1
|
Choudhury S, Anne A, Singh M, Chaillet JR, Mohan KN. DNMT1 Y495C mutation interferes with maintenance methylation of imprinting control regions. Int J Biochem Cell Biol 2024; 169:106535. [PMID: 38281697 DOI: 10.1016/j.biocel.2024.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Hereditary Sensory and Autonomic Neuropathy Type 1E (HSAN1E) is a rare autosomal dominant neurological disorder due to missense mutations in DNA methyltransferase 1 (DNMT1). To investigate the nature of the dominant effect, we compared methylomes of transgenic R1wtDnmt1 and R1Dnmt1Y495C mouse embryonic stem cells (mESCs) overexpressing WT and the mutant mouse proteins respectively, with the R1 (wild-type) cells. In case of R1Dnmt1Y495C, 15 out of the 20 imprinting control regions were hypomethylated with transcript level dysregulation of multiple imprinted genes in ESCs and neurons. Non-imprinted regions, minor satellites, major satellites, LINE1 and IAP repeats were unaffected. These data mirror the specific imprinting defects associated with transient removal of DNMT1 in mESCs, deletion of the maternal-effect DNMT1o variant in preimplantation mouse embryos, and in part, reprogramming to naïve human iPSCs. This is the first DNMT1 mutation demonstrated to specifically affect Imprinting Control Regions (ICRs), and reinforces the differences in maintenance methylation of ICRs over non-imprinted regions. Consistent with nervous system abnormalities in the HSAN1E disorder and involvement of imprinted genes in normal development and neurogenesis, R1Dnmt1Y495C cells showed dysregulated pluripotency and neuron marker genes, and yielded more slender, shorter, and extensively branched neurons. We speculate that R1Dnmt1Y495C cells produce predominantly dimers containing mutant proteins, leading to a gradual and specific loss of ICR methylation during early human development.
Collapse
Affiliation(s)
- Sumana Choudhury
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, BITS Pilani Hyderabad Campus, Hyderabad 500078, India; Centre for Human Disease Research, BITS Pilani Hyderabad Campus, Hyderabad 500078, India
| | - Anuhya Anne
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, BITS Pilani Hyderabad Campus, Hyderabad 500078, India; Centre for Human Disease Research, BITS Pilani Hyderabad Campus, Hyderabad 500078, India
| | - Minali Singh
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, BITS Pilani Hyderabad Campus, Hyderabad 500078, India
| | - John Richard Chaillet
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kommu Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, BITS Pilani Hyderabad Campus, Hyderabad 500078, India; Centre for Human Disease Research, BITS Pilani Hyderabad Campus, Hyderabad 500078, India.
| |
Collapse
|
2
|
Expression of DNA Methyltransferase 3B Isoforms Is Associated with DNA Satellite 2 Hypomethylation and Clinical Prognosis in Advanced High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:ijms232112759. [PMID: 36361550 PMCID: PMC9654283 DOI: 10.3390/ijms232112759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Alterations in DNA methylation are critical for the carcinogenesis of ovarian tumors, especially ovarian carcinoma (OC). DNMT3B, a de novo DNA methyltransferase (DNMT), encodes for fifteen spliced protein products or isoforms. DNMT3B isoforms lack exons for the catalytic domain, with functional consequences on catalytic activity. Abnormal expression of DNMT3B isoforms is frequently observed in several types of cancer, such as breast, lung, kidney, gastric, liver, skin, leukemia, and sarcoma. However, the expression patterns and consequences of DNMT3B isoforms in OC are unknown. In this study, we analyzed each DNMT and DNMT3B isoforms expression by qPCR in 63 OC samples and their association with disease-free survival (DFS), overall survival (OS), and tumor progression. We included OC patients with the main histological subtypes of EOC and patients in all the disease stages and found that DNMTs were overexpressed in advanced stages (p-value < 0.05) and high-grade OC (p-value < 0.05). Remarkably, we found DNMT3B1 overexpression in advanced stages (p-value = 0.0251) and high-grade serous ovarian carcinoma (HGSOC) (p-value = 0.0313), and DNMT3B3 was overexpressed in advanced stages (p-value = 0.0098) and high-grade (p-value = 0.0004) serous ovarian carcinoma (SOC). Finally, we observed that overexpression of DNMT3B isoforms was associated with poor prognosis in OC and SOC. DNMT3B3 was also associated with FDS (p-value = 0.017) and OS (p-value = 0.038) in SOC patients. In addition, the ovarian carcinoma cell lines OVCAR3 and SKOV3 also overexpress DNMT3B3. Interestingly, exogenous overexpression of DNMT3B3 in OVCAR3 causes demethylation of satellite 2 sequences in the pericentromeric region. In summary, our results suggest that DNMT3B3 expression is altered in OC.
Collapse
|
3
|
Xiong X, Yang M, Yu H, Hu Y, Yang L, Zhu Y, Fei X, Pan B, Xiong Y, Fu W, Li J. MicroRNA‐342‐3p regulates yak oocyte meiotic maturation by targeting DNA methyltransferase 1. Reprod Domest Anim 2022; 57:761-770. [DOI: 10.1111/rda.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Manzhen Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Hailing Yu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Yulei Hu
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Luyu Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Yanjin Zhu
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Xixi Fei
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Bangting Pan
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Yan Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Wei Fu
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Jian Li
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| |
Collapse
|
4
|
The process of ovarian aging: it is not just about oocytes and granulosa cells. J Assist Reprod Genet 2022; 39:783-792. [PMID: 35352316 PMCID: PMC9051003 DOI: 10.1007/s10815-022-02478-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ovarian age is classically considered the main cause of female reproductive infertility. In women, the process proceeds as an ongoing decline in the primordial follicle stockpile and it is associated with reduced fertility in the mid-thirties, irregular menstruation from the mid-forties, cessation of fertility, and, eventually, menopause in the early fifties. Reproductive aging is historically associated with changes in oocyte quantity and quality. However, besides the oocyte, other cellular as well as environmental factors have been the focus of more recent investigations suggesting that ovarian decay is a complex and multifaceted process. Among these factors, we will consider mitochondria and oxidative stress as related to nutrition, changes in extracellular matrix molecules, and the associated ovarian stromal compartment where immune cells of both the native and adaptive systems seem to play an important role. Understanding such processes is crucial to design treatment strategies to slow down ovarian aging and consequently prolong reproductive lifespan and, more to this, alleviaingt side effects of menopause on the musculoskeletal, cardiovascular, and nervous systems.
Collapse
|
5
|
Dean W. Pathways of DNA Demethylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:211-238. [DOI: 10.1007/978-3-031-11454-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Genetic Studies on Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:111-136. [PMID: 36350508 PMCID: PMC9815518 DOI: 10.1007/978-3-031-11454-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytosine methylation at the C5-position-generating 5-methylcytosine (5mC)-is a DNA modification found in many eukaryotic organisms, including fungi, plants, invertebrates, and vertebrates, albeit its levels vary greatly in different organisms. In mammals, cytosine methylation occurs predominantly in the context of CpG dinucleotides, with the majority (60-80%) of CpG sites in their genomes being methylated. DNA methylation plays crucial roles in the regulation of chromatin structure and gene expression and is essential for mammalian development. Aberrant changes in DNA methylation and genetic alterations in enzymes and regulators involved in DNA methylation are associated with various human diseases, including cancer and developmental disorders. In mammals, DNA methylation is mediated by two families of DNA methyltransferases (Dnmts), namely Dnmt1 and Dnmt3 proteins. Over the last three decades, genetic manipulations of these enzymes, as well as their regulators, in mice have greatly contributed to our understanding of the biological functions of DNA methylation in mammals. In this chapter, we discuss genetic studies on mammalian Dnmts, focusing on their roles in embryogenesis, cellular differentiation, genomic imprinting, and human diseases.
Collapse
|
7
|
Sen M, Mooijman D, Chialastri A, Boisset JC, Popovic M, Heindryckx B, Chuva de Sousa Lopes SM, Dey SS, van Oudenaarden A. Strand-specific single-cell methylomics reveals distinct modes of DNA demethylation dynamics during early mammalian development. Nat Commun 2021; 12:1286. [PMID: 33627650 PMCID: PMC7904860 DOI: 10.1038/s41467-021-21532-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/29/2021] [Indexed: 11/12/2022] Open
Abstract
DNA methylation (5mC) is central to cellular identity. The global erasure of 5mC from the parental genomes during preimplantation mammalian development is critical to reset the methylome of gametes to the cells in the blastocyst. While active and passive modes of demethylation have both been suggested to play a role in this process, the relative contribution of these two mechanisms to 5mC erasure remains unclear. Here, we report a single-cell method (scMspJI-seq) that enables strand-specific quantification of 5mC, allowing us to systematically probe the dynamics of global demethylation. When applied to mouse embryonic stem cells, we identified substantial cell-to-cell strand-specific 5mC heterogeneity, with a small group of cells displaying asymmetric levels of 5mCpG between the two DNA strands of a chromosome suggesting loss of maintenance methylation. Next, in preimplantation mouse embryos, we discovered that methylation maintenance is active till the 16-cell stage followed by passive demethylation in a fraction of cells within the early blastocyst at the 32-cell stage of development. Finally, human preimplantation embryos qualitatively show temporally delayed yet similar demethylation dynamics as mouse embryos. Collectively, these results demonstrate that scMspJI-seq is a sensitive and cost-effective method to map the strand-specific genome-wide patterns of 5mC in single cells.
