1
|
Tsukamoto S, Mofrad MRK. Bridging scales in chromatin organization: Computational models of loop formation and their implications for genome function. J Chem Phys 2025; 162:054122. [PMID: 39918128 DOI: 10.1063/5.0232328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 05/08/2025] Open
Abstract
Chromatin loop formation plays a crucial role in 3D genome interactions, with misfolding potentially leading to irregular gene expression and various diseases. While experimental tools such as Hi-C have advanced our understanding of genome interactions, the biophysical principles underlying chromatin loop formation remain elusive. This review examines computational approaches to chromatin folding, focusing on polymer models that elucidate chromatin loop mechanics. We discuss three key models: (1) the multi-loop-subcompartment model, which investigates the structural effects of loops on chromatin conformation; (2) the strings and binders switch model, capturing thermodynamic chromatin aggregation; and (3) the loop extrusion model, revealing the role of structural maintenance of chromosome complexes. In addition, we explore advanced models that address chromatin clustering heterogeneity in biological processes and disease progression. The review concludes with an outlook on open questions and current trends in chromatin loop formation and genome interactions, emphasizing the physical and computational challenges in the field.
Collapse
Affiliation(s)
- Shingo Tsukamoto
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall, Berkeley, California 94720-1762, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall, Berkeley, California 94720-1762, USA
- Molecular Biophysics and Integrative BioImaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| |
Collapse
|
2
|
Zakirov AN, Sosnovskaya S, Ryumina ED, Kharybina E, Strelkova OS, Zhironkina OA, Golyshev SA, Moiseenko A, Kireev II. Fiber-Like Organization as a Basic Principle for Euchromatin Higher-Order Structure. Front Cell Dev Biol 2022; 9:784440. [PMID: 35174159 PMCID: PMC8841976 DOI: 10.3389/fcell.2021.784440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
A detailed understanding of the principles of the structural organization of genetic material is of great importance for elucidating the mechanisms of differential regulation of genes in development. Modern ideas about the spatial organization of the genome are based on a microscopic analysis of chromatin structure and molecular data on DNA–DNA contact analysis using Chromatin conformation capture (3C) technology, ranging from the “polymer melt” model to a hierarchical folding concept. Heterogeneity of chromatin structure depending on its functional state and cell cycle progression brings another layer of complexity to the interpretation of structural data and requires selective labeling of various transcriptional states under nondestructive conditions. Here, we use a modified approach for replication timing-based metabolic labeling of transcriptionally active chromatin for ultrastructural analysis. The method allows pre-embedding labeling of optimally structurally preserved chromatin, thus making it compatible with various 3D-TEM techniques including electron tomography. By using variable pulse duration, we demonstrate that euchromatic genomic regions adopt a fiber-like higher-order structure of about 200 nm in diameter (chromonema), thus providing support for a hierarchical folding model of chromatin organization as well as the idea of transcription and replication occurring on a highly structured chromatin template.
Collapse
Affiliation(s)
- Amir N Zakirov
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Chair of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Sophie Sosnovskaya
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Chair of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina D Ryumina
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Kharybina
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Chair of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Olga S Strelkova
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Oxana A Zhironkina
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei A Golyshev
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Moiseenko
- Laboratory of Electron Microscopy, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Igor I Kireev
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Chair of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Knoch TA. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization. Results Probl Cell Differ 2022; 70:495-549. [PMID: 36348120 DOI: 10.1007/978-3-031-06573-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The three-dimensional architecture of chromosomes, their arrangement, and dynamics within cell nuclei are still subject of debate. Obviously, the function of genomes-the storage, replication, and transcription of genetic information-has closely coevolved with this architecture and its dynamics, and hence are closely connected. In this work a scale-bridging framework investigates how of the 30 nm chromatin fibre organizes into chromosomes including their arrangement and morphology in the simulation of whole nuclei. Therefore, mainly two different topologies were simulated with corresponding parameter variations and comparing them to experiments: The Multi-Loop-Subcompartment (MLS) model, in which (stable) small loops form (stable) rosettes, connected by chromatin linkers, and the Random-Walk/Giant-Loop (RW/GL) model, in which large loops are attached to a flexible non-protein backbone, were simulated for various loop and linker sizes. The 30 nm chromatin fibre was modelled as a polymer chain with stretching, bending and excluded volume interactions. A spherical boundary potential simulated the confinement to nuclei with different radii. Simulated annealing and Brownian Dynamics methods were applied in a four-step decondensation procedure to generate from metaphase decondensated interphase configurations at thermodynamical equilibrium. Both the MLS and the RW/GL models form chromosome territories, with different morphologies: The MLS rosettes result in distinct subchromosomal domains visible in electron and confocal laser scanning microscopic images. In contrast, the big RW/GL loops lead to a mostly homogeneous chromatin distribution. Even small changes of the model parameters induced significant rearrangements of the chromatin morphology. The low overlap of chromosomes, arms, and subchromosomal domains observed in experiments agrees only with the MLS model. The chromatin density distribution in CLSM image stacks reveals a bimodal behaviour in agreement with recent experiments. Combination of these results with a variety of (spatial distance) measurements favour an MLS like model with loops and linkers of 63 to 126 kbp. The predicted large spaces between the chromatin fibres allow typically sized biological molecules to reach nearly every location in the nucleus by moderately obstructed diffusion and is in disagreement with the much simplified assumption that defined channels between territories for molecular transport as in the Interchromosomal Domain (ICD) hypothesis exist and are necessary for transport. All this is also in agreement with recent selective high-resolution chromosome interaction capture (T2C) experiments, the scaling behaviour of the DNA sequence, the dynamics of the chromatin fibre, the diffusion of molecules, and other measurements. Also all other chromosome topologies can in principle be excluded. In summary, polymer simulations of whole nuclei compared to experimental data not only clearly favour only a stable loop aggregate/rosette like genome architecture whose local topology is tightly connected to the global morphology and dynamics of the cell nucleus and hence can be used for understanding genome organization also in respect to diagnosis and treatment. This is in agreement with and also leads to a general novel framework of genome emergence, function, and evolution.
