1
|
Ali M, Kutlowski JW, Holland JN, Riley BB. Foxm1 promotes differentiation of neural progenitors in the zebrafish inner ear. Dev Biol 2025; 520:21-30. [PMID: 39761737 DOI: 10.1016/j.ydbio.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
During development of the vertebrate inner ear, sensory epithelia and neurons of the statoacoustic ganglion (SAG) arise from lineage-restricted progenitors that proliferate extensively before differentiating into mature post-mitotic cell types. Development of progenitors is regulated by Fgf, Wnt and Notch signaling, but how these pathways are coordinated to achieve an optimal balance of proliferation and differentiation is not well understood. Here we investigate the role in zebrafish of Foxm1, a transcription factor commonly associated with proliferation in developing tissues and tumors. Targeted knockout of foxm1 causes no overt defects in development. Homozygous mutants are viable and exhibit no obvious defects except male sterility. However, the mutant allele acts dominantly to reduce accumulation of SAG neurons, and maternal loss-of-function slightly enhances this deficiency. Neural progenitors are specified normally but, unexpectedly, persist in an early state of rapid proliferation and are delayed in differentiation. Progenitors eventually shift to a slower rate of proliferation similar to wild-type and differentiate to produce a normal number of SAG neurons, although the arrangement of neurons remains variably disordered. Mutant progenitors remain responsive to Fgf and Notch, as blocking these pathways partially alleviates the delay in differentiation. However, the ability of elevated Wnt/beta-catenin to block neural specification is impaired in foxm1 mutants. Modulating Wnt at later stages has no effect on progenitors in mutant or wild-type embryos. Our findings document an unusual role for foxm1 in promoting differentiation of SAG progenitors from an early, rapidly dividing phase to a more mature slower phase prior to differentiation.
Collapse
Affiliation(s)
- Maria Ali
- Biology Department, Texas A&M University, College Station, TX, 7843-3258, USA
| | - James W Kutlowski
- Biology Department, Texas A&M University, College Station, TX, 7843-3258, USA
| | - Jorden N Holland
- Biology Department, Texas A&M University, College Station, TX, 7843-3258, USA
| | - Bruce B Riley
- Biology Department, Texas A&M University, College Station, TX, 7843-3258, USA.
| |
Collapse
|
2
|
Campbell AS, Minařík M, Franěk R, Vazačová M, Havelka M, Gela D, Pšenička M, Baker CVH. Opposing roles for Bmp signalling during the development of electrosensory lateral line organs. eLife 2025; 14:e99798. [PMID: 39745052 PMCID: PMC11936418 DOI: 10.7554/elife.99798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/30/2024] [Indexed: 03/26/2025] Open
Abstract
The lateral line system enables fishes and aquatic-stage amphibians to detect local water movement via mechanosensory hair cells in neuromasts, and many species to detect weak electric fields via electroreceptors (modified hair cells) in ampullary organs. Both neuromasts and ampullary organs develop from lateral line placodes, but the molecular mechanisms underpinning ampullary organ formation are understudied relative to neuromasts. This is because the ancestral lineages of zebrafish (teleosts) and Xenopus (frogs) independently lost electroreception. We identified Bmp5 as a promising candidate via differential RNA-seq in an electroreceptive ray-finned fish, the Mississippi paddlefish (Polyodon spathula; Modrell et al., 2017, eLife 6: e24197). In an experimentally tractable relative, the sterlet sturgeon (Acipenser ruthenus), we found that Bmp5 and four other Bmp pathway genes are expressed in the developing lateral line, and that Bmp signalling is active. Furthermore, CRISPR/Cas9-mediated mutagenesis targeting Bmp5 in G0-injected sterlet embryos resulted in fewer ampullary organs. Conversely, when Bmp signalling was inhibited by DMH1 treatment shortly before the formation of ampullary organ primordia, supernumerary ampullary organs developed. These data suggest that Bmp5 promotes ampullary organ development, whereas Bmp signalling via another ligand(s) prevents their overproduction. Taken together, this demonstrates opposing roles for Bmp signalling during ampullary organ formation.
Collapse
Affiliation(s)
- Alexander S Campbell
- Department of Physiology, Development & Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Martin Minařík
- Department of Physiology, Development & Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Roman Franěk
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Michaela Vazačová
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Miloš Havelka
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - David Gela
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Clare VH Baker
- Department of Physiology, Development & Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
3
|
Galindo-Torres P, Rosas C, Ramos-Rodríguez S, Galindo-Sánchez CE. Chronic thermal stress on Octopus maya embryos down-regulates epigenome-related genes and those involved in the nervous system development and morphogenesis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101332. [PMID: 39366120 DOI: 10.1016/j.cbd.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024]
Abstract
Red Octopus maya is strongly influenced by temperature. Recent studies have reported negative reproduction effects on males and females when exposed to temperatures higher than 27 °C. Embryos under thermal stress show morphological and physiological alterations; similar phenotypes have been reported in embryos from stressed females, evidencing transgenerational consequences. Transcriptomic profiles were characterized along embryo development during normal-under thermal stress and epigenetic alterations through DNA methylation and damage quantification. Total RNA in organogenesis, activation, and growth stages in control and thermal stress were sequenced with Illumina RNA-Seq. Similarly, total DNA was used for DNA methylation and damage quantification between temperatures and embryo stages. Differential gene expression analyses showed that embryos express genes associated with oxygen transport, morphogenesis, nervous system, neuroendocrine cell differentiation, spermatogenesis, and male sex differentiation. Conversely, embryos turn off genes involved mainly in nervous system development, morphogenesis, and gene expression regulation when exposed to thermal stress - consistent with O. maya embryo phenotypes showing abnormal arms, eyes, and body development. No significant differences were observed in quantifying DNA methylation between temperatures but they were for DNA damage quantification. Epigenetic alterations are hypothesized to occur since several genes found downregulated belong to the epigenetic machinery but at histone tail level.
Collapse
Affiliation(s)
- Pavel Galindo-Torres
- Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigacion (UMDI), Facultad de Ciencias, Universidad Nacional Autonoma de Mexico (UNAM), Puerto DE Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico.
| | - Sadot Ramos-Rodríguez
- Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| | - Clara E Galindo-Sánchez
- Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| |
Collapse
|
4
|
Choudhury A, Ojha PK, Ray S. Hazards of antiviral contamination in water: Dissemination, fate, risk and their impact on fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135087. [PMID: 38964042 DOI: 10.1016/j.jhazmat.2024.135087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Antiviral drugs are a cornerstone in the first line of antiviral therapy and their demand rises consistently with increments in viral infections and successive outbreaks. The drugs enter the waters due to improper disposal methods or via human excreta following their consumption; consequently, many of them are now classified as emerging pollutants. Hereby, we review the global dissemination of these medications throughout different water bodies and thoroughly investigate the associated risk they pose to the aquatic fauna, particularly our vertebrate relative fish, which has great economic and dietary importance and subsequently serves as a major doorway to the human exposome. Our risk assessment identifies eleven such drugs that presently pose high to moderate levels of risk to the fish. The antiviral drugs are likely to induce oxidative stress, alter the behaviour, affect different physiological processes and provoke various toxicological mechanisms. Many of the compounds exhibit elevated bioaccumulation potential, while, some have an increased tendency to leach through soil and contaminate the groundwater. Eight antiviral medications show a highly recalcitrant nature and would impact the aquatic life consistently in the long run and continue to influence the human exposome. Thereby, we call for urgent ecopharmacovigilance measures and modification of current water treatment methods.
Collapse
Affiliation(s)
- Abhigyan Choudhury
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Probir Kumar Ojha
- Drug Discovery and Development (DDD) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Sajal Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
5
|
Fister AM, Horn A, Lasarev MR, Huttenlocher A. Damage-induced basal epithelial cell migration modulates the spatial organization of redox signaling and sensory neuron regeneration. eLife 2024; 13:RP94995. [PMID: 39207919 PMCID: PMC11361710 DOI: 10.7554/elife.94995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Epithelial damage leads to early reactive oxygen species (ROS) signaling, which regulates sensory neuron regeneration and tissue repair. How the initial type of tissue injury influences early damage signaling and regenerative growth of sensory axons remains unclear. Previously we reported that thermal injury triggers distinct early tissue responses in larval zebrafish. Here, we found that thermal but not mechanical injury impairs sensory axon regeneration and function. Real-time imaging revealed an immediate tissue response to thermal injury characterized by the rapid Arp2/3-dependent migration of keratinocytes, which was associated with tissue scale ROS production and sustained sensory axon damage. Isotonic treatment was sufficient to limit keratinocyte movement, spatially restrict ROS production, and rescue sensory neuron function. These results suggest that early keratinocyte dynamics regulate the spatial and temporal pattern of long-term signaling in the wound microenvironment during tissue repair.
Collapse
Affiliation(s)
- Alexandra M Fister
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
| | - Adam Horn
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Michael R Lasarev
- Department of Biostatistics and Medical Informatics, University of Wisconsin-MadisonMadisonUnited States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
- Department of Pediatrics, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
6
|
Fister AM, Horn A, Lasarev M, Huttenlocher A. Damage-induced basal epithelial cell migration modulates the spatial organization of redox signaling and sensory neuron regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.14.532628. [PMID: 36993176 PMCID: PMC10055054 DOI: 10.1101/2023.03.14.532628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Epithelial damage leads to early reactive oxygen species (ROS) signaling, which regulates sensory neuron regeneration and tissue repair. How the initial type of tissue injury influences early damage signaling and regenerative growth of sensory axons remains unclear. Previously we reported that thermal injury triggers distinct early tissue responses in larval zebrafish. Here, we found that thermal but not mechanical injury impairs sensory axon regeneration and function. Real-time imaging revealed an immediate tissue response to thermal injury characterized by the rapid Arp2/3-dependent migration of keratinocytes, which was associated with tissue-scale ROS production and sustained sensory axon damage. Isotonic treatment was sufficient to limit keratinocyte movement, spatially restrict ROS production and rescue sensory neuron function. These results suggest that early keratinocyte dynamics regulate the spatial and temporal pattern of long-term signaling in the wound microenvironment during tissue repair.
