1
|
Afzal Z, Lange JJ, Nolte C, McKinney S, Wood C, Paulson A, De Kumar B, Unruh J, Slaughter BD, Krumlauf R. Shared retinoic acid responsive enhancers coordinately regulate nascent transcription of Hoxb coding and non-coding RNAs in the developing mouse neural tube. Development 2023; 150:dev201259. [PMID: 37102683 PMCID: PMC10233718 DOI: 10.1242/dev.201259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Signaling pathways regulate the patterns of Hox gene expression that underlie their functions in the specification of axial identity. Little is known about the properties of cis-regulatory elements and underlying transcriptional mechanisms that integrate graded signaling inputs to coordinately control Hox expression. Here, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique with probes spanning introns to evaluate how three shared retinoic acid response element (RARE)-dependent enhancers in the Hoxb cluster regulate patterns of nascent transcription in vivo at the level of single cells in wild-type and mutant embryos. We predominately detect nascent transcription of only a single Hoxb gene in each cell, with no evidence for simultaneous co-transcriptional coupling of all or specific subsets of genes. Single and/or compound RARE mutations indicate that each enhancer differentially impacts global and local patterns of nascent transcription, suggesting that selectivity and competitive interactions between these enhancers is important to robustly maintain the proper levels and patterns of nascent Hoxb transcription. This implies that rapid and dynamic regulatory interactions potentiate transcription of genes through combined inputs from these enhancers in coordinating the retinoic acid response.
Collapse
Affiliation(s)
- Zainab Afzal
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christof Nolte
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christopher Wood
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Transcriptional Regulation and Implications for Controlling Hox Gene Expression. J Dev Biol 2022; 10:jdb10010004. [PMID: 35076545 PMCID: PMC8788451 DOI: 10.3390/jdb10010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Hox genes play key roles in axial patterning and regulating the regional identity of cells and tissues in a wide variety of animals from invertebrates to vertebrates. Nested domains of Hox expression generate a combinatorial code that provides a molecular framework for specifying the properties of tissues along the A–P axis. Hence, it is important to understand the regulatory mechanisms that coordinately control the precise patterns of the transcription of clustered Hox genes required for their roles in development. New insights are emerging about the dynamics and molecular mechanisms governing transcriptional regulation, and there is interest in understanding how these may play a role in contributing to the regulation of the expression of the clustered Hox genes. In this review, we summarize some of the recent findings, ideas and emerging mechanisms underlying the regulation of transcription in general and consider how they may be relevant to understanding the transcriptional regulation of Hox genes.
Collapse
|
3
|
Liu Z, Shen F, Wang H, Li A, Wang J, Du L, Liu B, Zhang B, Lian X, Pang B, Liu L, Gao Y. Abnormally high expression of HOXA2 as an independent factor for poor prognosis in glioma patients. Cell Cycle 2020; 19:1632-1640. [PMID: 32436804 DOI: 10.1080/15384101.2020.1762038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent years, studies have revealed HOXA2 as a new oncogene, but its function is unknown in gliomas. We aimed to reveal the relationship between HOXA2 and glioma based on the Chinese Glioma Genome Atlas(CGGA) and the cancer genome atlas (TCGA). HOXA2 expression data and clinically relevant information of glioma patients were obtained from the CGGA and TCGA containing 1447 glioma tissues and five non-tumor brain tissues. The Wilcox or Kruskal tests were used to detect the correlation between the HOXA2 expression level and clinical data of glioma patients. the Kaplan-Meier method were used to examine the relationship between HOXA2 and overall patient survival. Gene set enrichment analysis (GSEA) was conducted to indirectly reveal the signaling pathways involved in HOXA2, and RT-PCR was used to detect HOXA2 expression in gliomas and non-tumor brain tissues. High HOXA2 expression was found to be positively correlated with clinical grade, histological type, age, and tumor recurrence, but negatively correlated with 1p19 codeletion and isocitrate dehydrogenase mutation status.RT-PCR results showed that HOXA2 expression levels were significantly higher in tumor tissues than in non-tumor brain tissues. GSEA showed that HOXA2 promoted the activation of the activation of the JAK-STAT-signaling pathway, focal adhesion, cell-adhesion-molecules-CAMS pathway, cytosolic DNA sensing pathway, and natural killer cell-mediated cytotoxicity. This study revealed for the first time that the novel oncogene,HOXA2, leads to poor prognosis in gliomas, and can be used as a biomarker for the diagnosis and treatment of gliomas.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou, Henan, China
| | - Fei Shen
- Department of Ophthalmology, Kaifeng Central Hospital , Kaifeng, Henan, China
| | - Hongbo Wang
- Henan Provincial People's Hospital, Henan University People's Hospital , Zhengzhou, Henan, China
| | - Ang Li
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou, Henan, China
| | - Jialin Wang
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital , Zhengzhou, Henan, China
| | - Lin Du
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou, Henan, China
| | - Binfeng Liu
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital , Zhengzhou, Henan, China
| | - Bo Zhang
- Henan Provincial People's Hospital, Henan University People's Hospital , Zhengzhou, Henan, China
| | - Xiaoyu Lian
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital , Zhengzhou, Henan, China
| | - Bo Pang
- Department of Neurosurgery, The Fourth Medical Center of Chinese PLA General Hospital , Beijing, China
| | - Liyun Liu
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou, Henan, China
| | - Yanzheng Gao
- Department of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University , Zhengzhou, Henan, China
| |
Collapse
|
4
|
A Hox-TALE regulatory circuit for neural crest patterning is conserved across vertebrates. Nat Commun 2019; 10:1189. [PMID: 30867425 PMCID: PMC6416258 DOI: 10.1038/s41467-019-09197-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
In jawed vertebrates (gnathostomes), Hox genes play an important role in patterning head and jaw formation, but mechanisms coupling Hox genes to neural crest (NC) are unknown. Here we use cross-species regulatory comparisons between gnathostomes and lamprey, a jawless extant vertebrate, to investigate conserved ancestral mechanisms regulating Hox2 genes in NC. Gnathostome Hoxa2 and Hoxb2 NC enhancers mediate equivalent NC expression in lamprey and gnathostomes, revealing ancient conservation of Hox upstream regulatory components in NC. In characterizing a lamprey hoxα2 NC/hindbrain enhancer, we identify essential Meis, Pbx, and Hox binding sites that are functionally conserved within Hoxa2/Hoxb2 NC enhancers. This suggests that the lamprey hoxα2 enhancer retains ancestral activity and that Hoxa2/Hoxb2 NC enhancers are ancient paralogues, which diverged in hindbrain and NC activities. This identifies an ancestral mechanism for Hox2 NC regulation involving a Hox-TALE regulatory circuit, potentiated by inputs from Meis and Pbx proteins and Hox auto-/cross-regulatory interactions.
Collapse
|
5
|
Coupling the roles of Hox genes to regulatory networks patterning cranial neural crest. Dev Biol 2018; 444 Suppl 1:S67-S78. [PMID: 29571614 DOI: 10.1016/j.ydbio.2018.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022]
Abstract
The neural crest is a transient population of cells that forms within the developing central nervous system and migrates away to generate a wide range of derivatives throughout the body during vertebrate embryogenesis. These cells are of evolutionary and clinical interest, constituting a key defining trait in the evolution of vertebrates and alterations in their development are implicated in a high proportion of birth defects and craniofacial abnormalities. In the hindbrain and the adjacent cranial neural crest cells (cNCCs), nested domains of Hox gene expression provide a combinatorial'Hox-code' for specifying regional properties in the developing head. Hox genes have been shown to play important roles at multiple stages in cNCC development, including specification, migration, and differentiation. However, relatively little is known about the underlying gene-regulatory mechanisms involved, both upstream and downstream of Hox genes. Furthermore, it is still an open question as to how the genes of the neural crest GRN are linked to Hox-dependent pathways. In this review, we describe Hox gene expression, function and regulation in cNCCs with a view to integrating these genes within the emerging gene regulatory network for cNCC development. We highlight early roles for Hox1 genes in cNCC specification, proposing that this may be achieved, in part, by regulation of the balance between pluripotency and differentiation in precursor cells within the neuro-epithelium. We then describe what is known about the regulation of Hox gene expression in cNCCs and discuss this from the perspective of early vertebrate evolution.