Collapse
Affiliation(s)
- Maya Sen
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dylan Mooijman
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alex Chialastri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jean-Charles Boisset
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mina Popovic
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Reproductive Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Reproductive Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Susana M Chuva de Sousa Lopes
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Reproductive Medicine, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Siddharth S Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Alexander van Oudenaarden
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Min B, Park JS, Jeong YS, Jeon K, Kang YK. Dnmt1 binds and represses genomic retroelements via DNA methylation in mouse early embryos. Nucleic Acids Res 2020; 48:8431-8444. [PMID: 32667642 PMCID: PMC7470951 DOI: 10.1093/nar/gkaa584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/10/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-wide passive DNA demethylation in cleavage-stage mouse embryos is related to the cytoplasmic localization of the maintenance methyltransferase DNMT1. However, recent studies provided evidences of the nuclear localization of DNMT1 and its contribution to the maintenance of methylation levels of imprinted regions and other genomic loci in early embryos. Using the DNA adenine methylase identification method, we identified Dnmt1-binding regions in four- and eight-cell embryos. The unbiased distribution of Dnmt1 peaks in the genic regions (promoters and CpG islands) as well as the absence of a correlation between the Dnmt1 peaks and the expression levels of the peak-associated genes refutes the active participation of Dnmt1 in the transcriptional regulation of genes in the early developmental period. Instead, Dnmt1 was found to associate with genomic retroelements in a greatly biased fashion, particularly with the LINE1 (long interspersed nuclear elements) and ERVK (endogenous retrovirus type K) sequences. Transcriptomic analysis revealed that the transcripts of the Dnmt1-enriched retroelements were overrepresented in Dnmt1 knockdown embryos. Finally, methyl-CpG-binding domain sequencing proved that the Dnmt1-enriched retroelements, which were densely methylated in wild-type embryos, became demethylated in the Dnmt1-depleted embryos. Our results indicate that Dnmt1 is involved in the repression of retroelements through DNA methylation in early mouse development.
Collapse
Affiliation(s)
- Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Young Sun Jeong
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Kyuheum Jeon
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34113, South Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34113, South Korea
| |
Collapse
|
9
|
Gad A, Nemcova L, Murin M, Kinterova V, Kanka J, Laurincik J, Benc M, Pendovski L, Prochazka R. Global transcriptome analysis of porcine oocytes in correlation with follicle size. Mol Reprod Dev 2019; 87:102-114. [PMID: 31736195 DOI: 10.1002/mrd.23294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/30/2019] [Indexed: 11/09/2022]
Abstract
Although our knowledge regarding oocyte quality and development has improved significantly, the molecular mechanisms that regulate and determine oocyte developmental competence are still unclear. Therefore, the objective of this study was to identify and analyze the transcriptome profiles of porcine oocytes derived from large or small follicles using RNA high-throughput sequencing technology. RNA libraries were constructed from oocytes of large (LO; 3-6 mm) or small (SO; 1.5-1.9 mm) ovarian follicles and then sequenced in an Illumina HiSeq4000. Transcriptome analysis showed a total of 14,557 genes were commonly detected in both oocyte groups. Genes related to the cell cycle, oocyte meiosis, and quality were among the top highly expressed genes in both groups. Differential expression analysis revealed 60 up- and 262 downregulated genes in the LO compared with the SO group. BRCA2, GPLD1, ZP3, ND3, and ND4L were among the highly abundant and highly significant differentially expressed genes (DEGs). The ontological classification of DEGs indicated that protein processing in endoplasmic reticulum was the top enriched pathway. In addition, biological processes related to cell growth and signaling, gene expression regulations, cytoskeleton, and extracellular matrix organization were among the highly enriched processes. In conclusion, this study provides new insights into the global transcriptome changes and the abundance of specific transcripts in porcine oocytes in correlation with follicle size.
Collapse
Affiliation(s)
- Ahmed Gad
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Lucie Nemcova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Matej Murin
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Jozef Laurincik
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Michal Benc
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.,Biology of Reproduction Department, Institute of Animal Science, Prague, Uhrineves, Czech Republic
| | - Lazo Pendovski
- Department of Functional Morphology, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of Macedonia
| | - Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| |
Collapse
|
10
|
Skvortsova K, Tarbashevich K, Stehling M, Lister R, Irimia M, Raz E, Bogdanovic O. Retention of paternal DNA methylome in the developing zebrafish germline. Nat Commun 2019; 10:3054. [PMID: 31296860 PMCID: PMC6624265 DOI: 10.1038/s41467-019-10895-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Two waves of DNA methylation reprogramming occur during mammalian embryogenesis; during preimplantation development and during primordial germ cell (PGC) formation. However, it is currently unclear how evolutionarily conserved these processes are. Here we characterise the DNA methylomes of zebrafish PGCs at four developmental stages and identify retention of paternal epigenetic memory, in stark contrast to the findings in mammals. Gene expression profiling of zebrafish PGCs at the same developmental stages revealed that the embryonic germline is defined by a small number of markers that display strong developmental stage-specificity and that are independent of DNA methylation-mediated regulation. We identified promoters that are specifically targeted by DNA methylation in somatic and germline tissues during vertebrate embryogenesis and that are frequently misregulated in human cancers. Together, these detailed methylome and transcriptome maps of the zebrafish germline provide insight into vertebrate DNA methylation reprogramming and enhance our understanding of the relationships between germline fate acquisition and oncogenesis.
Collapse
Affiliation(s)
- Ksenia Skvortsova
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, 48149, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max-Planck-Institute for Molecular Biomedicine, Roentgenstraße 20, 48149, Münster, Germany
| | - Ryan Lister
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Molecular Medicine Division, Harry Perkins Institute of Medical Research, Perth, WA, 6009, Australia
| | - Manuel Irimia
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08002, Spain
- ICREA, Barcelona, 08010, Spain
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, 48149, Germany
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2010, Australia.
| |
Collapse
|
11
|
Gheldof A, Mackay DJG, Cheong Y, Verpoest W. Genetic diagnosis of subfertility: the impact of meiosis and maternal effects. J Med Genet 2019; 56:271-282. [PMID: 30728173 PMCID: PMC6581078 DOI: 10.1136/jmedgenet-2018-105513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
Abstract
During reproductive age, approximately one in seven couples are confronted with fertility problems. While the aetiology is diverse, including infections, metabolic diseases, hormonal imbalances and iatrogenic effects, it is becoming increasingly clear that genetic factors have a significant contribution. Due to the complex nature of infertility that often hints at a multifactorial cause, the search for potentially causal gene mutations in idiopathic infertile couples has remained difficult. Idiopathic infertility patients with a suspicion of an underlying genetic cause can be expected to have mutations in genes that do not readily affect general health but are only essential in certain processes connected to fertility. In this review, we specifically focus on genes involved in meiosis and maternal-effect processes, which are of critical importance for reproduction and initial embryonic development. We give an overview of genes that have already been linked to infertility in human, as well as good candidates which have been described in other organisms. Finally, we propose a phenotypic range in which we expect an optimal diagnostic yield of a meiotic/maternal-effect gene panel.
Collapse
Affiliation(s)
- Alexander Gheldof
- Center for Medical Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Reproduction and Genetics Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Deborah J G Mackay
- Faculty of Medicine, University of Southampton, Southampton University Hospital, Southampton, UK
| | - Ying Cheong
- Complete Fertility, Human Development of Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Willem Verpoest
- Reproduction and Genetics Department, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Reproductive Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Pennings S, Revuelta A, McLaughlin KA, Abd Hadi NA, Petchreing P, Ottaviano R, Meehan RR. Dynamics and Mechanisms of DNA Methylation Reprogramming. EPIGENETICS AND REGENERATION 2019:19-45. [DOI: 10.1016/b978-0-12-814879-2.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Marshall KL, Wang J, Ji T, Rivera RM. The effects of biological aging on global DNA methylation, histone modification, and epigenetic modifiers in the mouse germinal vesicle stage oocyte. Anim Reprod 2018; 15:1253-1267. [PMID: 34221140 PMCID: PMC8203117 DOI: 10.21451/1984-3143-ar2018-0087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A cultural trend in developed countries is favoring a delay in maternal age at first childbirth.
In mammals fertility and chronological age show an inverse correlation. Oocyte quality is
a contributing factor to this multifactorial phenomenon that may be influenced by age-related
changes in the oocyte epigenome. Based on previous reports, we hypothesized that advanced
maternal age would lead to alterations in the oocyte’s epigenome. We tested our hypothesis
by determining protein levels of various epigenetic modifications and modifiers in fully-grown
(≥70 µm), germinal vesicle (GV) stage oocytes of young (10-13 weeks) and aged
(69-70 weeks) mice. Our results demonstrate a significant increase in protein amounts of
the maintenance DNA methyltransferase DNMT1 (P = 0.003) and a trend toward increased global
DNA methylation (P = 0.09) with advanced age. MeCP2, a methyl DNA binding domain protein, recognizes
methylated DNA and induces chromatin compaction and silencing. We hypothesized that chromatin
associated MeCP2 would be increased similarly to DNA methylation in oocytes of aged female
mice. However, we detected a significant decrease (P = 0.0013) in protein abundance of MeCP2
between GV stage oocytes from young and aged females. Histone posttranslational modifications
can also alter chromatin conformation. Di-methylation of H3K9 (H3K9me2) is associated with
permissive heterochromatin while acetylation of H4K5 (H4K5ac) is associated with euchromatin.
