1
|
Ungefroren H, von der Ohe J, Braun R, Gätje Y, Lapshyna O, Schrader J, Lehnert H, Marquardt JU, Konukiewitz B, Hass R. Characterization of Epithelial-Mesenchymal and Neuroendocrine Differentiation States in Pancreatic and Small Cell Ovarian Tumor Cells and Their Modulation by TGF-β1 and BMP-7. Cells 2024; 13:2010. [PMID: 39682758 PMCID: PMC11640004 DOI: 10.3390/cells13232010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, due in part to early invasion and metastasis, which in turn involves epithelial-mesenchymal transition (EMT) of the cancer cells. Prompted by the discovery that two PDAC cell lines of the quasi-mesenchymal subtype (PANC-1, MIA PaCa-2) exhibit neuroendocrine differentiation (NED), we asked whether NED is associated with EMT. Using real-time PCR and immunoblotting, we initially verified endogenous expressions of various NED markers, i.e., chromogranin A (CHGA), synaptophysin (SYP), somatostatin receptor 2 (SSTR2), and SSTR5 in PANC-1 and MIA PaCa-2 cells. By means of immunohistochemistry, the expressions of CHGA, SYP, SSTR2, and the EMT markers cytokeratin 7 (CK7) and vimentin could be allocated to the neoplastic ductal epithelial cells of pancreatic ducts in surgically resected tissues from patients with PDAC. In HPDE6c7 normal pancreatic duct epithelial cells and in epithelial subtype BxPC-3 PDAC cells, the expression of CHGA, SYP, and neuron-specific enolase 2 (NSE) was either undetectable or much lower than in PANC-1 and MIA PaCa-2 cells. Parental cultures of PANC-1 cells exhibit EM plasticity (EMP) and harbor clonal subpopulations with both M- and E-phenotypes. Of note, M-type clones were found to display more pronounced NED than E-type clones. Inducing EMT in parental cultures of PANC-1 cells by treatment with transforming growth factor-β1 (TGF-β1) repressed epithelial genes and co-induced mesenchymal and NED genes, except for SSTR5. Surprisingly, treatment with bone morphogenetic protein (BMP)-7 differentially affected gene expressions in PANC-1, MIA PaCa-2, BxPC-3, and HPDE cells. It synergized with TGF-β1 in the induction of vimentin, SNAIL, SSTR2, and NSE but antagonized it in the regulation of CHGA and SSTR5. Phospho-immunoblotting in M- and E-type PANC-1 clones revealed that both TGF-β1 and, surprisingly, also BMP-7 activated SMAD2 and SMAD3 and that in M- but not E-type clones BMP-7 was able to dramatically enhance the activation of SMAD3. From these data, we conclude that in EMT of PDAC cells mesenchymal and NED markers are co-regulated, and that mesenchymal-epithelial transition (MET) is associated with a loss of both the mesenchymal and NED phenotypes. Analyzing NED in another tumor type, small cell carcinoma of the ovary hypercalcemic type (SCCOHT), revealed that two model cell lines of this disease (SCCOHT-1, BIN-67) do express CDH1, SNAI1, VIM, CHGA, SYP, ENO2, and SSTR2, but that in contrast to BMP-7, none of these genes was transcriptionally regulated by TGF-β1. Likewise, in BIN-67 cells, BMP-7 was able to reduce proliferation, while in SCCOHT-1 cells this occurred only upon combined treatment with TGF-β and BMP-7. We conclude that in PDAC-derived tumor cells, NED is closely linked to EMT and TGF-β signaling, which may have implications for the therapeutic use of TGF-β inhibitors in PDAC management.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Rüdiger Braun
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Yola Gätje
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Olha Lapshyna
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Jörg Schrader
- First Department of Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Hendrik Lehnert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire (UHCW), Coventry CV2 2DX, UK
| | - Jens-Uwe Marquardt
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Björn Konukiewitz
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
2
|
Ye Q, Taleb SJ, Zhao J, Zhao Y. Emerging role of BMPs/BMPR2 signaling pathway in treatment for pulmonary fibrosis. Biomed Pharmacother 2024; 178:117178. [PMID: 39142248 PMCID: PMC11364484 DOI: 10.1016/j.biopha.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary fibrosis is a fatal and chronic lung disease that is characterized by accumulation of thickened scar in the lungs and impairment of gas exchange. The cases with unknown etiology are referred as idiopathic pulmonary fibrosis (IPF). There are currently no effective therapeutics to cure the disease; thus, the investigation of the pathogenesis of IPF is of great importance. Recent studies on bone morphogenic proteins (BMPs) and their receptors have indicated that reduction of BMP signaling in lungs may play a significant role in the development of lung fibrosis. BMPs are members of TGF-β superfamily, and they have been shown to play an anti-fibrotic role in combating TGF-β-mediated pathways. The impact of BMP receptors, in particular BMPR2, on pulmonary fibrosis is growing attraction to researchers. Previous studies on BMPR2 have often focused on pulmonary arterial hypertension (PAH). Given the strong clinical association between PAH and lung fibrosis, understanding BMPs/BMPR2-mediated signaling pathway is important for development of therapeutic strategies to treat IPF. In this review, we comprehensively review recent studies regarding the biological functions of BMPs and their receptors in lungs, especially focusing on their roles in the pathogenesis of pulmonary fibrosis and fibrosis resolution.
Collapse
Affiliation(s)
- Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States.
| |
Collapse
|
3
|
Luo Y, Cao K, Chiu J, Chen H, Wang HJ, Thornton ME, Grubbs BH, Kolb M, Parmacek MS, Mishina Y, Shi W. Defective mesenchymal Bmpr1a-mediated BMP signaling causes congenital pulmonary cysts. eLife 2024; 12:RP91876. [PMID: 38856718 PMCID: PMC11164533 DOI: 10.7554/elife.91876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study using genetic mouse models, we dissected the roles of bone morphogenetic protein (BMP) receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.
Collapse
Affiliation(s)
- Yongfeng Luo
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Ke Cao
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Joanne Chiu
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Hui Chen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Hong-Jun Wang
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Matthew E Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Brendan H Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Martin Kolb
- Department of Medicine, McMaster UniversityHamiltonCanada
| | - Michael S Parmacek
- Department of Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yuji Mishina
- Department of Biologic and Material Sciences, University of Michigan-Ann ArborAnn ArborUnited States
| | - Wei Shi
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
4
|
Qin X, He X, Chen L, Han Y, Yun Y, Wu J, Sha L, Borjigin G. Transcriptome analysis of adipose tissue in grazing cattle: Identifying key regulators of fat metabolism. Open Life Sci 2024; 19:20220843. [PMID: 38681730 PMCID: PMC11049749 DOI: 10.1515/biol-2022-0843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 05/01/2024] Open
Abstract
The taste and tenderness of meat are the main determinants of carcass quality in many countries. This study aimed to discuss the mechanisms of intramuscular fat deposition in grazing and house-breeding cattle. We performed transcriptome analysis to characterize messenger RNA and microRNA (miRNA) expression profiles. A total of 456 and 66 differentially expressed genes (DEGs) and differentially expressed (DE) miRNAs were identified in the adipose tissue of grazing and house-breeding cattle. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified the association of DEGs with fatty acid metabolism, fatty acid degradation, peroxisome proliferator-activated receptors signaling pathway, adenosine monophosphate-activated protein kinase signaling pathway, adipocytokine signaling pathway, and the association of DE miRNAs with mitogen-activated protein kinase signaling pathway. Apolipoprotein L domain containing 1, pyruvate dehydrogenase kinase 4, and sphingosine-1-phosphate lyase 1 genes may be the key regulators of fat metabolism in grazing cattle. Finally, we found that miR-211 and miR-331-5p were negatively correlated with the elongation of very long-chain fatty acids protein 6 (ELOVL6), and miR-331-5p might be the new regulator involved in fat metabolism. The results indicated that ELOVL6 participated in various functions and pathways related to fat metabolism. Meanwhile, miR-331-5p, as a new regulator, might play an essential role in this process. Our findings laid a more in-depth and systematic research foundation for the formation mechanism and characteristics of adipose tissue in grazing cattle.
Collapse
Affiliation(s)
- Xia Qin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
- Pharmacy and Materials School, Huainan Union University, Huainan232038, China
| | - Xige He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Lu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Yunfei Han
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Yueying Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Jindi Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Lina Sha
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, #306 Zhaowuda Road, Saihan District, Huhhot, Inner Mongolia 010018, China
| |
Collapse
|
5
|
Luo Y, Cao K, Chiu J, Chen H, Wang HJ, Thornton ME, Grubbs BH, Kolb M, Parmacek MS, Mishina Y, Shi W. Defective mesenchymal Bmpr1a-mediated BMP signaling causes congenital pulmonary cysts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559527. [PMID: 37808788 PMCID: PMC10557633 DOI: 10.1101/2023.09.26.559527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study, we dissected the roles of BMP receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.
Collapse
Affiliation(s)
- Yongfeng Luo
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027
| | - Ke Cao
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Joanne Chiu
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027
| | - Hui Chen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Hong-Jun Wang
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Matthew E. Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan H. Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, ON, Canada L8N 4A6
| | - Michael S. Parmacek
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuji Mishina
- Department of Biologic and Material Sciences, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109
| | - Wei Shi
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
6
|
Das P, Battu S, Mehra L, Singh A, Ahmad M, Agarwal A, Chauhan A, Ahmad A, Vishnubhatla S, Gupta SD, Ahuja V, Makharia G. Correlation between intestinal stem cell niche changes and small bowel crypt failure in patients with treatment-naïve celiac disease. INDIAN J PATHOL MICR 2024; 67:259-266. [PMID: 38427764 DOI: 10.4103/ijpm.ijpm_760_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 03/03/2024] Open
Abstract
OBJECTIVES We hypothesized that crypt failure in the small bowel results in villous flattening in patients with celiac disease (CeD). We investigated whether alterations in the stem cell niche (ISC) are responsible for this phenomenon. MATERIALS AND METHODS We included 92 duodenal (D2/3) biopsies from treatment-naive patients of CeD and 37 controls. All underwent screening for serum anti-tissue transglutaminase and endoscopic upper small bowel biopsy. Immunohistochemical markers were used to investigate ISC niche alterations, including LGR5 for crypt basal cells (CBC), Bmi1 for position 4+ cells, β-Defensin for Paneth cells, R-spondin1 as WNT activator, transcription factor-4 as WNT transcription factor, BMP receptor1A as WNT inhibitor, fibronectin-1 as periepithelial stromal cell marker, H2AX as apoptosis marker, and Ki67 as proliferation marker. We also analyzed IgA anti-tTG2 antibody deposits by using dual-color immunofluorescence staining. RESULTS We found that in biopsies from patients with treatment-naive CeD with modified Marsh grade 3a-3c changes, the epithelial H2AX apoptotic index was upregulated than in controls. LGR5+ crypt basal cells were upregulated in all modified Marsh grades compared to controls. However, the Ki67 proliferation index, expressions of WNT-activator RSPO1, and position-4 cell marker Bmi1 did not significantly alter in patients' biopsies as compared to controls ( P = 0.001). We also observed depletion of pericrypt stromal fibronectin-1 in patients with CeD compared to controls. In addition, we identified IgA anti-TG2 antibody deposits in pericrypt stroma. CONCLUSIONS Our data suggests that ISC niche failure is a plausible hypothesis for villous flattening in patients with CeD, resulting from pericrypt IgA anti-TG2 antibody complex-mediated stromal depletion.