Collapse
|
6
|
Parker HJ, Krumlauf R. Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28771970 DOI: 10.1002/wdev.286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022]
Abstract
Organization and development of the early vertebrate hindbrain are controlled by a cascade of regulatory interactions that govern the process of segmentation and patterning along the anterior-posterior axis via Hox genes. These interactions can be assembled into a gene regulatory network that provides a framework to interpret experimental data, generate hypotheses, and identify gaps in our understanding of the progressive process of hindbrain segmentation. The network can be broadly separated into a series of interconnected programs that govern early signaling, segmental subdivision, secondary signaling, segmentation, and ultimately specification of segmental identity. Hox genes play crucial roles in multiple programs within this network. Furthermore, the network reveals properties and principles that are likely to be general to other complex developmental systems. Data from vertebrate and invertebrate chordate models are shedding light on the origin and diversification of the network. Comprehensive cis-regulatory analyses of vertebrate Hox gene regulation have enabled powerful cross-species gene regulatory comparisons. Such an approach in the sea lamprey has revealed that the network mediating segmental Hox expression was present in ancestral vertebrates and has been maintained across diverse vertebrate lineages. Invertebrate chordates lack hindbrain segmentation but exhibit conservation of some aspects of the network, such as a role for retinoic acid in establishing nested Hox expression domains. These comparisons lead to a model in which early vertebrates underwent an elaboration of the network between anterior-posterior patterning and Hox gene expression, leading to the gene-regulatory programs for segmental subdivision and rhombomeric segmentation. WIREs Dev Biol 2017, 6:e286. doi: 10.1002/wdev.286 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
7
|
Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, Reese SE, Markunas CA, Richmond RC, Xu CJ, Küpers LK, Oh SS, Hoyo C, Gruzieva O, Söderhäll C, Salas LA, Baïz N, Zhang H, Lepeule J, Ruiz C, Ligthart S, Wang T, Taylor JA, Duijts L, Sharp GC, Jankipersadsing SA, Nilsen RM, Vaez A, Fallin MD, Hu D, Litonjua AA, Fuemmeler BF, Huen K, Kere J, Kull I, Munthe-Kaas MC, Gehring U, Bustamante M, Saurel-Coubizolles MJ, Quraishi BM, Ren J, Tost J, Gonzalez JR, Peters MJ, Håberg SE, Xu Z, van Meurs JB, Gaunt TR, Kerkhof M, Corpeleijn E, Feinberg AP, Eng C, Baccarelli AA, Benjamin Neelon SE, Bradman A, Merid SK, Bergström A, Herceg Z, Hernandez-Vargas H, Brunekreef B, Pinart M, Heude B, Ewart S, Yao J, Lemonnier N, Franco OH, Wu MC, Hofman A, McArdle W, Van der Vlies P, Falahi F, Gillman MW, Barcellos LF, Kumar A, Wickman M, Guerra S, Charles MA, Holloway J, Auffray C, Tiemeier HW, Smith GD, Postma D, Hivert MF, Eskenazi B, Vrijheid M, Arshad H, Antó JM, Dehghan A, Karmaus W, Annesi-Maesano I, Sunyer J, Ghantous A, Pershagen G, Holland N, Murphy SK, DeMeo DL, Burchard EG, Ladd-Acosta C, Snieder H, Nystad W, et alJoubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, Reese SE, Markunas CA, Richmond RC, Xu CJ, Küpers LK, Oh SS, Hoyo C, Gruzieva O, Söderhäll C, Salas LA, Baïz N, Zhang H, Lepeule J, Ruiz C, Ligthart S, Wang T, Taylor JA, Duijts L, Sharp GC, Jankipersadsing SA, Nilsen RM, Vaez A, Fallin MD, Hu D, Litonjua AA, Fuemmeler BF, Huen K, Kere J, Kull I, Munthe-Kaas MC, Gehring U, Bustamante M, Saurel-Coubizolles MJ, Quraishi BM, Ren J, Tost J, Gonzalez JR, Peters MJ, Håberg SE, Xu Z, van Meurs JB, Gaunt TR, Kerkhof M, Corpeleijn E, Feinberg AP, Eng C, Baccarelli AA, Benjamin Neelon SE, Bradman A, Merid SK, Bergström A, Herceg Z, Hernandez-Vargas H, Brunekreef B, Pinart M, Heude B, Ewart S, Yao J, Lemonnier N, Franco OH, Wu MC, Hofman A, McArdle W, Van der Vlies P, Falahi F, Gillman MW, Barcellos LF, Kumar A, Wickman M, Guerra S, Charles MA, Holloway J, Auffray C, Tiemeier HW, Smith GD, Postma D, Hivert MF, Eskenazi B, Vrijheid M, Arshad H, Antó JM, Dehghan A, Karmaus W, Annesi-Maesano I, Sunyer J, Ghantous A, Pershagen G, Holland N, Murphy SK, DeMeo DL, Burchard EG, Ladd-Acosta C, Snieder H, Nystad W, Koppelman GH, Relton CL, Jaddoe VWV, Wilcox A, Melén E, London SJ. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am J Hum Genet 2016; 98:680-96. [PMID: 27040690 PMCID: PMC4833289 DOI: 10.1016/j.ajhg.2016.02.019] [Show More Authors] [Citation(s) in RCA: 624] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/20/2016] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Pregnancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n = 6,685), the association between maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K BeadChip. Over 6,000 CpGs were differentially methylated in relation to maternal smoking at genome-wide statistical significance (false discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma) or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed enrichment in pathways and processes critical to development. In older children (5 cohorts, n = 3,187), 100% of CpGs gave at least nominal levels of significance, far more than expected by chance (p value < 2.2 × 10(-16)). Results were robust to different normalization methods used across studies and cell type adjustment. In this large scale meta-analysis of methylation data, we identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure.