Our results indicate a trend toward decreasing H3K9me2 (P = 0.077) with advanced female age
and no significant differences in levels of H4K5ac. These data demonstrate that physiologic
aging affects the mouse oocyte epigenome and provide a better understanding of the mechanisms
underlying the decrease in oocyte quality and reproductive potential of aged females.
Collapse
Affiliation(s)
- Kira Lynn Marshall
- Division of Animal Sciences.,Reproductive Sciences, San Diego Zoo Global Institute for Conservation Research, San Pasqual Valley Rd
| | | | | | | |
Collapse
|
14
|
The Vast Complexity of the Epigenetic Landscape during Neurodevelopment: An Open Frame to Understanding Brain Function. Int J Mol Sci 2018; 19:ijms19051333. [PMID: 29723958 PMCID: PMC5983638 DOI: 10.3390/ijms19051333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/16/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
Development is a well-defined stage-to-stage process that allows the coordination and maintenance of the structure and function of cells and their progenitors, in a complete organism embedded in an environment that, in turn, will shape cellular responses to external stimuli. Epigenetic mechanisms comprise a group of process that regulate genetic expression without changing the DNA sequence, and they contribute to the necessary plasticity of individuals to face a constantly changing medium. These mechanisms act in conjunction with genetic pools and their correct interactions will be crucial to zygote formation, embryo development, and brain tissue organization. In this work, we will summarize the main findings related to DNA methylation and histone modifications in embryonic stem cells and throughout early development phases. Furthermore, we will critically outline some key observations on how epigenetic mechanisms influence the rest of the developmental process and how long its footprint is extended from fecundation to adulthood.
Collapse
|
15
|
Zhu Q, Stöger R, Alberio R. A Lexicon of DNA Modifications: Their Roles in Embryo Development and the Germline. Front Cell Dev Biol 2018; 6:24. [PMID: 29637072 PMCID: PMC5880922 DOI: 10.3389/fcell.2018.00024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
5-methylcytosine (5mC) on CpG dinucleotides has been viewed as the major epigenetic modification in eukaryotes for a long time. Apart from 5mC, additional DNA modifications have been discovered in eukaryotic genomes. Many of these modifications are thought to be solely associated with DNA damage. However, growing evidence indicates that some base modifications, namely 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-carboxylcytosine (5caC), and N6-methadenine (6mA), may be of biological relevance, particularly during early stages of embryo development. Although abundance of these DNA modifications in eukaryotic genomes can be low, there are suggestions that they cooperate with other epigenetic markers to affect DNA-protein interactions, gene expression, defense of genome stability and epigenetic inheritance. Little is still known about their distribution in different tissues and their functions during key stages of the animal lifecycle. This review discusses current knowledge and future perspectives of these novel DNA modifications in the mammalian genome with a focus on their dynamic distribution during early embryonic development and their potential function in epigenetic inheritance through the germ line.
Collapse
Affiliation(s)
- Qifan Zhu
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
16
|
Marshall KL, Rivera RM. The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo. Mol Reprod Dev 2018; 85:90-105. [PMID: 29280527 DOI: 10.1002/mrd.22951] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022]
Abstract
A societal preference of delaying maternal age at first childbirth has increased reliance on assisted reproductive technologies/therapies (ART) to conceive a child. Oocytes that have undergone physiologic aging (≥35 years for humans) are now commonly used for ART, yet evidence is building that suboptimal reproductive environments associated with aging negatively affect oocyte competence and embryo development-although the mechanisms underlying these relationship are not yet well understood. Epigenetic programming of the oocyte occurs during its growth within a follicle, so the ovarian stimulation protocols that administer exogenous hormones, as part of the first step for all ART procedures, may prevent the gamete from establishing an appropriate epigenetic state. Therefore, understanding how oocyte. Therefore, understanding how hormone stimulation and oocyte physiologic age independently and synergistically physiologic age independently and synergistically affect the epigenetic programming of these gametes, and how this may affect their developmental competence, are crucial to improved ART outcomes. Here, we review studies that measured the developmental outcomes affected by superovulation and aging, focusing on how the epigenome (i.e., global and imprinted DNA methylation, histone modifications, and epigenetic modifiers) of gametes and embryos acquired from females undergoing physiologic aging and exogenous ovarian stimulation is affected.
Collapse
Affiliation(s)
- Kira L Marshall
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | |
Collapse
|
17
|
Whidden L, Martel J, Rahimi S, Chaillet JR, Chan D, Trasler JM. Compromised oocyte quality and assisted reproduction contribute to sex-specific effects on offspring outcomes and epigenetic patterning. Hum Mol Genet 2018; 25:4649-4660. [PMID: 28173052 DOI: 10.1093/hmg/ddw293] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/04/2016] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
Clinical studies have revealed an increased incidence of growth and genomic imprinting disorders in children conceived using assisted reproductive technologies (ARTs), and aberrant DNA methylation has been implicated. We propose that compromised oocyte quality associated with female infertility may make embryos more susceptible to the induction of epigenetic defects by ART. DNA methylation patterns in the preimplantation embryo are dependent on the oocyte-specific DNA methyltransferase 1o (DNMT1o), levels of which are decreased in mature oocytes of aging females. Here, we assessed the effects of maternal deficiency in DNMT1o (Dnmt1Δ1o/+) in combination with superovulation and embryo transfer on offspring DNA methylation and development. We demonstrated a significant increase in the rates of morphological abnormalities in offspring collected from Dnmt1Δ1o/+ females only when combined with ART. Together, maternal oocyte DNMT1o deficiency and ART resulted in an accentuation of placental imprinting defects and the induction of genome-wide DNA methylation alterations, which were exacerbated in the placenta compared to the embryo. Significant sex-specific trends were also apparent, with a preponderance of DNA hypomethylation in females. Among genic regions affected, a significant enrichment for neurodevelopmental pathways was observed. Taken together, our results demonstrate that oocyte DNMT1o-deficiency exacerbates genome-wide DNA methylation abnormalities induced by ART in a sex-specific manner and plays a role in mediating poor embryonic outcome.
Collapse
Affiliation(s)
- Laura Whidden
- Montreal Children's Hospital and Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Josée Martel
- Montreal Children's Hospital and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Sophia Rahimi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - J Richard Chaillet
- Department of OB/GYN and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donovan Chan
- Montreal Children's Hospital and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jacquetta M Trasler
- Montreal Children's Hospital and Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada,Department of Human Genetics, McGill University, Montreal, QC, Canada,Department of Pediatrics, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Cimadomo D, Fabozzi G, Vaiarelli A, Ubaldi N, Ubaldi FM, Rienzi L. Impact of Maternal Age on Oocyte and Embryo Competence. Front Endocrinol (Lausanne) 2018; 9:327. [PMID: 30008696 PMCID: PMC6033961 DOI: 10.3389/fendo.2018.00327] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/31/2018] [Indexed: 12/29/2022] Open
Abstract
The overall success of human reproduction, either spontaneously or after IVF, is highly dependent upon maternal age. The main reasons for age-related infertility include reduced ovarian reserve and decreased oocyte/embryo competence due to aging insults, especially concerning an increased incidence of aneuploidies and possibly decreased mitochondrial activity. Age-related chromosomal abnormalities mainly arise because of meiotic impairments during oogenesis, following flawed chromosome segregation patterns such as non-disjunction, premature separation of sister chromatids, or the recent reverse segregation. In this review, we briefly discuss the main mechanisms putatively impaired by aging in the oocytes and the deriving embryos. We also report the main strategies proposed to improve the management of advanced maternal age women in IVF: fertility preservation through oocyte cryopreservation to prevent aging; optimization of the ovarian stimulation and enhancement of embryo selection to limit its effects; and oocyte donation to circumvent its consequences.