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sudha Battu
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Lalita Mehra
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Alka Singh
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Muzaffar Ahmad
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Agarwal
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Chauhan
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Anam Ahmad
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Govind Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Lhousni S, Charif M, Derouich Y, Elidrissi Errahhali M, Elidrissi Errahhali M, Ouarzane M, Lenaers G, Boulouiz R, Belahcen M, Bellaoui M. A novel variant in BMPR1B causes acromesomelic dysplasia Grebe type in a consanguineous Moroccan family: Expanding the phenotypic and mutational spectrum of acromesomelic dysplasias. Bone 2023; 175:116860. [PMID: 37524292 DOI: 10.1016/j.bone.2023.116860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Acromesomelic dysplasia Grebe type (AMD Grebe type) is an autosomal recessive trait characterized by short stature, shortened limbs and malformations of the hands and feet. It is caused by variants in the growth differentiation factor 5 (GDF5) or, in rare cases, its receptor, the bone morphogenetic protein receptor-1B (BMPR1B). Here, we report a novel homozygous BMPR1B variant causing AMD Grebe type in a consanguineous Moroccan family with two affected sibs from BRO Biobank. Remarkably, the affected individuals showed additional features including bilateral simian creases, lumbar hyperlordosis, as well as lower limb length inequality and dislocated hips in one of them, which were never reported previously for AMD Grebe type patients. The identified novel BMPR1B variant (c.1201C>T, p.R401*) is predicted to result in loss of function of the BMPR1B protein either by nonsense-mediated mRNA decay or production of a truncated BMPR1B protein. Thus, these findings expand the phenotypic and mutational spectrum of AMD, and may improve the diagnosis of AMD and enable appropriate genetic counselling to be offered to patients.
Collapse
Affiliation(s)
- Saida Lhousni
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Majida Charif
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; Genetics and Immuno-Cell Therapy Team, Faculty of Science, University Mohammed Premier, Oujda, Morocco
| | - Yassine Derouich
- Department of Pediatric Orthopedic and Trauma Surgery, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Mounia Elidrissi Errahhali
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Manal Elidrissi Errahhali
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Meryem Ouarzane
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Guy Lenaers
- Université d'Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, F-49933 Angers, France; Service de Neurologie, CHU d'Angers, Angers, France
| | - Redouane Boulouiz
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Mohammed Belahcen
- Department of Pediatric Orthopedic and Trauma Surgery, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Mohammed Bellaoui
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco.
| |
Collapse
|
8
|
Jevšinek Skok D, Hauptman N. In Silico Gene Prioritization Highlights the Significance of Bone Morphogenetic Protein 4 ( BMP4) Promoter Methylation across All Methylation Clusters in Colorectal Cancer. Int J Mol Sci 2023; 24:12692. [PMID: 37628872 PMCID: PMC10454928 DOI: 10.3390/ijms241612692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The cytosine-phosphate-guanine (CpG) island methylator phenotype (CIMP) represents one of the pathways involved in the development of colorectal cancer, characterized by genome-wide hypermethylation. To identify samples exhibiting hypermethylation, we used unsupervised hierarchical clustering on genome-wide methylation data. This clustering analysis revealed the presence of four distinct subtypes within the tumor samples, namely, CIMP-H, CIMP-L, cluster 3, and cluster 4. These subtypes demonstrated varying levels of methylation, categorized as high, intermediate, and very low. To gain further insights, we mapped significant probes from all clusters to Ensembl Regulatory build 89, with a specific focus on those located within promoter regions or bound regions. By intersecting the methylated promoter and bound regions across all methylation subtypes, we identified a total of 253 genes exhibiting aberrant methylation patterns in the promoter regions across all four subtypes of colorectal cancer. Among these genes, our comprehensive genome-wide analysis highlights bone morphogenic protein 4 (BMP4) as the most prominent candidate. This significant finding was derived through the utilization of various bioinformatics tools, emphasizing the potential role of BMP4 in colorectal cancer development and progression.
Collapse
Affiliation(s)
- Daša Jevšinek Skok
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia;
| | - Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Zsiros V, Dóczi N, Petővári G, Pop A, Erdei Z, Sebestyén A, L Kiss A. BMP-induced non-canonical signaling is upregulated during autophagy-mediated regeneration in inflamed mesothelial cells. Sci Rep 2023; 13:10426. [PMID: 37369758 PMCID: PMC10300029 DOI: 10.1038/s41598-023-37453-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Previously, we showed that after Freund's adjuvant-induced peritonitis, rat mesothelial cells regain their epithelial phenotype through mesenchymal-epithelial transition (MET) accompanied by autophagy. Since bone morphogenetic proteins (BMPs) are well-known MET-inducers, we were interested in the potential expression of BMPs and BMP-induced pathways. Although mesothelial cells expressed lower amounts of BMP7, its level in the peritoneal cavity and mesothelial synthesis of BMP4 were significantly increased during inflammation. BMPR1A and BMPR2 were also significantly expressed. Expression of transforming growth factor beta-activated kinase (TAK1) and c-Jun NH2-terminal kinases (JNK1-JNK2) were more intense than that of phosphorylated Mothers Against Decapentaplegic homolog 1/5 (p-SMAD1/5), confirming that the non-canonical pathway of BMPs prevailed in our model. JNK signaling through B-cell lymphoma-2 (Bcl-2) can contribute to Beclin-1 activation. We demonstrated that TAK1-JNK-Bcl-2 signaling was upregulated simultaneously with the autophagy-mediated regeneration. A further goal of our study was to prove the regenerative role of autophagy after inflammation. We used a specific inhibitor, bafilomycin A1 (BafA1), and found that BafA1 treatment decreased the expression of microtubule-associated protein 1A/1B-light chain 3 (LC3B) and resulted in morphological signs of cell death in inflamed mesothelial cells indicating that if autophagy is arrested, regeneration turns into cell death and consequently, mesothelial cells die.
Collapse
Affiliation(s)
- Viktória Zsiros
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Tűzoltó u. 58., Budapest, 1094, Hungary.
| | - Nikolett Dóczi
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Tűzoltó u. 58., Budapest, 1094, Hungary
| | - Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University Budapest, Üllői út 26., Budapest, 1085, Hungary
| | - Alexandra Pop
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Tűzoltó u. 58., Budapest, 1094, Hungary
| | - Zsófia Erdei
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Tűzoltó u. 58., Budapest, 1094, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University Budapest, Üllői út 26., Budapest, 1085, Hungary
| | - Anna L Kiss
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Tűzoltó u. 58., Budapest, 1094, Hungary
| |
Collapse
|
10
|
Ganjoo S, Puebla-Osorio N, Nanez S, Hsu E, Voss T, Barsoumian H, Duong LK, Welsh JW, Cortez MA. Bone morphogenetic proteins, activins, and growth and differentiation factors in tumor immunology and immunotherapy resistance. Front Immunol 2022; 13:1033642. [PMID: 36353620 PMCID: PMC9638036 DOI: 10.3389/fimmu.2022.1033642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2024] Open
Abstract
The TGF-β superfamily is a group of secreted polypeptides with key roles in exerting and regulating a variety of physiologic effects, especially those related to cell signaling, growth, development, and differentiation. Although its central member, TGF-β, has been extensively reviewed, other members of the family-namely bone morphogenetic proteins (BMPs), activins, and growth and differentiation factors (GDFs)-have not been as thoroughly investigated. Moreover, although the specific roles of TGF-β signaling in cancer immunology and immunotherapy resistance have been extensively reported, little is known of the roles of BMPs, activins, and GDFs in these domains. This review focuses on how these superfamily members influence key immune cells in cancer progression and resistance to treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
11
|
Drugs and Endogenous Factors as Protagonists in Neurogenic Stimulation. Stem Cell Rev Rep 2022; 18:2852-2871. [PMID: 35962176 DOI: 10.1007/s12015-022-10423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 10/15/2022]
Abstract
Neurogenesis is a biological process characterized by new neurons formation from stem cells. For decades, it was believed that neurons only multiplied during development and in the postnatal period but the discovery of neural stem cells (NSCs) in mature brain promoted a revolution in neuroscience field. In mammals, neurogenesis consists of migration, differentiation, maturation, as well as functional integration of newborn cells into the pre-existing neuronal circuit. Actually, NSC density drops significantly after the first stages of development, however in specific places in the brain, called neurogenic niches, some of these cells retain their ability to generate new neurons and glial cells in adulthood. The subgranular (SGZ), and the subventricular zones (SVZ) are examples of regions where the neurogenesis process occurs in the mature brain. There, the potential of NSCs to produce new neurons has been explored by new advanced methodologies and in neuroscience for the treatment of brain damage and/or degeneration. Based on that, this review highlights endogenous factors and drugs capable of stimulating neurogenesis, as well as the perspectives for the use of NSCs for neurological and neurodegenerative diseases.