Collapse
|
7
|
Prakash V, Chauhan SS, Ansari MI, Jagdale P, Ayanur A, Parthasarathi R, Anbumani S. 4-Methylbenzylidene camphor induced neurobehavioral toxicity in zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2024; 242:117746. [PMID: 38008201 DOI: 10.1016/j.envres.2023.117746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/05/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
4-Methylbenzylidene camphor (4-MBC) is a widely used organic UV filter in personal care products. Extensive use of 4-MBC and its frequent detection in aquatic ecosystems defile the biota with muscular and neuronal impairments. This study investigates the neurobehavioral toxicity of 4-MBC using Danio rerio as a model organism. Embryos were exposed semi-statically to 4-MBC at 5, 50, and 500 μg/L concentrations for 10-day post fertilization (dpf). Embryos exhibited a significant thigmotaxis and decreased startle touch response with altered expression of nervous system mRNA transcripts on 5 & 10 dpf. Compared to the sham-exposed group, 4-MBC treated larvae exhibited changes in the expression of shha, ngn1, mbp, elavl3, α1-tubulin, syn2a, and gap43 genes. Since ngn1 induction is mediated by shh signaling during sensory neuron specification, the elevated protein expression of NGN1 indicates 4-MBC interference in the sonic hedgehog signaling pathway. This leads to sensory neuron impairment and function such as 'sense' as evident from reduced touch response. In addition, larval brain histology with a reduced number of cells in the Purkinje layer emblazing the defunct motor coordination. Predictive toxicity study also showed a higher affinity of 4-MBC to modeled Shh protein. Thus, the findings of the present work highlighted that 4-MBC is potential to induce developmental neurotoxicity at both behavioral and molecular functional perspectives, and developing D. rerio larvae could be considered as a suitable alternate animal model to assess the neurological dysfunction of organic UV filters.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shweta Singh Chauhan
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Imran Ansari
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pankaj Jagdale
- Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Anjaneya Ayanur
- Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Olson HM, Maxfield A, Calistri NL, Heiser LM, Qian W, Knaut H, Nechiporuk AV. RhoA GEF Mcf2lb regulates rosette integrity during collective cell migration. Development 2024; 151:dev201898. [PMID: 38165177 PMCID: PMC10820872 DOI: 10.1242/dev.201898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Multicellular rosettes are transient epithelial structures that serve as important cellular intermediates in the formation of diverse organs. Using the zebrafish posterior lateral line primordium (pLLP) as a model system, we investigated the role of the RhoA GEF Mcf2lb in rosette morphogenesis. The pLLP is a group of ∼150 cells that migrates along the zebrafish trunk and is organized into epithelial rosettes; these are deposited along the trunk and will differentiate into sensory organs called neuromasts (NMs). Using single-cell RNA-sequencing and whole-mount in situ hybridization, we showed that mcf2lb is expressed in the pLLP during migration. Live imaging and subsequent 3D analysis of mcf2lb mutant pLLP cells showed disrupted apical constriction and subsequent rosette organization. This resulted in an excess number of deposited NMs along the trunk of the zebrafish. Cell polarity markers ZO-1 and Par-3 were apically localized, indicating that pLLP cells are properly polarized. In contrast, RhoA activity, as well as signaling components downstream of RhoA, Rock2a and non-muscle Myosin II, were diminished apically. Thus, Mcf2lb-dependent RhoA activation maintains the integrity of epithelial rosettes.
Collapse
Affiliation(s)
- Hannah M. Olson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR 97239, USA
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amanda Maxfield
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR 97239, USA
| | - Nicholas L. Calistri
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Biomedical Engineering Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Laura M. Heiser
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Weiyi Qian
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alex V. Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR 97239, USA
| |
Collapse
|
9
|
Saunders LM, Srivatsan SR, Duran M, Dorrity MW, Ewing B, Linbo TH, Shendure J, Raible DW, Moens CB, Kimelman D, Trapnell C. Embryo-scale reverse genetics at single-cell resolution. Nature 2023; 623:782-791. [PMID: 37968389 PMCID: PMC10665197 DOI: 10.1038/s41586-023-06720-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/06/2023] [Indexed: 11/17/2023]
Abstract
The maturation of single-cell transcriptomic technologies has facilitated the generation of comprehensive cellular atlases from whole embryos1-4. A majority of these data, however, has been collected from wild-type embryos without an appreciation for the latent variation that is present in development. Here we present the 'zebrafish single-cell atlas of perturbed embryos': single-cell transcriptomic data from 1,812 individually resolved developing zebrafish embryos, encompassing 19 timepoints, 23 genetic perturbations and a total of 3.2 million cells. The high degree of replication in our study (eight or more embryos per condition) enables us to estimate the variance in cell type abundance organism-wide and to detect perturbation-dependent deviance in cell type composition relative to wild-type embryos. Our approach is sensitive to rare cell types, resolving developmental trajectories and genetic dependencies in the cranial ganglia neurons, a cell population that comprises less than 1% of the embryo. Additionally, time-series profiling of individual mutants identified a group of brachyury-independent cells with strikingly similar transcriptomes to notochord sheath cells, leading to new hypotheses about early origins of the skull. We anticipate that standardized collection of high-resolution, organism-scale single-cell data from large numbers of individual embryos will enable mapping of the genetic dependencies of zebrafish cell types, while also addressing longstanding challenges in developmental genetics, including the cellular and transcriptional plasticity underlying phenotypic diversity across individuals.
Collapse
Affiliation(s)
- Lauren M Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay R Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brent Ewing
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tor H Linbo
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - David W Raible
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | | - David Kimelman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| |
Collapse
|
10
|
Bañón A, Alsina B. Pioneer statoacoustic neurons guide neuroblast behaviour during otic ganglion assembly. Development 2023; 150:dev201824. [PMID: 37938828 PMCID: PMC10651105 DOI: 10.1242/dev.201824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/07/2023] [Indexed: 11/10/2023]
Abstract
Cranial ganglia are aggregates of sensory neurons that mediate distinct types of sensation. The statoacoustic ganglion (SAG) develops into several lobes that are spatially arranged to connect appropriately with hair cells of the inner ear. To investigate the cellular behaviours involved in the 3D organization of the SAG, we use high-resolution confocal imaging of single-cell, labelled zebrafish neuroblasts (NBs), photoconversion, photoablation, and genetic perturbations. We show that otic NBs delaminate out of the otic epithelium in an epithelial-mesenchymal transition-like manner, rearranging apical polarity and primary cilia proteins. We also show that, once delaminated, NBs require RhoGTPases in order to perform active migration. Furthermore, tracking of recently delaminated NBs revealed their directed migration and coalescence around a small population of pioneer SAG neurons. These pioneer SAG neurons, not from otic placode origin, populate the coalescence region before otic neurogenesis begins and their ablation disrupts delaminated NB migratory pathways, consequentially affecting SAG shape. Altogether, this work shows for the first time the role of pioneer SAG neurons in orchestrating SAG development.
Collapse
Affiliation(s)
- Aitor Bañón
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Berta Alsina
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
11
|
Olson HM, Maxfield A, Calistri NL, Heiser LM, Nechiporuk AV. RhoA GEF Mcf2lb regulates rosette integrity during collective cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537573. [PMID: 37131612 PMCID: PMC10153259 DOI: 10.1101/2023.04.19.537573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During development, multicellular rosettes serve as important cellular intermediates in the formation of diverse organ systems. Multicellular rosettes are transient epithelial structures that are defined by the apical constriction of cells towards the rosette center. Due to the important role these structures play during development, understanding the molecular mechanisms by which rosettes are formed and maintained is of high interest. Utilizing the zebrafish posterior lateral line primordium (pLLP) as a model system, we identify the RhoA GEF Mcf2lb as a regulator of rosette integrity. The pLLP is a group of ~150 cells that migrates along the zebrafish trunk and is organized into epithelial rosettes; these are deposited along the trunk and will differentiate into sensory organs called neuromasts (NMs). Using single-cell RNA sequencing and whole-mount in situ hybridization, we showed that mcf2lb is expressed in the pLLP during migration. Given the known role of RhoA in rosette formation, we asked whether Mcf2lb plays a role in regulating apical constriction of cells within rosettes. Live imaging and subsequent 3D analysis of mcf2lb mutant pLLP cells showed disrupted apical constriction and subsequent rosette organization. This in turn resulted in a unique posterior Lateral Line phenotype: an excess number of deposited NMs along the trunk of the zebrafish. Cell polarity markers ZO-1 and Par-3 were apically localized, indicating that pLLP cells are normally polarized. In contrast, signaling components that mediate apical constriction downstream of RhoA, Rock-2a and non-muscle Myosin II were diminished apically. Altogether our results suggest a model whereby Mcf2lb activates RhoA, which in turn activates downstream signaling machinery to induce and maintain apical constriction in cells incorporated into rosettes.
Collapse
Affiliation(s)
- Hannah M. Olson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, Oregon, USA
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Amanda Maxfield
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, Oregon, USA
| | - Nicholas L. Calistri
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Biomedical Engineering Graduate Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Laura M. Heiser
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Alex V. Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, Oregon, USA
| |
Collapse
|
12
|
Baeza-Loya S, Raible DW. Vestibular physiology and function in zebrafish. Front Cell Dev Biol 2023; 11:1172933. [PMID: 37143895 PMCID: PMC10151581 DOI: 10.3389/fcell.2023.1172933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
The vestibular system of the inner ear provides information about head motion and spatial orientation relative to gravity to ensure gaze stability, balance, and postural control. Zebrafish, like humans, have five sensory patches per ear that serve as peripheral vestibular organs, with the addition of the lagena and macula neglecta. The zebrafish inner ear can be easily studied due to its accessible location, the transparent tissue of larval fish, and the early development of vestibular behaviors. Thus, zebrafish are an excellent model for studying the development, physiology, and function of the vestibular system. Recent work has made great strides to elucidate vestibular neural circuitry in fish, tracing sensory transmission from receptors in the periphery to central computational circuits driving vestibular reflexes. Here we highlight recent work that illuminates the functional organization of vestibular sensory epithelia, innervating first-order afferent neurons, and second-order neuronal targets in the hindbrain. Using a combination of genetic, anatomical, electrophysiological, and optical techniques, these studies have probed the roles of vestibular sensory signals in fish gaze, postural, and swimming behaviors. We discuss remaining questions in vestibular development and organization that are tractable in the zebrafish model.
Collapse
Affiliation(s)
| | - David W. Raible
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS and Biological Structure, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Li Y, Ning G, Kang B, Zhu J, Wang XY, Wang Q, Cai T. A novel recessive mutation in OXR1 is identified in patient with hearing loss recapitulated by the knockdown zebrafish. Hum Mol Genet 2023; 32:764-772. [PMID: 36130215 PMCID: PMC10365843 DOI: 10.1093/hmg/ddac229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/14/2022] Open
Abstract
Hereditary hearing loss is a highly genetically heterogeneous disorder. More than 150 genes have been identified to link to human non-syndromic hearing impairment. To identify genetic mutations and underlying molecular mechanisms in affected individuals and families with congenital hearing loss, we recruited a cohort of 389 affected individuals in 354 families for whole-exome sequencing analysis. In this study, we report a novel homozygous missense variant (c.233A > G, p.Lys78Arg) in the OXR1 gene, which was identified in a 4-year-old girl with sensorineural hearing loss. OXR1 encodes Oxidation Resistance 1 and is evolutionarily conserved from zebrafish to human. We found that the ortholog oxr1b gene is expressed in the statoacoustic ganglion (SAG, a sensory ganglion of ear) and posterior lateral line ganglion (pLL) in zebrafish. Knockdown of oxr1b in zebrafish resulted in a significant developmental defect of SAG and pLL. This phenotype can be rescued by co-injection of wild-type human OXR1 mRNAs, but not mutant OXR1 (c.233A > G) mRNAs. OXR1-associated pathway analysis revealed that mutations of TBC1D24, a TLDc-domain-containing homolog gene of OXR1, have previously been identified in patients with hearing loss. Interestingly, mutations or knockout of OXR1 interacting molecules such as ATP6V1B1 and ESR1 are also associated with hearing loss in patients or animal models, hinting an important role of OXR1 and associated partners in cochlear development and hearing function.