Collapse
Affiliation(s)
- Danilo Cimadomo
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, Rome, Italy
- *Correspondence: Danilo Cimadomo,
| | - Gemma Fabozzi
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, Rome, Italy
| | - Alberto Vaiarelli
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, Rome, Italy
| | - Nicolò Ubaldi
- Catholic University of the Sacred Heart, Rome, Italy
| | - Filippo Maria Ubaldi
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, Rome, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, Rome, Italy
| |
Collapse
|
19
|
Uysal F, Ozturk S, Akkoyunlu G. DNMT1, DNMT3A and DNMT3B proteins are differently expressed in mouse oocytes and early embryos. J Mol Histol 2017; 48:417-426. [PMID: 29027601 DOI: 10.1007/s10735-017-9739-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
DNA methylation is one of the epigenetic mechanisms and plays important roles during oogenesis and early embryo development in mammals. DNA methylation is basically known as adding a methyl group to the fifth carbon atom of cytosine residues within cytosine-phosphate-guanine (CpG) and non-CpG dinucleotide sites. This mechanism is composed of two main processes: de novo methylation and maintenance methylation, both of which are catalyzed by specific DNA methyltransferase (DNMT) enzymes. To date, six different DNMTs have been characterized in mammals defined as DNMT1, DNMT2, DNMT3A, DNMT3B, DNMT3C, and DNMT3L. While DNMT1 primarily functions in maintenance methylation, both DNMT3A and DNMT3B are essentially responsible for de novo methylation. As is known, either maintenance or de novo methylation processes appears during oocyte and early embryo development terms. The aim of the present study is to investigate spatial and temporal expression levels and subcellular localizations of the DNMT1, DNMT3A, and DNMT3B proteins in the mouse germinal vesicle (GV) and metaphase II (MII) oocytes, and early embryos from 1-cell to blastocyst stages. We found that there are remarkable differences in the expressional levels and subcellular localizations of the DNMT1, DNMT3A and DNMT3B proteins in the GV and MII oocytes, and 1-cell, 2-cell, 4-cell, 8-cell, morula, and blastocyst stage embryos. The fluctuations in the expression of DNMT proteins in the analyzed oocytes and early embryos are largely compatible with DNA methylation changes and genomic imprintestablishment appearing during oogenesis and early embryo development. To understand precisemolecular biological meaning of differently expressing DNMTs in the early developmental periods, further studies are required.
Collapse
Affiliation(s)
- Fatma Uysal
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gokhan Akkoyunlu
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
20
|
Seah MKY, Messerschmidt DM. From Germline to Soma: Epigenetic Dynamics in the Mouse Preimplantation Embryo. Curr Top Dev Biol 2017; 128:203-235. [PMID: 29477164 DOI: 10.1016/bs.ctdb.2017.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When reflecting about cell fate commitment we think of differentiation. Be it during embryonic development or in an adult stem cell niche, where cells of a higher potency specialize and cell fate decisions are taken. Under normal circumstances this process is definitive and irreversible. Cell fate commitment is achieved by the establishment of cell-type-specific transcriptional programmes, which in turn are guided, reinforced, and ultimately locked-in by epigenetic mechanisms. Yet, this plunging drift in cellular potency linked to epigenetically restricted access to genomic information is problematic for reproduction. Particularly in mammals where germ cells are not set aside early on like in other species. Instead they are rederived from the embryonic ectoderm, a differentiating embryonic tissue with somatic epigenetic features. The epigenomes of germ cell precursors are efficiently reprogrammed against the differentiation trend, only to specialize once more into highly differentiated, sex-specific gametes: oocyte and sperm. Their differentiation state is reflected in their specialized epigenomes, and erasure of these features is required to enable the acquisition of the totipotent cell fate to kick start embryonic development of the next generation. Recent technological advances have enabled unprecedented insights into the epigenetic dynamics, first of DNA methylation and then of histone modifications, greatly expanding the historically technically limited understanding of this processes. In this chapter we will focus on the details of embryonic epigenetic reprogramming, a cell fate determination process against the tide to a higher potency.
Collapse
Affiliation(s)
- Michelle K Y Seah
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daniel M Messerschmidt
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
21
|
Abstract
The regulation of the genome relies on the epigenome to instruct, define and restrict the activities of growth and development. Among the cohort of epigenetic instructions, DNA methylation is perhaps the best understood. In most mammals, cycles of the addition and removal of DNA methylation constitute phases of reprogramming when the developing embryo must negotiate lineage defining and developmental commitment events. In these instances, the DNA methylation instruction is often removed, thereby allowing a change in permission for future development and a return to a more plastic and pluripotent state. Because of this, the germ line, upon demethylation, can give rise to gametes that are fully functional across generations and poised for totipotency. This return to a less differentiated state can also be achieved experimentally. The loss of DNA methylation constitutes one of the significant barriers to induced pluripotency and is a prerequisite for the generation of iPS cells. Taking fully differentiated cells, such as skin cells, and turning back the developmental clock heralded a technological breakthrough discovery in 2006 (Takahashi and Yamanaka 2006) with unprecedented promise in regenerative medicine. In this chapter, the mechanistic possibilities for DNA demethylation will be described in the context of natural and experimentally induced epigenetic reprogramming. The balance of the maintenance of this heritable mark together with its timely removal is essential for lifelong health and may be a key in our understanding of ageing.
Collapse
Affiliation(s)
- Wendy Dean
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
| |
Collapse
|
22
|
He B, Yin C, Gong Y, Liu J, Guo H, Zhao R. Melatonin‐induced increase of lipid droplets accumulation and in vitro maturation in porcine oocytes is mediated by mitochondrial quiescence. J Cell Physiol 2017; 233:302-312. [DOI: 10.1002/jcp.25876] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Bin He
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjing Agricultural UniversityNanjingP. R. China
| | - Chao Yin
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjing Agricultural UniversityNanjingP. R. China
| | - Yabin Gong
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjing Agricultural UniversityNanjingP. R. China
| | - Jie Liu
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjing Agricultural UniversityNanjingP. R. China
| | - Huiduo Guo
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjing Agricultural UniversityNanjingP. R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and BiochemistryMinistry of AgricultureNanjing Agricultural UniversityNanjingP. R. China
- Jiangsu Collaborative Innovation Center of Meat Production and ProcessingQuality and Safety ControlNanjingP. R. China
| |
Collapse
|
23
|
Wang Y, Zhang G, Kang L, Guan H. Expression Profiling of DNA Methylation and Transcriptional Repression Associated Genes in Lens Epithelium Cells of Age-Related Cataract. Cell Mol Neurobiol 2017; 37:537-543. [PMID: 27306760 PMCID: PMC11482105 DOI: 10.1007/s10571-016-0393-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
In our previous research, the formation and development of age-related cataract (ARC) is associated with DNA hypermethylation of some genes in lens epithelial cells (LECs). This study aimed to investigate the expression profile of DNA methylation- and transcriptional repression-associated genes in LECs of ARC. The expression levels of the genes were first evaluated by microarray analysis. The results were further confirmed by Quantitative Real-Time PCR (qRT-PCR) and Western blot assay. The mRNA and protein levels of 5 genes increased in LECs of ARCs compared with the controls. These data provided a global perspective on expression of DNA methylation- and transcriptional repression-associated genes. The study supports the notion that the epigenetic modification of macromolecules in LECs might contribute to ARC pathogenesis.
Collapse
Affiliation(s)
- Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Jiangsu, Nantong, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Jiangsu, Nantong, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Jiangsu, Nantong, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Jiangsu, Nantong, China.
| |
Collapse
|
24
|
Masala L, Burrai GP, Bellu E, Ariu F, Bogliolo L, Ledda S, Bebbere D. Methylation dynamics during folliculogenesis and early embryo development in sheep. Reproduction 2017; 153:605-619. [PMID: 28250235 DOI: 10.1530/rep-16-0644] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 12/27/2022]
Abstract
Genome-wide DNA methylation reprogramming occurs during mammalian gametogenesis and early embryogenesis. Post-fertilization demethylation of paternal and maternal genomes is considered to occur by an active and passive mechanism respectively, in most mammals but sheep; in this species no loss of methylation was observed in either pronucleus. Post-fertilization reprogramming relies on methylating and demethylating enzymes and co-factors that are stored during oocyte growth, concurrently with the re-methylation of the oocyte itself. The crucial remodelling of the oocyte epigenetic baggage often overlaps with potential interfering events such as exposure to assisted reproduction technologies or environmental changes. Here, we report a temporal analysis of methylation dynamics during folliculogenesis and early embryo development in sheep. We characterized global DNA methylation and hydroxymethylation by immunofluorescence and relatively quantified the expression of the enzymes and co-factors mainly responsible for their remodelling (DNA methyltransferases (DNMTs), ten-eleven translocation (TET) proteins and methyl-CpG-binding domain (MBD) proteins). Our results illustrate for the first time the patterns of hydroxymethylation during oocyte growth. We observed different patterns of methylation and hydroxymethylation between the two parental pronuclei, suggesting that male pronucleus undergoes active demethylation also in sheep. Finally, we describe gene-specific accumulation dynamics for methylating and demethylating enzymes during oocyte growth and observe patterns of expression associated with developmental competence in a differential model of oocyte potential. Our work contributes to the understanding of the methylation dynamics during folliculogenesis and early embryo development and improves the overall picture of early rearrangements that will originate the embryo epigenome.
Collapse
Affiliation(s)
- Laura Masala
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | | | - Emanuela Bellu
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | - Federica Ariu
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | - Luisa Bogliolo
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | - Sergio Ledda
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | - Daniela Bebbere
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| |
Collapse
|
25
|
Abstract
Epigenetic mechanisms play important roles in properly occurring mammalian oogenesis. One of these mechanisms is DNA methylation adding a methyl group to the fifth carbon atom of the cytosine residues using S-adenosyl-L-methionine as a methyl donor. DNA methylation generally takes place at cytosine-phosphate-guanine (CpG) dinucleotide sites and rarely occurs at cytosine-phosphate-thymine (CpT), cytosine-phosphate-adenine (CpA), or cytosine-phosphate-cytosine sites, known as non-CpG sites. Basically, two different DNA methylation processes are identified: de novo methylation and maintenance methylation. While the de novo methylation functions in methylation of unmethylated DNA strands, maintenance methylation is capable of methylating hemi-methylated DNA strands following DNA replication. Both DNA methylation processes are catalyzed by special DNA methyltransferase (DNMT) enzymes. To date, five different DNMTs have been identified: DNMT1, DNMT3A, DNMT3B, DNMT3L, and DNMT2. In this chapter, we focus particularly on temporal and spatial expression of DNMTs in mammalian oocytes and granulosa cells.