Collapse
Affiliation(s)
- Tobias A Knoch
- Biophysical Genomics, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- Human Ecology and Complex Systems, German Society for Human Ecology (DGH), TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- TAK Renewable Energy UG, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
| |
Collapse
|
4
|
Němečková A, Koláčková V, Vrána J, Doležel J, Hřibová E. DNA replication and chromosome positioning throughout the interphase in three-dimensional space of plant nuclei. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6262-6272. [PMID: 32805034 DOI: 10.1093/jxb/eraa370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/31/2020] [Indexed: 05/23/2023]
Abstract
Despite much recent progress, our understanding of the principles of plant genome organization and its dynamics in three-dimensional space of interphase nuclei remains surprisingly limited. Notably, it is not clear how these processes could be affected by the size of a plant's nuclear genome. In this study, DNA replication timing and interphase chromosome positioning were analyzed in seven Poaceae species that differ in their genome size. To provide a comprehensive picture, a suite of advanced, complementary methods was used: labeling of newly replicated DNA by ethynyl-2'-deoxyuridine, isolation of nuclei at particular cell cycle phases by flow cytometric sorting, three-dimensional immunofluorescence in situ hybridization, and confocal microscopy. Our results revealed conserved dynamics of DNA replication in all species, and a similar replication timing order for telomeres and centromeres, as well as for euchromatin and heterochromatin regions, irrespective of genome size. Moreover, stable chromosome positioning was observed while transitioning through different stages of interphase. These findings expand upon earlier studies in suggesting that a more complex interplay exists between genome size, organization of repetitive DNA sequences along chromosomes, and higher order chromatin structure and its maintenance in interphase, albeit controlled by currently unknown factors.
Collapse
Affiliation(s)
- Alžběta Němečková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Veronika Koláčková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| |
Collapse
|
5
|
Kempfer R, Pombo A. Methods for mapping 3D chromosome architecture. Nat Rev Genet 2019; 21:207-226. [PMID: 31848476 DOI: 10.1038/s41576-019-0195-2] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Determining how chromosomes are positioned and folded within the nucleus is critical to understanding the role of chromatin topology in gene regulation. Several methods are available for studying chromosome architecture, each with different strengths and limitations. Established imaging approaches and proximity ligation-based chromosome conformation capture (3C) techniques (such as DNA-FISH and Hi-C, respectively) have revealed the existence of chromosome territories, functional nuclear landmarks (such as splicing speckles and the nuclear lamina) and topologically associating domains. Improvements to these methods and the recent development of ligation-free approaches, including GAM, SPRITE and ChIA-Drop, are now helping to uncover new aspects of 3D genome topology that confirm the nucleus to be a complex, highly organized organelle.
Collapse
Affiliation(s)
- Rieke Kempfer
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Knoch TA. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization. Semin Cell Dev Biol 2018; 90:19-42. [PMID: 30125668 DOI: 10.1016/j.semcdb.2018.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/10/2018] [Indexed: 01/28/2023]
Abstract
Despite all the efforts the three-dimensional higher-order architecture and dynamics in the cell nucleus are still debated. The regulation of genes, their transcription, replication, as well as differentiation in Eukarya is, however, closely connected to this architecture and dynamics. Here, an evaluation and review framework is setup to investigate the folding of a 30 nm chromatin fibre into chromosome territories by comparing computer simulations of two different chromatin topologies to experiments: The Multi-Loop-Subcompartment (MLS) model, in which small loops form rosettes connected by chromatin linkers, and the Random-Walk/Giant-Loop (RW/GL) model, in which large loops are attached to a flexible non-protein backbone, were simulated for various loop, rosette, and linker sizes. The 30 nm chromatin fibre was modelled as a polymer chain with stretching, bending, and excluded volume interactions. A spherical boundary potential simulated the confinement by other chromosomes and the nuclear envelope. Monte Carlo and Brownian Dynamics methods were applied to generate chain configurations at thermodynamic equilibrium. Both the MLS and the RW/GL models form chromosome territories, with different morphologies: The MLS rosettes form distinct subchromosomal domains, compatible in size as those from light microscopic observations. In contrast, the big RW/GL loops lead to a more homogeneous chromatin distribution. Only the MLS model agrees with the low overlap of chromosomes, their arms, and subchromosomal domains found experimentally. A review of experimental spatial distance measurements between genomic markers labelled by FISH as a function of their genomic separation from different publications and comparison to simulated spatial distances also favours an MLS-like model with loops and linkers of 63 to 126 kbp. The chromatin folding topology also reduces the apparent persistence length of the chromatin fibre to a value significantly lower than the free solution persistence length, explaining the low persistence lengths found various experiments. The predicted large spaces between the chromatin fibres allow typically sized biological molecules to reach nearly every location in the nucleus by moderately obstructed diffusion and disagrees with the much simplified assumption that defined channels between territories for molecular transport as in the Interchromosomal Domain (ICD) hypothesis exist. All this is also in agreement with recent selective high-resolution chromosome interaction capture (T2C) experiments, the scaling behaviour of the DNA sequence, the dynamics of the chromatin fibre, the nuclear diffusion of molecules, as well as other experiments. In summary, this polymer simulation framework compared to experimental data clearly favours only a quasi-chromatin fibre forming a stable multi-loop aggregate/rosette like genome organization and dynamics whose local topology is tightly connected to the global morphology and dynamics of the cell nucleus.