Collapse
Affiliation(s)
- Yuan Li
- Department of Otorhinolaryngology, China-Japan Friendship Hospital, Beijing 1000292, China
| | - Guozhu Ning
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 5100063, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 1001014, China
| | - Baoling Kang
- Bioinformatics Section, Angen Gene Medicine Technology, Beijing 1001765, China
| | - Jinwen Zhu
- Bioinformatics Section, Angen Gene Medicine Technology, Beijing 1001765, China
| | | | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 5100063, China
| | - Tao Cai
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 208927, USA
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Cabotegravir Exposure of Zebrafish ( Danio rerio) Embryos Impacts on Neurodevelopment and Behavior. Int J Mol Sci 2023; 24:ijms24031994. [PMID: 36768311 PMCID: PMC9916638 DOI: 10.3390/ijms24031994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
As most new medications, Cabotegravir (CAB) was recently approved as an antiretroviral treatment of HIV infection without in-depth safety information on in utero exposure. Although no developmental toxicity in rats and rabbits was reported, recent studies demonstrated that CAB decreases pluripotency of human embryonic stem cells. CAB exposure effects during development were assessed in zebrafish embryos by the Fish Embryo Toxicity test after exposure at subtherapeutic concentrations up to 25× the human Cmax. Larvae behavior was assessed by the light-dark locomotion test. The expression of factors involved in neurogenesis was evaluated by whole-mount in situ hybridization. CAB did not cause gross morphological defects at low doses, although pericardial edema, uninflated swim bladder, decreased heartbeats, growth delay, and decreased hatching rate were observed at the highest concentrations. Decreased locomotion was observed even at the subtherapeutic dose, suggesting alterations of nervous system integrity. This hypothesis was supported by the observation of decreased expression of crucial factors involved in early neuronal differentiation in diencephalic and telencephalic dopaminergic areas, midbrain/hindbrain boundary, and craniofacial ganglia. These findings support CAB effects on neurogenesis in zebrafish embryos and suggest long-term follow-up of exposed infants to provide data on drug safety during pregnancy.
Collapse
|
15
|
Laureano AS, Flaherty K, Hinman AM, Jadali A, Nakamura T, Higashijima SI, Sabaawy HE, Kwan KY. shox2 is required for vestibular statoacoustic neuron development. Biol Open 2023; 11:286143. [PMID: 36594417 PMCID: PMC9838637 DOI: 10.1242/bio.059599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 01/04/2023] Open
Abstract
Homeobox genes act at the top of genetic hierarchies to regulate cell specification and differentiation during embryonic development. We identified the short stature homeobox domain 2 (shox2) transcription factor that is required for vestibular neuron development. shox2 transcripts are initially localized to the otic placode of the developing inner ear where neurosensory progenitors reside. To study shox2 function, we generated CRISPR-mediated mutant shox2 fish. Mutant embryos display behaviors associated with vestibular deficits and showed reduced number of anterior statoacoustic ganglion neurons that innervate the utricle, the vestibular organ in zebrafish. Moreover, a shox2-reporter fish showed labeling of developing statoacoustic ganglion neurons in the anterior macula of the otic vesicle. Single cell RNA-sequencing of cells from the developing otic vesicle of shox2 mutants revealed altered otic progenitor profiles, while single molecule in situ assays showed deregulated levels of transcripts in developing neurons. This study implicates a role for shox2 in development of vestibular but not auditory statoacoustic ganglion neurons.
Collapse
Affiliation(s)
- Alejandra S. Laureano
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, NJ 08854, USA
| | - Kathleen Flaherty
- Department of Comparative Medicine Resources, Rutgers University, Piscataway, NJ 08854, USA
| | - Anna-Maria Hinman
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, NJ 08854, USA
| | - Azadeh Jadali
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, NJ 08854, USA
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Shin-ichi Higashijima
- Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, Okazaki, Aichi 444-8787, Japan
| | - Hatim E. Sabaawy
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Department of Medicine RBHS-Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Kelvin Y. Kwan
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, NJ 08854, USA,Author for correspondence ()
| |
Collapse
|
16
|
Rosa JB, Nassman KY, Sagasti A. Sensory axons induce epithelial lipid microdomain remodeling and determine the distribution of junctions in the epidermis. Mol Biol Cell 2023; 34:ar5. [PMID: 36322392 PMCID: PMC9816649 DOI: 10.1091/mbc.e22-09-0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Epithelial cell properties are determined by the polarized distribution of membrane lipids, the cytoskeleton, and adhesive junctions. Epithelia are often profusely innervated, but little work has addressed how neurites affect epithelial organization. We previously found that basal keratinocytes in the zebrafish epidermis enclose axons in ensheathment channels sealed by autotypic junctions. Here we characterized how axons remodel cell membranes, the cytoskeleton, and junctions in basal keratinocytes. At the apical surface of basal keratinocytes, axons organized lipid microdomains quantitatively enriched in reporters for PI(4,5)P2 and liquid-ordered (Lo) membranes. Lipid microdomains supported the formation of cadherin-enriched, F-actin protrusions, which wrapped around axons, likely initiating ensheathment. In the absence of axons, cadherin-enriched microdomains formed on basal cells but did not organize into contiguous domains. Instead, these isolated domains formed heterotypic junctions with periderm cells, a distinct epithelial cell type. Thus, axon endings dramatically remodel polarized epithelial components and regulate epidermal adhesion.
Collapse
Affiliation(s)
- Jeffrey B. Rosa
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Khaled Y. Nassman
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Alvaro Sagasti
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
17
|
Green LA, O'Dea MR, Hoover CA, DeSantis DF, Smith CJ. The embryonic zebrafish brain is seeded by a lymphatic-dependent population of mrc1 + microglia precursors. Nat Neurosci 2022; 25:849-864. [PMID: 35710983 PMCID: PMC10680068 DOI: 10.1038/s41593-022-01091-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/06/2022] [Indexed: 02/02/2023]
Abstract
Microglia are the resident macrophages of the CNS that serve critical roles in brain construction. Although human brains contain microglia by 4 weeks gestation, an understanding of the earliest microglia that seed the brain during its development remains unresolved. Using time-lapse imaging in zebrafish, we discovered a mrc1a+ microglia precursor population that seeds the brain before traditionally described microglia. These early microglia precursors are dependent on lymphatic vasculature that surrounds the brain and are independent of pu1+ yolk sac-derived microglia. Single-cell RNA-sequencing datasets reveal Mrc1+ microglia in the embryonic brains of mice and humans. We then show in zebrafish that these early mrc1a+ microglia precursors preferentially expand during pathophysiological states in development. Taken together, our results identify a critical role of lymphatics in the microglia precursors that seed the early embryonic brain.
Collapse
Affiliation(s)
- Lauren A Green
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Michael R O'Dea
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Camden A Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Dana F DeSantis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
18
|
Bump RG, Goo CEA, Horton EC, Rasmussen JP. Osteoblasts pattern endothelium and somatosensory axons during zebrafish caudal fin organogenesis. Development 2022; 149:dev200172. [PMID: 35129199 PMCID: PMC8918783 DOI: 10.1242/dev.200172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
Skeletal elements frequently associate with vasculature and somatosensory nerves, which regulate bone development and homeostasis. However, the deep, internal location of bones in many vertebrates has limited in vivo exploration of the neurovascular-bone relationship. Here, we use the zebrafish caudal fin, an optically accessible organ formed of repeating bony ray skeletal units, to determine the cellular relationship between nerves, bones and endothelium. In adult zebrafish, we establish the presence of somatosensory axons running through the inside of the bony fin rays, juxtaposed with osteoblasts on the inner hemiray surface. During development we show that the caudal fin progresses through sequential stages of endothelial plexus formation, bony ray addition, ray innervation and endothelial remodeling. Surprisingly, the initial stages of fin morphogenesis proceed normally in animals lacking either fin endothelium or somatosensory nerves. Instead, we find that sp7+ osteoblasts are required for endothelial remodeling and somatosensory axon innervation in the developing fin. Overall, this study demonstrates that the proximal neurovascular-bone relationship in the adult caudal fin is established during fin organogenesis and suggests that ray-associated osteoblasts pattern axons and endothelium.
Collapse
Affiliation(s)
- Rosalind G Bump
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Camille E A Goo
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Emma C Horton
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey P Rasmussen
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
19
|
Riley BB. Comparative assessment of Fgf's diverse roles in inner ear development: A zebrafish perspective. Dev Dyn 2021; 250:1524-1551. [PMID: 33830554 DOI: 10.1002/dvdy.343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
20
|
Almasoudi SH, Schlosser G. Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1. Front Neuroanat 2021; 15:722374. [PMID: 34616280 PMCID: PMC8488300 DOI: 10.3389/fnana.2021.722374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022] Open
Abstract
Using immunostaining and confocal microscopy, we here provide the first detailed description of otic neurogenesis in Xenopus laevis. We show that the otic vesicle comprises a pseudostratified epithelium with apicobasal polarity (apical enrichment of Par3, aPKC, phosphorylated Myosin light chain, N-cadherin) and interkinetic nuclear migration (apical localization of mitotic, pH3-positive cells). A Sox3-immunopositive neurosensory area in the ventromedial otic vesicle gives rise to neuroblasts, which delaminate through breaches in the basal lamina between stages 26/27 and 39. Delaminated cells congregate to form the vestibulocochlear ganglion, whose peripheral cells continue to proliferate (as judged by EdU incorporation), while central cells differentiate into Islet1/2-immunopositive neurons from stage 29 on and send out neurites at stage 31. The central part of the neurosensory area retains Sox3 but stops proliferating from stage 33, forming the first sensory areas (utricular/saccular maculae). The phosphatase and transcriptional coactivator Eya1 has previously been shown to play a central role for otic neurogenesis but the underlying mechanism is poorly understood. Using an antibody specifically raised against Xenopus Eya1, we characterize the subcellular localization of Eya1 proteins, their levels of expression as well as their distribution in relation to progenitor and neuronal differentiation markers during otic neurogenesis. We show that Eya1 protein localizes to both nuclei and cytoplasm in the otic epithelium, with levels of nuclear Eya1 declining in differentiating (Islet1/2+) vestibulocochlear ganglion neurons and in the developing sensory areas. Morpholino-based knockdown of Eya1 leads to reduction of proliferating, Sox3- and Islet1/2-immunopositive cells, redistribution of cell polarity proteins and loss of N-cadherin suggesting that Eya1 is required for maintenance of epithelial cells with apicobasal polarity, progenitor proliferation and neuronal differentiation during otic neurogenesis.