Collapse
Affiliation(s)
- Bonnie R Joubert
- National Institute of Environmental Health Sciences, NIH, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Janine F Felix
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA the Netherlands
| | - Paul Yousefi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley, Berkeley, CA 94720-7360, USA
| | - Kelly M Bakulski
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Allan C Just
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carrie Breton
- University of Southern California, Los Angeles, CA 90032, USA
| | - Sarah E Reese
- National Institute of Environmental Health Sciences, NIH, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Christina A Markunas
- National Institute of Environmental Health Sciences, NIH, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Cheng-Jian Xu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands; Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands; GRIAC Research Institute Groningen, University of Groningen, University Medical Center Groningen, 9700 RB, the Netherlands
| | - Leanne K Küpers
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands
| | - Sam S Oh
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-2911, USA
| | - Cathrine Hoyo
- Department of Biological Sciences and Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695-7633, USA
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm 141 83, Sweden
| | - Lucas A Salas
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Nour Baïz
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Saint-Antoine Medical School, F75012 Paris, France
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Johanna Lepeule
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institut Albert Bonniot, Institut National de la Santé et de le Recherche Médicale, University of Grenoble Alpes, Centre Hospitalier Universitaire de Grenoble, F-38000 Grenoble, France
| | - Carlos Ruiz
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Symen Ligthart
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands
| | - Tianyuan Wang
- National Institute of Environmental Health Sciences, NIH, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jack A Taylor
- National Institute of Environmental Health Sciences, NIH, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Liesbeth Duijts
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA the Netherlands; Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, the Netherlands; Division of Respiratory Medicine, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, the Netherlands
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Soesma A Jankipersadsing
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands; Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands
| | - Roy M Nilsen
- Department of Global Public Health and Primary Care, University of Bergen, Bergen 5018, Norway
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands; School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - M Daniele Fallin
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-2911, USA
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bernard F Fuemmeler
- Department of Community and Family Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Karen Huen
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley, Berkeley, CA 94720-7360, USA
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm 141 83, Sweden
| | - Inger Kull
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | | | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3508 TD, the Netherlands
| | - Mariona Bustamante
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; Center for Genomic Regulation (CRG), Barcelona 08003, Spain
| | | | - Bilal M Quraishi
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Jie Ren
- University of Southern California, Los Angeles, CA 90032, USA
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-Institut de Génomique, 91000 Evry, France
| | - Juan R Gonzalez
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Marjolein J Peters
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, the Netherlands
| | - Siri E Håberg
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Zongli Xu
- National Institute of Environmental Health Sciences, NIH, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Joyce B van Meurs
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, the Netherlands
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Marjan Kerkhof
- GRIAC Research Institute Groningen, University of Groningen, University Medical Center Groningen, 9700 RB, the Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands
| | - Andrew P Feinberg
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-2911, USA
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley, Berkeley, CA 94720-7360, USA
| | - Simon Kebede Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | | | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3508 TD, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht 3508 TD, the Netherlands
| | - Mariona Pinart
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona 08003, Spain
| | - Barbara Heude
- INSERM, UMR 1153, Early Origin of the Child's Health And Development (ORCHAD) Team, Centre de Recherche Épidémiologie et Statistique Sorbonne Paris Cité (CRESS), Université Paris Descartes, 94807 Villejuif, France
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jin Yao
- University of Southern California, Los Angeles, CA 90032, USA
| | - Nathanaël Lemonnier
- Centre National de la Recherche Scientifique-École Normale Supérieure de Lyon-Université Claude Bernard (Lyon 1), Université de Lyon, European Institute for Systems Biology and Medicine 69007 Lyon, France
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands
| | - Michael C Wu
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wendy McArdle
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Pieter Van der Vlies
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands
| | - Fahimeh Falahi
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands
| | - Matthew W Gillman
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Lisa F Barcellos
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley, Berkeley, CA 94720-7360, USA
| | - Ashish Kumar
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden; Department of Public Health Epidemiology, Unit of Chronic Disease Epidemiology, Swiss Tropical and Public Health Institute, Basel 4051, Switzerland; University of Basel, Basel 4001, Switzerland
| | - Magnus Wickman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden; Sachs' Children's Hospital and Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm 171 77, Sweden
| | - Stefano Guerra
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain
| | - Marie-Aline Charles
- INSERM, UMR 1153, Early Origin of the Child's Health And Development (ORCHAD) Team, Centre de Recherche Épidémiologie et Statistique Sorbonne Paris Cité (CRESS), Université Paris Descartes, 94807 Villejuif, France
| | - John Holloway
- Faculty of Medicine, Clinical & Experimental Sciences, University of Southampton, Southampton SO16 6YD, UK; Faculty of Medicine, Human Development & Health, University of Southampton, Southampton SO16 6YD, UK
| | - Charles Auffray
- Centre National de la Recherche Scientifique-École Normale Supérieure de Lyon-Université Claude Bernard (Lyon 1), Université de Lyon, European Institute for Systems Biology and Medicine 69007 Lyon, France
| | - Henning W Tiemeier
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA the Netherlands
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Dirkje Postma
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands; GRIAC Research Institute Groningen, University of Groningen, University Medical Center Groningen, 9700 RB, the Netherlands
| | - Marie-France Hivert
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley, Berkeley, CA 94720-7360, USA
| | - Martine Vrijheid
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Hasan Arshad
- Faculty of Medicine, Clinical & Experimental Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Josep M Antó
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona 08003, Spain
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Isabella Annesi-Maesano
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Saint-Antoine Medical School, F75012 Paris, France
| | - Jordi Sunyer
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona 08003, Spain
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69008 Lyon, France
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nina Holland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley, Berkeley, CA 94720-7360, USA
| | - Susan K Murphy
- Departments of Obstetrics and Gynecology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-2911, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143-2911, USA
| | - Christine Ladd-Acosta
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands
| | - Wenche Nystad
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Gerard H Koppelman
- GRIAC Research Institute Groningen, University of Groningen, University Medical Center Groningen, 9700 RB, the Netherlands; Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, the Netherlands
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Vincent W V Jaddoe
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA the Netherlands
| | - Allen Wilcox
- National Institute of Environmental Health Sciences, NIH, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden; Sachs' Children's Hospital and Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm 171 77, Sweden
| | - Stephanie J London
- National Institute of Environmental Health Sciences, NIH, U.S. Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
8
|
Parker HJ, Bronner ME, Krumlauf R. The vertebrate Hox gene regulatory network for hindbrain segmentation: Evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates. Bioessays 2016; 38:526-38. [PMID: 27027928 DOI: 10.1002/bies.201600010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hindbrain development is orchestrated by a vertebrate gene regulatory network that generates segmental patterning along the anterior-posterior axis via Hox genes. Here, we review analyses of vertebrate and invertebrate chordate models that inform upon the evolutionary origin and diversification of this network. Evidence from the sea lamprey reveals that the hindbrain regulatory network generates rhombomeric compartments with segmental Hox expression and an underlying Hox code. We infer that this basal feature was present in ancestral vertebrates and, as an evolutionarily constrained developmental state, is fundamentally important for patterning of the vertebrate hindbrain across diverse lineages. Despite the common ground plan, vertebrates exhibit neuroanatomical diversity in lineage-specific patterns, with different vertebrates revealing variations of Hox expression in the hindbrain that could underlie this diversification. Invertebrate chordates lack hindbrain segmentation but exhibit some conserved aspects of this network, with retinoic acid signaling playing a role in establishing nested domains of Hox expression.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, USA
| |
Collapse
|
9
|
Evolution of mammalian sound localization circuits: A developmental perspective. Prog Neurobiol 2016; 141:1-24. [PMID: 27032475 DOI: 10.1016/j.pneurobio.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/27/2016] [Accepted: 02/27/2016] [Indexed: 01/06/2023]
Abstract
Localization of sound sources is a central aspect of auditory processing. A unique feature of mammals is the smooth, tonotopically organized extension of the hearing range to high frequencies (HF) above 10kHz, which likely induced positive selection for novel mechanisms of sound localization. How this change in the auditory periphery is accompanied by changes in the central auditory system is unresolved. I will argue that the major VGlut2(+) excitatory projection neurons of sound localization circuits (dorsal cochlear nucleus (DCN), lateral and medial superior olive (LSO and MSO)) represent serial homologs with modifications, thus being paramorphs. This assumption is based on common embryonic origin from an Atoh1(+)/Wnt1(+) cell lineage in the rhombic lip of r5, same cell birth, a fusiform cell morphology, shared genetic components such as Lhx2 and Lhx9 transcription factors, and similar projection patterns. Such a parsimonious evolutionary mechanism likely accelerated the emergence of neurons for sound localization in all three dimensions. Genetic analyses indicate that auditory nuclei in fish, birds, and mammals receive contributions from the same progenitor lineages. Anatomical and physiological differences and the independent evolution of tympanic ears in vertebrate groups, however, argue for convergent evolution of sound localization circuits in tetrapods (amphibians, reptiles, birds, and mammals). These disparate findings are discussed in the context of the genetic architecture of the developing hindbrain, which facilitates convergent evolution. Yet, it will be critical to decipher the gene regulatory networks underlying development of auditory neurons across vertebrates to explore the possibility of homologous neuronal populations.
Collapse
|
10
|
Davis A, Reubens MC, Stellwag EJ. Functional and Comparative Genomics of Hoxa2 Gene cis-Regulatory Elements: Evidence for Evolutionary Modification of Ancestral Core Element Activity. J Dev Biol 2016; 4:jdb4020015. [PMID: 29615583 PMCID: PMC5831782 DOI: 10.3390/jdb4020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
Abstract
Hoxa2 is an evolutionarily conserved developmental regulatory gene that functions to specify rhombomere (r) and pharyngeal arch (PA) identities throughout the Osteichthyes. Japanese medaka (Oryzias latipes) hoxa2a, like orthologous Hoxa2 genes from other osteichthyans, is expressed during embryogenesis in r2–7 and PA2-7, whereas the paralogous medaka pseudogene, ψhoxa2b, is expressed in noncanonical Hoxa2 domains, including the pectoral fin buds. To understand the evolution of cis-regulatory element (CRE) control of gene expression, we conducted eGFP reporter gene expression studies with extensive functional mapping of several conserved CREs upstream of medaka hoxa2a and ψhoxa2b in transient and stable-line transgenic medaka embryos. The CREs tested were previously shown to contribute to directing mouse Hoxa2 gene expression in r3, r5, and PA2-4. Our results reveal the presence of sequence elements embedded in the medaka hoxa2a and ψhoxa2b upstream enhancer regions (UERs) that mediate expression in r4 and the PAs (hoxa2a r4/CNCC element) or in r3–7 and the PAs ψhoxa2b r3–7/CNCC element), respectively. Further, these elements were shown to be highly conserved among osteichthyans, which suggests that the r4 specifying element embedded in the UER of Hoxa2 is a deeply rooted rhombomere specifying element and the activity of this element has been modified by the evolution of flanking sequences that redirect its activity to alternative developmental compartments.