Collapse
|
12
|
Ma Y, Xiao Y, Xiao Z, Wu Y, Zhao H, Gao G, Wu L, Wang T, Zhao N, Li J. Genome-wide identification, characterization and expression analysis of the BMP family associated with beak-like teeth in Oplegnathus. Front Genet 2022; 13:938473. [PMID: 35923711 PMCID: PMC9342863 DOI: 10.3389/fgene.2022.938473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor beta (TGF-β) family, are critical for the control of developmental processes such as dorsal-ventral axis formation, somite and tooth formation, skeletal development, and limb formation. Despite Oplegnathus having typical healing beak-like teeth and tooth development showing a trend from discrete to healing, the potential role of BMPs in the development of the beak-like teeth is incompletely understood. In the present study, 19 and 16 BMP genes were found in O. fasciatus and O. punctatus, respectively, and divided into the BMP2/4/16, BMP5/6/7/8, BMP9/10, BMP12/13/14, BMP3/15 and BMP11 subfamilies. Similar TGFb and TGF_β gene domains and conserved protein motifs were found in the same subfamily; furthermore, two common tandem repeat genes (BMP9 and BMP3a-1) were identified in both Oplegnathus fasciatus and Oplegnathus punctatus. Selection pressure analysis revealed 13 amino acid sites in the transmembrane region of BMP3, BMP7, and BMP9 proteins of O. fasciatus and O. punctatus, which may be related to the diversity and functional differentiation of genes within the BMP family. The qPCR-based developmental/temporal expression patterns of BMPs showed a trend of high expression at 30 days past hatching (dph), which exactly corresponds to the ossification period of the bones and beak-like teeth in Oplegnathus. Tissue-specific expression was found for the BMP4 gene, which was upregulated in the epithelial and mesenchymal tissues of the beak-like teeth, suggesting that it also plays a regulatory role in the development of the beak-like teeth in O. punctatus. Our investigation not only provides a scientific basis for comprehensively understanding the BMP gene family but also helps screen the key genes responsible for beak-like tooth healing in O. punctatus and sheds light on the developmental regulatory mechanism.
Collapse
Affiliation(s)
- Yuting Ma
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yongshuang Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yongshuang Xiao, ; Jun Li, ,
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Weihai Haohuigan Marine Biotechnology Co., Weihai, China
| | - Yanduo Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Guang Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lele Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ning Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yongshuang Xiao, ; Jun Li, ,
| |
Collapse
|
13
|
Aczel D, Gyorgy B, Bakonyi P, BukhAri R, Pinho R, Boldogh I, Yaodong G, Radak Z. The Systemic Effects of Exercise on the Systemic Effects of Alzheimer's Disease. Antioxidants (Basel) 2022; 11:antiox11051028. [PMID: 35624892 PMCID: PMC9137920 DOI: 10.3390/antiox11051028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive degenerative disorder and a leading cause of dementia in the elderly. The etiology of AD is multifactorial, including an increased oxidative state, deposition of amyloid plaques, and neurofibrillary tangles of the tau protein. The formation of amyloid plaques is considered one of the first signs of the illness, but only in the central nervous system (CNS). Interestingly, results indicate that AD is not just localized in the brain but is also found in organs distant from the brain, such as the cardiovascular system, gut microbiome, liver, testes, and kidney. These observations make AD a complex systemic disorder. Still, no effective medications have been found, but regular physical activity has been considered to have a positive impact on this challenging disease. While several articles have been published on the benefits of physical activity on AD development in the CNS, its peripheral effects have not been discussed in detail. The provocative question arising is the following: is it possible that the beneficial effects of regular exercise on AD are due to the systemic impact of training, rather than just the effects of exercise on the brain? If so, does this mean that the level of fitness of these peripheral organs can directly or indirectly influence the incidence or progress of AD? Therefore, the present paper aims to summarize the systemic effects of both regular exercise and AD and point out how common exercise-induced adaptation via peripheral organs can decrease the incidence of AD or attenuate the progress of AD.
Collapse
Affiliation(s)
- Dora Aczel
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
| | - Bernadett Gyorgy
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
| | - Peter Bakonyi
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
| | - RehAn BukhAri
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
| | - Ricardo Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil;
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Gu Yaodong
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary; (D.A.); (B.G.); (P.B.); (R.B.)
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: ; Tel.: +36-1-3565764; Fax: +36-1-3566337
| |
Collapse
|
14
|
Cao L, Wang J, Zhang Y, Tian F, Wang C. Osteoprotective effects of flavonoids: Evidence from in vivo and in vitro studies (Review). Mol Med Rep 2022; 25:200. [PMID: 35475514 DOI: 10.3892/mmr.2022.12716] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Osteoporosis is a systemic bone disease characterized by decreased bone mass and quality and bone micro‑architecture degradation. Its primary cause is disorder of bone metabolism: Over‑formation of osteoclasts, resulting in increased bone resorption and insufficient osteogenesis. Traditional herbal flavonoids can be used as alternative drugs to prevent and treat osteoporosis due to their wide range of sources, structural diversity and less adverse effects. The present paper reviewed six flavonoids, including quercetin, icariin, hesperitin, naringin, chrysin and pueraria, that promote bone formation and have been widely studied in the literature over the past five years, with the aim of providing novel ideas for the development of drugs for bone‑associated disease.
Collapse
Affiliation(s)
- Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yujuan Zhang
- Experimental Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Feng Tian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, P.R. China
| | - Chunfang Wang
- Experimental Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
15
|
Yin P, Li D, Zhao Q, Cai M, Wu Z, Shi Y, Su L. Gsα deficiency facilitates cardiac remodeling via CREB/ Bmp10-mediated signaling. Cell Death Discov 2021; 7:391. [PMID: 34907172 PMCID: PMC8671484 DOI: 10.1038/s41420-021-00788-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023] Open
Abstract
The stimulatory G-protein alpha subunit (Gsα), a ubiquitously expressed protein, mediates G-protein receptor-stimulated signal transduction. To investigate the functions of Gsα in cardiomyocytes. We developed transverse aortic constriction (TAC)-induced heart failure mouse models and tamoxifen-inducible transgenic mice with cardiac-specific Gsα disruption. We detected alterations in Gsα expression in TAC-induced heart failure mice. Moreover, we examined cardiac function and structure in mice with genetic Gsα deletion and investigated the underlying molecular mechanisms of Gsα function. We found that Gsα expression increased during the compensated cardiac hypertrophy period and decreased during the heart failure period. Moreover, cardiac-specific Gsα disruption deteriorated cardiac function and induced severe cardiac remodeling. Mechanistically, Gsα disruption decreased CREB1 expression and inhibited the Bmp10-mediated signaling pathway. In addition, we found that Gsα regulates Bmp10 expression through the binding of CREB1 to the Bmp10 promoter. Our results suggest that fluctuations in Gsα levels may play a vital role in the development of heart failure and that loss of Gsα function facilitates cardiac remodeling.
Collapse
Affiliation(s)
- Ping Yin
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Dan Li
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qi Zhao
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Mingming Cai
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhenru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yujun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Su
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
16
|
Abstract
The reproductive lifespan of female mammals is limited and ultimately depends on the production of a sufficient number of high quality oocytes from a pool of non-growing primordial follicles that are set aside during embryonic and perinatal development. Recent studies show multiple signaling pathways are responsible for maintaining primordial follicle arrest and regulation of activation. Identification of these pathways and their regulatory mechanisms is essential for developing novel treatments for female infertility, improving existing in vitro fertilization techniques, and more recently, restoring the function of cryopreserved ovarian tissue. This review focuses on recent developments in transforming growth factor beta (TGFβ) family signaling in ovarian follicle development and its potential application to therapeutic design. Mouse models have been an essential tool for discovering genes critical for fertility, and recent advancements in human organ culture have additionally allowed for the translation of murine discoveries into human research and clinical settings.
Collapse
|
17
|
Conditional Deletion of AP-2β in the Periocular Mesenchyme of Mice Alters Corneal Epithelial Cell Fate and Stratification. Int J Mol Sci 2021; 22:ijms22168730. [PMID: 34445433 PMCID: PMC8395778 DOI: 10.3390/ijms22168730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022] Open
Abstract
The cornea is an anterior eye structure specialized for vision. The corneal endothelium and stroma are derived from the periocular mesenchyme (POM), which originates from neural crest cells (NCCs), while the stratified corneal epithelium develops from the surface ectoderm. Activating protein-2β (AP-2β) is highly expressed in the POM and important for anterior segment development. Using a mouse model in which AP-2β is conditionally deleted in the NCCs (AP-2β NCC KO), we investigated resulting corneal epithelial abnormalities. Through PAS and IHC staining, we observed structural and phenotypic changes to the epithelium associated with AP-2β deletion. In addition to failure of the mutant epithelium to stratify, we also observed that Keratin-12, a marker of the differentiated epithelium, was absent, and Keratin-15, a limbal and conjunctival marker, was expanded across the central epithelium. Transcription factors PAX6 and P63 were not observed to be differentially expressed between WT and mutant. However, growth factor BMP4 was suppressed in the mutant epithelium. Given the non-NCC origin of the epithelium, we hypothesize that the abnormalities in the AP-2β NCC KO mouse result from changes to regulatory signaling from the POM-derived stroma. Our findings suggest that stromal pathways such as Wnt/β-Catenin signaling may regulate BMP4 expression, which influences cell fate and stratification.
Collapse
|
18
|
Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, Driskell RR, Rosenthal N, Biernaskie J, Horsley V. Fibroblasts: Origins, definitions, and functions in health and disease. Cell 2021; 184:3852-3872. [PMID: 34297930 PMCID: PMC8566693 DOI: 10.1016/j.cell.2021.06.024] [Citation(s) in RCA: 538] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts are diverse mesenchymal cells that participate in tissue homeostasis and disease by producing complex extracellular matrix and creating signaling niches through biophysical and biochemical cues. Transcriptionally and functionally heterogeneous across and within organs, fibroblasts encode regional positional information and maintain distinct cellular progeny. We summarize their development, lineages, functions, and contributions to fibrosis in four fibroblast-rich organs: skin, lung, skeletal muscle, and heart. We propose that fibroblasts are uniquely poised for tissue repair by easily reentering the cell cycle and exhibiting a reversible plasticity in phenotype and cell fate. These properties, when activated aberrantly, drive fibrotic disorders in humans.
Collapse
Affiliation(s)
- Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA.
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| | - Sean M Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Erica L Herzog
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK.
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Kadam S, Khaitan M, Banerjee P, Mandhare A. Ferroportin-inhibitor salt: patent evaluation WO2018192973. Expert Opin Ther Pat 2021; 31:585-595. [PMID: 33975503 DOI: 10.1080/13543776.2021.1928075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Iron is a crucial element necessary for blood formation in the body and its normal growth. However, irregular metabolism of iron due to absence of an elimination mechanism may deposit excess iron in the organs (iron overload) leading to metabolic disorders. Interactions between the iron regulatory peptide hormone, hepcidin and the iron exporter ferroportin plays major role in regulating the iron metabolism. Mutations in the ferroportin encoding genes, and dysregulation of hepsidin production often results in iron overload resulting in conditions like hemochromatosis, β-thalassemia, and sickle cell anemia. Until today, there is no efficacious treatment available for managing iron overload targeting ferroportin inhibition via oral administration. AREAS COVERED Novel salts of substituted benzoimidazole compounds useful for the prophylaxis and/or treatment of iron overload are claimed. These compounds act as hepcidin mimetic and inhibit the ferroportin thereby preventing iron overload. The claimed actives are useful in the treatment of disease conditions such as neurodegenerative and cardiac diseases triggered by iron overload. Preclinical studies of these salts on mouse model are also discussed. EXPERT OPINION Prevention and/or treatment of iron overload is critical. The claimed compounds are the first oral drug candidate to treat iron overload and reach the pre-clinical development stage.
