1
|
Kumar V, Park S, Lee U, Kim J. The Organizer and Its Signaling in Embryonic Development. J Dev Biol 2021; 9:jdb9040047. [PMID: 34842722 PMCID: PMC8628936 DOI: 10.3390/jdb9040047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Germ layer specification and axis formation are crucial events in embryonic development. The Spemann organizer regulates the early developmental processes by multiple regulatory mechanisms. This review focuses on the responsive signaling in organizer formation and how the organizer orchestrates the germ layer specification in vertebrates. Accumulated evidence indicates that the organizer influences embryonic development by dual signaling. Two parallel processes, the migration of the organizer’s cells, followed by the transcriptional activation/deactivation of target genes, and the diffusion of secreting molecules, collectively direct the early development. Finally, we take an in-depth look at active signaling that originates from the organizer and involves germ layer specification and patterning.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (U.L.); (J.K.); Tel.: +82-33-248-2544 (J.K.); Fax: +82-33-244-8425 (J.K.)
| |
Collapse
|
2
|
Functional Roles of FGF Signaling in Early Development of Vertebrate Embryos. Cells 2021; 10:cells10082148. [PMID: 34440915 PMCID: PMC8391977 DOI: 10.3390/cells10082148] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factors (FGFs) comprise a large family of growth factors, regulating diverse biological processes including cell proliferation, migration, and differentiation. Each FGF binds to a set of FGF receptors to initiate certain intracellular signaling molecules. Accumulated evidence suggests that in early development and adult state of vertebrates, FGFs also play exclusive and context dependent roles. Although FGFs have been the focus of research for therapeutic approaches in cancer, cardiovascular disease, and metabolic syndrome, in this review, we mainly focused on their role in germ layer specification and axis patterning during early vertebrate embryogenesis. We discussed the functional roles of FGFs and their interacting partners as part of the gene regulatory network for germ layer specification, dorsal-ventral (DV), and anterior-posterior (AP) patterning. Finally, we briefly reviewed the regulatory molecules and pharmacological agents discovered that may allow modulation of FGF signaling in research.
Collapse
|
3
|
Esmaeili M, Blythe SA, Tobias JW, Zhang K, Yang J, Klein PS. Chromatin accessibility and histone acetylation in the regulation of competence in early development. Dev Biol 2020; 462:20-35. [PMID: 32119833 PMCID: PMC7225061 DOI: 10.1016/j.ydbio.2020.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
As development proceeds, inductive cues are interpreted by competent tissues in a spatially and temporally restricted manner. While key inductive signaling pathways within competent cells are well-described at a molecular level, the mechanisms by which tissues lose responsiveness to inductive signals are not well understood. Localized activation of Wnt signaling before zygotic gene activation in Xenopus laevis leads to dorsal development, but competence to induce dorsal genes in response to Wnts is lost by the late blastula stage. We hypothesize that loss of competence is mediated by changes in histone modifications leading to a loss of chromatin accessibility at the promoters of Wnt target genes. We use ATAC-seq to evaluate genome-wide changes in chromatin accessibility across several developmental stages. Based on overlap with p300 binding, we identify thousands of putative cis-regulatory elements at the gastrula stage, including sites that lose accessibility by the end of gastrulation and are enriched for pluripotency factor binding motifs. Dorsal Wnt target gene promoters are not accessible after the loss of competence in the early gastrula while genes involved in mesoderm and neural crest development maintain accessibility at their promoters. Inhibition of histone deacetylases increases acetylation at the promoters of dorsal Wnt target genes and extends competence for dorsal gene induction by Wnt signaling. Histone deacetylase inhibition, however, is not sufficient to extend competence for mesoderm or neural crest induction. These data suggest that chromatin state regulates the loss of competence to inductive signals in a context-dependent manner.