Collapse
Affiliation(s)
- Adam Davis
- Department of Biology and Physical Sciences, Gordon State College, Barnesville, GA 30204, USA.
| | - Michael C Reubens
- The Scripps Research Institute, 10550 N, Torrey Pines Road, MB3, La Jolla, CA 92037, USA.
| | - Edmund J Stellwag
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
11
|
|
12
|
Willaredt MA, Schlüter T, Nothwang HG. The gene regulatory networks underlying formation of the auditory hindbrain. Cell Mol Life Sci 2015; 72:519-535. [PMID: 25332098 PMCID: PMC11113740 DOI: 10.1007/s00018-014-1759-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 01/28/2023]
Abstract
Development and evolution of auditory hindbrain nuclei are two major unsolved issues in hearing research. Recent characterization of transgenic mice identified the rhombomeric origins of mammalian auditory nuclei and unraveled genes involved in their formation. Here, we provide an overview on these data by assembling them into rhombomere-specific gene regulatory networks (GRNs), as they underlie developmental and evolutionary processes. To explore evolutionary mechanisms, we compare the GRNs operating in the mammalian auditory hindbrain with data available from the inner ear and other vertebrate groups. Finally, we propose that the availability of genomic sequences from all major vertebrate taxa and novel genetic techniques for non-model organisms provide an unprecedented opportunity to investigate development and evolution of the auditory hindbrain by comparative molecular approaches. The dissection of the molecular mechanisms leading to auditory structures will also provide an important framework for auditory processing disorders, a clinical problem difficult to tackle so far. These data will, therefore, foster basic and clinical hearing research alike.
Collapse
Affiliation(s)
- Marc A Willaredt
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| | - Tina Schlüter
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Hans Gerd Nothwang
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
13
|
Aschliman NC, Nishida M, Miya M, Inoue JG, Rosana KM, Naylor GJP. Body plan convergence in the evolution of skates and rays (Chondrichthyes: Batoidea). Mol Phylogenet Evol 2011; 63:28-42. [PMID: 22209858 DOI: 10.1016/j.ympev.2011.12.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/30/2011] [Accepted: 12/03/2011] [Indexed: 11/18/2022]
Abstract
Skates, rays and allies (Batoidea) comprise more than half of the species diversity and much of the morphological disparity among chondrichthyan fishes, the sister group to all other jawed vertebrates. While batoids are morphologically well characterized and have an excellent fossil record, there is currently no consensus on the interrelationships of family-level taxa. Here we construct a resolved, robust and time-calibrated batoid phylogeny using mitochondrial genomes, nuclear genes, and fossils, sampling densely across taxa. Data partitioning schemes, biases in the sequence data, and the relative informativeness of each fossil are explored. The molecular phylogeny is largely congruent with morphology crownward in the tree, but the branching orders of major batoid groups are mostly novel. Body plan convergence appears to be widespread in batoids. A depressed, rounded pectoral disk supported to the snout tip by fin radials, common to skates and stingrays, is indicated to have been derived independently by each group, while the long, spiny rostrum of sawfishes similarly appears to be convergent with that of sawsharks, which are not batoids. The major extant batoid lineages are inferred to have arisen relatively rapidly from the Late Triassic into the Jurassic, with long stems followed by subsequent radiations in each group around the Cretaceous/Tertiary boundary. The fossil record indicates that batoids were affected with disproportionate severity by the end-Cretaceous extinction event.
Collapse
Affiliation(s)
- Neil C Aschliman
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | |
Collapse
|
14
|
Yu M, Xi Y, Pollack J, Debiais‐Thibaud M, MacDonald RB, Ekker M. Activity of
dlx5a
/
dlx6a
regulatory elements during zebrafish GABAergic neuron development. Int J Dev Neurosci 2011; 29:681-91. [DOI: 10.1016/j.ijdevneu.2011.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 02/02/2023] Open
Affiliation(s)
- Man Yu
- Centre for Advanced Research in Environmental Genomics (CAREG)Department of BiologyUniversity of Ottawa20 Marie CurieOttawaONCanadaK1N 6N5
- Department of Cellular and Molecular MedicineUniversity of Ottawa451 Smyth RoadOttawaONCanadaK1H 8M5
| | - Yanwei Xi
- Centre for Advanced Research in Environmental Genomics (CAREG)Department of BiologyUniversity of Ottawa20 Marie CurieOttawaONCanadaK1N 6N5
| | - Jacob Pollack
- Centre for Advanced Research in Environmental Genomics (CAREG)Department of BiologyUniversity of Ottawa20 Marie CurieOttawaONCanadaK1N 6N5
| | - Mélanie Debiais‐Thibaud
- Centre for Advanced Research in Environmental Genomics (CAREG)Department of BiologyUniversity of Ottawa20 Marie CurieOttawaONCanadaK1N 6N5
| | - Ryan B. MacDonald
- Centre for Advanced Research in Environmental Genomics (CAREG)Department of BiologyUniversity of Ottawa20 Marie CurieOttawaONCanadaK1N 6N5
| | - Marc Ekker
- Centre for Advanced Research in Environmental Genomics (CAREG)Department of BiologyUniversity of Ottawa20 Marie CurieOttawaONCanadaK1N 6N5
- Department of Cellular and Molecular MedicineUniversity of Ottawa451 Smyth RoadOttawaONCanadaK1H 8M5
| |
Collapse
|
15
|
Göttgens B, Ferreira R, Sanchez MJ, Ishibashi S, Li J, Spensberger D, Lefevre P, Ottersbach K, Chapman M, Kinston S, Knezevic K, Hoogenkamp M, Follows GA, Bonifer C, Amaya E, Green AR. cis-Regulatory remodeling of the SCL locus during vertebrate evolution. Mol Cell Biol 2010; 30:5741-51. [PMID: 20956563 PMCID: PMC3004278 DOI: 10.1128/mcb.00870-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/21/2010] [Accepted: 10/03/2010] [Indexed: 11/20/2022] Open
Abstract
Development progresses through a sequence of cellular identities which are determined by the activities of networks of transcription factor genes. Alterations in cis-regulatory elements of these genes play a major role in evolutionary change, but little is known about the mechanisms responsible for maintaining conserved patterns of gene expression. We have studied the evolution of cis-regulatory mechanisms controlling the SCL gene, which encodes a key transcriptional regulator of blood, vasculature, and brain development and exhibits conserved function and pattern of expression throughout vertebrate evolution. SCL cis-regulatory elements are conserved between frog and chicken but accrued alterations at an accelerated rate between 310 and 200 million years ago, with subsequent fixation of a new cis-regulatory pattern at the beginning of the mammalian radiation. As a consequence, orthologous elements shared by mammals and lower vertebrates exhibit functional differences and binding site turnover between widely separated cis-regulatory modules. However, the net effect of these alterations is constancy of overall regulatory inputs and of expression pattern. Our data demonstrate remarkable cis-regulatory remodelling across the SCL locus and indicate that stable patterns of expression can mask extensive regulatory change. These insights illuminate our understanding of vertebrate evolution.