Collapse
Affiliation(s)
- Fatma Uysal
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
26
|
Ling KY, Cheow LF, Quake SR, Burkholder WF, Messerschmidt DM. Single Cell Restriction Enzyme-Based Analysis of Methylation at Genomic Imprinted Regions in Preimplantation Mouse Embryos. Methods Mol Biol 2017; 1605:171-189. [PMID: 28456965 DOI: 10.1007/978-1-4939-6988-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The methylation of cytosines in DNA is a fundamental epigenetic regulatory mechanism. During preimplantation development, mammalian embryos undergo extensive epigenetic reprogramming, including the global erasure of germ cell-specific DNA methylation marks, to allow for the establishment of the pluripotent state of the epiblast. However, DNA methylation marks at specific regions, such as imprinted gene regions, escape this reprogramming process, as their inheritance from germline to soma is paramount for proper development. To study the dynamics of DNA methylation marks in single blastomeres of mouse preimplantation embryos, we devised a new approach-single cell restriction enzyme analysis of methylation (SCRAM). SCRAM allows for reliable, fast, and high-throughput analysis of DNA methylation states of multiple regions of interest from single cells. In the method described below, SCRAM is specifically used to address loss of DNA methylation at genomic imprints or other highly methylated regions of interest.
Collapse
Affiliation(s)
- Ka Yi Ling
- Developmental Epigenetics and Disease Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lih Feng Cheow
- Microfluidics Systems Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Stephen R Quake
- Department of Bioengineering and Applied Physics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - William F Burkholder
- Microfluidics Systems Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daniel M Messerschmidt
- Developmental Epigenetics and Disease Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
27
|
Rajabi H, Tagde A, Alam M, Bouillez A, Pitroda S, Suzuki Y, Kufe D. DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells. Oncogene 2016; 35:6439-6445. [PMID: 27212035 PMCID: PMC5121097 DOI: 10.1038/onc.2016.180] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/25/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022]
Abstract
Aberrant expression of the DNA methyltransferases (DNMTs) and disruption of DNA methylation patterns are associated with carcinogenesis and cancer cell survival. The oncogenic MUC1-C protein is aberrantly overexpressed in diverse carcinomas; however, there is no known link between MUC1-C and DNA methylation. Our results demonstrate that MUC1-C induces the expression of DNMT1 and DNMT3b, but not DNMT3a, in breast and other carcinoma cell types. We show that MUC1-C occupies the DNMT1 and DNMT3b promoters in complexes with NF-κB p65 and drives DNMT1 and DNMT3b transcription. In this way, MUC1-C controls global DNA methylation as determined by analysis of LINE-1 repeat elements. The results further demonstrate that targeting MUC1-C downregulates DNA methylation of the CDH1 tumor suppressor gene in association with induction of E-cadherin expression. These findings provide compelling evidence that MUC1-C is of functional importance to induction of DNMT1 and DNMT3b and, in turn, changes in DNA methylation patterns in cancer cells.
Collapse
Affiliation(s)
- H Rajabi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - A Tagde
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Alam
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - A Bouillez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Y Suzuki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Kufe
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Wu FR, Li DK, Su MM, Liu Y, Ding B, Wang R, Li WY. Oral administration of Schisandra chinensis extract suppresses Dnmt1 expression in Kunming mice ovaries. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals. J Biosci 2016; 41:759-786. [DOI: 10.1007/s12038-016-9650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Li Y, Seah MKY, O'Neill C. Mapping global changes in nuclear cytosine base modifications in the early mouse embryo. Reproduction 2016; 151:83-95. [PMID: 26660107 PMCID: PMC4676261 DOI: 10.1530/rep-15-0207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Reprogramming epigenetic modifications to cytosine is required for normal embryo development. We used improved immunolocalization techniques to simultaneously map global changes in the levels of 5'-methylcytosine (5meC) and 5'-hydroxymethylcytosine (5hmC) in each cell of the embryo from fertilization through the first rounds of cellular differentiation. The male and female pronuclei of the zygote showed similar staining levels, and these remained elevated over the next three cell cycles. The inner cells of the morula showed a progressive reduction in global levels of both 5meC and 5hmC and further losses occurred in the pluripotent inner cell mass (ICM) of the blastocyst. This was accompanied by undetectable levels of DNA methyltransferase of each class in the nuclei of the ICM, while DNA methyltransferase 3B was elevated in the hypermethylated nuclei of the trophectoderm (TE). Segregation of the ICM into hypoblast and epiblast was accompanied by increased levels in the hypoblast compared with the epiblast. Blastocyst outgrowth in vitro is a model for implantation and showed that a demethylated state persisted in the epiblast while the hypoblast had higher levels of both 5meC and 5hmC staining. The high levels of 5meC and 5hmC evident in the TE persisted in trophoblast and trophoblast giant cells after attachment of the blastocyst to the substratum in vitro. This study shows that global cytosine hypomethylation and hypohydroxymethylation accompanied the formation of the pluripotent ICM and this persisted into the epiblast after blastocyst outgrowth, and each differentiated lineage formed in the early embryo showed higher global levels of 5meC and 5hmC.
Collapse
Affiliation(s)
- Y Li
- Centre for Developmental and Regenerative MedicineKolling Institute for Medical Research, Sydney Medical School, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Michelle K Y Seah
- Centre for Developmental and Regenerative MedicineKolling Institute for Medical Research, Sydney Medical School, University of Sydney, Sydney, New South Wales 2065, Australia
| | - C O'Neill
- Centre for Developmental and Regenerative MedicineKolling Institute for Medical Research, Sydney Medical School, University of Sydney, Sydney, New South Wales 2065, Australia
| |
Collapse
|
31
|
Zhou Y, Hu Z. Epigenetic DNA Demethylation Causes Inner Ear Stem Cell Differentiation into Hair Cell-Like Cells. Front Cell Neurosci 2016; 10:185. [PMID: 27536218 PMCID: PMC4971107 DOI: 10.3389/fncel.2016.00185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022] Open
Abstract
The DNA methyltransferase (DNMT) inhibitor 5-azacytidine (5-aza) causes genomic demethylation to regulate gene expression. However, it remains unclear whether 5-aza affects gene expression and cell fate determination of stem cells. In this study, 5-aza was applied to mouse utricle sensory epithelia-derived progenitor cells (MUCs) to investigate whether 5-aza stimulated MUCs to become sensory hair cells. After treatment, MUCs increased expression of hair cell genes and proteins. The DNA methylation level (indicated by percentage of 5-methylcytosine) showed a 28.57% decrease after treatment, which causes significantly repressed DNMT1 protein expression and DNMT activity. Additionally, FM1-43 permeation assays indicated that the permeability of 5-aza-treated MUCs was similar to that of sensory hair cells, which may result from mechanotransduction channels. This study not only demonstrates a possible epigenetic approach to induce tissue specific stem/progenitor cells to become sensory hair cell-like cells, but also provides a cell model to epigenetically modulate stem cell fate determination.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine Detroit, MI, USA
| | - Zhengqing Hu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
32
|
Li S, Zhu Y, Zhi L, Han X, Shen J, Liu Y, Yao J, Yang X. DNA Methylation Variation Trends during the Embryonic Development of Chicken. PLoS One 2016; 11:e0159230. [PMID: 27438711 PMCID: PMC4954715 DOI: 10.1371/journal.pone.0159230] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/29/2016] [Indexed: 11/18/2022] Open
Abstract
The embryogenesis period is critical for epigenetic reprogramming and is thus of great significance in the research field of poultry epigenetics for elucidation of the trends in DNA methylation variations during the embryonic development of birds, particularly due to differences in embryogenesis between birds and mammals. Here, we first examined the variations in genomic DNA methylation during chicken embryogenesis through high-performance liquid chromatography using broilers as the model organism. We then identified the degree of DNA methylation of the promoters and gene bodies involved in two specific genes (IGF2 and TNF-α) using the bisulfite sequencing polymerase chain reaction method. In addition, we measured the expression levels of IGF2, TNF-α and DNA methyltransferase (DNMT) 1, 3a and 3b. Our results showed that the genomic DNA methylation levels in the liver, heart and muscle increased during embryonic development and that the methylation level of the liver was significantly higher in mid-anaphase. In both the muscle and liver, the promoter methylation levels of TNF-α first increased and then decreased, whereas the gene body methylation levels remained lower at embryonic ages E8, 11 and 14 before increasing notably at E17. The promoter methylation level of IGF2 decreased persistently, whereas the methylation levels in the gene body showed a continuous increase. No differences in the expression of TNF-α were found among E8, 11 and 14, whereas a significant increase was observed at E17. IGF2 showed increasing expression level during the examined embryonic stages. In addition, the mRNA and protein levels of DNMTs increased with increasing embryonic ages. These results suggest that chicken shows increasing genomic DNA methylation patterns during the embryonic period. Furthermore, the genomic DNA methylation levels in tissues are closely related to the genes expression levels, and gene expression may be simultaneously regulated by promoter hypomethylation and gene body hypermethylation.