Collapse
Affiliation(s)
- Tobias A Knoch
- Biophysical Genomics, Dept. Cell Biology & Genetics, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Balajee AS, Sanders JT, Golloshi R, Shuryak I, McCord RP, Dainiak N. Investigation of Spatial Organization of Chromosome Territories in Chromosome Exchange Aberrations After Ionizing Radiation Exposure. HEALTH PHYSICS 2018; 115:77-89. [PMID: 29787433 DOI: 10.1097/hp.0000000000000840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Higher-order organization of the human genome is well established with chromosomes occupying distinct domains or territories in the interphase nucleus. Spatial organization of chromosome territories in the interphase nucleus occurs in a cell-type-specific manner. Since both stable and unstable aberrations induced by ionizing radiation involve the exchange of material between two or more chromosomes, this study investigated the role of spatial organization of chromosome domains in ionizing-radiation-induced chromosome translocation events. Using multicolor fluorescence in situ hybridization, the study characterized the positioning of each human chromosome relative to its neighborhood territories in the interphase nucleus of lymphocytes and B-lymphoblastoid cells before ionizing radiation and compared this interphase positioning with the spectrum of exchanges observed after ionizing radiation in the metaphase chromosomes. In addition to multicolor fluorescence in situ hybridization, the genome-wide chromosome conformation capture technique (Hi-C) was also performed in mock and x-ray-irradiated human B-lymphoblastoid and fibroblast cells to characterize the interactions among chromosomes and to assess the genome reorganization changes, if any, after ionizing radiation exposure. On average, 35-50% of the total translocations induced by x rays and neutrons correlated with proximity of chromosome territories detected by multicolor fluorescence in situ hybridization in both lymphocytes and lymphoblastoid cells. The translocation rate observed in proximally positioned chromosome territories was consistently higher than distally located territories and was found to be statistically significant (p = 0.01) in human lymphoblastoid cells after x rays. The interchromosome interaction frequencies detected by Hi-C correlate fairly well with ionizing-radiation-induced translocations detected by multicolor fluorescence in situ hybridization, suggesting the importance of chromosome proximity effects in ionizing-radiation-induced chromosomal translocation events.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Radiation Emergency Assistance Center and Training Site, Cytogenetics Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN 37830
| | - Jacob T Sanders
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Rosela Golloshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Igor Shuryak
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Nicholas Dainiak
- Radiation Emergency Assistance Center and Training Site, Cytogenetics Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN 37830
| |
Collapse
|
8
|
Postberg J, Jönsson F, Weil PP, Bulic A, Juranek SA, Lipps HJ. 27nt-RNAs guide histone variant deposition via 'RNA-induced DNA replication interference' and thus transmit parental genome partitioning in Stylonychia. Epigenetics Chromatin 2018; 11:31. [PMID: 29895326 PMCID: PMC5996456 DOI: 10.1186/s13072-018-0201-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During sexual reproduction in the unicellular ciliate Stylonychia somatic macronuclei differentiate from germline micronuclei. Thereby, programmed sequence reduction takes place, leading to the elimination of > 95% of germline sequences, which priorly adopt heterochromatin structure via H3K27me3. Simultaneously, 27nt-ncRNAs become synthesized from parental transcripts and are bound by the Argonaute protein PIWI1. RESULTS These 27nt-ncRNAs cover sequences destined to the developing macronucleus and are thought to protect them from degradation. We provide evidence and propose that RNA/DNA base-pairing guides PIWI1/27nt-RNA complexes to complementary macronucleus-destined DNA target sequences, hence transiently causing locally stalled replication during polytene chromosome formation. This spatiotemporal delay enables the selective deposition of temporarily available histone H3.4K27me3 nucleosomes at all other sequences being continuously replicated, thus dictating their prospective heterochromatin structure before becoming developmentally eliminated. Concomitantly, 27nt-RNA-covered sites remain protected. CONCLUSIONS We introduce the concept of 'RNA-induced DNA replication interference' and explain how the parental functional genome partition could become transmitted to the progeny.