Collapse
Affiliation(s)
- Snehal Kadam
- CSIR Unit for Research and Development of Information Products (CSIR-URDIP), Pune Maharashtra, India
| | - Megha Khaitan
- CSIR Unit for Research and Development of Information Products (CSIR-URDIP), Pune Maharashtra, India
| | - Paromita Banerjee
- CSIR Unit for Research and Development of Information Products (CSIR-URDIP), Pune Maharashtra, India
| | - Anita Mandhare
- CSIR Unit for Research and Development of Information Products (CSIR-URDIP), Pune Maharashtra, India
| |
Collapse
|
20
|
Shi Y, Pan X, Xu M, Liu H, Xu H, He M. The role of Smad1/5 in mantle immunity of the pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2021; 113:208-215. [PMID: 33864946 DOI: 10.1016/j.fsi.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/15/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The Smad protein family is an important medium for transducing BMP-Smads signals, and which have been proved that their important role in regulating shell biomineralization in Pinctada fucata martensii in our previous study. The members of TGF-β superfamily were involved in innate immunity in vertebrates and invertebrates, and Smad regulatory networks construct a balanced immune system. However, little is known about the role of Smad1/5 in immunity in P. f. martensii. The present study shows that the tissue distribution and the expression profiles of Smad1/5 at developmental stages suggested its wide distribution and crucial role in development at embryonic stages other than larval stage; the increased expression of bone morphogenetic proteins 2 (BMP2), Smad4, Smad1/5 and MSX mRNAs at mantle tissue after LPS and Poly (I:C) challenged implied the potential immune role of Smad1/5 and BMP2-Smad signals to defense against bacterial and virus infections; the reduced expression of immune gene nuclear factor kappa-B (NF-κB), matrix metalloproteinase (MMP), interleukin 17 (IL-17), CuZn-superoxide dismutase (CuZn-SOD), tissue inhibitors of metalloproteinase (TIMP) and lipopolysaccharide-induced TNF-α factor (LITAF) mRNA following knockdown of Smad1/5 indicated that Smad1/5 can regulate their expression via BMP2-Smads pathway in the immunity process; the up-regulated expression of Smad1/5 and BMP2-Smad signals genes, and immune genes during wound healing indicated that Smad1/5 and BMP2-Smad signals genes may be involved in wound healing collaborated with immune genes via a different and complex Smads signaling pathway. These results indicated Smad1/5 could regulate innate immunity via BMP2-Smads signal pathway, and which provided new insights into the relationship between BMP2-Smads signal pathway and mantle immunity.
Collapse
Affiliation(s)
- Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Xiaolan Pan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Meng Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Huiru Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Hanzhi Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| |
Collapse
|
21
|
Tu Y, Yang Y, Li Y, He C. Naturally occurring coumestans from plants, their biological activities and therapeutic effects on human diseases. Pharmacol Res 2021; 169:105615. [PMID: 33872808 DOI: 10.1016/j.phrs.2021.105615] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Naturally occurring coumestans are known as a collection of plant-derived polycyclic aromatic secondary metabolites which are characterized by the presence of an oxygen heterocyclic four-ring system comprising a coumarin moiety and a benzofuran moiety sharing a C˭C bond. Recently, there is an increasing attention in excavating the medicinal potential of coumestans, particularly coumestrol, wedelolactone, psoralidin and glycyrol, in a variety of diseases. This review is a comprehensive inventory of the chemical structures of coumestans isolated from various plant sources during the period of 1956-2020, together with their reported biological activities. 120 molecules were collected and further classified as coumestans containing core skeleton, dimethylpyranocoumestans, furanocoumestans, O-glycosylated coumestans and others, which showed a wide range of pharmacological activities including estrogenic, anti-cancer, anti-inflammatory, anti-osteoporotic, organ protective, neuroprotective, anti-diabetic and anti-obesity, antimicrobial, immunosuppressive, antioxidant and skin-protective activities. Furthermore, this review focuses on the counteraction of coumestans against bone diseases and organ damages, and the involved molecular mechanisms, which could provide important information to better understand the medicinal values of these compounds. This review is intended to be instructive for the rational design and development of less toxic and more effective drugs with a coumestan scaffold.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
22
|
Shu DY, Ng K, Wishart TFL, Chui J, Lundmark M, Flokis M, Lovicu FJ. Contrasting roles for BMP-4 and ventromorphins (BMP agonists) in TGFβ-induced lens EMT. Exp Eye Res 2021; 206:108546. [PMID: 33773977 DOI: 10.1016/j.exer.2021.108546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/28/2022]
Abstract
Transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) signaling play opposing roles in epithelial-mesenchymal transition (EMT) of lens epithelial cells, a cellular process integral to the pathogenesis of fibrotic cataract. We previously showed that BMP-7-induced Smad1/5 signaling blocks TGFβ-induced Smad2/3-signaling and EMT in rat lens epithelial cell explants. To further explore the antagonistic role of BMPs on TGFβ-signaling, we tested the capability of BMP-4 or newly described BMP agonists, ventromorphins, in blocking TGFβ-induced lens EMT. Primary rat lens epithelial explants were treated with exogenous TGFβ2 alone, or in combination with BMP-4 or ventromorphins. Treatment with TGFβ2 induced lens epithelial cells to undergo EMT and transdifferentiate into myofibroblastic cells with upregulated α-SMA and nuclear translocation of Smad2/3 immunofluorescence. BMP-4 was able to suppress this EMT without blocking TGFβ2-nuclear translocation of Smad2/3. In contrast, the BMP agonists, ventromorphins, were unable to block TGFβ2-induced EMT, despite a transient and early ability to significantly reduce TGFβ2-induced nuclear translocation of Smad2/3. This intriguing disparity highlights new complexities in the responsiveness of the lens to differing BMP-related signaling. Further research is required to better understand the antagonistic relationship between TGFβ and BMPs in lens EMT leading to cataract.
Collapse
Affiliation(s)
- Daisy Y Shu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia
| | - Kevin Ng
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | | | - Juanita Chui
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Malin Lundmark
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Mary Flokis
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
23
|
Tan L, Yu M, Li Y, Xue S, Chen J, Zhai Y, Fang X, Liu J, Liu J, Wu X, Xu H, Shen Q. Overexpression of Long Non-coding RNA 4933425B07 Rik Causes Urinary Malformations in Mice. Front Cell Dev Biol 2021; 9:594640. [PMID: 33681192 PMCID: PMC7933199 DOI: 10.3389/fcell.2021.594640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) is a common birth defect and is the leading cause of end-stage renal disease in children. The etiology of CAKUT is complex and includes mainly genetic and environmental factors. However, these factors cannot fully explain the etiological mechanism of CAKUT. Recently, participation of long non-coding RNAs (lncRNAs) in the development of the circulatory and nervous systems was demonstrated; however, the role of lncRNAs in the development of the kidney and urinary tract system is unclear. In this study, we used the piggyBac (PB) transposon-based mutagenesis to construct a mouse with lncRNA 4933425B07Rik (Rik) PB insertion (RikPB/PB) and detected overexpression of Rik and a variety of developmental abnormalities in the urinary system after PB insertion, mainly including renal hypo/dysplasia. The number of ureteric bud (UB) branches in the RikPB/PB embryonic kidney was significantly decreased in embryonic kidney culture. Only bone morphogenetic protein 4 (Bmp4), a key molecule regulating UB branching, is significantly downregulated in RikPB/PB embryonic kidney, while the expression levels of other molecules involved in the regulation of UB branching were not significantly different according to the RNA-sequencing (RNA-seq) data, and the results were verified by quantitative real-time polymerase chain reaction (RT-PCR) and immunofluorescence assays. Besides, the expression of pSmad1/5/8, a downstream molecule of BMP4 signaling, decreased by immunofluorescence. These findings suggest that abnormal expression of Rik may cause a reduction in the UB branches by reducing the expression levels of the UB branching-related molecule Bmp4, thus leading to the development of CAKUT.
Collapse
Affiliation(s)
- Lihong Tan
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Minghui Yu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yaxin Li
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Shanshan Xue
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yihui Zhai
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoyan Fang
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jialu Liu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jiaojiao Liu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaohui Wu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
24
|
Tiwari A, Swamynathan S, Campbell G, Jhanji V, Swamynathan SK. BMP6 Regulates Corneal Epithelial Cell Stratification by Coordinating Their Proliferation and Differentiation and Is Upregulated in Pterygium. Invest Ophthalmol Vis Sci 2021; 61:46. [PMID: 32845956 PMCID: PMC7452852 DOI: 10.1167/iovs.61.10.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Proper balance between cell proliferation and differentiation is essential for corneal epithelial (CE) stratification and homeostasis. Although bone morphogenetic protein-6 (BMP6) is known to be expressed in the CE for over 25 years, its function in this tissue remains unknown. Here, we test the hypothesis that BMP6 promotes CE cell stratification and homeostasis by regulating their proliferation and differentiation. Methods We employed postnatal day-12 (PN-12), PN-14, PN-20, and PN-90 mouse eyes; human corneal limbal epithelial (HCLE) cells; and ocular surface fibrovascular disease pterygium tissues to evaluate the role of BMP6 in CE proliferation, differentiation, and pathology by RT-qPCR, immunoblots, and/or immunofluorescent staining. Cell proliferation was quantified by immunostaining for Ki67. Results Coincident with the mouse CE stratification between PN-12 and PN-20, BMP6 was significantly upregulated and the BMP6 antagonist Noggin downregulated. Mature CE retained high BMP6 and low Noggin expression at PN-90. BMP6 and its receptors BMPR1A and BMPR2 were upregulated during in vitro stratification of HCLE cells. Consistent with its anti-proliferative role, exogenous BMP6 suppressed HCLE cell proliferation, downregulated cyclin-D1 and cyclin-D2, and upregulated cell-cycle inhibitors Krüppel-like factor 4 (KLF4) and p21. BMP6 also upregulated the desmosomal cadherins desmoplakin and desmoglein in HCLE cells, consistent with its pro-differentiation role. Human pterygium displayed significant upregulation of BMP6 coupled with downregulation of Noggin and cell-cycle suppressors KLF4 and p21. Conclusions BMP6 coordinates CE stratification and homeostasis by regulating their proliferation and differentiation. BMP6 is significantly upregulated in human pterygium concurrent with downregulation of Noggin, KLF4, and p21.