Collapse
Affiliation(s)
- Melody Esmaeili
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shelby A Blythe
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - John W Tobias
- Penn Genomic Analysis Core and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Peter S Klein
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Departments of Medicine (Hematology-Oncology) and Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Umair Z, Kumar S, Kim DH, Rafiq K, Kumar V, Kim S, Park JB, Lee JY, Lee U, Kim J. Ventx1.1 as a Direct Repressor of Early Neural Gene zic3 in Xenopus laevis. Mol Cells 2018; 41:1061-1071. [PMID: 30590909 PMCID: PMC6315313 DOI: 10.14348/molcells.2018.0341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/14/2018] [Indexed: 01/07/2023] Open
Abstract
From Xenopus embryo studies, the BMP4/Smad1-targeted gene circuit is a key signaling pathway for specifying the cell fate between the ectoderm and neuro-ectoderm as well as the ventral and dorsal mesoderm. In this context, several BMP4/Smad1 target transcriptional factors have been identified as repressors of the neuro-ectoderm. However, none of these direct target transcription factors in this pathway, including GATA1b, Msx1 and Ventx1.1 have yet been proven as direct repressors of early neuro-ectodermal gene expression. In order to demonstrate that Ventx1.1 is a direct repressor of neuro-ectoderm genes, a genome-wide Xenopus ChIP-Seq of Ventx1.1 was performed. In this study, we demonstrated that Ventx1.1 bound to the Ventx1.1 response cis-acting element 1 and 2 (VRE1 and VRE2) on the promoter for zic3, which is a key early neuro-ectoderm gene, and this Ventx1.1 binding led to repression of zic3 transcription. Site-directed mutagenesis of VRE1 and VRE2 within zic3 promoter completely abolished the repression caused by Ventx1.1. In addition, we found both the positive and negative regulation of zic3 promoter activity by FoxD5b and Xcad2, respectively, and that these occur through the VREs and via modulation of Ventx1.1 levels. Taken together, the results demonstrate that the BMP4/Smad1 target gene, Ventx1.1, is a direct repressor of neuro-ectodermal gene zic3 during early Xenopus embryogenesis.
Collapse
Affiliation(s)
- Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do 24252,
Korea
| | - Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do 24252,
Korea
| | - Daniel H. Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722,
Korea
| | - Khezina Rafiq
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do 24252,
Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do 24252,
Korea
| | - SungChan Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do 24252,
Korea
| | - Jae-Bong Park
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do 24252,
Korea
| | - Jae-Yong Lee
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do 24252,
Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Gangwon-Do 24252,
Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do 24252,
Korea
| |
Collapse
|
5
|
Schyr RB, Shabtai Y, Shashikant CS, Fainsod A. Cdx1 is essential for the initiation of
HoxC8
expression during early embryogenesis. FASEB J 2012; 26:2674-84. [DOI: 10.1096/fj.11-191403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rachel Ben‐Haroush Schyr
- Department of Developmental Biology and Cancer ResearchInstitute for Medical Research Israel‐CanadaFaculty of MedicineHebrew UniversityJerusalemIsrael
| | - Yehuda Shabtai
- Department of Developmental Biology and Cancer ResearchInstitute for Medical Research Israel‐CanadaFaculty of MedicineHebrew UniversityJerusalemIsrael
| | - Cooduvalli S. Shashikant
- Department of Dairy and Animal ScienceCollege of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer ResearchInstitute for Medical Research Israel‐CanadaFaculty of MedicineHebrew UniversityJerusalemIsrael
| |
Collapse
|
6
|
Rousso SZ, Schyr RBH, Gur M, Zouela N, Kot-Leibovich H, Shabtai Y, Koutsi-Urshanski N, Baldessari D, Pillemer G, Niehrs C, Fainsod A. Negative autoregulation of Oct3/4 through Cdx1 promotes the onset of gastrulation. Dev Dyn 2011; 240:796-807. [PMID: 21360791 DOI: 10.1002/dvdy.22588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2011] [Indexed: 12/16/2022] Open
Abstract
Gastrulation marks the onset of germ layer formation from undifferentiated precursor cells maintained by a network including the Pou5f1 gene, Oct3/4. Negative regulation of the undifferentiated state is a prerequisite for germ layer formation and subsequent development. A novel cross-regulatory network was characterized including the Pou5f1 and Cdx1 genes as part of the signals controlling the onset of gastrulation. Of particular interest was the observation that, preceding gastrulation, the Xenopus Oct3/4 factors, Oct60, Oct25, and Oct91, positively regulate Cdx1 expression through FGF signaling, and during gastrulation the Oct3/4 factors become repressors of Cdx1. Cdx1 negatively regulates the Pou5f1 genes during gastrulation, thus contributing to the repression of the network maintaining the undifferentiated state and promoting the onset of gastrulation. These regulatory interactions suggest that Oct3/4 initiates its own negative autoregulation through Cdx1 up-regulation to begin the repression of pluripotency in preparation for the onset of gastrulation and germ layer differentiation.