Collapse
Affiliation(s)
- Jan Postberg
- Clinical Molecular Genetics and Epigenetics, Centre for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany
- HELIOS University Hospital Wuppertal, Centre for Clinical and Translational Research (CCTR), HELIOS Medical Centre Wuppertal, Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany
| | - Franziska Jönsson
- Institute of Cell Biology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Patrick Philipp Weil
- Clinical Molecular Genetics and Epigenetics, Centre for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany
- HELIOS University Hospital Wuppertal, Centre for Clinical and Translational Research (CCTR), HELIOS Medical Centre Wuppertal, Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany
| | - Aneta Bulic
- Institute of Cell Biology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Stefan Andreas Juranek
- iPSC CRISPR Facility, European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, The Netherlands
| | - Hans-Joachim Lipps
- Institute of Cell Biology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| |
Collapse
|
9
|
How does chromatin package DNA within nucleus and regulate gene expression? Int J Biol Macromol 2017; 101:862-881. [PMID: 28366861 DOI: 10.1016/j.ijbiomac.2017.03.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
The human body is made up of 60 trillion cells, each cell containing 2 millions of genomic DNA in its nucleus. How is this genomic deoxyribonucleic acid [DNA] organised into nuclei? Around 1880, W. Flemming discovered a nuclear substance that was clearly visible on staining under primitive light microscopes and named it 'chromatin'; this is now thought to be the basic unit of genomic DNA organization. Since long before DNA was known to carry genetic information, chromatin has fascinated biologists. DNA has a negatively charged phosphate backbone that produces electrostatic repulsion between adjacent DNA regions, making it difficult for DNA to fold upon itself. In this article, we will try to shed light on how does chromatin package DNA within nucleus and regulate gene expression?
Collapse
|
10
|
Dixon CR, Platani M, Makarov AA, Schirmer EC. Microinjection of Antibodies Targeting the Lamin A/C Histone-Binding Site Blocks Mitotic Entry and Reveals Separate Chromatin Interactions with HP1, CenpB and PML. Cells 2017; 6:cells6020009. [PMID: 28346356 PMCID: PMC5492013 DOI: 10.3390/cells6020009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Lamins form a scaffold lining the nucleus that binds chromatin and contributes to spatial genome organization; however, due to the many other functions of lamins, studies knocking out or altering the lamin polymer cannot clearly distinguish between direct and indirect effects. To overcome this obstacle, we specifically targeted the mapped histone-binding site of A/C lamins by microinjecting antibodies specific to this region predicting that this would make the genome more mobile. No increase in chromatin mobility was observed; however, interestingly, injected cells failed to go through mitosis, while control antibody-injected cells did. This effect was not due to crosslinking of the lamin polymer, as Fab fragments also blocked mitosis. The lack of genome mobility suggested other lamin-chromatin interactions. To determine what these might be, mini-lamin A constructs were expressed with or without the histone-binding site that assembled into independent intranuclear structures. HP1, CenpB and PML proteins accumulated at these structures for both constructs, indicating that other sites supporting chromatin interactions exist on lamin A. Together, these results indicate that lamin A-chromatin interactions are highly redundant and more diverse than generally acknowledged and highlight the importance of trying to experimentally separate their individual functions.
Collapse
Affiliation(s)
- Charles R Dixon
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Melpomeni Platani
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Alexandr A Makarov
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Eric C Schirmer
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
11
|
Lee K, Kim JH, Kwon H. The Actin-Related Protein BAF53 Is Essential for Chromosomal Subdomain Integrity. Mol Cells 2015; 38:789-95. [PMID: 26242195 PMCID: PMC4588722 DOI: 10.14348/molcells.2015.0109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 01/09/2023] Open
Abstract
A chromosome territory is composed of chromosomal subdomains. The internal structure of chromosomal subdomains provides a structural framework for many genomic activities such as replication and DNA repair, and thus is key to determining the basis of their mechanisms. However, the internal structure and regulating proteins of a chromosomal subdomain remains elusive. Previously, we showed that the chromosome territory expanded after BAF53 knockdown. Because the integrity of chromosomal subdomains is a deciding factor of the volume of a chromosome territory, we examined here the effect of BAF53 knockdown on chromosomal subdomains. We found that BAF53 knockdown led to the disintegration of histone H2B-GFP-visualized chromosomal subdomains and BrdU-labeled replication foci. In addition, the size of DNA loops measured by the maximum fluorescent halo technique increased and became irregular after BAF53 knockdown, indicating DNA loops were released from the residual nuclear structure. These data can be accounted for by the model that BAF53 is prerequisite for maintaining the structural integrity of chromosomal subdomains.
Collapse
Affiliation(s)
- Kiwon Lee
- Department of Bioscience and Biotechnology and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 449-791,
Korea
| | - Ji Hye Kim
- Department of Bioscience and Biotechnology and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 449-791,
Korea
| | - Hyockman Kwon
- Department of Bioscience and Biotechnology and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 449-791,
Korea
| |
Collapse
|
12
|
Chromatin at the nuclear periphery and the regulation of genome functions. Histochem Cell Biol 2015; 144:111-22. [PMID: 26170147 DOI: 10.1007/s00418-015-1346-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 01/01/2023]
Abstract
Chromatin is not randomly organized in the nucleus, and its spatial organization participates in the regulation of genome functions. However, this spatial organization is also not entirely fixed and modifications of chromatin architecture are implicated in physiological processes such as differentiation or senescence. One of the most striking features of chromatin architecture is the concentration of heterochromatin at the nuclear periphery. A closer examination of the association of chromatin at the nuclear periphery reveals that heterochromatin accumulates at the nuclear lamina, whereas nuclear pores are usually devoid of heterochromatin. After summarizing the current techniques used to study the attachment of chromatin at the nuclear lamina or the nuclear pores, we review the mechanisms underlying these attachments, their plasticity and their consequences on the regulation of gene expression, DNA repair and replication.