Collapse
Affiliation(s)
- Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Rita Ferreira
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Maria-José Sanchez
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Shoko Ishibashi
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Juan Li
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Dominik Spensberger
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Pascal Lefevre
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Katrin Ottersbach
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Michael Chapman
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Sarah Kinston
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Kathy Knezevic
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Maarten Hoogenkamp
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - George A. Follows
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Constanze Bonifer
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Enrique Amaya
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Anthony R. Green
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom, Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain, Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, Section of Experimental Haematology, University of Leeds, St James's University Hospital, Leeds LS9 7TF, United Kingdom
| |
Collapse
|
16
|
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010; 137:2605-21. [DOI: 10.1242/dev.040048] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During vertebrate craniofacial development, neural crest cells (NCCs) contribute much of the cartilage, bone and connective tissue that make up the developing head. Although the initial patterns of NCC segmentation and migration are conserved between species, the variety of vertebrate facial morphologies that exist indicates that a complex interplay occurs between intrinsic genetic NCC programs and extrinsic environmental signals during morphogenesis. Here, we review recent work that has begun to shed light on the molecular mechanisms that govern the spatiotemporal patterning of NCC-derived skeletal structures – advances that are central to understanding craniofacial development and its evolution.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculté de Chirurgie Dentaire, 1, Place de l'Hôpital, 67000 Strasbourg, France
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
17
|
Cis-regulatory characterization of sequence conservation surrounding the Hox4 genes. Dev Biol 2010; 340:269-82. [PMID: 20144609 DOI: 10.1016/j.ydbio.2010.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 01/17/2010] [Accepted: 01/30/2010] [Indexed: 01/30/2023]
Abstract
Hox genes are key regulators of anterior-posterior axis patterning and have a major role in hindbrain development. The zebrafish Hox4 paralogs have strong overlapping activities in hindbrain rhombomeres 7 and 8, in the spinal cord and in the pharyngeal arches. With the aim to predict enhancers that act on the hoxa4a, hoxb4a, hoxc4a and hoxd4a genes, we used sequence conservation around the Hox4 genes to analyze all fish:human conserved non-coding sequences by reporter assays in stable zebrafish transgenesis. Thirty-four elements were functionally tested in GFP reporter gene constructs and more than 100 F1 lines were analyzed to establish a correlation between sequence conservation and cis-regulatory function, constituting a catalog of Hox4 CNEs. Sixteen tissue-specific enhancers could be identified. Multiple alignments of the CNEs revealed paralogous cis-regulatory sequences, however, the CNE sequence similarities were found not to correlate with tissue specificity. To identify ancestral enhancers that direct Hox4 gene activity, genome sequence alignments of mammals, teleosts, horn shark and the cephalochordate amphioxus, which is the most basal extant chordate possessing a single prototypical Hox cluster, were performed. Three elements were identified and two of them exhibited regulatory activity in transgenic zebrafish, however revealing no specificity. Our data show that the approach to identify cis-regulatory sequences by genome sequence alignments and subsequent testing in zebrafish transgenesis can be used to define enhancers within the Hox clusters and that these have significantly diverged in their function during evolution.
Collapse
|
18
|
Yakovlev A, Khafizova M, Abdullaev Z, Loukinov D, Kondratyev A. Epigenetic regulation of caspase-3 gene expression in rat brain development. Gene 2010; 450:103-8. [PMID: 19909801 DOI: 10.1016/j.gene.2009.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/30/2009] [Accepted: 10/30/2009] [Indexed: 01/27/2023]
Abstract
The expression levels of caspase-3, a major contributor to the execution of neuronal apoptosis, markedly decrease in the process of brain maturation. We have previously cloned the rat caspase-3 gene promoter and identified its essential regulatory elements. In the present study, we extended previous findings by examining transcriptional regulation of caspase-3 expression in the rat brain of two different ages, corresponding to the immature and mature brain. In particular, we determined that the rate of transcription initiation substantially declines during brain maturation. Furthermore, we established that mRNA levels of Ets1, Ets2, and Sp1 do not change in the brain with maturation, suggesting that these transcription factors do not contribute to age-dependent caspase-3 down-regulation. Hence, we examined a role of DNA methylation and histone modification in this process. Utilizing bisulfite DNA sequencing, we determined the presence of age-dependent differentially methylated fragments within the caspase-3 promoter region. Strikingly, differentially methylated CpG sites correspond to the predicted binding sites for a number of transcription factors that have been previously shown to be involved in neuronal development and differentiation. Moreover, using chromatin immunoprecipitation, we found that mature brains displayed significantly lower levels of histone 3 acetylated Lys14 and histone 4 acetylated Lys5, 8, 12, and 16. This observation is consistent with the decreased level of expression of caspase-3 in the mature brain. Together with our observation that histone deacetylase inhibitor, trichostatin A, increased the level of caspase-3 mRNA in cortical neurons in vitro, these results further indicate an important role of epigenetic factors in the regulation of caspase-3 gene expression.
Collapse
Affiliation(s)
- Alexander Yakovlev
- Department of Neuroscience, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
19
|
Cameron RA, Davidson EH. Flexibility of transcription factor target site position in conserved cis-regulatory modules. Dev Biol 2009; 336:122-35. [DOI: 10.1016/j.ydbio.2009.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
|
20
|
Tümpel S, Wiedemann LM, Krumlauf R. Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 2009; 88:103-37. [PMID: 19651303 DOI: 10.1016/s0070-2153(09)88004-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the vertebrate central nervous system, the hindbrain is an important center for coordinating motor activity, posture, equilibrium, sleep patterns, and essential unconscious functions, such as breathing rhythms and blood circulation. During development, the vertebrate hindbrain depends upon the process of segmentation or compartmentalization to create and organize regional properties essential for orchestrating its highly conserved functional roles. The process of segmentation in the hindbrain differs from that which functions in the paraxial mesoderm to generate somites and the axial skeleton. In the prospective hindbrain, cells in the neural epithelia transiently alter their ability to interact with their neighbors, resulting in the formation of seven lineage-restricted cellular compartments. These different segments or rhombomeres each go on to adopt unique characters in response to environmental signals. The Hox family of transcription factors is coupled to this process. Overlapping or nested patterns of Hox gene expression correlate with segmental domains and provide a combinatorial code and molecular framework for specifying the unique identities of hindbrain segments. The segmental organization and patterns of Hox expression and function are highly conserved among vertebrates and, as a consequence, comparative studies between different species have greatly enhanced our ability to build a picture of the regulatory cascades that control early hindbrain development. The purpose of this chapter is to review what is known about the regulatory mechanisms which establish and maintain Hox gene expression and function in hindbrain development.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | | |
Collapse
|
21
|
A regulatory module embedded in the coding region of Hoxa2 controls expression in rhombomere 2. Proc Natl Acad Sci U S A 2008; 105:20077-82. [PMID: 19104046 DOI: 10.1073/pnas.0806360105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we define a gene regulatory network for Hoxa2, responsible for temporal and spatial expression in hindbrain development. Hoxa2 plays an important role in regulating the regional identity of rhombomere 2 (r2) and is the only Hox gene expressed in this segment. In this study, we found that a Hoxa2 cis-regulatory module consists of five elements that direct expression in r2 of the developing hindbrain. Surprisingly, the module is imbedded in the second coding exon of Hoxa2 and therefore may be constrained by both protein coding and gene regulatory requirements. This highly conserved enhancer consists of two consensus Sox binding sites and several additional elements that act in concert to direct strong r2 specific expression. Our findings provide important insight into the regulation of segmental identity in the anterior hindbrain. Furthermore, they have broader implications in designing arrays and interpreting data from global analyses of gene regulation because regulatory input from coding regions needs to be considered.
Collapse
|
22
|
Japanese medakaHoxparalog group 2: insights into the evolution ofHoxPG2 gene composition and expression in the Osteichthyes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:623-41. [DOI: 10.1002/jez.b.21236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Chatonnet F, Wrobel LJ, Mézières V, Pasqualetti M, Ducret S, Taillebourg E, Charnay P, Rijli FM, Champagnat J. Distinct roles of Hoxa2 and Krox20 in the development of rhythmic neural networks controlling inspiratory depth, respiratory frequency, and jaw opening. Neural Dev 2007; 2:19. [PMID: 17897445 PMCID: PMC2098766 DOI: 10.1186/1749-8104-2-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 09/26/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the involvement of molecular determinants of segmental patterning of rhombomeres (r) in the development of rhythmic neural networks in the mouse hindbrain. Here, we compare the phenotypes of mice carrying targeted inactivations of Hoxa2, the only Hox gene expressed up to r2, and of Krox20, expressed in r3 and r5. We investigated the impact of such mutations on the neural circuits controlling jaw opening and breathing in newborn mice, compatible with Hoxa2-dependent trigeminal defects and direct regulation of Hoxa2 by Krox20 in r3. RESULTS We found that Hoxa2 mutants displayed an impaired oro-buccal reflex, similarly to Krox20 mutants. In contrast, while Krox20 is required for the development of the rhythm-promoting parafacial respiratory group (pFRG) modulating respiratory frequency, Hoxa2 inactivation did not affect neonatal breathing frequency. Instead, we found that Hoxa2-/- but not Krox20-/- mutation leads to the elimination of a transient control of the inspiratory amplitude normally occurring during the first hours following birth. Tracing of r2-specific progenies of Hoxa2 expressing cells indicated that the control of inspiratory activity resides in rostral pontine areas and required an intact r2-derived territory. CONCLUSION Thus, inspiratory shaping and respiratory frequency are under the control of distinct Hox-dependent segmental cues in the mammalian brain. Moreover, these data point to the importance of rhombomere-specific genetic control in the development of modular neural networks in the mammalian hindbrain.