Collapse
Affiliation(s)
- Anil Tiwari
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Gregory Campbell
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
25
|
Choudhuri KSR, Mishra S. Structural basis of BMP-2 and BMP-7 interactions with antagonists Gremlin-1 and Noggin in Glioblastoma tumors. J Comput Chem 2020; 41:2544-2561. [PMID: 32935366 DOI: 10.1002/jcc.26407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/03/2020] [Accepted: 08/02/2020] [Indexed: 12/27/2022]
Abstract
In Glioblastoma (GBM) brain tumors, both Gremlin-1 and Noggin are reported to bind to BMP and inhibit BMP-signaling, thereby allowing the cell to maintain tumorous morphology. Enlisting the interfacial residues important for protein-protein complex formation between BMPs (BMP-2 and BMP-7) and antagonists (Gremlin-1 and Noggin), we analyzed the structural basis of their interactions. We found possible key mutations that destabilize these complexes, which may prevent GBM development. It was also observed that when the interfacial residues were either mutated to histidine or tryptophan, it led to higher destabilization energy values. Besides, our study of the Noggin interactive model of BMP-2 suggested preferential binding at binding site II over binding site I. In the case of Gremlin-1 and BMPs, our research, along with few previous studies, indicates a close-ended cis-trans interactive model.
Collapse
Affiliation(s)
| | - Seema Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
26
|
Xiao W, Jakimowicz MD, Zampetakis I, Neely S, Scarpa F, Davis SA, Williams DS, Perriman AW. Biopolymeric Coacervate Microvectors for the Delivery of Functional Proteins to Cells. ACTA ACUST UNITED AC 2020; 4:e2000101. [PMID: 33166084 DOI: 10.1002/adbi.202000101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/29/2020] [Indexed: 11/07/2022]
Abstract
The extent to which biologic payloads can be effectively delivered to cells is a limiting factor in the development of new therapies. Limitations arise from the lack of pharmacokinetic stability of biologics in vivo. Encapsulating biologics in a protective delivery vector has the potential to improve delivery profile and enhance performance. Coacervate microdroplets are developed as cell-mimetic materials with established potential for the stabilization of biological molecules, such as proteins and nucleic acids. Here, the development of biodegradable coacervate microvectors (comprising synthetically modified amylose polymers) is presented, for the delivery of biologic payloads to cells. Amylose-based coacervate microdroplets are stable under physiological conditions (e.g., temperature and ionic strength), are noncytotoxic owing to their biopolymeric structure, spontaneously interacted with the cell membrane, and are able to deliver and release proteinaceous payloads beyond the plasma membrane. In particular, myoglobin, an oxygen storage and antioxidant protein, is successfully delivered into human mesenchymal stem cells (hMSCs) within 24 h. Furthermore, coacervate microvectors are implemented for the delivery of human bone morphogenetic protein 2 growth factor, inducing differentiation of hMSCs into osteoprogenitor cells. This study demonstrates the potential of coacervate microdroplets as delivery microvectors for biomedical research and the development of new therapies.
Collapse
Affiliation(s)
- Wenjin Xiao
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Monika D Jakimowicz
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1FD, UK
- HH Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
- Centre for Organized Matter Chemistry and Centre for Protolife Research School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Ioannis Zampetakis
- Bristol Composites Institute (ACCIS), Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TF, UK
| | - Sarah Neely
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Fabrizio Scarpa
- Bristol Composites Institute (ACCIS), Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TF, UK
| | - Sean A Davis
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1FD, UK
| | - David S Williams
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
27
|
Chen HY, Hu Y, Lu NH, Zhu Y. Caudal type homeoboxes as a driving force in Helicobacter pylori infection-induced gastric intestinal metaplasia. Gut Microbes 2020; 12:1-12. [PMID: 33031021 PMCID: PMC7553748 DOI: 10.1080/19490976.2020.1809331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
(H. pylori), a common pathogenic bacterium in the stomach, has been demonstrated to be a major cause of gastric cancer (GC). The typical pathological evolution of H. pylori infection-induced GC involves development from gastric atrophy, via intestinal metaplasia (IM) and dysplasia, to intestinal-type GC. During this process, IM is considered to be an "irreversible point" that significantly increases the risk for GC. Therefore, the elucidation of the mechanism underlying IM is of great significance for the prevention and treatment of gastric mucosal carcinogenesis associated with H. pylori infection. Caudal type homeoboxes (CDXs) are transcription factors involved in intestinal differentiation establishment and the maintenance of normal intestinal mucosa and IM. H. pylori infection increases the expression of CDXs through epigenetic regulation, the nuclear factor-kappaB signaling pathway and its downstream proinflammatory factors, and the transforming growth factor-beta signaling pathway, leading to the progression from normal gastric mucosa to IM. However, the precise mechanisms of gastric intestinal metaplasia have not yet been fully elucidated. In this review, we focus on research progress revealing the functions of CDXs in H. pylori infection-induced IM, as well as the regulators modulating this process.
Collapse
Affiliation(s)
- Hong-Yan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China,CONTACT Yin Zhu Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi Province, China
| |
Collapse
|
28
|
Perényi H, Szegeczki V, Horváth G, Hinnah B, Tamás A, Radák Z, Ábrahám D, Zákány R, Reglodi D, Juhász T. Physical Activity Protects the Pathological Alterations of Alzheimer's Disease Kidneys via the Activation of PACAP and BMP Signaling Pathways. Front Cell Neurosci 2020; 14:243. [PMID: 32922265 PMCID: PMC7457084 DOI: 10.3389/fncel.2020.00243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with typical amyloid beta (Aβ) aggregations. Elimination of the Aβ precursors via the kidneys makes the organ a potential factor in the systemic degeneration leading to AD. Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts neuroprotective effects in AD and plays a protective role in kidney pathologies. Increased physical activity is preventive of the formation of AD, but its detailed mechanism and possible connections with PACAP have not been clarified. In the kidneys of AD mice, the effects of physical activity were investigated by comparing wild-type and AD organs. Aβ plaque formation was reduced in AD kidneys after increased training (TAD). Mechanotransduction elevated PACAP receptor expression in TAD mice and normalized the protein kinase A (PKA)-mediated pathways. BMP4/BMPR1 elevation activated Smad1 expression and normalized collagen type IV in TAD animals. In conclusion, our data suggest that elevated physical activity can prevent the AD-induced pathological changes in the kidneys via, at least in part, the activation of PACAP-BMP signaling crosstalk.
Collapse
Affiliation(s)
- Helga Perényi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vince Szegeczki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Horváth
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Barbara Hinnah
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Tamás
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Dóra Ábrahám
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dora Reglodi
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
29
|
Moulton MJ, Humphreys GB, Kim A, Letsou A. O-GlcNAcylation Dampens Dpp/BMP Signaling to Ensure Proper Drosophila Embryonic Development. Dev Cell 2020; 53:330-343.e3. [DOI: 10.1016/j.devcel.2020.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 01/09/2023]
|
30
|
Shi Y, Zhao M, He M. PfSMAD1/5 Can Interact with PfSMAD4 to Inhibit PfMSX to Regulate Shell Biomineralization in Pinctada fucata martensii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:246-262. [PMID: 31960221 DOI: 10.1007/s10126-020-09948-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The BMP2 signal transduced by SMAD1/5 plays an important role in osteoblast differentiation and bone formation. Shell formation of Pinctada fucata martensii is a typical biomineralization process that is similar to that of teeth/bone formation. However, whether the Pinctada fucata BMP2 (PfBMP2) signal transduced by PfSMAD1/5 occurs in P. f. martensii, how the PfBMP2 signal is transduced by PfSMAD1/5, and how PfSMAD1/5 regulates the biomineralization process in this species and other shellfish are poorly understood. Therefore, injection experiments of recombinant PfBMP2 and inhibitor dorsomorphin revealed that PfSMAD1/5 can transduce PfBMP2 signals. Subcellular localization and bimolecular fluorescence complementation assays indicated that PfSMAD1/5 phosphorylated by PfBMPR1b interacts with PfSMAD4 in the cytoplasm to form a complex, which translocates to the nucleus to transduce PfBMP2 signals. Co-immunoprecipitation and luciferase assays revealed that PfSMAD1/5 may interact with PfMSX to dislodge it from its binding element, resulting in initiation of mantle gene transcription. The in vivo functional assay showed that knockdown of PfMSAD1/5 decreased expression of shell matrix genes and disordered the nacreous layer, and the correlation assay of shell regeneration showed the concomitant expression pattern of PfSMAD1/5 and shell matrix genes. Together, these data showed that PfSMAD1/5 can transduce PfBMP2 signals to regulate shell biomineralization in P. f. martensii, which illustrated conservation of the BMP2-SMAD signal pathway among invertebrates. Particularly, the results suggest that there is only one PfMSX gene, which functions like the Hox gene in vertebrates, that interacts with PfSMAD1/5 in a protein-protein action form and plays the role of transcription repressor.
Collapse
Affiliation(s)
- Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Mi Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.
| |
Collapse
|
31
|
Aluganti Narasimhulu C, Singla DK. The Role of Bone Morphogenetic Protein 7 (BMP-7) in Inflammation in Heart Diseases. Cells 2020; 9:cells9020280. [PMID: 31979268 PMCID: PMC7073173 DOI: 10.3390/cells9020280] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein-7 is (BMP-7) is a potent anti-inflammatory growth factor belonging to the Transforming Growth Factor Beta (TGF-β) superfamily. It plays an important role in various biological processes, including embryogenesis, hematopoiesis, neurogenesis and skeletal morphogenesis. BMP-7 stimulates the target cells by binding to specific membrane-bound receptor BMPR 2 and transduces signals through mothers against decapentaplegic (Smads) and mitogen activated protein kinase (MAPK) pathways. To date, rhBMP-7 has been used clinically to induce the differentiation of mesenchymal stem cells bordering the bone fracture site into chondrocytes, osteoclasts, the formation of new bone via calcium deposition and to stimulate the repair of bone fracture. However, its use in cardiovascular diseases, such as atherosclerosis, myocardial infarction, and diabetic cardiomyopathy is currently being explored. More importantly, these cardiovascular diseases are associated with inflammation and infiltrated monocytes where BMP-7 has been demonstrated to be a key player in the differentiation of pro-inflammatory monocytes, or M1 macrophages, into anti-inflammatory M2 macrophages, which reduces developed cardiac dysfunction. Therefore, this review focuses on the molecular mechanisms of BMP-7 treatment in cardiovascular disease and its role as an anti-fibrotic, anti-apoptotic and anti-inflammatory growth factor, which emphasizes its potential therapeutic significance in heart diseases.