Collapse
Affiliation(s)
- Shizhao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yufei Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lihui Zhi
- School of Mathematics and Computer Science, ShanXi Normal University, Linfen, Shanxi, People's Republic of China
| | - Xiaoying Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jing Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- * E-mail:
| |
Collapse
|
33
|
Ho SM, Cheong A, Adgent MA, Veevers J, Suen AA, Tam NNC, Leung YK, Jefferson WN, Williams CJ. Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol 2016; 68:85-104. [PMID: 27421580 DOI: 10.1016/j.reprotox.2016.07.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/21/2016] [Accepted: 07/09/2016] [Indexed: 12/31/2022]
Abstract
Sex-specific differentiation, development, and function of the reproductive system are largely dependent on steroid hormones. For this reason, developmental exposure to estrogenic and anti-androgenic endocrine disrupting chemicals (EDCs) is associated with reproductive dysfunction in adulthood. Human data in support of "Developmental Origins of Health and Disease" (DOHaD) comes from multigenerational studies on offspring of diethylstilbestrol-exposed mothers/grandmothers. Animal data indicate that ovarian reserve, female cycling, adult uterine abnormalities, sperm quality, prostate disease, and mating behavior are susceptible to DOHaD effects induced by EDCs such as bisphenol A, genistein, diethylstilbestrol, p,p'-dichlorodiphenyl-dichloroethylene, phthalates, and polyaromatic hydrocarbons. Mechanisms underlying these EDC effects include direct mimicry of sex steroids or morphogens and interference with epigenomic sculpting during cell and tissue differentiation. Exposure to EDCs is associated with abnormal DNA methylation and other epigenetic modifications, as well as altered expression of genes important for development and function of reproductive tissues. Here we review the literature exploring the connections between developmental exposure to EDCs and adult reproductive dysfunction, and the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States; Cincinnati Veteran Affairs Hospital Medical Center, Cincinnati, OH, United States.
| | - Ana Cheong
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Margaret A Adgent
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer Veevers
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Alisa A Suen
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States; Curriculum in Toxicology, UNC Chapel Hill, Chapel Hill, NC, United States
| | - Neville N C Tam
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Yuet-Kin Leung
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Wendy N Jefferson
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Carmen J Williams
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States.
| |
Collapse
|
34
|
Lim CY, Knowles BB, Solter D, Messerschmidt DM. Epigenetic Control of Early Mouse Development. Curr Top Dev Biol 2016; 120:311-60. [PMID: 27475856 DOI: 10.1016/bs.ctdb.2016.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the genes sequentially transcribed in the mammalian embryo prior to implantation have been identified, understanding of the molecular processes ensuring this transcription is still in development. The genomes of the sperm and egg are hypermethylated, hence transcriptionally silent. Their union, in the prepared environment of the egg, initiates their epigenetic genomic reprogramming into a totipotent zygote, in which the genome gradually becomes transcriptionally activated. During gametogenesis, sex-specific processes result in sperm and eggs with disparate epigenomes, both of which require drastic reprogramming to establish the totipotent genome of the zygote and the pluripotent inner cell mass of the blastocyst. Herein, we describe the factors, DNA and histone modifications, activation and repression of retrotransposons, and cytoplasmic localizations, known to influence the activation of the mammalian genome at the initiation of new life.
Collapse
Affiliation(s)
- C Y Lim
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - B B Knowles
- Emerita, The Jackson Laboratory, Bar Harbor, ME, United States; Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand
| | - D Solter
- Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand; Emeritus, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - D M Messerschmidt
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
35
|
Virant-Klun I, Leicht S, Hughes C, Krijgsveld J. Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes. Mol Cell Proteomics 2016; 15:2616-27. [PMID: 27215607 DOI: 10.1074/mcp.m115.056887] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/25/2022] Open
Abstract
Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)(1) not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142.
Collapse
Affiliation(s)
- Irma Virant-Klun
- From the ‡Reproductive Unit, Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000 Ljubljana, Slovenia
| | - Stefan Leicht
- §European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christopher Hughes
- ¶British Columbia Cancer Research Agency, 675 West 10th Avenue, Vancouver, Canada
| | - Jeroen Krijgsveld
- §European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; ‖German Cancer Research Center and Heidelberg University, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| |
Collapse
|
36
|
Leseva M, Knowles BB, Messerschmidt DM, Solter D. Erase-Maintain-Establish: Natural Reprogramming of the Mammalian Epigenome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:155-163. [PMID: 26763985 DOI: 10.1101/sqb.2015.80.027441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The genetic information is largely identical across most cell types in a given organism but the epigenome, which controls expression of the genome, is cell type- and context-dependent. Although most mature mammalian cells appear to have a stable, heritable epigenome, a dynamic intricate process reshapes it as these cells transition from soma to germline and back again. During normal embryogenesis, primordial germ cells, of somatic origin, are set aside to become gametes. In doing so their genome is reprogrammed-that is, the epigenome of specific regions is replaced in a sex-specific fashion as they terminally differentiate into oocytes or spermatocytes in the gonads. Upon union of these gametes, reprogramming of the new organism's epigenome is initiated, which eventually leads, through pluripotent cells, to the cell lineages required for proper embryonic development to a sexually mature adult. This never-ending cycle of birth and rebirth is accomplished through methylation and demethylation of specific genomic sites within the gametes and pluripotent cells of an organism. This enigmatic process of natural epigenomic reprogramming is now being dissected in vivo, focusing on specific genomic regions-that is, imprinted genes and retrotransposons, where TRIM28 molecular complexes appear to guide the transition from gamete to embryo.
Collapse
Affiliation(s)
- Milena Leseva
- Department for Developmental Epigenetics and Disease, Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore
| | | | - Daniel M Messerschmidt
- Department for Developmental Epigenetics and Disease, Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore
| | - Davor Solter
- Emeritus Member and Director, Max-Planck Institute of Immunobiology and Epigenetics, 79180 Freiburg, Germany
| |
Collapse
|
37
|
Dan J, Chen T. Genetic Studies on Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:123-150. [PMID: 27826837 DOI: 10.1007/978-3-319-43624-1_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytosine methylation at the C5-position, generating 5-methylcytosine (5mC), is a DNA modification found in many eukaryotic organisms, including fungi, plants, invertebrates, and vertebrates, albeit its levels vary greatly in different organisms. In mammals, cytosine methylation occurs predominantly in the context of CpG dinucleotides, with the majority (60-80 %) of CpG sites in their genomes being methylated. DNA methylation plays crucial roles in the regulation of chromatin structure and gene expression and is essential for mammalian development. Aberrant changes in DNA methylation levels and patterns are associated with various human diseases, including cancer and developmental disorders. DNA methylation is mediated by three active DNA methyltransferases (Dnmts), namely, Dnmt1, Dnmt3a, and Dnmt3b, in mammals. Over the last two decades, genetic manipulations of these enzymes, as well as their regulators, in mice have greatly contributed to our understanding of the biological functions of DNA methylation in mammals. In this chapter, we discuss genetic studies on mammalian Dnmts, focusing on their roles in embryogenesis, cellular differentiation, genomic imprinting, and X-chromosome inactivation.
Collapse
Affiliation(s)
- Jiameng Dan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX, 78957, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX, 78957, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX, 78957, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX, 78957, USA.
- Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Alexander KA, Wang X, Shibata M, Clark AG, García-García MJ. TRIM28 Controls Genomic Imprinting through Distinct Mechanisms during and after Early Genome-wide Reprogramming. Cell Rep 2015; 13:1194-1205. [PMID: 26527006 DOI: 10.1016/j.celrep.2015.09.078] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/08/2015] [Accepted: 09/25/2015] [Indexed: 01/08/2023] Open
Abstract
Genomic imprinting depends on the establishment and maintenance of DNA methylation at imprinting control regions. However, the mechanisms by which these heritable marks influence allele-specific expression are not fully understood. By analyzing maternal, zygotic, maternal-zygotic, and conditional Trim28 mutants, we found that the transcription factor TRIM28 controls genomic imprinting through distinct mechanisms at different developmental stages. During early genome-wide reprogramming, both maternal and zygotic TRIM28 are required for the maintenance of methylation at germline imprints. However, in conditional Trim28 mutants, Gtl2-imprinted gene expression was lost despite normal methylation levels at the germline IG-DMR. These results provide evidence that TRIM28 controls imprinting after early embryonic reprogramming through a mechanism other than the maintenance of germline imprints. Additionally, our finding that secondary imprints were hypomethylated in TRIM28 mutants uncovers a requirement of TRIM28 after genome-wide reprogramming for interpreting germline imprints and regulating DNA methylation at imprinted gene promoters.