Collapse
|
13
|
Boulos RE, Drillon G, Argoul F, Arneodo A, Audit B. Structural organization of human replication timing domains. FEBS Lett 2015; 589:2944-57. [PMID: 25912651 DOI: 10.1016/j.febslet.2015.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Recent analysis of genome-wide epigenetic modification data, mean replication timing (MRT) profiles and chromosome conformation data in mammals have provided increasing evidence that flexibility in replication origin usage is regulated locally by the epigenetic landscape and over larger genomic distances by the 3D chromatin architecture. Here, we review the recent results establishing some link between replication domains and chromatin structural domains in pluripotent and various differentiated cell types in human. We reconcile the originally proposed dichotomic picture of early and late constant timing regions that replicate by multiple rather synchronous origins in separated nuclear compartments of open and closed chromatins, with the U-shaped MRT domains bordered by "master" replication origins specified by a localized (∼200-300 kb) zone of open and transcriptionally active chromatin from which a replication wave likely initiates and propagates toward the domain center via a cascade of origin firing. We discuss the relationships between these MRT domains, topologically associated domains and lamina-associated domains. This review sheds a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and the determination of differentiation properties.
Collapse
Affiliation(s)
- Rasha E Boulos
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Guénola Drillon
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Françoise Argoul
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Alain Arneodo
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Benjamin Audit
- Université de Lyon, F-69000 Lyon, France; Laboratoire de Physique, CNRS UMR5672, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France.
| |
Collapse
|
14
|
Maeshima K, Kaizu K, Tamura S, Nozaki T, Kokubo T, Takahashi K. The physical size of transcription factors is key to transcriptional regulation in chromatin domains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064116. [PMID: 25563431 DOI: 10.1088/0953-8984/27/6/064116] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (∼50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a 'buoy' to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan. Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Embryonic stem cell specific "master" replication origins at the heart of the loss of pluripotency. PLoS Comput Biol 2015; 11:e1003969. [PMID: 25658386 PMCID: PMC4319821 DOI: 10.1371/journal.pcbi.1003969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 10/06/2014] [Indexed: 11/29/2022] Open
Abstract
Epigenetic regulation of the replication program during mammalian cell differentiation remains poorly understood. We performed an integrative analysis of eleven genome-wide epigenetic profiles at 100 kb resolution of Mean Replication Timing (MRT) data in six human cell lines. Compared to the organization in four chromatin states shared by the five somatic cell lines, embryonic stem cell (ESC) line H1 displays (i) a gene-poor but highly dynamic chromatin state (EC4) associated to histone variant H2AZ rather than a HP1-associated heterochromatin state (C4) and (ii) a mid-S accessible chromatin state with bivalent gene marks instead of a polycomb-repressed heterochromatin state. Plastic MRT regions (≲ 20% of the genome) are predominantly localized at the borders of U-shaped timing domains. Whereas somatic-specific U-domain borders are gene-dense GC-rich regions, 31.6% of H1-specific U-domain borders are early EC4 regions enriched in pluripotency transcription factors NANOG and OCT4 despite being GC poor and gene deserts. Silencing of these ESC-specific “master” replication initiation zones during differentiation corresponds to a loss of H2AZ and an enrichment in H3K9me3 mark characteristic of late replicating C4 heterochromatin. These results shed a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and lineage commitment. During development, embryonic stem cell (ESC) enter a program of cell differentiation eventually leading to all the necessary differentiated cell types. Understanding the mechanisms responsible for the underlying modifications of the gene expression program is of fundamental importance, as it will likely have strong impact on the development of regenerative medicine. We show that besides some epigenetic regulation, ubiquitous master replication origins at replication timing U-domain borders shared by 6 human cell types are transcriptionally active open chromatin regions specified by a local enrichment in nucleosome free regions encoded in the DNA sequence suggesting that they have been selected during evolution. In contrast, ESC specific master replication origins bear a unique epigenetic signature (enrichment in CTCF, H2AZ, NANOG, OCT4, …) likely contributing to maintain ESC chromatin in a highly dynamic and accessible state that is refractory to polycomb and HP1 heterochromatin spreading. These ESC specific master origins thus appear as key genomic regions where epigenetic control of chromatin organization is at play to maintain pluripotency of stem cell lineages and to guide lineage commitment to somatic cell types.
Collapse
|
16
|
González Besteiro MA, Gottifredi V. The fork and the kinase: a DNA replication tale from a CHK1 perspective. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:168-80. [PMID: 25795119 DOI: 10.1016/j.mrrev.2014.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 11/30/2022]
Abstract
Replication fork progression is being continuously hampered by exogenously introduced and naturally occurring DNA lesions and other physical obstacles. Checkpoint kinase 1 (Chk1) is activated at replication forks that encounter damaged DNA. Subsequently, Chk1 inhibits the initiation of new replication factories and stimulates the firing of dormant origins (those in the vicinity of stalled forks). Chk1 also avoids fork collapse into DSBs (double strand breaks) and promotes fork elongation. At the molecular level, the current model considers stalled forks as the site of Chk1 activation and the nucleoplasm as the location where Chk1 phosphorylates target proteins. This model certainly serves to explain how Chk1 modulates origin firing, but how Chk1 controls the fate of stalled forks is less clear. Interestingly, recent reports demonstrating that Chk1 phosphorylates chromatin-bound proteins and even holds kinase-independent functions might shed light on how Chk1 contributes to the elongation of damaged DNA. Indeed, such findings have unveiled a puzzling connection between Chk1 and DNA lesion bypass, which might be central to promoting fork elongation and checkpoint attenuation. In summary, Chk1 is a multifaceted and versatile signaling factor that acts at ongoing forks and replication origins to determine the extent and quality of the cellular response to replication stress.