Collapse
|
32
|
Liu L, Yang B, Wang LQ, Huang JP, Chen WY, Ban Q, Zhang Y, You R, Yin L, Guan YQ. Biomimetic bone tissue engineering hydrogel scaffolds constructed using ordered CNTs and HA induce the proliferation and differentiation of BMSCs. J Mater Chem B 2020; 8:558-567. [PMID: 31854433 DOI: 10.1039/c9tb01804b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ordered hydrogel (AG-Col-o-CNT) scaffolds promoted the growth of BMSCs and influenced the differentiation of BMSCs into osteoblasts in vitro and in vivo.
Collapse
|
33
|
Li L, Wang X, Mullins MC, Umulis DM. Evaluation of BMP-mediated patterning in a 3D mathematical model of the zebrafish blastula embryo. J Math Biol 2020; 80:505-520. [PMID: 31773243 PMCID: PMC7203969 DOI: 10.1007/s00285-019-01449-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/28/2019] [Indexed: 02/03/2023]
Abstract
Bone Morphogenetic Proteins (BMPs) play an important role in dorsal-ventral (DV) patterning of the early zebrafish embryo. BMP signaling is regulated by a network of extracellular and intracellular factors that impact the range and signaling of BMP ligands. Recent advances in understanding the mechanism of pattern formation support a source-sink mechanism, however it is not clear how the source-sink mechanism shapes patterns in 3D, nor how sensitive the pattern is to biophysical rates and boundary conditions along both the anteroposterior (AP) and DV axes of the embryo. We propose a new three-dimensional growing Partial Differential Equation (PDE)-based model to simulate the BMP patterning process during the blastula stage. This model provides a starting point to elucidate how different mechanisms and components work together in 3D to create and maintain the BMP gradient in the embryo. We also show how the 3D model fits the BMP signaling gradient data at multiple time points along both axes. Furthermore, sensitivity analysis of the model suggests that the spatiotemporal patterns of Chordin and BMP ligand gene expression are dominant drivers of shape in 3D and more work is needed to quantify the spatiotemporal profiles of gene and protein expression to further refine the models.
Collapse
Affiliation(s)
- Linlin Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA
| | - Xu Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - David M Umulis
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, USA.
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, USA.
| |
Collapse
|
34
|
Qu X, Liu Y, Cao D, Chen J, Liu Z, Ji H, Chen Y, Zhang W, Zhu P, Xiao D, Li X, Shou W, Chen H. BMP10 preserves cardiac function through its dual activation of SMAD-mediated and STAT3-mediated pathways. J Biol Chem 2019; 294:19877-19888. [PMID: 31712309 DOI: 10.1074/jbc.ra119.010943] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic protein 10 (BMP10) is a cardiac peptide growth factor belonging to the transforming growth factor β superfamily that critically controls cardiovascular development, growth, and maturation. It has been shown that BMP10 elicits its intracellular signaling through a receptor complex of activin receptor-like kinase 1 with morphogenetic protein receptor type II or activin receptor type 2A. Previously, we generated and characterized a transgenic mouse line expressing BMP10 from the α-myosin heavy chain gene promoter and found that these mice have normal cardiac hypertrophic responses to both physiological and pathological stimuli. In this study, we report that these transgenic mice exhibit significantly reduced levels of cardiomyocyte apoptosis and cardiac fibrosis in response to a prolonged administration of the β-adrenoreceptor agonist isoproterenol. We further confirmed this cardioprotective function with a newly generated conditional Bmp10 transgenic mouse line, in which Bmp10 was activated in adult hearts by tamoxifen. Moreover, the intraperitoneal administration of recombinant human BMP10 was found to effectively protect hearts from injury, suggesting potential therapeutic utility of using BMP10 to prevent heart failure. Gene profiling and biochemical analyses indicated that BMP10 activates the SMAD-mediated canonical pathway and, unexpectedly, also the signal transducer and activator of transcription 3 (STAT3)-mediated signaling pathway both in vivo and in vitro Additional findings further supported the notion that BMP10's cardioprotective function likely is due to its dual activation of SMAD- and STAT3-regulated signaling pathways, promoting cardiomyocyte survival and suppressing cardiac fibrosis.
Collapse
Affiliation(s)
- Xiuxia Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.,Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Ying Liu
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Dayan Cao
- Institute of Materia Medica and Center of Translational Medicine, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Jinghai Chen
- Department of Cardiology, the Second Affiliate Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang 310029, China
| | - Zhuo Liu
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hongrui Ji
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202.,School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Heilongjiang 150040, China
| | - Yuwen Chen
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Wenjun Zhang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Ping Zhu
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong 510100, China
| | - Deyong Xiao
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Fountain Valley Institute of Life Sciences and Fountain Valley Biotechnology Inc., Dalian Hi-Tech Industrial Zone, Liaoning 116023, China
| | - Xiaohui Li
- Institute of Materia Medica and Center of Translational Medicine, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Weinian Shou
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hanying Chen
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
35
|
Yoshino T, Saito D. Epithelial-to-mesenchymal transition–based morphogenesis of dorsal mesentery and gonad. Semin Cell Dev Biol 2019; 92:105-112. [DOI: 10.1016/j.semcdb.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 12/26/2022]
|
36
|
Nallasamy S, Kaya Okur HS, Bhurke A, Davila J, Li Q, Young SL, Taylor RN, Bagchi MK, Bagchi IC. Msx Homeobox Genes Act Downstream of BMP2 to Regulate Endometrial Decidualization in Mice and in Humans. Endocrinology 2019; 160:1631-1644. [PMID: 31125045 PMCID: PMC6591014 DOI: 10.1210/en.2019-00131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
Endometrial stromal cells differentiate to form decidual cells in a process known as decidualization, which is critical for embryo implantation and successful establishment of pregnancy. We previously reported that bone morphogenetic protein 2 (BMP2) mediates uterine stromal cell differentiation in mice and in humans. To identify the downstream target(s) of BMP2 signaling during decidualization, we performed gene-expression profiling of mouse uterine stromal cells, treated or not treated with recombinant BMP2. Our studies revealed that expression of Msx2, a member of the mammalian Msx homeobox gene family, was markedly upregulated in response to exogenous BMP2. Interestingly, conditional ablation of Msx2 in the uterus failed to prevent a decidual phenotype, presumably because of functional compensation of Msx2 by Msx1, a closely related member of the Msx family. Indeed, in Msx2-null uteri, the level of Msx1 expression in the stromal cells was markedly elevated. When conditional, tissue-specific ablation of both Msx1 and Msx2 was accomplished in the mouse uterus, a dramatically impaired decidual response was observed. In the absence of both Msx1 and Msx2, uterine stromal cells were able to proliferate, but they failed to undergo terminal differentiation. In parallel experiments, addition of BMP2 to human endometrial stromal cell cultures led to a robust enhancement of MSX1 and MSX2 expression and stimulated the differentiation process. Attenuation of MSX1 and MSX2 expression by small interfering RNAs greatly reduced human stromal differentiation in vitro, indicating a conservation of their roles as key mediators of BMP2-induced decidualization in mice and women.
Collapse
Affiliation(s)
| | - Hatice S Kaya Okur
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Arpita Bhurke
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Juanmahel Davila
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Quanxi Li
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Milan K Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
37
|
Assarnia S, Ardalan Khales S, Forghanifard MM. Correlation between SALL4 stemness marker and bone morphogenetic protein signaling genes in esophageal squamous cell carcinoma. J Biochem Mol Toxicol 2018; 33:e22262. [PMID: 30431698 DOI: 10.1002/jbt.22262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
SALL4, as a stemness marker, plays a key role in the maintenance of pluripotency and self-renewal of cancer stem cells. To elucidate probable linkage between SALL4 stemness marker and bone morphogenetic protein (BMP) cell signaling pathway, we aimed to analyze the expression levels of the related genes in esophageal squamous cell carcinoma (ESCC) patients. Tumoral and corresponding margin normal tissues from 50 treatment-naive ESCC patients were subjected for expression analysis using relative comparative real-time reverse transcription polymerase chain reaction. There were significant correlations between SALL4 mRNA and BMP signaling target genes expression including SIZN1, VENTX, and DIDO1 (P < 0.01). Tight associations of gene expression were observed in primary stages of tumor progression (stages I/II), and the invaded tumors to the adventitia (T3/T4). Furthermore, significant correlations between the expression of BMP signaling target genes were observed (P < 0.01). SALL4 may play role in tumorigenesis and tumor cell invasiveness of ESCC through correlation with BMP signaling genes.
Collapse
Affiliation(s)
- Sogand Assarnia
- Department of Cellular and Molecular Biology, College of Science, School of Biology, University of Tehran, Tehran, Iran
| | - Sima Ardalan Khales
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
38
|
Yi T, Liu M, Li X, Liu X, Ding Y, He J, Xu H, Gao R, Mu X, Geng Y, Wang Y, Chen X. Benzo(a)pyrene inhibits endometrial cell apoptosis in early pregnant mice via the WNT5A pathway. J Cell Physiol 2018; 234:11119-11129. [PMID: 30443902 DOI: 10.1002/jcp.27762] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Abstract
Benzo(a)pyrene (BaP) is an endocrine-disrupting pollutant present in various aspects of daily life, and studies have demonstrated that BaP exerts reproductive toxicity. We previously showed that BaP damages endometrial morphology and decreases the number of implantation sites in early pregnant mice, but the mechanisms underlying these effects remain unclear. The endometrial function is crucial for implantation, which is associated with endometrial cell apoptosis. In this study, we focused on the effect of BaP on endometrial cell apoptosis and the role of WNT signaling during this process. Pregnant mice were gavaged with corn oil (control group) or 0.2 mg·kg-1 ·day -1 BaP (treatment group) from Days 1 to 6 of pregnancy. BaP impaired endometrial function by decreasing the expression of HOXA10 and BMP2, two markers of receptivity and decidualization. WNT5A and β-catenin were activated in the BaP group. BaP affected the expression of apoptosis-related proteins and inhibited the apoptosis of endometrial stromal cells. In vitro, human endometrial stromal cells (HESCs) were treated with different concentrations of BaP (dimethyl sulfoxide (DMSO); 5, 10 µM). WNT5A and β-catenin were also upregulated in the BaP treatment group. HESC apoptosis was restrained by BaP. Inhibiting WNT5A by SFRP5 partially restored the effect of BaP on apoptosis. In summary, these results suggested that BaP exposure during early pregnancy activates WNT5A/β-catenin signaling pathway, which inhibits the endometrial cell apoptosis and potentially destroys endometrial function.
