice, we found that the activity of Tie2 promoter is asymmetrically distributed, being much stronger in arteries and arterioles than on the venular side of the vascular tree. This observation was replicated in the diaphragm of LacZ(Tie2) mice. The capillaries presented a mosaic pattern of Tie2 promoter activity. Stimulation of angiogenesis either by wounding, or by intraperitoneal injection of Vascular Endothelial Growth Factor (VEGF), revealed that the arteriolar/venular asymmetry is established at endothelial cellular level early during new capillary formation, even before the starting of the microvascular blood flow. In conclusion, a strong Tie2 promoter activity qualifies as a novel marker of the arteriolar phenotype in microvascular endothelium.
Collapse
Affiliation(s)
- Mirela Anghelina
- Davis Heart and Lung Research Institute, Division of Cardiology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
47
|
Diehl S, Bruno R, Wilkinson GA, Loose DA, Wilting J, Schweigerer L, Klein R. Altered expression patterns of EphrinB2 and EphB2 in human umbilical vessels and congenital venous malformations. Pediatr Res 2005; 57:537-44. [PMID: 15718372 DOI: 10.1203/01.pdr.0000155761.70710.c4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vascular malformations cause discomfort and pain in children and are often associated with skeletal hypertrophy. Their molecular basis is poorly understood. Ephrin ligands and Eph receptor tyrosine kinases are involved in embryonic vascular development. In mice, some ephrin/Eph family members show a complementary expression pattern in blood vessels, with ephrinB2 being expressed on arterial and EphB4 on venous endothelium. Targeted deletions of the genes reveal their essential roles for conduit vessel development in mice, suggesting similar functions during human vascular development and deregulation in vascular malformations. Here, we have defined the expression patterns of human ephrinB2, EphB4, and EphB2 in normal vessels of neonates (i.e. umbilici) and adults and compared them with those in congenital venous malformations. In adults, normal vessels of the skin, muscle, and legs express ephrinB2 and EphB2 on arterial endothelial cells (ECs), whereas EphB4 is found in arteries and veins. In the umbilicus, EphB2 is a specific marker of arterial ECs, whereas ephrinB2 is additionally expressed in venous ECs, suggesting an arterial function of the veins. In venous malformations, the expression of EphB4 is not altered, but both ephrinB2 and EphB2 are ectopically expressed in venous ECs. This may reflect a nonphysiologic arterialization of malformed veins. Our study shows that the arterial markers ephrin B2 and EphB2 are expressed in a subset of veins, and it remains to be studied whether this is cause or consequence of an altered vascular identity.
Collapse
Affiliation(s)
- Stefanie Diehl
- Max-Planck Institut für Neurobiologie, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Claxton S, Fruttiger M. Oxygen modifies artery differentiation and network morphogenesis in the retinal vasculature. Dev Dyn 2005; 233:822-8. [PMID: 15895398 DOI: 10.1002/dvdy.20407] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The mechanisms that control differentiation of immature blood vessels into either arteries or veins are not well understood. Because oxygen tension in arteries is higher than in veins, oxygen has the potential to be an instructive signal for artery/vein (AV) differentiation. We test this hypothesis by exposing newborn mice to moderate hypoxia (10% atmospheric oxygen) and studying AV differentiation in the developing retinal vasculature. Forming retinal arteries fail to express the artery-specific markers Delta-like 4 (Dll4) and EphrinB2 during hypoxia. However, other aspects of AV differentiation are retained such as high levels of alpha smooth muscle actin in arterial mural cells and vein-specific expression of the msr/apj gene. The capillary network between arteries and veins is denser, and capillaries expressing the venous marker msr/apj are found in territories normally occupied by arterial capillaries. Thus, it appears that high oxygen in arterial blood is required for arterial expression of Dll4 and EphrinB2, which could be involved in cell-cell repulsion pathways that dictate the normal segregation of arteries and veins.
Collapse
Affiliation(s)
- Suzanne Claxton
- Wolfson Institute for Biomedical Research and Department of Biology, University College London, Gower Street, London, United Kingdom
| | | |
Collapse
|
49
|
Abstract
The embryonic vasculature develops in a conserved manner in all vertebrates. Endothelial progenitor cells differentiate from mesodermal cells, then migrate and assemble into the dorsal aorta and the cardinal vein. This primitive circulatory loop undergoes sprouting and branching via a two-step navigation mechanism to form the trunk vascular network. Various studies using several model systems have uncovered a number of signaling mechanisms that regulate these complex processes. A genetic approach in zebrafish has led to identification of mutations and molecules that are responsible for specification of endothelial progenitor cells, differentiation of arterial and venous cells, and patterning of the dorsal aorta and intersegmental vessels. These studies highlight the unique utilities and benefits of the zebrafish system for studying development of embryonic blood vessels.
Collapse
Affiliation(s)
- Tao P Zhong
- Departments of Medicine and Cell and Developmental Biology Vanderbilt University School of Medicine Nashville, Tennessee 37232, USA
| |
Collapse
|
50
|
Yuan K, Hong TM, Chen JJW, Tsai WH, Lin MT. Syndecan-1 up-regulated by ephrinB2/EphB4 plays dual roles in inflammatory angiogenesis. Blood 2004; 104:1025-33. [PMID: 15126321 DOI: 10.1182/blood-2003-09-3334] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EphrinB2 and EphB4, its cognate receptor, are important in the vascular development of the mouse embryo. Their roles in human inflammatory angiogenesis, however, are not well understood. By examining hyperinflammatory lesions, we saw that ephrinB2 was predominantly expressed in macrophage-like cells and EphB4 in small venules. Because macrophages usually transmigrate through postcapillary venules during inflammation, we wanted to explore the downstream effects of EphB4 after binding to ephrinB2. By using cDNA microarray technique and following reverse transcriptase-polymerase chain reaction (RT-PCR), we found that syntenin and syndecan-1 were up-regulated in EphB4-positive endothelial cells dose dependently and time dependently after stimulation with preclustered ephrinB2. In vitro, ephrinB2 suppressed the angiogenic effects of basic fibroblast growth factor (bFGF) on EphB4-positive endothelial cells, partially due to syndecan-1's competition with fibroblast growth factor receptor (FGFR) for bFGF. However, ephrinB2 exhibited angiogenic effects in vivo, possibly due to an inflammation-associated enzyme-heparanase. The enzymes could convert the inhibitory effect of ephrinB2 on EphB4-positive endothelial cells to an activating effect by removing poorly sulfated side chains of up-regulated syndecan-1 ectodomain. Depending on the presence of heparanases, the roles of syndecan-1 may be opposite in different physiological settings.
Collapse
Affiliation(s)
- Kuo Yuan
- Institute of Medical Sciences, Tzu Chi University, No. 701, Jung-Yang Rd, Section 3, Hualien, Taiwan 970
| | | | | | | | | |
Collapse
|