Collapse
Affiliation(s)
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Galway, Galway, Ireland
| |
Collapse
|
21
|
Hardy K, Amariutei AE, De Faveri F, Hendry A, Marcotti W, Ceriani F. Functional development and regeneration of hair cells in the zebrafish lateral line. J Physiol 2021; 599:3913-3936. [PMID: 34143497 PMCID: PMC7612129 DOI: 10.1113/jp281522] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022] Open
Abstract
Hair cells are mechanosensory receptors responsible for transducing auditory and vestibular information into electrical signals, which are then transmitted with remarkable precision to afferent neurons. Different from mammals, the hair cells of lower vertebrates, including those present in the neuromasts of the zebrafish lateral line, regenerate following environmental or chemical insults. Here we investigate the time-course of regeneration of hair cells in vivo using electrophysiology, 2-photon imaging and immunostaining applied to wild-type and genetically-encoded fluorescent indicator zebrafish lines. Functional hair cells drive spontaneous action potentials in the posterior lateral line afferent fibres, the frequency of which progressively increases over the first 10-days post-fertilization (dpf). Higher firing-rate fibres are only observed from ~6 dpf. Following copper treatment, newly formed hair cells become functional and are able to drive APs in the afferent fibres within 48 hours in both early-larval (≤8 dpf) and late-larval (12-17 dpf) zebrafish. However, the complete functional regeneration of the entire neuromast is delayed in late-larval compared to early-larval zebrafish. We propose that while individual regenerating hair cells can rapidly become active, the acquisition of fully functional neuromasts progresses faster at early-larval stages, a time when hair cells are still under development. At both ages, the afferent terminals in the regenerating neuromast appear to make initial contact with supporting cells. The ablation of the lateral line afferent neurons prevents the timely regeneration of supporting cells and hair cells. These findings indicate that the afferent system is likely to facilitate or promote the neuromast regeneration process.
Collapse
Affiliation(s)
- Katherine Hardy
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Ana E Amariutei
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | | | - Aenea Hendry
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK.,Sheffield Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Federico Ceriani
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
22
|
Sheets L, Holmgren M, Kindt KS. How Zebrafish Can Drive the Future of Genetic-based Hearing and Balance Research. J Assoc Res Otolaryngol 2021; 22:215-235. [PMID: 33909162 PMCID: PMC8110678 DOI: 10.1007/s10162-021-00798-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last several decades, studies in humans and animal models have successfully identified numerous molecules required for hearing and balance. Many of these studies relied on unbiased forward genetic screens based on behavior or morphology to identify these molecules. Alongside forward genetic screens, reverse genetics has further driven the exploration of candidate molecules. This review provides an overview of the genetic studies that have established zebrafish as a genetic model for hearing and balance research. Further, we discuss how the unique advantages of zebrafish can be leveraged in future genetic studies. We explore strategies to design novel forward genetic screens based on morphological alterations using transgenic lines or behavioral changes following mechanical or acoustic damage. We also outline how recent advances in CRISPR-Cas9 can be applied to perform reverse genetic screens to validate large sequencing datasets. Overall, this review describes how future genetic studies in zebrafish can continue to advance our understanding of inherited and acquired hearing and balance disorders.
Collapse
Affiliation(s)
- Lavinia Sheets
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Holmgren
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie S Kindt
- Section On Sensory Cell Development and Function, National Institutes On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
23
|
Niu X, Xu S, Yang Q, Xu X, Zheng M, Li X, Guan W. Toxic effects of the dinoflagellate Karenia mikimotoi on zebrafish (Danio rerio) larval behavior. HARMFUL ALGAE 2021; 103:101996. [PMID: 33980436 DOI: 10.1016/j.hal.2021.101996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Karenia mikimotoi is a toxic dinoflagellate that forms harmful blooms in coastal waters, threatening aquaculture worldwide. However, we do not know whether K. mikimotoi has a neurotoxic effect on aquatic animal behavior. Thus, this study investigated potential K. mikimotoi neurotoxicity in zebrafish larvae. Cells of K. mikimotoi were collected at the mid-exponential phase from a batch culture to prepare ruptured cell solutions (RCS). At 6 h post-fertilization (hpf), zebrafish embryos were exposed to different RCS concentrations (0, 102, 103, 104, and 2.5 × 104 cells mL-1). After 120 hpf, treated larvae were collected to analyze locomotor behavior; activities of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT); and expression of genes related to neurodevelopment. We found that RCS did not affect survival rate, but significantly decreased larval locomotion, as well as their AChE, SOD, and CAT activity. Additionally, the examination of the day-night behavioral experiment revealed RCS decreased locomotion only at night. Zebrafish larvae were also significantly hypoactive in response to light and sound stimulations. Of the neurodevelopment genes, three (th, neurog1, and neurod1) were downregulated, while two (bdnf and manf) were upregulated. Our study suggests that K. mikimotoi neurotoxicity occurs through causing oxidative damage, as well as disorders in the cholinergic system and nervous system development. The results provide new insight that K. mikimotoi in low abundance did not cause significant lethal effect but still exhibited significant neurotoxicity on aquatic animals.
Collapse
Affiliation(s)
- Xiaoqin Niu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Shengnan Xu
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Qiongying Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Xuelian Xu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Miaomiao Zheng
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035.
| |
Collapse
|
24
|
Salazar-Silva R, Dantas VLG, Alves LU, Batissoco AC, Oiticica J, Lawrence EA, Kawafi A, Yang Y, Nicastro FS, Novaes BC, Hammond C, Kague E, Mingroni-Netto RC. NCOA3 identified as a new candidate to explain autosomal dominant progressive hearing loss. Hum Mol Genet 2021; 29:3691-3705. [PMID: 33326993 PMCID: PMC7823111 DOI: 10.1093/hmg/ddaa240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/21/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Hearing loss is a frequent sensory impairment in humans and genetic factors account for an elevated fraction of the cases. We have investigated a large family of five generations, with 15 reported individuals presenting non-syndromic, sensorineural, bilateral and progressive hearing loss, segregating as an autosomal dominant condition. Linkage analysis, using SNP-array and selected microsatellites, identified a region of near 13 cM in chromosome 20 as the best candidate to harbour the causative mutation. After exome sequencing and filtering of variants, only one predicted deleterious variant in the NCOA3 gene (NM_181659, c.2810C > G; p.Ser937Cys) fit in with our linkage data. RT-PCR, immunostaining and in situ hybridization showed expression of ncoa3 in the inner ear of mice and zebrafish. We generated a stable homozygous zebrafish mutant line using the CRISPR/Cas9 system. ncoa3-/- did not display any major morphological abnormalities in the ear, however, anterior macular hair cells showed altered orientation. Surprisingly, chondrocytes forming the ear cartilage showed abnormal behaviour in ncoa3-/-, detaching from their location, invading the ear canal and blocking the cristae. Adult mutants displayed accumulation of denser material wrapping the otoliths of ncoa3-/- and increased bone mineral density. Altered zebrafish swimming behaviour corroborates a potential role of ncoa3 in hearing loss. In conclusion, we identified a potential candidate gene to explain hereditary hearing loss, and our functional analyses suggest subtle and abnormal skeletal behaviour as mechanisms involved in the pathogenesis of progressive sensory function impairment.
Collapse
Affiliation(s)
- R Salazar-Silva
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Vitor Lima Goes Dantas
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Leandro Ucela Alves
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Ana Carla Batissoco
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
- Laboratório de Otorrinolaringologia/LIM32 –Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo , 01246-903, São Paulo, Brazil
| | - Jeanne Oiticica
- Laboratório de Otorrinolaringologia/LIM32 –Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo , 01246-903, São Paulo, Brazil
| | - Elizabeth A Lawrence
- School of Pharmacology, Physiology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Abdelwahab Kawafi
- School of Pharmacology, Physiology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Yushi Yang
- School of Physics, University of Bristol, Bristol, BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, University of Bristol, Bristol, BS8 1FD, United Kingdom
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1FD, United Kingdom
| | - Fernanda Stávale Nicastro
- Divisão de Educação e Reabilitação dos Distúrbios da Comunicação da Pontifícia Universidade Católica de São Paulo, 04022-040, São Paulo, Brazil
| | - Beatriz Caiuby Novaes
- Divisão de Educação e Reabilitação dos Distúrbios da Comunicação da Pontifícia Universidade Católica de São Paulo, 04022-040, São Paulo, Brazil
| | - Chrissy Hammond
- School of Pharmacology, Physiology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Erika Kague
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
- School of Pharmacology, Physiology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - R C Mingroni-Netto
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| |
Collapse
|
25
|
Hahn K, Manuel P, Bouldin C. Expression of the neurotrophic tyrosine kinase receptors, ntrk1 and ntrk2a, precedes expression of other ntrk genes in embryonic zebrafish. PeerJ 2021; 8:e10479. [PMID: 33391871 PMCID: PMC7761192 DOI: 10.7717/peerj.10479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 11/12/2020] [Indexed: 01/19/2023] Open
Abstract
Background The neurotrophic tyrosine kinase receptor (Ntrk) gene family plays a critical role in the survival of somatosensory neurons. Most vertebrates have three Ntrk genes each of which encode a Trk receptor: TrkA, TrkB, or TrkC. The function of the Trk receptors is modulated by the p75 neurotrophin receptors (NTRs). Five ntrk genes and one p75 NTR gene (ngfrb) have been discovered in zebrafish. To date, the expression of these genes in the initial stages of neuron specification have not been investigated. Purpose The present work used whole mount in situ hybridization to analyze expression of the five ntrk genes and ngfrb in zebrafish at a timepoint when the first sensory neurons of the zebrafish body are being established (16.5 hpf). Because expression of multiple genes were not found at this time point, we also checked expression at 24 hpf to ensure the functionality of our six probes. Results At 16.5 hpf, we found tissue specific expression of ntrk1 in cranial ganglia, and tissue specific expression of ntrk2a in cranial ganglia and in the spinal cord. Other genes analyzed at 16.5 hpf were either diffuse or not detected. At 24 hpf, we found expression of both ntrk1 and ntrk2a in the spinal cord as well as in multiple cranial ganglia, and we identified ngfrb expression in cranial ganglia at 24 hpf. ntrk2b, ntrk3a and ntrk3b were detected in the developing brain at 24 hpf. Conclusion These data are the first to demonstrate that ntrk1 and ntrk2a are the initial neurotrophic tyrosine kinase receptors expressed in sensory neurons during the development of the zebrafish body, and the first to establish expression patterns of ngfrb during early zebrafish development. Our data indicate co-expression of ntrk1, ntrk2a and ngfrb, and we speculate that these overlapping patterns indicate relatedness of function.
Collapse
Affiliation(s)
- Katie Hahn
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Paul Manuel
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Cortney Bouldin
- Department of Biology, Appalachian State University, Boone, NC, USA
| |
Collapse
|
26
|
Méndez-Maldonado K, Vega-López GA, Aybar MJ, Velasco I. Neurogenesis From Neural Crest Cells: Molecular Mechanisms in the Formation of Cranial Nerves and Ganglia. Front Cell Dev Biol 2020; 8:635. [PMID: 32850790 PMCID: PMC7427511 DOI: 10.3389/fcell.2020.00635] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
The neural crest (NC) is a transient multipotent cell population that originates in the dorsal neural tube. Cells of the NC are highly migratory, as they travel considerable distances through the body to reach their final sites. Derivatives of the NC are neurons and glia of the peripheral nervous system (PNS) and the enteric nervous system as well as non-neural cells. Different signaling pathways triggered by Bone Morphogenetic Proteins (BMPs), Fibroblast Growth Factors (FGFs), Wnt proteins, Notch ligands, retinoic acid (RA), and Receptor Tyrosine Kinases (RTKs) participate in the processes of induction, specification, cell migration and neural differentiation of the NC. A specific set of signaling pathways and transcription factors are initially expressed in the neural plate border and then in the NC cell precursors to the formation of cranial nerves. The molecular mechanisms of control during embryonic development have been gradually elucidated, pointing to an important role of transcriptional regulators when neural differentiation occurs. However, some of these proteins have an important participation in malformations of the cranial portion and their mutation results in aberrant neurogenesis. This review aims to give an overview of the role of cell signaling and of the function of transcription factors involved in the specification of ganglia precursors and neurogenesis to form the NC-derived cranial nerves during organogenesis.