Collapse
Affiliation(s)
- Ting Yi
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Min Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xueyan Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Hanting Xu
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xinyi Mu
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
Comparative Transcriptome Analysis Provides Novel Insight into Morphologic and Metabolic Changes in the Fat Body during Silkworm Metamorphosis. Int J Mol Sci 2018; 19:ijms19113525. [PMID: 30423910 PMCID: PMC6274779 DOI: 10.3390/ijms19113525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 11/17/2022] Open
Abstract
The fat body plays key roles in energy storage and utilization as well as biosynthetic and metabolic activities in insects. During metamorphosis from larva to pupa, the fat body undergoes dramatic changes in morphology and metabolic processes. However, the genetic basis underlying these changes has not been completely understood. In this study, the authors performed a time-course transcriptome analysis of the fat body during silkworm metamorphosis using RNA-sequencing. A total of 5217 differentially expressed genes (DEGs) were identified in the fat body at different developmental time points. DEGs involved in lipid synthesis and degradation were highly expressed at the third day of the last larval instar and during the prepupal-pupal transition, respectively. DEGs involved in the ecdysone signaling and bone morphogenetic protein (BMP) signaling pathways that modulate organ development exhibited a high expression level during the fat body remodeling process from prepupa to pupa. Intriguingly, the RNA interference-mediated knockdown of either decapentaplegic (Dpp) or protein 60A (Gbb), two DEGs involved in the BMP signaling pathway, inhibited fat body dissociation but promoted lipid mobilization, suggesting that the BMP signaling pathway not only is required for fat body remodeling, but also moderately inhibits lipid mobilization to ensure an appropriate lipid supply during the pupal-adult transition. In conclusion, the comparative transcriptome analysis provides novel insight into morphologic and metabolic changes in the fat body during silkworm metamorphosis.
Collapse
|
40
|
Ye J, Wang Z, Wang M, Xu Y, Zeng T, Ye D, Liu J, Jiang H, Lin Y, Wan J. Increased kielin/chordin-like protein levels are associated with the severity of heart failure. Clin Chim Acta 2018; 486:381-386. [PMID: 30144436 DOI: 10.1016/j.cca.2018.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Previous studies demonstrated that the transforming growth factor (TGF) β superfamily, including TGF-βs and bone morphogenetic proteins (BMPs), plays important roles in cardiovascular diseases. The kielin/chordin-like protein (KCP) is a secreted protein that regulates the expression and function of TGF-βs and BMPs. However, the role of KCP during heart failure (HF) remains unknown. The present study aimed to investigate the cardiac expression of KCP in human failing hearts. METHODS The human failing heart samples from patients with dilated cardiomyopathy (DCM, n = 12) and ischemic cardiomyopathy (ICM, n = 12) were collected, and normal heart (n = 8) samples from unmatched donors were collected as controls. Collagen volume, KCP levels, and mRNA levels of several BMPs in left ventricles (LV) of all hearts were measured. RESULTS The KCP levels were significantly higher in human failing hearts than in normal hearts. KCP levels were positively associated with hypertrophy markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC). In addition, KCP levels were also positively associated with left ventricular end-diastolic dimension (LVEDD), collagen Iα and collagen IIIα expression but were negatively associated with left ventricular ejection fraction (LVEF). Furthermore, increased TGF-β1, BMP2/4/6/10 and reduced BMP7 levels were observed, and positive correlations between KCP and TGF-β1 and negative correlation between KCP and BMP2/7 were found, but not for BMP4/6/10. CONCLUSIONS KCP was closely associated with heart failure. The regulation of BMP2/7 and TGF-β1 expression may be the possible mechanisms.
Collapse
Affiliation(s)
- Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Tao Zeng
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Huimin Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yingzhong Lin
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
41
|
Ide S, Finer G, Maezawa Y, Onay T, Souma T, Scott R, Ide K, Akimoto Y, Li C, Ye M, Zhao X, Baba Y, Minamizuka T, Jin J, Takemoto M, Yokote K, Quaggin SE. Transcription Factor 21 Is Required for Branching Morphogenesis and Regulates the Gdnf-Axis in Kidney Development. J Am Soc Nephrol 2018; 29:2795-2808. [PMID: 30377232 DOI: 10.1681/asn.2017121278] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 09/27/2018] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The mammalian kidney develops through reciprocal inductive signals between the metanephric mesenchyme and ureteric bud. Transcription factor 21 (Tcf21) is highly expressed in the metanephric mesenchyme, including Six2-expressing cap mesenchyme and Foxd1-expressing stromal mesenchyme. Tcf21 knockout mice die in the perinatal period from severe renal hypodysplasia. In humans, Tcf21 mRNA levels are reduced in renal tissue from human fetuses with renal dysplasia. The molecular mechanisms underlying these renal defects are not yet known. METHODS Using a variety of techniques to assess kidney development and gene expression, we compared the phenotypes of wild-type mice, mice with germline deletion of the Tcf21 gene, mice with stromal mesenchyme-specific Tcf21 deletion, and mice with cap mesenchyme-specific Tcf21 deletion. RESULTS Germline deletion of Tcf21 leads to impaired ureteric bud branching and is accompanied by downregulated expression of Gdnf-Ret-Wnt11, a key pathway required for branching morphogenesis. Selective removal of Tcf21 from the renal stroma is also associated with attenuation of the Gdnf signaling axis and leads to a defect in ureteric bud branching, a paucity of collecting ducts, and a defect in urine concentration capacity. In contrast, deletion of Tcf21 from the cap mesenchyme leads to abnormal glomerulogenesis and massive proteinuria, but no downregulation of Gdnf-Ret-Wnt11 or obvious defect in branching. CONCLUSIONS Our findings indicate that Tcf21 has distinct roles in the cap mesenchyme and stromal mesenchyme compartments during kidney development and suggest that Tcf21 regulates key molecular pathways required for branching morphogenesis.
Collapse
Affiliation(s)
- Shintaro Ide
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Gal Finer
- Division of Kidney Diseases, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Feinberg Cardiovascular and Renal Research Institute and
| | - Yoshiro Maezawa
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Tuncer Onay
- Feinberg Cardiovascular and Renal Research Institute and.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tomokazu Souma
- Feinberg Cardiovascular and Renal Research Institute and.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rizaldy Scott
- Feinberg Cardiovascular and Renal Research Institute and.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kana Ide
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Chengjin Li
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and
| | - Minghao Ye
- Feinberg Cardiovascular and Renal Research Institute and.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xiangmin Zhao
- Division of Kidney Diseases, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Feinberg Cardiovascular and Renal Research Institute and
| | - Yusuke Baba
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Takuya Minamizuka
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan;
| | - Jing Jin
- Feinberg Cardiovascular and Renal Research Institute and.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Minoru Takemoto
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare, Narita, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Susan E Quaggin
- Feinberg Cardiovascular and Renal Research Institute and .,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
42
|
Ma JY, You D, Li WY, Lu XL, Sun S, Li HW. Bone morphogenetic proteins and inner ear development. J Zhejiang Univ Sci B 2018; 20:131-145. [PMID: 30112880 DOI: 10.1631/jzus.b1800084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are the largest subfamily of the transforming growth factor-β superfamily, and they play important roles in the development of numerous organs, including the inner ear. The inner ear is a relatively small organ but has a highly complex structure and is involved in both hearing and balance. Here, we discuss BMPs and BMP signaling pathways and then focus on the role of BMP signal pathway regulation in the development of the inner ear and the implications this has for the treatment of human hearing loss and balance dysfunction.
Collapse
Affiliation(s)
- Jiao-Yao Ma
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Dan You
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Wen-Yan Li
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Xiao-Ling Lu
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Shan Sun
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Hua-Wei Li
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China.,Institutes of Biomedical Sciences and the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
43
|
Zhang XY, Chang HM, Taylor EL, Liu RZ, Leung PCK. BMP6 Downregulates GDNF Expression Through SMAD1/5 and ERK1/2 Signaling Pathways in Human Granulosa-Lutein Cells. Endocrinology 2018; 159:2926-2938. [PMID: 29750278 DOI: 10.1210/en.2018-00189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022]
Abstract
Bone morphogenetic protein (BMP) 6 is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line‒derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein (hGL) cells as in vitro cell models. Our results showed that BMP6 significantly downregulated the expression of GDNF in both SVOG and primary hGL cells. With dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both activin receptor kinase-like (ALK) 2 and ALK3 are involved in BMP6-induced downregulation of GDNF. In addition, BMP6 induced the phosphorylation of Sma- and Mad-related protein (SMAD)1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced downregulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced downregulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through paracrine interactions in human granulosa cells.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- Center for Reproductive Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elizabeth L Taylor
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rui-Zhi Liu
- Center for Reproductive Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
Pharmacological reactivation of inactive X-linked Mecp2 in cerebral cortical neurons of living mice. Proc Natl Acad Sci U S A 2018; 115:7991-7996. [PMID: 30012595 DOI: 10.1073/pnas.1803792115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rett syndrome (RTT) is a genetic disorder resulting from a loss-of-function mutation in one copy of the X-linked gene methyl-CpG-binding protein 2 (MECP2). Typical RTT patients are females and, due to random X chromosome inactivation (XCI), ∼50% of cells express mutant MECP2 and the other ∼50% express wild-type MECP2. Cells expressing mutant MECP2 retain a wild-type copy of MECP2 on the inactive X chromosome (Xi), the reactivation of which represents a potential therapeutic approach for RTT. Previous studies have demonstrated reactivation of Xi-linked MECP2 in cultured cells by biological or pharmacological inhibition of factors that promote XCI (called "XCI factors" or "XCIFs"). Whether XCIF inhibitors in living animals can reactivate Xi-linked MECP2 in cerebral cortical neurons, the cell type most therapeutically relevant to RTT, remains to be determined. Here, we show that pharmacological inhibitors targeting XCIFs in the PI3K/AKT and bone morphogenetic protein signaling pathways reactivate Xi-linked MECP2 in cultured mouse fibroblasts and human induced pluripotent stem cell-derived postmitotic RTT neurons. Notably, reactivation of Xi-linked MECP2 corrects characteristic defects of human RTT neurons including reduced soma size and branch points. Most importantly, we show that intracerebroventricular injection of the XCIF inhibitors reactivates Xi-linked Mecp2 in cerebral cortical neurons of adult living mice. In support of these pharmacological results, we also demonstrate genetic reactivation of Xi-linked Mecp2 in cerebral cortical neurons of living mice bearing a homozygous XCIF deletion. Collectively, our results further establish the feasibility of pharmacological reactivation of Xi-linked MECP2 as a therapeutic approach for RTT.