Collapse
Affiliation(s)
- Katherine A Alexander
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Maho Shibata
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - María J García-García
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
39
|
Baumann C, Olson M, Wang K, Fazleabas A, De La Fuente R. Arginine methyltransferases mediate an epigenetic ovarian response to endometriosis. Reproduction 2015. [DOI: 10.1530/rep-15-0212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endometriosis is associated with infertility and debilitating chronic pain. Abnormal epigenetic modifications in the human endometrium have recently been implicated in the pathogenesis of this condition. However, whether an altered epigenetic landscape contributes to pathological changes in the ovary is unknown. Using an established baboon endometriosis model, early-, and late-stage epigenetic changes in the ovary were investigated. Transcript profiling of key chromatin-modifying enzymes using pathway-focused PCR arrays on ovarian tissue from healthy control animals and at 3 and 15 months of endometriosis revealed dramatic changes in gene expression in a disease duration-dependent manner. Ingenuity Pathway Analysis indicated that transcripts for chromatin-remodeling enzymes associated with reproductive system disease and cancer development were abnormally regulated, most prominently the arginine methyltransferases CARM1, PRMT2, and PRMT8. Downregulation of CARM1 protein expression was also detected in the ovary, fully-grown oocytes and eutopic endometrium following 15 months of endometriosis. Sodium bisulfite sequencing revealed DNA hypermethylation within the PRMT8 promoter, suggesting that deregulated CpG methylation may play a role in transcriptional repression of this gene. These results demonstrate that endometriosis is associated with changes of epigenetic profiles in the primate ovary and suggest that arginine methyltransferases play a prominent role in mediating the ovarian response to endometriosis. Owing to the critical role of CARM1 in nuclear receptor-mediated transcription and maintenance of pluripotency in the cleavage stage embryo, our results suggest that epigenetic alterations in the ovary may have functional consequences for oocyte quality and the etiology of infertility associated with endometriosis.
Collapse
|
40
|
Prokopuk L, Western PS, Stringer JM. Transgenerational epigenetic inheritance: adaptation through the germline epigenome? Epigenomics 2015; 7:829-46. [PMID: 26367077 DOI: 10.2217/epi.15.36] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Epigenetic modifications direct the way DNA is packaged into the nucleus, making genes more or less accessible to transcriptional machinery and influencing genomic stability. Environmental factors have the potential to alter the epigenome, allowing genes that are silenced to be activated and vice versa. This ultimately influences disease susceptibility and health in an individual. Furthermore, altered chromatin states can be transmitted to subsequent generations, thus epigenetic modifications may provide evolutionary mechanisms that impact on adaptation to changed environments. However, the mechanisms involved in establishing and maintaining these epigenetic modifications during development remain unclear. This review discusses current evidence for transgenerational epigenetic inheritance, confounding issues associated with its study, and the biological relevance of altered epigenetic states for subsequent generations.
Collapse
Affiliation(s)
- Lexie Prokopuk
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Molecular & Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Patrick S Western
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Molecular & Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Jessica M Stringer
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Molecular & Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
41
|
Marsit CJ. Influence of environmental exposure on human epigenetic regulation. ACTA ACUST UNITED AC 2015; 218:71-9. [PMID: 25568453 DOI: 10.1242/jeb.106971] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Environmental toxicants can alter epigenetic regulatory features such as DNA methylation and microRNA expression. As the sensitivity of epigenomic regulatory features may be greatest during the in utero period, when critical windows are narrow, and when epigenomic profiles are being set, this review will highlight research focused on that period. I will focus on work in human populations, where the impact of environmental toxicants in utero, including cigarette smoke and toxic trace metals such as arsenic, mercury and manganese, on genome-wide, gene-specific DNA methylation has been assessed. In particular, arsenic is highlighted, as this metalloid has been the focus of a number of studies and its detoxification mechanisms are well understood. Importantly, the tissues and cells being examined must be considered in context in order to interpret the findings of these studies. For example, by studying the placenta, it is possible to identify potential epigenetic adaptations of key genes and pathways that may alter the developmental course in line with the developmental origins of health and disease paradigm. Alternatively, studies of newborn cord blood can be used to examine how environmental exposure in utero can impact the composition of cells within the peripheral blood, leading to immunological effects of exposure. The results suggest that in humans, like other vertebrates, there is a susceptibility for epigenomic alteration by the environment during intrauterine development, and this may represent a mechanism of plasticity of the organism in response to its environment as well as a mechanism through which long-term health consequences can be shaped.
Collapse
Affiliation(s)
- Carmen J Marsit
- Department of Pharmacology and Toxicology and Section of Epidemiology and Biostatistics in the Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
42
|
Uysal F, Akkoyunlu G, Ozturk S. Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos. Biochimie 2015; 116:103-13. [PMID: 26143007 DOI: 10.1016/j.biochi.2015.06.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/26/2015] [Indexed: 11/26/2022]
Abstract
Epigenetic mechanisms play critical roles in oogenesis and early embryo development in mammals. One of these epigenetic mechanisms, DNA methylation is accomplished through the activities of DNA methyltransferases (DNMTs), which are responsible for adding a methyl group to the fifth carbon atom of the cytosine residues within cytosine-phosphate-guanine (CpG) and non-CpG dinuclotide sites. Five DNMT enzymes have been identified in mammals including DNMT1, DNMT2, DNMT3A, DNMT3B, and DNMT3L. They function in two different methylation processes: maintenance and de novo. For maintenance methylation, DNMT1 preferentially transfers methyl groups to the hemi-methylated DNA strands following DNA replication. However, for de novo methylation activities both DNMT3A and DNMT3B function in the methylation of the unmodified cytosine residues. Although DNMT3L indirectly contributes to de novo methylation process, DNMT2 enables the methylation of the cytosine 38 in the anticodon loop of aspartic acid transfer RNA and does not methylate DNA. In this review article, we have evaluated and discussed the existing published studies to characterize the spatial and temporal expression patterns of the DNMTs in mouse, bovine and human oocytes and early embryos. We have also reviewed the effects of in vitro culture conditions (serum abundance and glucose concentration), aging, superovulation, vitrification, and somatic cell nuclear transfer technology on the dynamics of DNMTs.
Collapse
Affiliation(s)
- Fatma Uysal
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Gokhan Akkoyunlu
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Antalya, Turkey.
| |
Collapse
|
43
|
Huan Y, Xie B, Liu S, Kong Q, Liu Z. A novel role for DNA methyltransferase 1 in regulating oocyte cytoplasmic maturation in pigs. PLoS One 2015; 10:e0127512. [PMID: 26009894 PMCID: PMC4444208 DOI: 10.1371/journal.pone.0127512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/16/2015] [Indexed: 01/04/2023] Open
Abstract
Maternal factors are required for oocyte maturation and embryo development. To better understand the role of DNA methyltransferase 1 (Dnmt1) in oocyte maturation and embryo development, small interfering RNA (siRNA) was conducted in porcine oocytes. In this study, our results showed that Dnmt1 localized in oocyte cytoplasm and its expression displayed no obvious change during oocyte maturation. When siRNAs targeting Dnmt1 were injected into germinal vesicle (GV) stage oocytes, Dnmt1 transcripts significantly decreased in matured oocytes (P<0.05). After Dnmt1 knockdown in GV stage oocytes, the significant reduction of glutathione content, mitochondrial DNA copy number, glucose-6-phosphate dehydrogenase activity and expression profiles of maternal factors and the severely disrupted distribution of cortical granules were observed in MII stage oocytes (P<0.05), leading to the impaired oocyte cytoplasm. Further study displayed that Dnmt1 knockdown in GV stage oocytes significantly reduced the development of early embryos generated through parthenogenetic activation, in vitro fertilization and somatic cell nuclear transfer (P<0.05). In conclusion, Dnmt1 was indispensable for oocyte cytoplasmic maturation, providing a novel role for Dnmt1 in the regulation of oocyte maturation.
Collapse
Affiliation(s)
- Yanjun Huan
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Bingteng Xie
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Shichao Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Qingran Kong
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- * E-mail:
| |
Collapse
|
44
|
Anifandis G, Messini CI, Dafopoulos K, Messinis IE. Genes and Conditions Controlling Mammalian Pre- and Post-implantation Embryo Development. Curr Genomics 2015; 16:32-46. [PMID: 25937812 PMCID: PMC4412963 DOI: 10.2174/1389202916666141224205025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 01/06/2023] Open
Abstract
Embryo quality during the in vitro developmental period is of great clinical importance. Experimental genetic studies during this period have demonstrated the association between specific gene expression profiles and the production of healthy blastocysts. Although the quality of the oocyte may play a major role in embryo development, it has been well established that the post - fertilization period also has an important and crucial role in the determination of blastocyst quality. A variety of genes (such as OCT, SOX2, NANOG) and their related signaling pathways as well as transcription molecules (such as TGF-β, BMP) have been implicated in the pre- and post-implantation period. Furthermore, DNA methylation has been lately characterized as an epigenetic mark since it is one of the most important processes involved in the maintenance of genome stability. Physiological embryo development appears to depend upon the correct DNA methylation pattern. Due to the fact that soon after fertilization the zygote undergoes several morphogenetic and developmental events including activation of embryonic genome through the transition of the maternal genome, a diverse gene expression pattern may lead to clinically important conditions, such as apoptosis or the production of a chromosomically abnormal embryo. The present review focused on genes and their role during pre-implantation embryo development, giving emphasis on the various parameters that may alter gene expression or DNA methylation patterns. The pre-implantation embryos derived from in vitro culture systems (in vitro fertilization) and the possible effects on gene expression after the prolonged culture conditions are also discussed.