Collapse
Affiliation(s)
- Fabrice Chatonnet
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
- IGFL UMR 5242 CNRS/INRA/UCB/École Normale Supérieure de Lyon, allée d'Italie, 69364 Lyon Cedex 07, France
| | - Ludovic J Wrobel
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| | - Valérie Mézières
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| | - Massimo Pasqualetti
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
- Laboratori di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G Carducci, Pisa, Italy
| | - Sébastien Ducret
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
| | - Emmanuel Taillebourg
- INSERM, U 784, Ecole Normale Supérieure, rue d'Ulm, 75230 Paris Cedex 05, France
- CEA, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, 38054 Grenoble, France
| | - Patrick Charnay
- INSERM, U 784, Ecole Normale Supérieure, rue d'Ulm, 75230 Paris Cedex 05, France
| | - Filippo M Rijli
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
| | - Jean Champagnat
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| |
Collapse
|
24
|
Tümpel S, Cambronero F, Ferretti E, Blasi F, Wiedemann LM, Krumlauf R. Expression of Hoxa2 in rhombomere 4 is regulated by a conserved cross-regulatory mechanism dependent upon Hoxb1. Dev Biol 2006; 302:646-60. [PMID: 17113575 DOI: 10.1016/j.ydbio.2006.10.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/17/2006] [Accepted: 10/19/2006] [Indexed: 01/08/2023]
Abstract
The Hoxa2 gene is an important component of regulatory events during hindbrain segmentation and head development in vertebrates. In this study we have used sequenced comparisons of the Hoxa2 locus from 12 vertebrate species in combination with detailed regulatory analyses in mouse and chicken embryos to characterize the mechanistic basis for the regulation of Hoxa2 in rhombomere (r) 4. A highly conserved region in the Hoxa2 intron functions as an r4 enhancer. In vitro binding studies demonstrate that within the conserved region three bipartite Hox/Pbx binding sites (PH1-PH3) in combination with a single binding site for Pbx-Prep/Meis (PM) heterodimers co-operate to regulate enhancer activity in r4. Mutational analysis reveals that these sites are required for activity of the enhancer, suggesting that the r4 enhancer from Hoxa2 functions in vivo as a Hox-response module in combination with the Hox cofactors, Pbx and Prep/Meis. Furthermore, this r4 enhancer is capable of mediating a response to ectopic HOXB1 expression in the hindbrain. These findings reveal that Hoxa2 is a target gene of Hoxb1 and permit us to develop a gene regulatory network for r4, whereby Hoxa2, along with Hoxb1, Hoxb2 and Hoxa1, is integrated into a series of auto- and cross-regulatory loops between Hox genes. These data highlight the important role played by direct cross-talk between Hox genes in regulating hindbrain patterning.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
25
|
Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Fariñas I, Karsenty G, Grosschedl R. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 2006; 125:971-86. [PMID: 16751105 DOI: 10.1016/j.cell.2006.05.012] [Citation(s) in RCA: 408] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 03/13/2006] [Accepted: 05/02/2006] [Indexed: 01/04/2023]
Abstract
Vertebrate skeletogenesis involves two processes, skeletal patterning and osteoblast differentiation. Here, we show that Satb2, encoding a nuclear matrix protein, is expressed in branchial arches and in cells of the osteoblast lineage. Satb2-/- mice exhibit both craniofacial abnormalities that resemble those observed in humans carrying a translocation in SATB2 and defects in osteoblast differentiation and function. Multiple osteoblast-specific genes were identified as targets positively regulated by SATB2. In addition, SATB2 was found to repress the expression of several Hox genes including Hoxa2, an inhibitor of bone formation and regulator of branchial arch patterning. Molecular analysis revealed that SATB2 directly interacts with and enhances the activity of both Runx2 and ATF4, transcription factors that regulate osteoblast differentiation. This synergy was genetically confirmed by bone formation defects in Satb2/Runx2 and Satb2/Atf4 double heterozygous mice. Thus, SATB2 acts as a molecular node in a transcriptional network regulating skeletal development and osteoblast differentiation.
Collapse
Affiliation(s)
- Gergana Dobreva
- Max-Planck Institute of Immunobiology, Department of Cellular and Molecular Immunology, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tümpel S, Cambronero F, Wiedemann LM, Krumlauf R. Evolution of cis elements in the differential expression of two Hoxa2 coparalogous genes in pufferfish (Takifugu rubripes). Proc Natl Acad Sci U S A 2006; 103:5419-24. [PMID: 16569696 PMCID: PMC1459370 DOI: 10.1073/pnas.0600993103] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequence divergence in cis-regulatory elements is an important mechanism contributing to functional diversity of genes during evolution. Gene duplication and divergence provide an opportunity for selectively preserving initial functions and evolving new activities. Many vertebrates have 39 Hox genes organized into four clusters (Hoxa-Hoxd); however, some ray-finned fishes have extra Hox clusters. There is a single Hoxa2 gene in most vertebrates, whereas fugu (Takifugu rubripes) and medaka (Oryzias latipes) have two coparalogous genes [Hoxa2(a) and Hoxa2(b)]. In the hindbrain, both genes are expressed in rhombomere (r) 2, but only Hoxa2(b) is expressed in r3, r4, and r5. Multiple regulatory modules directing segmental expression of chicken and mouse Hoxa2 genes have been identified, and each module is composed of a series of discrete elements. We used these modules to investigate the basis of differential expression of duplicated Hoxa2 genes, as a model for understanding the divergence of cis-regulatory elements. Therefore, we cloned putative regulatory regions of the fugu and medaka Hoxa2(a) and -(b) genes and assayed their activity. We found that these modules direct reporter expression in a chicken assay, in a manner corresponding to their endogenous expression pattern in fugu. Although sequence comparisons reveal many differences between the two coparalogous genes, specific subtle changes in seven cis elements of the Hoxa2(a) gene restore segmental regulatory activity. Therefore, drift in subsets of the elements in the regulatory modules is responsible for the differential expression of the two coparalogous genes, thus providing insight into the evolution of cis elements.
Collapse
Affiliation(s)
- Stefan Tümpel
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
| | - Francisco Cambronero
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
| | - Leanne M. Wiedemann
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
- Pathology and Laboratory Medicine and
| | - Robb Krumlauf
- *Stowers Institute for Medical Research, Kansas City, MO 64110; and Departments of
- Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
- To whom correspondence should be addressed at:
Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110. E-mail:
| |
Collapse
|
27
|
Wada H, Escriva H, Zhang S, Laudet V. Conserved RARE localization in amphioxusHox clusters and implications forHox code evolution in the vertebrate neural crest. Dev Dyn 2006; 235:1522-31. [PMID: 16538655 DOI: 10.1002/dvdy.20730] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Hox code in the neural crest cells plays an important role in the development of the complex craniofacial structures that are characteristic of vertebrates. Previously, 3' AmphiHox1 flanking region has been shown to drive gene expression in neural tubes and neural crest cells in a retinoic acid (RA)-dependent manner. In the present study, we found that the DR5-type RA response elements located at the 3' AmphiHox1 flanking region of Branchiostoma floridae are necessary and sufficient to express reporter genes in both the neural tube and neural crest cells of chick embryos, specifically at the post-otic level. The DR5 at the 3' flanking region of chick Hoxb1 is also capable of driving the same expression in chick embryos. We found that AmphiHox3 possesses a DR5-type RARE in its 5' flanking region, and this drives an expression pattern similar to the RARE element found in the 3' flanking region of AmphiHox1. Therefore, the location of these DR5-type RAREs is conserved in amphioxus and vertebrate Hox clusters. Our findings demonstrate that conserved RAREs mediate RA-dependent regulation of Hox genes in amphioxus and vertebrates, and in vertebrates this drives expression of Hox genes in both neural crest and neural tube. This suggests that Hox expression in vertebrate neural crest cells has evolved via the co-option of a pre-existing regulatory pathway that primitively regulated neural tube (and possibly epidermal) Hox expression.