Collapse
Affiliation(s)
- Sharon Zins Rousso
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Stairs DB, Kong J, Lynch JP. Cdx genes, inflammation, and the pathogenesis of intestinal metaplasia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:231-70. [PMID: 21075347 PMCID: PMC6005371 DOI: 10.1016/b978-0-12-381280-3.00010-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intestinal metaplasia (IM) is a biologically interesting and clinically relevant condition in which one differentiated type of epithelium is replaced by another that is morphologically similar to normal intestinal epithelium. Two classic examples of this are gastric IM and Barrett's esophagus (BE). In both, a chronic inflammatory microenvironment, provoked either by Helicobacter pylori infection of the stomach or acid and bile reflux into the esophagus, precedes the metaplasia. The Caudal-related homeodomain transcription factors Cdx1 and Cdx2 are critical regulators of the normal intestinal epithelial cell phenotype. Ectopic expression of Cdx1 and Cdx2 occurs in both gastric IM as well as in BE. This expression precedes the onset of the metaplasia and implies a causal role for these factors in this process. We review the observations regarding the role of chronic inflammation and the Cdx transcription factors in the pathogenesis of gastric IM and BE.
Collapse
Affiliation(s)
- Douglas B Stairs
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
8
|
Faas L, Isaacs HV. Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis. Dev Dyn 2009; 238:835-52. [PMID: 19301404 PMCID: PMC2701559 DOI: 10.1002/dvdy.21901] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Using Xenopus tropicalis, we present the first analysis of the developmental effects that result from knocking down the function of the three Cdx genes present in the typical vertebrate genome. Knockdowns of individual Cdx genes lead to a similar range of posterior defects; compound Cdx knockdowns result in increasingly severe posterior truncations, accompanied by posterior shifts and reduction of 5' Hox gene expression. We provide evidence that Cdx and Wnt3A genes are components of a positive feedback loop operating in the posterior axis. We show that Cdx function is required during later, but not early stages of development, for correct regional specification of the endoderm and morphogenesis of the gut. Our results support the hypothesis that during amphibian development the overall landscape of Cdx activity in the embryo is more important than the specific function of individual Cdx proteins.
Collapse
Affiliation(s)
- Laura Faas
- Department of Biology, University of York, York, United Kingdom
| | | |
Collapse
|
9
|
Keenan ID, Sharrard RM, Isaacs HV. FGF signal transduction and the regulation of Cdx gene expression. Dev Biol 2006; 299:478-88. [PMID: 16982047 DOI: 10.1016/j.ydbio.2006.08.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 08/07/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
Cdx homeodomain transcription factors play important roles in the development of the vertebrate body axis and gut epithelium. Signaling involving FGF, wnt and retinoic acid ligands has been implicated in the regulation of individual Cdx genes. In this study we examine the requirement for FGF-dependent signal transduction pathways in the regulation of Cdx gene expression. In the amphibian Xenopus laevis the earliest expression of Cdx1, Cdx2 and Cdx4 is within the developing mesoderm. We show that a functional FGF signaling pathway is required for the normal expression of all three amphibian Cdx genes during gastrula stages. We show that FGF stimulation activates signaling through both the MAP kinase pathway and the PI-3 kinase pathway in Xenopus tissue explants. However, our analysis of these pathways in gastrula stage embryos indicates that the MAP kinase pathway is required for Cdx gene expression, whereas the PI-3 kinase pathway is not. We show that FGF and wnt signaling can interact in the regulation of Cdx genes and during gastrula stages the normal expression of the Cdx genes requires the activity of both pathways. Furthermore, we show that wnt mediated Cdx regulation is independent of the MAP kinase pathway.