Collapse
Affiliation(s)
- Marina A González Besteiro
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Generation of cell-based systems to visualize chromosome damage and translocations in living cells. Nat Protoc 2014; 9:2476-92. [PMID: 25255091 DOI: 10.1038/nprot.2014.167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Traditional methods for the generation of DNA damage are not well suited for the observation of spatiotemporal aspects of damaged chromosomal loci. We describe a protocol for the derivation of a cellular system to induce and to visualize chromosome damage at specific sites of the mammalian genome in living cells. The system is based on the stable integration of endonuclease I-SceI recognition sites flanked by bacterial LacO/TetO operator arrays, coupled with retroviral-mediated integration of their fluorescent repressors (LacR/TetR) to visualize the LacO/TetO sites. Expression of the I-SceI endonuclease induces double-strand breaks (DSBs) specifically at the sites of integration, and it permits the dynamics of damaged chromatin to be followed by time-lapse microscopy. Sequential LacO-I-SceI/TetO-I-SceI integrations in multiple chromosomes permit the generation of a system to visualize the formation of chromosome translocations in living cells. This protocol requires intermediate cell culture and molecular biology skills, and it is adaptable to the efficient derivation of any integrated clonal reporter system of interest in ≈ 3-5 months.
Collapse
|
18
|
Maeshima K, Imai R, Tamura S, Nozaki T. Chromatin as dynamic 10-nm fibers. Chromosoma 2014; 123:225-37. [PMID: 24737122 PMCID: PMC4031381 DOI: 10.1007/s00412-014-0460-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/01/2023]
Abstract
Since Flemming described a nuclear substance in the nineteenth century and named it “chromatin,” this substance has fascinated biologists. What is the structure of chromatin? DNA is wrapped around core histones, forming a nucleosome fiber (10-nm fiber). This fiber has long been assumed to fold into a 30-nm chromatin fiber and subsequently into helically folded larger fibers or radial loops. However, several recent studies, including our cryo-EM and X-ray scattering analyses, demonstrated that chromatin is composed of irregularly folded 10-nm fibers, without 30-nm chromatin fibers, in interphase chromatin and mitotic chromosomes. This irregular folding implies a chromatin state that is physically less constrained, which could be more dynamic compared with classical regular helical folding structures. Consistent with this, recently, we uncovered by single nucleosome imaging large nucleosome fluctuations in living mammalian cells (∼50 nm/30 ms). Subsequent computational modeling suggested that nucleosome fluctuation increases chromatin accessibility, which is advantageous for many “target searching” biological processes such as transcriptional regulation. Therefore, this review provides a novel view on chromatin structure in which chromatin consists of dynamic and disordered 10-nm fibers.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan,
| | | | | | | |
Collapse
|
19
|
Stancheva I, Schirmer EC. Nuclear Envelope: Connecting Structural Genome Organization to Regulation of Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:209-44. [DOI: 10.1007/978-1-4899-8032-8_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Julienne H, Zoufir A, Audit B, Arneodo A. Human genome replication proceeds through four chromatin states. PLoS Comput Biol 2013; 9:e1003233. [PMID: 24130466 PMCID: PMC3794905 DOI: 10.1371/journal.pcbi.1003233] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022] Open
Abstract
Advances in genomic studies have led to significant progress in understanding the epigenetically controlled interplay between chromatin structure and nuclear functions. Epigenetic modifications were shown to play a key role in transcription regulation and genome activity during development and differentiation or in response to the environment. Paradoxically, the molecular mechanisms that regulate the initiation and the maintenance of the spatio-temporal replication program in higher eukaryotes, and in particular their links to epigenetic modifications, still remain elusive. By integrative analysis of the genome-wide distributions of thirteen epigenetic marks in the human cell line K562, at the 100 kb resolution of corresponding mean replication timing (MRT) data, we identify four major groups of chromatin marks with shared features. These states have different MRT, namely from early to late replicating, replication proceeds though a transcriptionally active euchromatin state (C1), a repressive type of chromatin (C2) associated with polycomb complexes, a silent state (C3) not enriched in any available marks, and a gene poor HP1-associated heterochromatin state (C4). When mapping these chromatin states inside the megabase-sized U-domains (U-shaped MRT profile) covering about 50% of the human genome, we reveal that the associated replication fork polarity gradient corresponds to a directional path across the four chromatin states, from C1 at U-domains borders followed by C2, C3 and C4 at centers. Analysis of the other genome half is consistent with early and late replication loci occurring in separate compartments, the former correspond to gene-rich, high-GC domains of intermingled chromatin states C1 and C2, whereas the latter correspond to gene-poor, low-GC domains of alternating chromatin states C3 and C4 or long C4 domains. This new segmentation sheds a new light on the epigenetic regulation of the spatio-temporal replication program in human and provides a framework for further studies in different cell types, in both health and disease. Previous studies revealed spatially coherent and biological-meaningful chromatin mark combinations in human cells. Here, we analyze thirteen epigenetic mark maps in the human cell line K562 at 100 kb resolution of MRT data. The complexity of epigenetic data is reduced to four chromatin states that display remarkable similarities with those reported in fly, worm and plants. These states have different MRT: (C1) is transcriptionally active, early replicating, enriched in CTCF; (C2) is Polycomb repressed, mid-S replicating; (C3) lacks of marks and replicates late and (C4) is a late-replicating gene-poor HP1 repressed heterochromatin state. When mapping these states inside the 876 replication U-domains of K562, the replication fork polarity gradient observed in these U-domains comes along with a remarkable epigenetic organization from C1 at U-domain borders to C2, C3 and ultimately C4 at centers. The remaining genome half displays early replicating, gene rich and high GC domains of intermingled C1 and C2 states segregating from late replicating, gene poor and low GC domains of concatenated C3 and/or C4 states. This constitutes the first evidence of epigenetic compartmentalization of the human genome into replication domains likely corresponding to autonomous units in the 3D chromatin architecture.