Collapse
Affiliation(s)
- Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guillermo A Vega-López
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| |
Collapse
|
27
|
Iwasaki M, Yokoi H, Suzuki T, Kawakami K, Wada H. Development of the anterior lateral line system through local tissue-tissue interactions in the zebrafish head. Dev Dyn 2020; 249:1440-1454. [PMID: 32658373 DOI: 10.1002/dvdy.225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The distribution of sensory organs is important for detecting environmental signals efficiently. The mechanosensory receptors of the lateral line system, neuromasts, are stereotypically distributed over the head and body surface of fish, although how neuromasts arise in these predetermined positions during development remains unclear. RESULTS We investigated the development of the anterior lateral line (ALL) system in zebrafish head. The ALL neuromasts formed in the predetermined positions through proliferation and differentiation of (a) nonmigratory lateral line primordia, (b) migratory primordia, (c) interneuromast cells connecting preexisting neuromasts, and (d) budding primordia. We demonstrated that R-spondin2 (Rspo2), an activator of Wnt/β-catenin signaling, is required for the development of a particular set of neuromasts associated with hyomandibular cartilage. Further genetic analyses suggested that Rspo2, which emanates from the hyoid mesenchyme, acts on the adjacent neuromast progenitor cells to stimulate their proliferation through activating Wnt/β-catenin signaling. CONCLUSION This study has revealed novel mechanisms for neuromast positioning through local tissue-tissue interactions, providing insights into the development and evolution of the vertebrate head.
Collapse
Affiliation(s)
- Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Japan
| | - Hayato Yokoi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tohru Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Koichi Kawakami
- National Institute of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Japan
| |
Collapse
|
28
|
Banote RK, Chebli J, Şatır TM, Varshney GK, Camacho R, Ledin J, Burgess SM, Abramsson A, Zetterberg H. Amyloid precursor protein-b facilitates cell adhesion during early development in zebrafish. Sci Rep 2020; 10:10127. [PMID: 32576936 PMCID: PMC7311384 DOI: 10.1038/s41598-020-66584-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/21/2020] [Indexed: 01/05/2023] Open
Abstract
Understanding the biological function of amyloid beta (Aβ) precursor protein (APP) beyond its role in Alzheimer's disease is emerging. Yet, its function during embryonic development is poorly understood. The zebrafish APP orthologue, Appb, is strongly expressed during early development but thus far has only been studied via morpholino-mediated knockdown. Zebrafish enables analysis of cellular processes in an ontogenic context, which is limited in many other vertebrates. We characterized zebrafish carrying a homozygous mutation that introduces a premature stop in exon 2 of the appb gene. We report that appb mutants are significantly smaller until 2 dpf and display perturbed enveloping layer (EVL) integrity and cell protrusions at the blastula stage. Moreover, appb mutants surviving beyond 48 hpf exhibited no behavioral defects at 6 dpf and developed into healthy and fertile adults. The expression of the app family member, appa, was also found to be altered in appb mutants. Taken together, we show that appb is involved in the initial development of zebrafish by supporting the integrity of the EVL, likely by mediating cell adhesion properties. The loss of Appb might then be compensated for by other app family members to maintain normal development.
Collapse
Affiliation(s)
- Rakesh Kumar Banote
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden.,Cellectricon AB, Neongatan 4B, SE-431 53, Mölndal, Sweden
| | - Jasmine Chebli
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden
| | - Tuğçe Munise Şatır
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.,Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rafael Camacho
- Centre for Cellular Imaging, Core Facilities, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Ledin
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.,Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Alexandra Abramsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N3BG, United Kingdom.,UK Dementia Research Institute, London, WC1N3BG, United Kingdom
| |
Collapse
|
29
|
Kantarci H, Gou Y, Riley BB. The Warburg Effect and lactate signaling augment Fgf-MAPK to promote sensory-neural development in the otic vesicle. eLife 2020; 9:56301. [PMID: 32338604 PMCID: PMC7253172 DOI: 10.7554/elife.56301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/26/2020] [Indexed: 12/26/2022] Open
Abstract
Recent studies indicate that many developing tissues modify glycolysis to favor lactate synthesis (Agathocleous et al., 2012; Bulusu et al., 2017; Gu et al., 2016; Oginuma et al., 2017; Sá et al., 2017; Wang et al., 2014; Zheng et al., 2016), but how this promotes development is unclear. Using forward and reverse genetics in zebrafish, we show that disrupting the glycolytic gene phosphoglycerate kinase-1 (pgk1) impairs Fgf-dependent development of hair cells and neurons in the otic vesicle and other neurons in the CNS/PNS. Fgf-MAPK signaling underperforms in pgk1- / - mutants even when Fgf is transiently overexpressed. Wild-type embryos treated with drugs that block synthesis or secretion of lactate mimic the pgk1- / - phenotype, whereas pgk1- / - mutants are rescued by treatment with exogenous lactate. Lactate treatment of wild-type embryos elevates expression of Etv5b/Erm even when Fgf signaling is blocked. However, lactate’s ability to stimulate neurogenesis is reversed by blocking MAPK. Thus, lactate raises basal levels of MAPK and Etv5b (a critical effector of the Fgf pathway), rendering cells more responsive to dynamic changes in Fgf signaling required by many developing tissues.
Collapse
Affiliation(s)
- Husniye Kantarci
- Biology Department, Texas A&M University, College Station, United States
| | - Yunzi Gou
- Biology Department, Texas A&M University, College Station, United States
| | - Bruce B Riley
- Biology Department, Texas A&M University, College Station, United States
| |
Collapse
|
30
|
Schwarzer S, Asokan N, Bludau O, Chae J, Kuscha V, Kaslin J, Hans S. Neurogenesis in the inner ear: the zebrafish statoacoustic ganglion provides new neurons from a Neurod/Nestin-positive progenitor pool well into adulthood. Development 2020; 147:dev.176750. [PMID: 32165493 DOI: 10.1242/dev.176750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/25/2020] [Indexed: 01/13/2023]
Abstract
The vertebrate inner ear employs sensory hair cells and neurons to mediate hearing and balance. In mammals, damaged hair cells and neurons are not regenerated. In contrast, hair cells in the inner ear of zebrafish are produced throughout life and regenerate after trauma. However, it is unknown whether new sensory neurons are also formed in the adult zebrafish statoacoustic ganglion (SAG), the sensory ganglion connecting the inner ear to the brain. Using transgenic lines and marker analysis, we identify distinct cell populations and anatomical landmarks in the juvenile and adult SAG. In particular, we analyze a Neurod/Nestin-positive progenitor pool that produces large amounts of new neurons at juvenile stages, which transitions to a quiescent state in the adult SAG. Moreover, BrdU pulse chase experiments reveal the existence of a proliferative but otherwise marker-negative cell population that replenishes the Neurod/Nestin-positive progenitor pool at adult stages. Taken together, our study represents the first comprehensive characterization of the adult zebrafish SAG showing that zebrafish, in sharp contrast to mammals, display continued neurogenesis in the SAG well beyond embryonic and larval stages.
Collapse
Affiliation(s)
- Simone Schwarzer
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Nandini Asokan
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Oliver Bludau
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jeongeun Chae
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Veronika Kuscha
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jan Kaslin
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
31
|
Wang D, Weng Y, Guo S, Qin W, Ni J, Yu L, Zhang Y, Zhao Q, Ben J, Ma J. microRNA-1 Regulates NCC Migration and Differentiation by Targeting sec63. Int J Biol Sci 2019; 15:2538-2547. [PMID: 31754327 PMCID: PMC6854364 DOI: 10.7150/ijbs.35357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background/Aims: Neural crest cells play a vital role in craniofacial development, microRNA-1 (miR-1) is essential in development and disease of the cardiac and skeletal muscle, the objective of our study is to investigate effects of miR-1 on neural crest cell in the craniofacial development and its molecular mechanism. Methods: We knocked down miR-1 in zebrafish by miR-1 morpholino (MO) microinjection and observed phenotype of neural crest derivatives. We detected neural crest cell migration by time-lapse. Whole-mount in situ hybridization was used to monitor the expressions of genes involved in neural crest cell induction, specification, migration and differentiation. We performed a quantitative proteomics study (iTRAQ) and bioinformatics prediction to identify the targets of miR-1 and validate the relationship between miR-1 and its target gene sec63. Results: We found defects in the tissues derived from neural crest cells: a severely reduced lower jaw and delayed appearance of pigment cells. miR-1 MO injection also disrupted neural crest cell migration. At 24 hours post fertilization (hpf), reduced expression of tfap2a, dlx2, dlx3b, ngn1 and crestin indicated that miR-1 deficiency affected neural crest cell differentiation. iTRAQ and luciferase reporter assay identified SEC63 as a direct target gene of miR-1. The defects of miR-1 deficiency could be reversed, at least in part, by specific suppression of sec63 expression. Conclusion: miR-1 is involved in the regulation of neural crest cell development, and that it acts, at least partially, by targeting sec63 expression.