Collapse
Affiliation(s)
- Iain D Keenan
- Department of Biology, University of York, York, YO10 5YW, UK
| | | | | |
Collapse
|
10
|
Marom K, Levy V, Pillemer G, Fainsod A. Temporal analysis of the early BMP functions identifies distinct anti-organizer and mesoderm patterning phases. Dev Biol 2005; 282:442-54. [PMID: 15950609 DOI: 10.1016/j.ydbio.2005.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 01/30/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
BMP signaling performs multiple important roles during early embryogenesis. Signaling through the BMP pathway is mediated by different BMP ligands expressed in partially overlapping temporal and spatial patterns. Assignment of different BMP-dependent activities to the individual ligands has relied on the patterns of expression of the various BMP genes. Temporal analysis of BMP signaling prior to and during gastrulation was performed using glucocorticoid-controlled Smad proteins. Overexpression of the BMP-specific Smad1 and Smad5 revealed that suppression of Spemann's organizer formation in Xenopus embryos can only take place by activating the BMP pathway prior to the onset of gastrulation. Blocking BMP signaling with the inhibitory Smad, Smad6, results in dorsalized embryos or secondary axis induction, only when activated up to early gastrula stages. BMP2 efficiently represses organizer-specific transcription from the midblastula transition onwards while BMP4 is unable to prevent the early activation of organizer-specific genes. Manipulation of the BMP pathway during mid/late gastrula affects mesodermal patterning with no external phenotypic effects. These observations suggest that the malformations resulting from inhibition or promotion of organizer formation, ventralized or dorsalized, respectively, are the result of a very early BMP function, through its antagonism of organizer formation. This function is apparently fulfilled by BMP2 and only at its latest phase by BMP4. Subsequently, BMP functions in the patterning of the mesoderm with no apparent phenotypic effects.
Collapse
Affiliation(s)
- Karen Marom
- Department of Cellular Biochemistry and Human Genetics, Faculty of Medicine, Hebrew University, POB 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
11
|
Yelin R, Schyr RBH, Kot H, Zins S, Frumkin A, Pillemer G, Fainsod A. Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels. Dev Biol 2005; 279:193-204. [PMID: 15708568 DOI: 10.1016/j.ydbio.2004.12.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 11/17/2004] [Accepted: 12/06/2004] [Indexed: 11/26/2022]
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a set of developmental malformations caused by alcohol consumption during pregnancy. Fetal Alcohol Syndrome (FAS), the strongest manifestation of FASD, results in short stature, microcephally and facial dysmorphogenesis including microphthalmia. Using Xenopus embryos as a model developmental system, we show that ethanol exposure recapitulates many aspects of FAS, including a shortened rostro-caudal axis, microcephally and microphthalmia. Temporal analysis revealed that Xenopus embryos are most sensitive to ethanol exposure between late blastula and early/mid gastrula stages. This window of sensitivity overlaps with the formation and early function of the embryonic organizer, Spemann's organizer. Molecular analysis revealed that ethanol exposure of embryos induces changes in the domains and levels of organizer-specific gene expression, identifying Spemann's organizer as an early target of ethanol. Ethanol also induces a defect in convergent extension movements that delays gastrulation movements and may affect the overall length. We show that mechanistically, ethanol is antagonistic to retinol (Vitamin A) and retinal conversion to retinoic acid, and that the organizer is active in retinoic acid signaling during early gastrulation. The model suggests that FASD is induced in part by an ethanol-dependent reduction in retinoic acid levels that are necessary for the normal function of Spemann's organizer.