Collapse
Affiliation(s)
- Hanna Julienne
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Azedine Zoufir
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Benjamin Audit
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| | - Alain Arneodo
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
21
|
Takata H, Hanafusa T, Mori T, Shimura M, Iida Y, Ishikawa K, Yoshikawa K, Yoshikawa Y, Maeshima K. Chromatin compaction protects genomic DNA from radiation damage. PLoS One 2013; 8:e75622. [PMID: 24130727 PMCID: PMC3794047 DOI: 10.1371/journal.pone.0075622] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/20/2013] [Indexed: 12/02/2022] Open
Abstract
Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs) in compact chromatin after ionizing irradiation was 5–50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.
Collapse
Affiliation(s)
- Hideaki Takata
- Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering Osaka University, Suita, Osaka, Japan
- * E-mail: (HT); (KM)
| | - Tomo Hanafusa
- Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Toshiaki Mori
- Radiation Research Center, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Mari Shimura
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Yutaka Iida
- Inorganic Analysis Laboratories, Toray Research Center, Inc., Otsu, Shiga, Japan
| | - Kenichi Ishikawa
- Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage, Chiba, Japan
| | - Kenichi Yoshikawa
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yuko Yoshikawa
- Research Organization of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kazuhiro Maeshima
- Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka, Japan
- * E-mail: (HT); (KM)
| |
Collapse
|
22
|
Waldeck W, Mueller G, Glatting KH, Hotz-Wagenblatt A, Diessl N, Chotewutmonti S, Langowski J, Semmler W, Wiessler M, Braun K. Spatial localization of genes determined by intranuclear DNA fragmentation with the fusion proteins lamin KRED and histone KRED und visible light. Int J Med Sci 2013; 10:1136-48. [PMID: 23869190 PMCID: PMC3714390 DOI: 10.7150/ijms.6121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/06/2013] [Indexed: 12/02/2022] Open
Abstract
The highly organized DNA architecture inside of the nuclei of cells is accepted in the scientific world. In the human genome about 3 billion nucleotides are organized as chromatin in the cell nucleus. In general, they are involved in gene regulation and transcription by histone modification. Small chromosomes are localized in a central nuclear position whereas the large chromosomes are peripherally positioned. In our experiments we inserted fusion proteins consisting of a component of the nuclear lamina (lamin B1) and also histone H2A, both combined with the light inducible fluorescence protein KillerRed (KRED). After activation, KRED generates reactive oxygen species (ROS) producing toxic effects and may cause cell death. We analyzed the spatial damage distribution in the chromatin after illumination of the cells with visible light. The extent of DNA damage was strongly dependent on its localization inside of nuclei. The ROS activity allowed to gain information about the location of genes and their functions via sequencing and data base analysis of the double strand breaks of the isolated DNA. A connection between the damaged gene sequences and some diseases was found.
Collapse
Affiliation(s)
- Waldemar Waldeck
- 1. German Cancer Research Center, Dept. of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | - Gabriele Mueller
- 1. German Cancer Research Center, Dept. of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | - Karl-Heinz Glatting
- 3. German Cancer Research Center, Genomics Proteomics Core Facility HUSAR Bioinformatics Lab, INF 580, D-69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- 3. German Cancer Research Center, Genomics Proteomics Core Facility HUSAR Bioinformatics Lab, INF 580, D-69120 Heidelberg, Germany
| | - Nicolle Diessl
- 4. German Cancer Research Center, Genomics and Proteomics Core Facility High Throughput Sequencing, INF 580, D-69120 Heidelberg, Germany
| | - Sasithorn Chotewutmonti
- 4. German Cancer Research Center, Genomics and Proteomics Core Facility High Throughput Sequencing, INF 580, D-69120 Heidelberg, Germany
| | - Jörg Langowski
- 1. German Cancer Research Center, Dept. of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | - Wolfhard Semmler
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Manfred Wiessler
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Klaus Braun
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| |
Collapse
|
23
|
Moindrot B, Audit B, Klous P, Baker A, Thermes C, de Laat W, Bouvet P, Mongelard F, Arneodo A. 3D chromatin conformation correlates with replication timing and is conserved in resting cells. Nucleic Acids Res 2012; 40:9470-81. [PMID: 22879376 PMCID: PMC3479194 DOI: 10.1093/nar/gks736] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although chromatin folding is known to be of functional importance to control the gene expression program, less is known regarding its interplay with DNA replication. Here, using Circular Chromatin Conformation Capture combined with high-throughput sequencing, we identified megabase-sized self-interacting domains in the nucleus of a human lymphoblastoid cell line, as well as in cycling and resting peripheral blood mononuclear cells (PBMC). Strikingly, the boundaries of those domains coincide with early-initiation zones in every cell types. Preferential interactions have been observed between the consecutive early-initiation zones, but also between those separated by several tens of megabases. Thus, the 3D conformation of chromatin is strongly correlated with the replication timing along the whole chromosome. We furthermore provide direct clues that, in addition to the timing value per se, the shape of the timing profile at a given locus defines its set of genomic contacts. As this timing-related scheme of chromatin organization exists in lymphoblastoid cells, resting and cycling PBMC, this indicates that it is maintained several weeks or months after the previous S-phase. Lastly, our work highlights that the major chromatin changes accompanying PBMC entry into cell cycle occur while keeping largely unchanged the long-range chromatin contacts.