Collapse
Affiliation(s)
- G Anifandis
- Department of Obstetrics and Gynaecology ; Embryology Lab, University of Thessalia, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | | | | | | |
Collapse
|
45
|
Extended fertility and longevity: the genetic and epigenetic link. Fertil Steril 2015; 103:1117-24. [PMID: 25796320 DOI: 10.1016/j.fertnstert.2015.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 11/22/2022]
Abstract
Many women now choose to develop their careers before having children. Thus, it is becoming increasingly important to assess a woman's potential for extended fertility and to understand the health consequences of having children at a late age. In particular, there is a striking positive correlation between extended fertility and longevity in women, which poses important implications for medicine, biology, and evolution. In this article we review the diverse epidemiologic evidence for the link between fertility potential, age of menopause, and women's lifespan. Then we discuss the recent advances using genomic technology to better understand biological mechanisms driving this association. At the genetic level, there are polymorphisms that may be driving both extended fertility and longevity. At the cellular and molecular levels, changes in the genome (both nuclear and mitochondrial), epigenome, and transcriptome during oocyte aging have important implications for fertility. By synthesizing results from diverse domains, we hope to provide a genomic-era conceptual framework in which this important connection can be investigated and understood.
Collapse
|
46
|
Salvaing J, Li Y, Beaujean N, O'Neill C. Determinants of valid measurements of global changes in 5ʹ-methylcytosine and 5ʹ-hydroxymethylcytosine by immunolocalisation in the early embryo. Reprod Fertil Dev 2015; 27:755-64. [DOI: 10.1071/rd14136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022] Open
Abstract
A classical model of epigenetic reprogramming of methyl-cytosine–phosphate–guanine (CpG) dinucleotides within the genome of the early embryo involves a process of active demethylation of the paternally derived genome immediately following fertilisation, creating marked asymmetry in global cytosine methylation levels in male and female pronuclei, followed by passive demethylation of the maternally derived genome over subsequent cell cycles. This model has dominated thinking in developmental epigenetics over recent decades. Recent re-analyses of the model show that demethylation of the paternally derived genome is more modest than formerly thought and results in overall similar levels of methylation of the paternal and maternal pronuclei in presyngamal zygotes, although there is little evidence for a pervasive process of passive demethylation during the cleavage stage of development. In contrast, the inner cell mass of the blastocyst shows some loss of methylation within specific classes of loci. Improved methods of chemical analysis now allow global base-level analysis of modifications to CpG dinucleotides within the cells of the early embryo, yet the low cost and convenience of the immunolocalisation techniques mean that they still have a valuable place in the analysis of the epigenetics of embryo development. In this review we consider the key strengths and weaknesses of this methodology and some factors required for its valid use and interpretation.
Collapse
|
47
|
Tian X, Wang F, He C, Zhang L, Tan D, Reiter RJ, Xu J, Ji P, Liu G. Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach. J Pineal Res 2014; 57:239-47. [PMID: 25070516 DOI: 10.1111/jpi.12163] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022]
Abstract
This study was performed to investigate the effect of melatonin on bovine oocyte maturation and subsequent embryonic development in vitro. The endogenous melatonin concentration in bovine follicular fluid is approximately 10(-11) M. To examine the potential beneficial effects of melatonin on bovine oocyte maturation in vitro, germinal vesicle (GV) oocytes were incubated with different concentrations of melatonin (10(-11), 10(-9), 10(-7), 10(-5), 10(-3) M). Melatonin supplementation at suitable concentrations significantly promoted oocyte maturation. The development of embryos and the mean cell number/blastocyst produced after in vitro fertilization were remarkably improved. The most effective melatonin concentrations obtained from the studies ranged from 10(-9) to 10(-7) M. The expression of melatonin receptor MT1 and MT2 genes was identified in cumulus cells, granulosa cells, and oocytes using reverse transcription PCR, immunofluorescence, and Western blot. The mechanistic studies show that the beneficial effects of melatonin on bovine oocyte maturation are mediated via melatonin membrane receptors as the melatonin receptor agonist (IIK7) promotes this effect while the melatonin receptor antagonist (luzindole) blocks this action. Mechanistic explorations revealed that melatonin supplementation during bovine oocyte maturation significantly up-regulated the expressions of oocyte maturation-associated genes (GDF9, MARF1, and DNMT1a) and cumulus cells expansion-related gene (PTX3, HAS1/2) and that LHR1/2, EGFR are involved in signal transduction and epigenetic reprogramming. The results obtained from the studies provide new information regarding the mechanisms by which melatonin promotes bovine oocyte maturation in vitro and provide an important reference for in vitro embryo production of bovine and the human-assisted reproductive technology.
Collapse
Affiliation(s)
- XiuZhi Tian
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Petrussa L, Van de Velde H, De Rycke M. Dynamic regulation of DNA methyltransferases in human oocytes and preimplantation embryos after assisted reproductive technologies. Mol Hum Reprod 2014; 20:861-74. [PMID: 24994815 DOI: 10.1093/molehr/gau049] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
DNA methylation is a key epigenetic modification which is essential for normal embryonic development. Major epigenetic reprogramming takes place during gametogenesis and in the early embryo; the complex DNA methylation patterns are established and maintained by DNA methyltransferases (DNMTs). However, the influence of assisted reproductive technologies (ART) on DNA methylation reprogramming enzymes has predominantly been studied in mice and less so in human oocytes and embryos. The expression and localization patterns of the four known DNMTs were analysed in human oocytes and IVF/ICSI embryos by immunocytochemistry and compared between a reference group of good quality fresh embryos and groups of abnormally developing embryos or embryo groups after cryopreservation. In humans, DNMT1o rather than DNMT1s seems to be the key player for maintaining methylation in early embryos. DNMT3b, rather than DNMT3a and DNMT3L, appears to ensure global DNA remethylation in the blastocysts before implantation. DNMT3L, an important regulator of maternal imprint methylation in mouse, was not detected in human oocytes (GV, MI and MII stage). Our study confirms the existence of species differences for mammalian DNA methylation enzymes. In poor quality fresh embryos, the switch towards nuclear DNMT3b expression was delayed and nuclear DNMT1, DNMT1s and DNMT3b expression was less common. Compared with the reference embryos, a smaller number of cryopreserved embryos showed nuclear DNMT1, while a delayed switch to nuclear DNMT3b and an extended DNMT1s temporal expression pattern were also observed. The spatial and temporal expression patterns of DNMTs seem to be disturbed in abnormally developing embryos and in embryos that have been cryopreserved. Further research must be performed in order to understand whether the potentially disturbed embryonic DNMT expression after cryopreservation has any long-term developmental consequences.
Collapse
Affiliation(s)
- Laetitia Petrussa
- Department of Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Hilde Van de Velde
- Department of Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium Centre for Reproductive Medicine (CRM), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Martine De Rycke
- Department of Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium Centre for Medical Genetics (CMG), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
49
|
Dysregulated transcriptional and post-translational control of DNA methyltransferases in cancer. Cell Biosci 2014; 4:46. [PMID: 25949795 PMCID: PMC4422219 DOI: 10.1186/2045-3701-4-46] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/01/2014] [Indexed: 01/29/2023] Open
Abstract
Cancer is a leading cause of death worldwide. Aberrant promoter hypermethylation of CpG islands associated with tumor suppressor genes can lead to transcriptional silencing and result in tumorigenesis. DNA methyltransferases (DNMTs) are the enzymes responsible for DNA methylation and have been reported to be over-expressed in various cancers. This review highlights the current status of transcriptional and post-translational regulation of the DNMT expression and activity with a focus on dysregulation involved in tumorigenesis. The transcriptional up-regulation of DNMT gene expression can be induced by Ras-c-Jun signaling pathway, Sp1 and Sp3 zinc finger proteins and virus oncoproteins. Transcriptional repression on DNMT genes has also been reported for p53, RB and FOXO3a transcriptional regulators and corepressors. In addition, the low expressions of microRNAs 29 family, 143, 148a and 152 are associated with DNMTs overexpression in various cancers. Several important post-translational modifications including acetylation and phosphorylation have been reported to mediate protein stability and activity of the DNMTs especially DNMT1. In this review, we also discuss drugs targeting DNMT protein expression and activation for therapeutic strategy against cancer.
Collapse
|
50
|
Latham KE. Role of aberrant protein modification, assembly, and localization in cloned embryo phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:141-58. [PMID: 25030763 DOI: 10.1007/978-1-4939-0817-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Aberrant post-translational modifications of proteins contribute markedly to the abnormal characteristics of cloned embryos. This review summarizes aberrant aspects of protein modifications and protein interactions, taking an inside-outside view to the cell. These aberrant aspects affect a range of processes including the control of chromatin structure, expression of pluripotency genes, propagation of epigenetic inheritance, protein trafficking, localization and signaling, cytoskeletal structure, mitosis, and correct localization of membrane proteins. By observing these aberrant features of cloned embryos, how they arise, and their impacts on development, it is possible to gain insight into normal development and identify novel strategies for enhancing cloning outcomes.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, College of Agriculture and Natural Resources, and The Reproductive and Developmental Sciences Program, Michigan State University, 474 S. Shaw Lane, Room 1230E, East Lansing, MI, 48824, USA,
| |
Collapse
|