Collapse
Affiliation(s)
- Hiroshi Wada
- Seto Marine Biological Laboratory, FSERC, Kyoto University, Wakayama, Japan.
| | | | | | | |
Collapse
|
28
|
Chatterjee B, Chin AJ, Valdimarsson G, Finis C, Sonntag JM, Choi BY, Tao L, Balasubramanian K, Bell C, Krufka A, Kozlowski DJ, Johnson RG, Lo CW. Developmental regulation and expression of the zebrafish connexin43 gene. Dev Dyn 2005; 233:890-906. [PMID: 15895415 DOI: 10.1002/dvdy.20426] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We cloned and sequenced the zebrafish (Danio rerio) connexin43 (Cx43alpha1) gene. The predicted protein sequence shows a high degree of sequence conservation. Transcript analyses revealed multiple transcription start sites and a potential alternative transcript encoding a N-terminally truncated Cx43alpha1 protein. Maternal Cx43alpha1 transcripts were detected, with zygotic expression initiated before gastrulation. In situ hybridization revealed many Cx43alpha1 expression domains, including the notochord and brain, heart and vasculature, many resembling patterns seen in mammalian embryos. Of interest, a reporter construct under control of the mouse Cx43alpha1 promoter was observed to drive green fluorescent protein expression in zebrafish embryos in domains mimicking the native Cx43alpha1 expression pattern in fish and mice. Sequence comparison between the mouse and zebrafish Cx43alpha1 promoter sequences showed the conservation of several transcription factor motifs, which otherwise shared little overall sequence homology. The conservation of protein sequence and developmental gene regulation would suggest that Cx43alpha1 gap junctions are likely to have conserved roles in vertebrate embryonic development.
Collapse
Affiliation(s)
- Bishwanath Chatterjee
- Laboratory of Developmental Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cameron RA, Chow SH, Berney K, Chiu TY, Yuan QA, Krämer A, Helguero A, Ransick A, Yun M, Davidson EH. An evolutionary constraint: strongly disfavored class of change in DNA sequence during divergence of cis-regulatory modules. Proc Natl Acad Sci U S A 2005; 102:11769-74. [PMID: 16087870 PMCID: PMC1188003 DOI: 10.1073/pnas.0505291102] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The DNA of functional cis-regulatory modules displays extensive sequence conservation in comparisons of genomes from modestly distant species. Patches of sequence that are several hundred base pairs in length within these modules are often seen to be 80-95% identical, although the flanking sequence cannot even be aligned. However, it is unlikely that base pairs located between the transcription factor target sites of cis-regulatory modules have sequence-dependent function, and the mechanism that constrains evolutionary change within cis-regulatory modules is incompletely understood. We chose five functionally characterized cis-regulatory modules from the Strongylocentrotus purpuratus (sea urchin) genome and obtained orthologous regulatory and flanking sequences from a bacterial artificial chromosome genome library of a congener, Strongylocentrotus franciscanus. As expected, single-nucleotide substitutions and small indels occur freely at many positions within the regulatory modules of these two species, as they do outside the regulatory modules. However, large indels (>20 bp) are statistically almost absent within the regulatory modules, although they are common in flanking intergenic or intronic sequence. The result helps to explain the patterns of evolutionary sequence divergence characteristic of cis-regulatory DNA.
Collapse
Affiliation(s)
- R Andrew Cameron
- Division of Biology and Center for Computational Regulatory Genomics of the Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shashikant C, Bolanowski SA, Danke J, Amemiya CT. Hoxc8 early enhancer of the Indonesian coelacanth, Latimeria menadoensis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 302:557-63. [PMID: 15470754 DOI: 10.1002/jez.b.21018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hoxc8 early enhancer controls the initiation and establishment phase of Hoxc8 expression in the mouse. Comparative studies indicate the presence of Hoxc8 early enhancer sequences in different vertebrate clades including mammals, birds and fish. Previous studies have shown differences between teleost and mammalian Hoxc8 early enhancers with respect to sequence and organization of protein binding elements. This raises the question of when the Hoxc8 early enhancer arose and how it has become modified in different vertebrate lineages. Here, we describe Hoxc8 early enhancer from the Indonesian coelacanth, Latimeria menadoensis. Coelacanths are the only extant lobefinned fish whose genome is tractable to genome analysis. The Latimeria Hoxc8 early enhancer sequence more closely resembles that of the mouse than that of Fugu or zebrafish. When assayed for enhancer activity by reporter gene analysis in transgenic mouse embryos, Latimeria Hoxc8 early enhancer directs expression to the posterior neural tube and mesoderm similar to that of the mouse enhancer. These observations support a close relationship between coelacanths and tetrapods and place the origin of a common Hoxc8 early enhancer sequence within the sarcopterygian lineage. The divergence of teleost (actinopterygii) Hoxc8 early enhancer may reflect a case of relaxed selection or other forms of instability induced by genome duplication events.
Collapse
Affiliation(s)
- Cooduvalli Shashikant
- Department of Dairy and Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, 324 Henning Building, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
31
|
Wang WCH, Anand S, Powell DR, Pawashe AB, Amemiya CT, Shashikant CS. Comparative cis-regulatory analyses identify new elements of the mouse Hoxc8 early enhancer. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 302:436-45. [PMID: 15384168 DOI: 10.1002/jez.b.21009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Hoxc8 early enhancer is a 200 bp region that controls the early phase of Hoxc8 expression during mouse embryonic development. This enhancer defines the domain of Hoxc8 expression in the neural tube and mesoderm of the posterior regions of the developing embryo. Five distinct cis-acting elements, A-E, were previously shown to govern early phase Hoxc8 expression. Significant divergence between mammalian and fish Hoxc8 early enhancer sequences and activities suggested additional cis-acting elements. Here we describe four additional cis-acting elements (F-I) within the 200 bp Hoxc8 early enhancer region identified by comparative regulatory analysis and transgene-mutation studies. These elements affect posterior neural tube and mesoderm expression of the reporter gene, either singly or in combination. Surprisingly, these new elements are missing from the zebrafish and Fugu Hoxc8 early enhancer sequences. Considering that fish enhancers direct robust reporter expression in transgenic mouse embryos, it is tempting to postulate that fish and mammalian Hoxc8 early enhancers utilize different sets of elements to direct Hoxc8 early expression. These observations reveal a remarkable plasticity in the Hoxc8 early enhancer, suggesting different modes of initiation and establishment of Hoxc8 expression in different species. We postulate that extensive restructuring and remodeling of Hox cis-regulatory regions occurring in different taxa lead to relatively different Hox expression patterns, which in turn may act as a driving force in generating diverse axial morphologies.
Collapse
Affiliation(s)
- Wayne C H Wang
- Department of Dairy and Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
32
|
Valverde-Garduno V, Guyot B, Anguita E, Hamlett I, Porcher C, Vyas P. Differences in the chromatin structure and cis-element organization of the human and mouse GATA1 loci: implications for cis-element identification. Blood 2004; 104:3106-16. [PMID: 15265794 DOI: 10.1182/blood-2004-04-1333] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cis-element identification is a prerequisite to understand transcriptional regulation of gene loci. From analysis of a limited number of conserved gene loci, sequence comparison has proved a robust and efficient way to locate cis-elements. Human and mouse GATA1 genes encode a critical hematopoietic transcription factor conserved in expression and function. Proper control of GATA1 transcription is critical in regulating myeloid lineage specification and maturation. Here, we compared sequence and systematically mapped position of DNase I hypersensitive sites, acetylation status of histone H3/H4, and in vivo binding of transcription factors over approximately 120 kilobases flanking the human GATA1 gene and the corresponding region in mice. Despite lying in approximately 10 megabase (Mb) conserved syntenic segment, the chromatin structures of the 2 homologous loci are strikingly different. The 2 previously unidentified hematopoietic cis-elements, one in each species, are not conserved in position and sequence and have enhancer activity in erythroid cells. In vivo, they both bind the transcription factors GATA1, SCL, LMO2, and Ldb1. More broadly, there are both species- and regulatory element-specific patterns of transcription factor binding. These findings suggest that some cis-elements regulating human and mouse GATA1 genes differ. More generally, mouse human sequence comparison may fail to identify all cis-elements.