Collapse
Affiliation(s)
- Dongyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Yajuan Weng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Wenhao Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Jieli Ni
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Lei Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Qingshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210029, China
| | - Jingjing Ben
- Department of Pathophysiology, Key laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| |
Collapse
|
32
|
Jiang N, Rasmussen JP, Clanton JA, Rosenberg MF, Luedke KP, Cronan MR, Parker ED, Kim HJ, Vaughan JC, Sagasti A, Parrish JZ. A conserved morphogenetic mechanism for epidermal ensheathment of nociceptive sensory neurites. eLife 2019; 8:42455. [PMID: 30855229 PMCID: PMC6450671 DOI: 10.7554/elife.42455] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Interactions between epithelial cells and neurons influence a range of sensory modalities including taste, touch, and smell. Vertebrate and invertebrate epidermal cells ensheath peripheral arbors of somatosensory neurons, including nociceptors, yet the developmental origins and functional roles of this ensheathment are largely unknown. Here, we describe an evolutionarily conserved morphogenetic mechanism for epidermal ensheathment of somatosensory neurites. We found that somatosensory neurons in Drosophila and zebrafish induce formation of epidermal sheaths, which wrap neurites of different types of neurons to different extents. Neurites induce formation of plasma membrane phosphatidylinositol 4,5-bisphosphate microdomains at nascent sheaths, followed by a filamentous actin network, and recruitment of junctional proteins that likely form autotypic junctions to seal sheaths. Finally, blocking epidermal sheath formation destabilized dendrite branches and reduced nociceptive sensitivity in Drosophila. Epidermal somatosensory neurite ensheathment is thus a deeply conserved cellular process that contributes to the morphogenesis and function of nociceptive sensory neurons. Humans and other animals perceive and interact with the outside world through their sensory nervous system. Nerve cells, acting as the body’s ‘telegraph wires’, convey signals from sensory organs – like the eyes – to the brain, which then processes this information and tells the body how to respond. There are different kinds of sensory nerve cells that carry different types of information, but they all associate closely with the tissues and organs they connect to the brain. Human skin contains sensory nerve cells, which underpin our senses of touch and pain. There is a highly specialized, complex connection between some of these nerve cells and cells in the skin: the skin cells wrap tightly around the nerve cells’ free ends, forming sheath-like structures. This ‘ensheathment’ process happens in a wide range of animals, including those with a backbone, like fish and humans, and those without, like insects. Ensheathment is thought to be important for the skin’s nerve cells to work properly. Yet it remains unclear how or when these connections first appear. Jiang et al. therefore wanted to determine the developmental origins of ensheathment and to find out if these were also similar in animals with and without backbones. Experiments using fruit fly and zebrafish embryos revealed that nerve cells, not skin cells, were responsible for forming and maintaining the sheaths. In embryos where groups of sensory nerve cells were selectively killed – either using a laser or by making the cells produce a toxin – ensheathment did not occur. Further studies, using a variety of microscopy techniques, revealed that the molecular machinery required to stabilize the sheaths was similar in both fish and flies, and therefore likely to be conserved across different groups of animals. Removing sheaths in fly embryos led to nerve cells becoming unstable; the animals were also less sensitive to touch. This confirmed that ensheathment was indeed necessary for sensory nerve cells to work properly. By revealing how ensheathment first emerges, these findings shed new light on how the sensory nervous system develops and how its activity is controlled. In humans, skin cells ensheath the nerve cells responsible for sensing pain. A better understanding of how ensheathments first arise could therefore lead to new avenues for treating chronic pain and related conditions.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Biology, University of Washington, Seattle, United States
| | - Jeffrey P Rasmussen
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Joshua A Clanton
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Marci F Rosenberg
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Kory P Luedke
- Department of Biology, University of Washington, Seattle, United States
| | - Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
| | - Edward D Parker
- Department of Opthalmology, University of Washington, Seattle, United States
| | - Hyeon-Jin Kim
- Department of Chemistry, University of Washington, Seattle, United States.,Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, United States.,Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Alvaro Sagasti
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, United States
| |
Collapse
|
33
|
Lyons DD, Morrison C, Philibert DA, Gamal El-Din M, Tierney KB. Growth and recovery of zebrafish embryos after developmental exposure to raw and ozonated oil sands process-affected water. CHEMOSPHERE 2018; 206:405-413. [PMID: 29758497 DOI: 10.1016/j.chemosphere.2018.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Due to the increasing volume of oil sands process-affect water (OSPW) and its toxicity to aquatic organisms, it is important to fully understand its effects and study remediation processes that will enable its release to the environment. Ozone treatment is currently being considered as a tool to expedite remediation, as it is known to degrade toxic organic compounds present in OSPW. In this study, we aimed to measure the effects of OSPW exposure on the growth, development and recovery of zebrafish (Danio rerio) embryos. We also used ozone-treated OSPW to determine whether ozonation negated any effects of raw OSPW exposure. As biomarkers of exposure, we assessed the expression of genes involved in neurodevelopment (ngn1, neuroD), estrogenicity (vtg), oxidative stress (sod1), and biotransformation (cyp1a, cyp1b). Our study found that exposure to both raw and ozonated OSPW did not impair growth of zebrafish embryos, however, otoliths of exposed embryos were smaller than those of control embryos. The expression levels of both cyp1a and cyp1b were induced by raw OSPW exposure. However, after the exposure period, expression levels of these genes returned to control levels within two days of residence in clean water. We found no changes in the expression levels of ngn1, neuroD and vtg genes with exposure to treated or untreated OSPW. Overall, our study found that raw OSPW exposure did not have many negative effects on zebrafish embryos and embryos appeared to recover relatively quickly after exposure ended. Furthermore, ozone treatment decreased the induction of cyp1a and cyp1b.
Collapse
Affiliation(s)
- Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Christie Morrison
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
34
|
Washausen S, Knabe W. Lateral line placodes of aquatic vertebrates are evolutionarily conserved in mammals. Biol Open 2018; 7:bio.031815. [PMID: 29848488 PMCID: PMC6031350 DOI: 10.1242/bio.031815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Placodes are focal thickenings of the surface ectoderm which, together with neural crest, generate the peripheral nervous system of the vertebrate head. Here we examine how, in embryonic mice, apoptosis contributes to the remodelling of the primordial posterior placodal area (PPA) into physically separated otic and epibranchial placodes. Using pharmacological inhibition of apoptosis-associated caspases, we find evidence that apoptosis eliminates hitherto undiscovered rudiments of the lateral line sensory system which, in fish and aquatic amphibia, serves to detect movements, pressure changes or electric fields in the surrounding water. Our results refute the evolutionary theory, valid for more than a century that the whole lateral line was completely lost in amniotes. Instead, those parts of the PPA which, under experimental conditions, escape apoptosis have retained the developmental potential to produce lateral line placodes and the primordia of neuromasts that represent the major functional units of the mechanosensory lateral line system. Summary: Inhibition of apoptosis in mouse embryos reveals rudiments of the lateral line system, a sensory system common to fish and aquatic amphibia, but hypothesized to be completely lost in amniotes.
Collapse
Affiliation(s)
- Stefan Washausen
- Department Prosektur Anatomie, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Wolfgang Knabe
- Department Prosektur Anatomie, Westfälische Wilhelms-University, 48149 Münster, Germany
| |
Collapse
|
35
|
Taberner L, Bañón A, Alsina B. Anatomical map of the cranial vasculature and sensory ganglia. J Anat 2017; 232:431-439. [PMID: 29235648 DOI: 10.1111/joa.12762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 12/29/2022] Open
Abstract
There is growing evidence of a direct influence of vasculature on the development of neurons in the brain. The development of the cranial vasculature has been well described in zebrafish but its anatomical relationship with the adjacent developing sensory ganglia has not been addressed. Here, by 3D imaging of fluorescently labelled blood vessels and sensory ganglia, we describe for the first time the spatial organization of the cranial vasculature in relation to the cranial ganglia during zebrafish development. We show that from 24 h post-fertilization (hpf) onwards, the statoacoustic ganglion (SAG) develops in direct contact with two main blood vessels, the primordial hindbrain channel and the lateral dorsal aortae (LDA). At 48 hpf, the LDA is displaced medially, losing direct contact with the SAG. The relationship of the other cranial ganglia with the vasculature is evident for the medial lateral line ganglion and for the vagal ganglia that grow along the primary head sinus (PHS). We also observed that the innervation of the anterior macula runs over the PHS vessel. Our spatiotemporal anatomical map of the cranial ganglia and the head vasculature indicates physical interactions between both systems and suggests a possible functional interaction during development.
Collapse
Affiliation(s)
- Laura Taberner
- Laboratory of Developmental Biology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-PRBB, 08003, Barcelona, Spain
| | - Aitor Bañón
- Laboratory of Developmental Biology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-PRBB, 08003, Barcelona, Spain
| | - Berta Alsina
- Laboratory of Developmental Biology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-PRBB, 08003, Barcelona, Spain
| |
Collapse
|
36
|
Nikaido M, Navajas Acedo J, Hatta K, Piotrowski T. Retinoic acid is required and Fgf, Wnt, and Bmp signaling inhibit posterior lateral line placode induction in zebrafish. Dev Biol 2017; 431:215-225. [PMID: 28923486 DOI: 10.1016/j.ydbio.2017.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
Abstract
The lateral line system is a mechanosensory systems present in aquatic animals. The anterior and posterior lateral lines develop from anterior and posterior lateral line placodes (aLLp and pLLp), respectively. Although signaling molecules required for the induction of other cranial placodes have been well studied, the molecular mechanisms underlying formation of the lateral line placodes are unknown. In this study we tested the requirement of multiple signaling pathways, such as Wnt, Bmp Fgf, and Retinoic Acid for aLLp and pLLp induction. We determined that aLLp specification requires Fgf signaling, whilst pLLp specification requires retinoic acid which inhibits Fgf signaling. pLLp induction is also independent of Wnt and Bmp activities, even though these pathways limit the boundaries of the pLLp. This is the first report that the aLLp and pLLp depend on different inductive mechanisms and that pLLp induction requires the inhibition of Fgf, Wnt and Bmp signaling.
Collapse
Affiliation(s)
- Masataka Nikaido
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Graduate School of Life Sciences, University of Hyogo, Hyogo Pref. 678-1297, Japan
| | | | - Kohei Hatta
- Graduate School of Life Sciences, University of Hyogo, Hyogo Pref. 678-1297, Japan
| | | |
Collapse
|
37
|
Schwarzer S, Spieß S, Brand M, Hans S. Dlx3b/4b is required for early-born but not later-forming sensory hair cells during zebrafish inner ear development. Biol Open 2017; 6:1270-1278. [PMID: 28751305 PMCID: PMC5612237 DOI: 10.1242/bio.026211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Morpholino-mediated knockdown has shown that the homeodomain transcription factors Dlx3b and Dlx4b are essential for proper induction of the otic-epibranchial progenitor domain (OEPD), as well as subsequent formation of sensory hair cells in the developing zebrafish inner ear. However, increasing use of reverse genetic approaches has revealed poor correlation between morpholino-induced and mutant phenotypes. Using CRISPR/Cas9-mediated mutagenesis, we generated a defined deletion eliminating the entire open reading frames of dlx3b and dlx4b (dlx3b/4b) and investigated a potential phenotypic difference between mutants and morpholino-mediated knockdown. Consistent with previous findings obtained by morpholino-mediated knockdown of Dlx3b and Dlx4b, dlx3b/4b mutants display compromised otic induction, the development of smaller otic vesicles and an elimination of all indications of otic specification when combined with loss of foxi1, a second known OEPD competence factor in zebrafish. Furthermore, sensorigenesis is also affected in dlx3b/4b mutants. However, we find that only early-born sensory hair cells (tether cells), that seed and anchor the formation of otoliths, are affected. Later-forming sensory hair cells are present, indicating that two genetically distinct pathways control the development of early-born and later-forming sensory hair cells. Finally, impairment of early-born sensory hair cell formation in dlx3b/4b mutant embryos reverses the common temporal sequence of neuronal and sensory hair cell specification in zebrafish, resembling the order of cell specification in amniotes; Neurog1 expression before Atoh1 expression. We conclude that the Dlx3b/4b-dependent pathway has been either acquired newly in the fish lineage or lost in other vertebrate species during evolution, and that the events during early inner ear development are remarkably similar in fish and amniotes in the absence of this pathway. Summary: The transcription factors Dlx3b and Dlx4b control the formation of early-born sensory hair cells or tether cells in the developing zebrafish inner ear.