Collapse
|
45
|
BMP and WNT signalling cooperate through LEF1 in the neuronal specification of adult hippocampal neural stem and progenitor cells. Sci Rep 2018; 8:9241. [PMID: 29915186 PMCID: PMC6006330 DOI: 10.1038/s41598-018-27581-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/25/2018] [Indexed: 01/17/2023] Open
Abstract
Neuronal production from neural stem cells persists during adulthood in the subgranular zone of the hippocampal dentate gyrus. Extracellular signals provided by the hippocampal microenvironment regulate the neuronal fate commitment of the stem cell progeny. To date, the identity of those signals and their crosstalk has been only partially resolved. Here we show that adult rat hippocampal neural stem and progenitor cells (AH-NSPCs) express receptors for bone morphogenetic proteins (BMPs) and that the BMP/P-Smad pathway is active in AH-NSPCs undergoing differentiation towards the neuronal lineage. In vitro, exposure to the BMP2 and BMP4 ligands is sufficient to increase neurogenesis from AH-NSPCs in a WNT dependent manner while decreasing oligodendrogenesis. Moreover, BMP2/4 and WNT3A, a key regulator of adult hippocampal neurogenesis, cooperate to further enhance neuronal production. Our data point to a mechanistic convergence of the BMP and WNT pathways at the level of the T-cell factor/lymphoid enhancer factor gene Lef1. Altogether, we provide evidence that BMP signalling is an important regulator for the neuronal fate specification of AH-NSPCs cultures and we show that it significantly cooperates with the previously described master regulator of adult hippocampal neurogenesis, the WNT signalling pathway.
Collapse
|
46
|
Ullah A, Umair M, Muhammad D, Bilal M, Lee K, Leal SM, Ahmad W. A novel homozygous variant in BMPR1B underlies acromesomelic dysplasia Hunter-Thompson type. Ann Hum Genet 2018; 82:129-134. [PMID: 29322508 DOI: 10.1111/ahg.12233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/22/2023]
Abstract
Acromesomelic dysplasia is genetically heterogeneous group of skeletal disorders characterized by short stature and acromelia and mesomelia of limbs. Acromesomelic dysplasia segregates in an autosomal recessive pattern and is caused by biallelic sequence variants in three genes (NPR2, GDF5, and BMPR1B). A consanguineous family of Pakistani origin segregating a subtype of acromesomelic dysplasia called Hunter-Thompson was clinically and genetically evaluated. Genotyping of microsatellite markers and linkage analysis revealed a 7.78 Mb homozygous region on chromosome 4q22.3, which harbors BMPR1B. Sequence analysis of the gene revealed a novel homozygous missense variant (c.1190T > G, p.Met397Arg) that segregates with the disease phenotype within the family and produced a Logarithm of odds (LOD) score of 3.9 with the disease phenotype. This study reports on the first familial case of acromesomelic dysplasia Hunter-Thompson type. It is also the first report of BMPR1B underlying the etiology of acromesomelic dysplasia Hunter-Thompson type.
Collapse
Affiliation(s)
- Asmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Umair
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Dost Muhammad
- Chandka Medical College, Shaheed Mohtarma Benazir Bhutto Medical University Larkana, Sindh, Pakistan
| | - Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kwanghyuk Lee
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
47
|
A review of the cellular and molecular effects of extracorporeal shockwave therapy. Vet Comp Orthop Traumatol 2017; 29:99-107. [DOI: 10.3415/vcot-15-04-0057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/15/2015] [Indexed: 12/31/2022]
Abstract
SummaryExtracorporeal shockwave therapy (ESWT) is a novel therapeutic modality and its use in promoting connective tissue repair and analgesic effect has been advocated in the literature. It is convenient, cost-effective, and has negligible complications; it therefore bypasses many of the problems associated with surgical interventions. This paper reviews the proposed mechanisms of action in promoting tissue repair and regeneration as well as analysing its efficacy providing an analgesic effect in clinical applications. Further research will be required to not only identify the underlying mechanisms more precisely, but will also be critical for ensuring consistency across the literature so that the most beneficial treatment protocol can be developed. Extracorporeal shockwave therapy stands as a promising alternative modality in promoting tissue repair.
Collapse
|
48
|
Leung VYL, Zhou L, Tam WK, Sun Y, Lv F, Zhou G, Cheung KMC. Bone morphogenetic protein-2 and -7 mediate the anabolic function of nucleus pulposus cells with discrete mechanisms. Connect Tissue Res 2017; 58:573-585. [PMID: 28102712 DOI: 10.1080/03008207.2017.1282951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone morphogenetic proteins (BMPs) play roles in promoting cell anabolism, especially in extracellular matrix production. The difference between BMP members in their capacity to modulate intervertebral disc cell activity is yet to be defined. BMP-7/OP-1 has been shown to retard disc degeneration. We compared the activity of BMP-7 with that of BMP-2 on nucleus pulposus (NP) cell phenotype and function, and investigated how they differentially affect the gene expression profiles of signaling cascade components in human NP cells under degenerative states. We found that while both BMP-2 and BMP-7 enhanced matrix production of bovine NP cells, BMP-7 is more potent than BMP-2 at various dosages (50-800 ng/ml). BMP-7 exerted a relatively stronger stimulation on sulfated glycosaminoglycan production and proliferation in human NP cells. Degenerated NP cells showed an overall weaker response to the BMPs than non-degenerated cells, and were more sensitive to BMP-7 than BMP-2 stimulation. Compared to BMP-2, BMP-7 not only induced the gene expression of canonical BMP components, but also evoked changes in MAPKs as well as CREB1 and EP300 gene expression in degenerated NP cells, suggesting potential activation of the cAMP dependent protein kinase related pathways. In contrast to BMP-2, BMP-7 concomitantly inhibited the expression of profibrotic genes. We propose that BMP-2 and BMP-7, and likely other BMPs, may operate multifaceted but discrete molecular machineries that give rise to their different capacity in regulating NP cell phenotype. Further investigations into such differential capacity may possibly derive alternative cues important for IVD repair or engineering.
Collapse
Affiliation(s)
- Victor Y L Leung
- a Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong SAR , China
| | - Lixiong Zhou
- a Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong SAR , China
| | - Wai-Kit Tam
- a Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong SAR , China
| | - Yi Sun
- a Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong SAR , China
| | - Fengjuan Lv
- a Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong SAR , China
| | - Guangqian Zhou
- b School of Medicine , Shenzhen University , Shenzhen , China
| | - Kenneth M C Cheung
- a Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong SAR , China
| |
Collapse
|
49
|
Yu Y, Mutlu AS, Liu H, Wang MC. High-throughput screens using photo-highlighting discover BMP signaling in mitochondrial lipid oxidation. Nat Commun 2017; 8:865. [PMID: 29021566 PMCID: PMC5636786 DOI: 10.1038/s41467-017-00944-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/04/2017] [Indexed: 01/22/2023] Open
Abstract
High-throughput screens at microscopic resolution can uncover molecular mechanisms of cellular dynamics, but remain technically challenging in live multicellular organisms. Here we present a genetic screening method using photo-highlighting for candidate selection on microscopes. We apply this method to stimulated Raman scattering (SRS) microscopy and systematically identify 57 Caenorhabditis elegans mutants with altered lipid distribution. Four of these mutants target the components of the Bone Morphogenetic Protein (BMP) signaling pathway, revealing that BMP signaling inactivation causes exhaustion of lipid reserves in somatic tissues. Using SRS-based isotope tracing assay to quantitatively track lipid synthesis and mobilization, we discover that the BMP signaling mutants have increased rates of lipid mobilization. Furthermore, this increase is associated with the induction of mitochondrial β-oxidation and mitochondrial fusion. Together these studies demonstrate a photo-highlighting microscopic strategy for genome-scale screens, leading to the discovery of new roles for BMP signaling in linking mitochondrial homeostasis and lipid metabolism.High-throughput genetic screens in animals could benefit from an easy way to mark positive hits. Here the authors introduce photo-highlighting using a photoconvertible fluorescent protein, and in combination with stimulated Raman scattering (SRS) microscopy, define a role for BMP signaling in lipid metabolism in C. elegans.
Collapse
Affiliation(s)
- Yong Yu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ayse Sena Mutlu
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Harrison Liu
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, San Francisco, CA, 94143, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
50
|
Yang D, Ma M, Zhou W, Yang B, Xiao C. Inhibition of miR-32 activity promoted EMT induced by PM2.5 exposure through the modulation of the Smad1-mediated signaling pathways in lung cancer cells. CHEMOSPHERE 2017; 184:289-298. [PMID: 28601662 DOI: 10.1016/j.chemosphere.2017.05.152] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/21/2017] [Accepted: 05/27/2017] [Indexed: 05/20/2023]
Abstract
Epithelial mesenchymal transition (EMT) is a crucial morphological event during tumor progression. The present study reported that EMT could be triggered by airborne fine particulate matter (PM) with a mean diameter of less than 2.5 μm (PM2.5) in human lung cancer cells. We also aimed to elucidate the possible mechanisms of these processes. The results showed that treatment with PM2.5 promoted the activity of the SMAD family member 1 (Smad1)-mediated signaling pathway and downregulated the expression of the inhibitory Smad proteins Smad6 and Smad7 in lung cancer cells. Moreover, the knockdown of Smad1 suppressed the EMT process induced by PM2.5 exposure. Our data further revealed that miR-32 has a negative effect on PM2.5-induced EMT. The results showed that the expression level of miR-32 was significantly upregulated in the PM2.5-induced EMT process. The knockdown of miR-32 enhances the activity of the Smad1-mediated signaling pathway, which promotes the EMT process induced by PM2.5. Thus, these findings indicate that PM2.5 can induce the EMT process through the Smad1-mediated signaling pathway, and miR-32 may act as an EMT inhibitor in lung cancer cells.
Collapse
Affiliation(s)
- Dan Yang
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, North Huanghe Street, Huanggu District, Shenyang City, 110034, PR China; Department of Pharmacology, Shenyang Medical College, No. 146, North Huanghe Street, Huanggu District, Shenyang City, 110034, PR China
| | - Mingyue Ma
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, North Huanghe Street, Huanggu District, Shenyang City, 110034, PR China; Department of Toxicology, School of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Huanggu District, Shenyang City, 110034, PR China
| | - Weiqiang Zhou
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, North Huanghe Street, Huanggu District, Shenyang City, 110034, PR China
| | - Biao Yang
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, North Huanghe Street, Huanggu District, Shenyang City, 110034, PR China
| | - Chunling Xiao
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, North Huanghe Street, Huanggu District, Shenyang City, 110034, PR China.
| |
Collapse
|