Collapse
Affiliation(s)
- Veronica Valverde-Garduno
- Department of Haematology, Medical Research Council Molecular Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Lampe X, Picard JJ, Rezsohazy R. The Hoxa2 enhancer 2 contains a critical Hoxa2 responsive regulatory element. Biochem Biophys Res Commun 2004; 316:898-902. [PMID: 15033486 DOI: 10.1016/j.bbrc.2004.02.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Indexed: 11/26/2022]
Abstract
Rhombomeres are embryonic territories arising from the transient segmentation of the hindbrain. Their identity is specified by Hox genes from paralogous groups 1-4. Hoxa2 is the only Hox gene to be expressed in the second rhombomere and the regulatory cues leading to this region-specific expression have been poorly investigated. A 2.5-kb DNA fragment overlapping with the 3' end of Hoxa2 was previously shown to specifically direct the expression of a reporter gene in the second rhombomere and the rostral somites of mouse embryos. Here, we report that this enhancer region is activated in vitro by Hoxa2 and that this activation is strictly dependent on a short 10-bp sequence matching the consensus for Hox-Pbx recognition sites.
Collapse
Affiliation(s)
- Xavier Lampe
- Unit of Developmental Genetics, Université catholique de Louvain, 73 (boîte 82) avenue Mounier, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
34
|
Knight RD, Nair S, Nelson SS, Afshar A, Javidan Y, Geisler R, Rauch GJ, Schilling TF. lockjawencodes a zebrafishtfap2arequired for early neural crest development. Development 2003; 130:5755-68. [PMID: 14534133 DOI: 10.1242/dev.00575] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural crest is a uniquely vertebrate cell type that gives rise to much of the craniofacial skeleton, pigment cells and peripheral nervous system, yet its specification and diversification during embryogenesis are poorly understood. Zebrafish homozygous for the lockjaw (low)mutation show defects in all of these derivatives and we show that low (allelic with montblanc) encodes a zebrafish tfap2a, one of a small family of transcription factors implicated in epidermal and neural crest development. A point mutation in lowtruncates the DNA binding and dimerization domains of tfap2a, causing a loss of function. Consistent with this, injection of antisense morpholino oligonucleotides directed against splice sites in tfap2a into wild-type embryos produces a phenotype identical to low. Analysis of early ectodermal markers revealed that neural crest specification and migration are disrupted in low mutant embryos. TUNEL labeling of dying cells in mutants revealed a transient period of apoptosis in crest cells prior to and during their migration. In the cranial neural crest, gene expression in the mandibular arch is unaffected in low mutants, in contrast to the hyoid arch, which shows severe reductions in dlx2 and hoxa2 expression. Mosaic analysis, using cell transplantation,demonstrated that neural crest defects in low are cell autonomous and secondarily cause disruptions in surrounding mesoderm. These studies demonstrate that low is required for early steps in neural crest development and suggest that tfap2a is essential for the survival of a subset of neural crest derivatives.
Collapse
Affiliation(s)
- Robert D Knight
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Santagati F, Rijli FM. Cranial neural crest and the building of the vertebrate head. Nat Rev Neurosci 2003; 4:806-18. [PMID: 14523380 DOI: 10.1038/nrn1221] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fabio Santagati
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Lousis Pasteur, BP 10142-67404 Illkirch Cedex, CU de Strasbourg, France
| | | |
Collapse
|
36
|
Romano LA, Wray GA. Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation. Development 2003; 130:4187-99. [PMID: 12874137 DOI: 10.1242/dev.00611] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Evolutionary changes in transcriptional regulation undoubtedly play an important role in creating morphological diversity. However, there is little information about the evolutionary dynamics of cis-regulatory sequences. This study examines the functional consequence of evolutionary changes in the Endo16 promoter of sea urchins. The Endo16 gene encodes a large extracellular protein that is expressed in the endoderm and may play a role in cell adhesion. Its promoter has been characterized in exceptional detail in the purple sea urchin, Strongylocentrotus purpuratus. We have characterized the structure and function of the Endo16 promoter from a second sea urchin species, Lytechinus variegatus. The Endo16 promoter sequences have evolved in a strongly mosaic manner since these species diverged approximately 35 million years ago: the most proximal region (module A) is conserved, but the remaining modules (B-G) are unalignable. Despite extensive divergence in promoter sequences, the pattern of Endo16 transcription is largely conserved during embryonic and larval development. Transient expression assays demonstrate that 2.2 kb of upstream sequence in either species is sufficient to drive GFP reporter expression that correctly mimics this pattern of Endo16 transcription. Reciprocal cross-species transient expression assays imply that changes have also evolved in the set of transcription factors that interact with the Endo16 promoter. Taken together, these results suggest that stabilizing selection on the transcriptional output may have operated to maintain a similar pattern of Endo16 expression in S. purpuratus and L. variegatus, despite dramatic divergence in promoter sequence and mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Laura A Romano
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
37
|
Warren LA, Rothenberg EV. Regulatory coding of lymphoid lineage choice by hematopoietic transcription factors. Curr Opin Immunol 2003; 15:166-75. [PMID: 12633666 DOI: 10.1016/s0952-7915(03)00011-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
During lymphopoiesis, precursor cells negotiate a complex regulatory space, defined by the levels of several competing and cross-regulating transcription factors, before arriving at stable states of commitment to the B-, T- and NK-specific developmental programs. Recent perturbation experiments provide evidence that this space has three major axes, corresponding to the PU.1 versus GATA-1 balance, the intensity of Notch signaling through the CSL pathway, and the ratio of E-box transcription factors to their Id protein antagonists.
Collapse
Affiliation(s)
- Luigi A Warren
- Division of Biology, 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
38
|
Yau TO, Kwan CT, Jakt LM, Stallwood N, Cordes S, Sham MH. Auto/cross-regulation of Hoxb3 expression in posterior hindbrain and spinal cord. Dev Biol 2002; 252:287-300. [PMID: 12482716 DOI: 10.1006/dbio.2002.0849] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complex and dynamic pattern of Hoxb3 expression in the developing hindbrain and the associated neural crest of mouse embryos is controlled by three separate cis-regulatory elements: element I (region A), element IIIa, and the r5 enhancer (element IVa). We have examined the cis-regulatory element IIIa by transgenic and mutational analysis to determine the upstream trans-acting factors and mechanisms that are involved in controlling the expression of the mouse Hoxb3 gene in the anterior spinal cord and hindbrain up to the r5/r6 boundary, as well as the associated neural crest which migrate to the third and posterior branchial arches and to the gut. By deletion analysis, we have identified the sequence requirements within a 482-bp element III482. Two Hox binding sites are identified in element III482 and we have shown that in vitro both Hoxb3 and Hoxb4 proteins can interact with these Hox binding sites, suggesting that auto/cross-regulation is required for establishing the expression of Hoxb3 in the neural tube domain. Interestingly, we have identified a novel GCCAGGC sequence motif within element III482, which is also required to direct gene expression to a subset of the expression domains except for rhombomere 6 and the associated neural crest migrating to the third and posterior branchial arches. Element III482 can direct a higher level of reporter gene expression in r6, which led us to investigate whether kreisler is involved in regulating Hoxb3 expression in r6 through this element. However, our transgenic and mutational analysis has demonstrated that, although kreisler binding sites are present, they are not required for the establishment or maintenance of reporter gene expression in r6. Our results have provided evidence that the expression of Hoxb3 in the neural tube up to the r5/r6 boundary is auto/cross-regulated by Hox genes and expression of Hoxb3 in r6 does not require kreisler.
Collapse
Affiliation(s)
- Tai On Yau
- Department of Biochemistry, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | | | | | | | | | | |
Collapse
|