Collapse
Affiliation(s)
- Simone Schwarzer
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307 Dresden, Germany
| | - Sandra Spieß
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307 Dresden, Germany
| | - Michael Brand
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307 Dresden, Germany
| | - Stefan Hans
- Technische Universität Dresden, Biotechnology Center and DFG-Center for Regenerative Therapies Dresden Cluster of Excellence, Tatzberg 47-49, 01307 Dresden, Germany
| |
Collapse
|
38
|
Hoijman E, Fargas L, Blader P, Alsina B. Pioneer neurog1 expressing cells ingress into the otic epithelium and instruct neuronal specification. eLife 2017; 6. [PMID: 28537554 PMCID: PMC5476427 DOI: 10.7554/elife.25543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/23/2017] [Indexed: 11/30/2022] Open
Abstract
Neural patterning involves regionalised cell specification. Recent studies indicate that cell dynamics play instrumental roles in neural pattern refinement and progression, but the impact of cell behaviour and morphogenesis on neural specification is not understood. Here we combine 4D analysis of cell behaviours with dynamic quantification of proneural expression to uncover the construction of the zebrafish otic neurogenic domain. We identify pioneer cells expressing neurog1 outside the otic epithelium that migrate and ingress into the epithelialising placode to become the first otic neuronal progenitors. Subsequently, neighbouring cells express neurog1 inside the placode, and apical symmetric divisions amplify the specified pool. Interestingly, pioneer cells delaminate shortly after ingression. Ablation experiments reveal that pioneer cells promote neurog1 expression in other otic cells. Finally, ingression relies on the epithelialisation timing controlled by FGF activity. We propose a novel view for otic neurogenesis integrating cell dynamics whereby ingression of pioneer cells instructs neuronal specification. DOI:http://dx.doi.org/10.7554/eLife.25543.001 The inner ear is responsible for our senses of hearing and balance, and is made up of a series of fluid-filled cavities. Sounds, and movements of the head, cause the fluid within these cavities to move. This activates neurons that line the cavities, causing them to increase their firing rates and pass on information about the sounds or head movements to the brain. Damage to these neurons can result in deafness or vertigo. But where do the neurons themselves come from? It is generally assumed that all inner ear neurons develop inside an area of the embryo called the inner ear epithelium. Cells in this region are thought to switch on a gene called neurog1, triggering a series of changes that turn them into inner ear neurons. However, using advanced microscopy techniques in zebrafish embryos, Hoijman, Fargas et al. now show that this is not the whole story. While zebrafish do not have external ears, they do possess fluid-filled structures for balance and hearing that are similar to those of other vertebrates. Zebrafish embryos are also transparent, which means that activation of genes can be visualized directly. By imaging zebrafish embryos in real time, Hoijman, Fargas et al. show that the first cells to switch on neurog1 do so outside the inner ear epithelium. These pioneer cells then migrate into the inner ear epithelium and switch on neurog1 in their new neighbors. A substance called fibroblast growth factor tells the inner ear epithelium to let the pioneers enter, and thereby controls the final number of inner ear neurons. The work of Hoijman, Fargas et al. reveals how coordinated activation of genes and movement of cells gives rise to inner ear neurons. This should provide insights into the mechanisms that generate other types of sensory tissue. In the long term, the advances made in this study may lead to new strategies for repairing damaged sensory nerves. DOI:http://dx.doi.org/10.7554/eLife.25543.002
Collapse
Affiliation(s)
- Esteban Hoijman
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - L Fargas
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Patrick Blader
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Berta Alsina
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
39
|
Excessive activation of ionotropic glutamate receptors induces apoptotic hair-cell death independent of afferent and efferent innervation. Sci Rep 2017; 7:41102. [PMID: 28112265 PMCID: PMC5255535 DOI: 10.1038/srep41102] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulation of excess glutamate plays a central role in eliciting the pathological events that follow intensely loud noise exposures and ischemia-reperfusion injury. Glutamate excitotoxicity has been characterized in cochlear nerve terminals, but much less is known about whether excess glutamate signaling also contributes to pathological changes in sensory hair cells. I therefore examined whether glutamate excitotoxicity damages hair cells in zebrafish larvae exposed to drugs that mimic excitotoxic trauma. Exposure to ionotropic glutamate receptor (iGluR) agonists, kainic acid (KA) or N-methyl-D-aspartate (NMDA), contributed to significant, progressive hair cell loss in zebrafish lateral-line organs. To examine whether hair-cell loss was a secondary effect of excitotoxic damage to innervating neurons, I exposed neurog1a morphants-fish whose hair-cell organs are devoid of afferent and efferent innervation-to KA or NMDA. Significant, dose-dependent hair-cell loss occurred in neurog1a morphants exposed to either agonist, and the loss was comparable to wild-type siblings. A survey of iGluR gene expression revealed AMPA-, Kainate-, and NMDA-type subunits are expressed in zebrafish hair cells. Finally, hair cells exposed to KA or NMDA appear to undergo apoptotic cell death. Cumulatively, these data reveal that excess glutamate signaling through iGluRs induces hair-cell death independent of damage to postsynaptic terminals.
Collapse
|
40
|
Dyballa S, Savy T, Germann P, Mikula K, Remesikova M, Špir R, Zecca A, Peyriéras N, Pujades C. Distribution of neurosensory progenitor pools during inner ear morphogenesis unveiled by cell lineage reconstruction. eLife 2017; 6:22268. [PMID: 28051766 PMCID: PMC5243114 DOI: 10.7554/elife.22268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/23/2016] [Indexed: 01/01/2023] Open
Abstract
Reconstructing the lineage of cells is central to understanding how the wide diversity of cell types develops. Here, we provide the neurosensory lineage reconstruction of a complex sensory organ, the inner ear, by imaging zebrafish embryos in vivo over an extended timespan, combining cell tracing and cell fate marker expression over time. We deliver the first dynamic map of early neuronal and sensory progenitor pools in the whole otic vesicle. It highlights the remodeling of the neuronal progenitor domain upon neuroblast delamination, and reveals that the order and place of neuroblasts' delamination from the otic epithelium prefigure their position within the SAG. Sensory and non-sensory domains harbor different proliferative activity contributing distinctly to the overall growth of the structure. Therefore, the otic vesicle case exemplifies a generic morphogenetic process where spatial and temporal cues regulate cell fate and functional organization of the rudiment of the definitive organ.
Collapse
Affiliation(s)
- Sylvia Dyballa
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thierry Savy
- Multilevel Dynamics in Morphogenesis Unit, USR3695 CNRS, Gif sur Yvette, France
| | - Philipp Germann
- Systems Biology Unit, Center for Genomic Regulation, Barcelona, Spain
| | - Karol Mikula
- Department of Mathematics, Slovak University of Technology, Bratislava, Slovakia
| | - Mariana Remesikova
- Department of Mathematics, Slovak University of Technology, Bratislava, Slovakia
| | - Róbert Špir
- Department of Mathematics, Slovak University of Technology, Bratislava, Slovakia
| | - Andrea Zecca
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nadine Peyriéras
- Multilevel Dynamics in Morphogenesis Unit, USR3695 CNRS, Gif sur Yvette, France
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
41
|
Spemann organizer gene Goosecoid promotes delamination of neuroblasts from the otic vesicle. Proc Natl Acad Sci U S A 2016; 113:E6840-E6848. [PMID: 27791112 DOI: 10.1073/pnas.1609146113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons of the Statoacoustic Ganglion (SAG), which innervate the inner ear, originate as neuroblasts in the floor of the otic vesicle and subsequently delaminate and migrate toward the hindbrain before completing differentiation. In all vertebrates, locally expressed Fgf initiates SAG development by inducing expression of Neurogenin1 (Ngn1) in the floor of the otic vesicle. However, not all Ngn1-positive cells undergo delamination, nor has the mechanism controlling SAG delamination been elucidated. Here we report that Goosecoid (Gsc), best known for regulating cellular dynamics in the Spemann organizer, regulates delamination of neuroblasts in the otic vesicle. In zebrafish, Fgf coregulates expression of Gsc and Ngn1 in partially overlapping domains, with delamination occurring primarily in the zone of overlap. Loss of Gsc severely inhibits delamination, whereas overexpression of Gsc greatly increases delamination. Comisexpression of Ngn1 and Gsc induces ectopic delamination of some cells from the medial wall of the otic vesicle but with a low incidence, suggesting the action of a local inhibitor. The medial marker Pax2a is required to restrict the domain of gsc expression, and misexpression of Pax2a is sufficient to block delamination and fully suppress the effects of Gsc The opposing activities of Gsc and Pax2a correlate with repression or up-regulation, respectively, of E-cadherin (cdh1). These data resolve a genetic mechanism controlling delamination of otic neuroblasts. The data also elucidate a developmental role for Gsc consistent with a general function in promoting epithelial-to-mesenchymal transition (EMT).
Collapse
|
42
|
Valente GT, Nakajima RT, Fantinatti BEA, Marques DF, Almeida RO, Simões RP, Martins C. B chromosomes: from cytogenetics to systems biology. Chromosoma 2016; 126:73-81. [PMID: 27558128 DOI: 10.1007/s00412-016-0613-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 01/01/2023]
Abstract
Though hundreds to thousands of reports have described the distribution of B chromosomes among diverse eukaryote groups, a comprehensive theory of their biological role has not yet clearly emerged. B chromosomes are classically understood as a sea of repetitive DNA sequences that are poor in genes and are maintained by a parasitic-drive mechanism during cell division. Recent developments in high-throughput DNA/RNA analyses have increased the resolution of B chromosome biology beyond those of classical and molecular cytogenetic methods; B chromosomes contain many transcriptionally active sequences, including genes, and can modulate the activity of autosomal genes. Furthermore, the most recent knowledge obtained from omics analyses, which is associated with a systemic view, has demonstrated that B chromosomes can influence cell biology in a complex way, possibly favoring their own maintenance and perpetuation.
Collapse
Affiliation(s)
- Guilherme T Valente
- Department of Bioprocess and Biotechnology, Agronomic Science School, UNESP - Sao Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Rafael T Nakajima
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil
| | - Bruno E A Fantinatti
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil
| | - Diego F Marques
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil
| | - Rodrigo O Almeida
- Department of Bioprocess and Biotechnology, Agronomic Science School, UNESP - Sao Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Rafael P Simões
- Department of Bioprocess and Biotechnology, Agronomic Science School, UNESP - Sao Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil.
| |
Collapse
|
43
|
Wheeler MA, Smith CJ, Ottolini M, Barker BS, Purohit AM, Grippo RM, Gaykema RP, Spano AJ, Beenhakker MP, Kucenas S, Patel MK, Deppmann CD, Güler AD. Genetically targeted magnetic control of the nervous system. Nat Neurosci 2016; 19:756-761. [PMID: 26950006 PMCID: PMC4846560 DOI: 10.1038/nn.4265] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/09/2016] [Indexed: 12/14/2022]
Abstract
Optogenetic and chemogenetic actuators are critical for deconstructing the neural correlates of behavior. However, these tools have several limitations, including invasive modes of stimulation or slow on/off kinetics. We have overcome these disadvantages by synthesizing a single-component, magnetically sensitive actuator, "Magneto," comprising the cation channel TRPV4 fused to the paramagnetic protein ferritin. We validated noninvasive magnetic control over neuronal activity by demonstrating remote stimulation of cells using in vitro calcium imaging assays, electrophysiological recordings in brain slices, in vivo electrophysiological recordings in the brains of freely moving mice, and behavioral outputs in zebrafish and mice. As proof of concept, we used Magneto to delineate a causal role of striatal dopamine receptor 1 neurons in mediating reward behavior in mice. Together our results present Magneto as an actuator capable of remotely controlling circuits associated with complex animal behaviors.