Collapse
Affiliation(s)
- Ronit Yelin
- Department of Cellular Biochemistry and Human Genetics, Faculty of Medicine, Hebrew University, POB 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
12
|
Guo RJ, Huang E, Ezaki T, Patel N, Sinclair K, Wu J, Klein P, Suh ER, Lynch JP. Cdx1 inhibits human colon cancer cell proliferation by reducing beta-catenin/T-cell factor transcriptional activity. J Biol Chem 2004; 279:36865-75. [PMID: 15215241 DOI: 10.1074/jbc.m405213200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cessation of proliferation and the induction of differentiation are highly coordinated processes that occur continuously in the intestinal crypts. The homeodomain transcription factors Cdx1 and Cdx2 regulate intestine-specific gene expression and enterocyte differentiation. Their roles in regulating proliferation are recognized but remain poorly understood. Previously, we demonstrated that Cdx1 expression diminished the proliferation of human colon cancer cells in part by reducing cyclin D1 gene expression. In order to elucidate further the molecular mechanisms underlying this phenomenon, we first hypothesized that Cdx1 or Cdx2 expression reduces colon cancer cell proliferation by inhibiting beta-catenin/T-cell factor (TCF) transcriptional activity. We report that Cdx1 or Cdx2 expression does inhibit beta-catenin/TCF transcriptional activity in colon cancer cells. This inhibitory effect is dose-dependent and is observed in different colon cancer cell lines, and the degree of inhibition correlates with the ability of Cdx1 to reduce cell proliferation. Cdx1 expression does not alter beta-catenin protein levels or intracellular distribution nor does it induce an inhibitory TCF isoform. We also find that Cdx1 expression is lost in Min mouse polyps with increased nuclear localization of beta-catenin, suggesting that Cdx1 does not support beta-catenin-mediated transformation. Finally, we show that colon cancer cells effectively reduce Cdx2-mediated inhibition of Wnt/beta-catenin/TCF transcriptional activity when compared with other model systems. This suggests that colon cancer and possibly crypt epithelial cells can modulate the effects of Cdx2 on beta-catenin signaling and proliferation. We conclude that Cdx1 and Cdx2 inhibit colon cancer cell proliferation by blocking beta-catenin/TCF transcriptional activity.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Avian Proteins
- Blotting, Northern
- CDX2 Transcription Factor
- Cell Differentiation
- Cell Division
- Cell Line
- Cell Line, Tumor
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Cytoskeletal Proteins/metabolism
- Dose-Response Relationship, Drug
- Enterocytes/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Genotype
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/physiology
- Humans
- Immunohistochemistry
- Intestinal Mucosa/metabolism
- Microscopy, Fluorescence
- Models, Biological
- Phenotype
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Isoforms
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/metabolism
- Ribonucleases/metabolism
- Signal Transduction
- Trans-Activators/metabolism
- Transcription, Genetic
- Transfection
- Xenopus
- Xenopus Proteins
- beta Catenin
Collapse
Affiliation(s)
- Rong-Jun Guo
- Division of Gastroenterology, the Department of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
In Xenopus embryos, body patterning and cell specification are initiated by transcription factors, which are themselves transcribed during oogenesis, and their mRNAs are stored for use after fertilization. We have previously shown that the T-box transcription factor VegT is both necessary and sufficient to initiate transcription of all endoderm, and most mesoderm genes. In the absence of maternal VegT, no mesodermal organs (including the heart) or endodermal organs form. A second maternal transcription factor XTcf3 acts as a global repressor of transcription of dorsal genes, whose repression is inactivated on the dorsal side by a maternally encoded Wnt signaling pathway. In the absence of beta-catenin, no mesodermal or endodermal organs form. We show here that the maternally encoded transcription factor CREB is also essential for development. It is required for the initiation of expression of several mesodermal genes, including Xbra, Xcad2, and -3 and also regulates the cardiogenic gene Nkx 2-5. We show that maternal CREB-depleted embryos develop gastrulation defects that are rescued by the reintroduction of activated CREB mRNA. We conclude that maternal CREB must be added to the list of essential maternal transcription factors regulating cell specification in the early embryo.
Collapse
Affiliation(s)
- Nambirajan Sundaram
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
14
|
Kumano G, Smith WC. Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning. Dev Dyn 2002; 225:409-21. [PMID: 12454919 DOI: 10.1002/dvdy.10177] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A revised fate map of the gastrula Xenopus embryo predicts the existence of patterning mechanisms that operate within the animal/vegetal axis of the mesoderm-forming marginal zone. We review here molecular and embryologic data that demonstrate that such mechanisms are present and that they operate independently of the Spemann organizer. Evidence suggests that polarized fibroblast growth factor activity in the animal/vegetal axis patterns this axis. We present a model of mesoderm induction and patterning that integrates the new data on Spemann organizer-independent animal/vegetal patterning with data on other inductive pathways known to act on the gastrula marginal zone.
Collapse
Affiliation(s)
- Gaku Kumano
- Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|