Collapse
Affiliation(s)
- Michael A. Wheeler
- Department of Biology, University of Virginia, Charlottesville, VA 22903
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903
| | - Cody J. Smith
- Department of Biology, University of Virginia, Charlottesville, VA 22903
| | - Matteo Ottolini
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22903
| | - Bryan S. Barker
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22903
| | - Aarti M. Purohit
- Department of Biology, University of Virginia, Charlottesville, VA 22903
| | - Ryan M. Grippo
- Department of Biology, University of Virginia, Charlottesville, VA 22903
| | - Ronald P. Gaykema
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22903
| | - Anthony J. Spano
- Department of Biology, University of Virginia, Charlottesville, VA 22903
| | - Mark P. Beenhakker
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA 22903
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903
| | - Manoj K. Patel
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22903
| | - Christopher D. Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22903
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
44
|
Aguillon R, Blader P, Batut J. Patterning, morphogenesis, and neurogenesis of zebrafish cranial sensory placodes. Methods Cell Biol 2016; 134:33-67. [PMID: 27312490 DOI: 10.1016/bs.mcb.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peripheral sensory organs and ganglia found in the vertebrate head arise during embryonic development from distinct ectodermal thickenings, called cranial sensory placodes (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, and otic). A series of patterning events leads to the establishment of these placodes. Subsequently, these placodes undergo specific morphogenetic movements and cell-type specification in order to shape the final placodal derivatives and to produce differentiated cell types necessary for their function. In this chapter, we will focus on recent studies in the zebrafish that have advanced our understanding of cranial sensory placode development. We will summarize the signaling events and their molecular effectors guiding the formation of the so-called preplacodal region, and the subsequent subdivision of this region along the anteroposterior axis that gives rise to specific placode identities as well as those controlling morphogenesis and neurogenesis. Finally, we will highlight the approaches used in zebrafish that have been established to precisely label cell populations, to follow their development, and/or to characterize cell fates within a specific placode.
Collapse
Affiliation(s)
- R Aguillon
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - P Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - J Batut
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
45
|
Lin SY, Vollrath MA, Mangosing S, Shen J, Cardenas E, Corey DP. The zebrafish pinball wizard gene encodes WRB, a tail-anchored-protein receptor essential for inner-ear hair cells and retinal photoreceptors. J Physiol 2015; 594:895-914. [PMID: 26593130 DOI: 10.1113/jp271437] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/17/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The zebrafish pinball wizard (pwi) mutant is deaf and blind. The pwi phenotype includes a reduced auditory startle response and reduced visual evoked potentials, suggesting fatigue of synaptic release at ribbon synapses in hair cells and photoreceptors. The gene defective in the pwi mutant is WRB, a protein homologous to the yeast protein Get1, which is involved in the insertion of 'tail-anchored' membrane proteins. Many tail-anchored proteins are associated with synaptic vesicles, and both vesicles and synaptic ribbons are reduced in synaptic regions of hair cells in pwi. Abnormal processing of synaptic vesicle proteins important for ribbon synapses can explain the pwi phenotype. ABSTRACT In a large-scale zebrafish insertional mutagenesis screen, we identified the pinball wizard (pwi) line, which displays a deafness and blindness phenotype. Although the gross morphology and structure of the pwi larval inner ear was near normal, acoustic startle stimuli evoked smaller postsynaptic responses in afferent neurons, which rapidly fatigued. In the retina, similarly, an abnormal electroretinogram suggested reduced transmission at the photoreceptor ribbon synapse. A functional deficit in these specialized synapses was further supported by a reduction of synaptic marker proteins Rab3 and cysteine-string protein (CSP/Dnajc5) in hair cells and photoreceptors, as well as by a reduction of the number of both ribbons and vesicles surrounding the ribbons in hair cells. The pwi gene encodes a homologue of the yeast Get1 and human tryptophan-rich basic (WRB) proteins, which are receptors for membrane insertion of tail-anchored (TA) proteins. We identified more than 100 TA proteins expressed in hair cells, including many synaptic proteins. The expression of synaptobrevin and syntaxin 3, TA proteins essential for vesicle fusion, was reduced in the synaptic layers of mutant retina, consistent with a role for the pwi/WRB protein in TA-protein processing. The WRB protein was located near the apical domain and the ribbons in hair cells, and in the inner segment and the axon of the photoreceptor, consistent with a role in vesicle biogenesis or trafficking. Taken together, our results suggest that WRB plays a critical role in synaptic functions in these two sensory cells, and that disrupted processing of synaptic vesicle TA proteins explains much of the mutant phenotype.
Collapse
Affiliation(s)
- Shuh-Yow Lin
- Department of Surgery, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Melissa A Vollrath
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sara Mangosing
- Department of Surgery, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Jun Shen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Elena Cardenas
- Department of Surgery, UC San Diego School of Medicine, La Jolla, CA, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
46
|
The Order and Place of Neuronal Differentiation Establish the Topography of Sensory Projections and the Entry Points within the Hindbrain. J Neurosci 2015; 35:7475-86. [PMID: 25972174 DOI: 10.1523/jneurosci.3743-14.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Establishing topographical maps of the external world is an important but still poorly understood feature of the vertebrate sensory system. To study the selective innervation of hindbrain regions by sensory afferents in the zebrafish embryo, we mapped the fine-grained topographical representation of sensory projections at the central level by specific photoconversion of sensory neurons. Sensory ganglia located anteriorly project more medially than do ganglia located posteriorly, and this relates to the order of sensory ganglion differentiation. By single-plane illumination microscopy (SPIM) in vivo imaging, we show that (1) the sequence of arrival of cranial ganglion inputs predicts the topography of central projections, and (2) delaminated neuroblasts differentiate in close contact with the neural tube, and they never loose contact with the neural ectoderm. Afferent entrance points are established by plasma membrane interactions between primary differentiated peripheral sensory neurons and neural tube border cells with the cooperation of neural crest cells. These first contacts remain during ensuing morphological growth to establish pioneer axons. Neural crest cells and repulsive slit1/robo2 signals then guide axons from later-differentiating neurons toward the neural tube. Thus, this study proposes a new model by which the topographical representation of cranial sensory ganglia is established by entrance order, with the entry points determined by cell contact between the sensory ganglion cell bodies and the hindbrain.
Collapse
|
47
|
Lara-Ramírez R, Patthey C, Shimeld SM. Characterization of twoneurogeningenes from the brook lampreylampetra planeriand their expression in the lamprey nervous system. Dev Dyn 2015; 244:1096-1108. [DOI: 10.1002/dvdy.24273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/29/2015] [Accepted: 02/16/2015] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ricardo Lara-Ramírez
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
| | - Cédric Patthey
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
- Umeå Centre for Molecular Medicine, Umeå University; Umeå Sweden
| | - Sebastian M. Shimeld
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
| |
Collapse
|
48
|
Tfap2a promotes specification and maturation of neurons in the inner ear through modulation of Bmp, Fgf and notch signaling. PLoS Genet 2015; 11:e1005037. [PMID: 25781991 PMCID: PMC4364372 DOI: 10.1371/journal.pgen.1005037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/28/2015] [Indexed: 11/23/2022] Open
Abstract
Neurons of the statoacoustic ganglion (SAG) transmit auditory and vestibular information from the inner ear to the hindbrain. SAG neuroblasts originate in the floor of the otic vesicle. New neuroblasts soon delaminate and migrate towards the hindbrain while continuing to proliferate, a phase known as transit amplification. SAG cells eventually come to rest between the ear and hindbrain before terminally differentiating. Regulation of these events is only partially understood. Fgf initiates neuroblast specification within the ear. Subsequently, Fgf secreted by mature SAG neurons exceeds a maximum threshold, serving to terminate specification and delay maturation of transit-amplifying cells. Notch signaling also limits SAG development, but how it is coordinated with Fgf is unknown. Here we show that transcription factor Tfap2a coordinates multiple signaling pathways to promote neurogenesis in the zebrafish inner ear. In both zebrafish and chick, Tfap2a is expressed in a ventrolateral domain of the otic vesicle that includes neurogenic precursors. Functional studies were conducted in zebrafish. Loss of Tfap2a elevated Fgf and Notch signaling, thereby inhibiting SAG specification and slowing maturation of transit-amplifying cells. Conversely, overexpression of Tfap2a inhibited Fgf and Notch signaling, leading to excess and accelerated SAG production. However, most SAG neurons produced by Tfap2a overexpression died soon after maturation. Directly blocking either Fgf or Notch caused less dramatic acceleration of SAG development without neuronal death, whereas blocking both pathways mimicked all observed effects of Tfap2a overexpression, including apoptosis of mature neurons. Analysis of genetic mosaics showed that Tfap2a acts non-autonomously to inhibit Fgf. This led to the discovery that Tfap2a activates expression of Bmp7a, which in turn inhibits both Fgf and Notch signaling. Blocking Bmp signaling reversed the effects of overexpressing Tfap2a. Together, these data support a model in which Tfap2a, acting through Bmp7a, modulates Fgf and Notch signaling to control the duration, amount and speed of SAG neural development. Neurons of the statoacoustic ganglion (SAG) transmit impulses from the inner ear necessary for hearing and balance. SAG cells exhibit a complex pattern of development, regulation of which remains poorly understood. Here we show that transcription factor Tfap2a coordinates multiple cell signaling pathways needed to regulate the quantity and pace of SAG neuron production. SAG progenitors originate within the developing inner ear and then migrate out of the ear towards the hindbrain before forming mature neurons. We showed previously that Fgf initiates formation of SAG progenitors in the inner ear, but rising levels of Fgf signaling eventually terminate this process. Elevated Fgf also stimulates proliferation of SAG progenitors outside the ear and delays their maturation. Notch signaling is also known to limit SAG development. Tfap2a governs the strength of Fgf and Notch signaling by activating expression of Bmp7a, which inhibits Fgf and Notch. Together these signals stabilize the pool of SAG progenitors outside the ear by equalizing rates of maturation and proliferation. This balance is critical for sustained accumulation of SAG neurons during larval growth as well as regeneration following neural damage. These findings could inform development of stem cell therapies to correct auditory neuropathies in humans.
Collapse
|
49
|
El-Magd MA, Saleh AA, Farrag F, Abd El-Aziz RM, Ali HA, Salama MF. Regulation of Chick Ebf1-3 Gene Expression in the Pharyngeal Arches, Cranial Sensory Ganglia and Placodes. Cells Tissues Organs 2015; 199:278-93. [DOI: 10.1159/000369880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 11/19/2022] Open
|
50
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|