Collapse
Affiliation(s)
- Benoit Moindrot
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, CNRS, F-69007 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
van de Corput MPC, de Boer E, Knoch TA, van Cappellen WA, Quintanilla A, Ferrand L, Grosveld FG. Super-resolution imaging reveals three-dimensional folding dynamics of the β-globin locus upon gene activation. J Cell Sci 2012; 125:4630-9. [PMID: 22767512 DOI: 10.1242/jcs.108522] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chromatin architecture is constantly changing because of cellular processes such as proliferation, differentiation and changes in the expression profile during gene activation or silencing. Unravelling the changes that occur in the chromatin structure during these processes has been a topic of interest for many years. It is known that gene activation of large gene loci is thought to occur by means of an active looping mechanism. It was also shown for the β-globin locus that the gene promoter interacts with an active chromatin hub by means of an active looping mechanism. This means that the locus changes in three-dimensional (3D) nuclear volume and chromatin shape. As a means of visualizing and measuring these dynamic changes in chromatin structure of the β-globin locus, we used a 3D DNA-FISH method in combination with 3D image acquisition to volume render fluorescent signals into 3D objects. These 3D chromatin structures were geometrically analysed, and results prior to and after gene activation were quantitatively compared. Confocal and super-resolution imaging revealed that the inactive locus occurs in several different conformations. These conformations change in shape and surface structure upon cell differentiation into a more folded and rounded structure that has a substantially smaller size and volume. These physical measurements represent the first non-biochemical evidence that, upon gene activation, an actively transcribing chromatin hub is formed by means of additional chromatin looping.
Collapse
Affiliation(s)
- Mariëtte P C van de Corput
- Department of Cell Biology and Genetics and Center for Biomedical Genetics, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
In the past 15 years our perception of nuclear envelope function has evolved perhaps nearly as much as the nuclear envelope itself evolved in the last 3 billion years. Historically viewed as little more than a diffusion barrier between the cytoplasm and the nucleoplasm, the nuclear envelope is now known to have roles in the cell cycle, cytoskeletal stability and cell migration, genome architecture, epigenetics, regulation of transcription, splicing, and DNA replication. Here we will review both what is known and what is speculated about the role of the nuclear envelope in genome organization, particularly with respect to the positioning and repositioning of genes and chromosomes within the nucleus during differentiation.
Collapse
Affiliation(s)
- Nikolaj Zuleger
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | | | | |
Collapse
|
26
|
How dormant origins promote complete genome replication. Trends Biochem Sci 2011; 36:405-14. [PMID: 21641805 DOI: 10.1016/j.tibs.2011.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/26/2011] [Accepted: 05/04/2011] [Indexed: 01/21/2023]
Abstract
Many replication origins that are licensed by loading MCM2-7 complexes in G1 are not normally used. Activation of these dormant origins during S phase provides a first line of defence for the genome if replication is inhibited. When replication forks fail, dormant origins are activated within regions of the genome currently engaged in replication. At the same time, DNA damage-response kinases activated by the stalled forks preferentially suppress the assembly of new replication factories, thereby ensuring that chromosomal regions experiencing replicative stress complete synthesis before new regions of the genome are replicated. Mice expressing reduced levels of MCM2-7 have fewer dormant origins, are cancer-prone and are genetically unstable, demonstrating the importance of dormant origins for preserving genome integrity. We review the function of dormant origins, the molecular mechanism of their regulation and their physiological implications.
Collapse
|
27
|
Knight M, Ittiprasert W, Odoemelam EC, Adema CM, Miller A, Raghavan N, Bridger JM. Non-random organization of the Biomphalaria glabrata genome in interphase Bge cells and the spatial repositioning of activated genes in cells co-cultured with Schistosoma mansoni. Int J Parasitol 2010; 41:61-70. [PMID: 20849859 DOI: 10.1016/j.ijpara.2010.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/29/2022]
Abstract
Biomphalaria glabrata is a major intermediate host for the parasitic trematode Schistosoma mansoni, a causative agent of human schistosomiasis. To decipher the molecular basis of this host-parasite interaction, the Bge embryonic cell line provides a unique in vitro model system to assess whether interactions between the snail and parasite affect the cell and genome biology in either organism. The organization of the B. glabrata genome in Bge cells was studied using image analysis through positioning territories of differently sized chromosomes within cell nuclei. The snail chromosome territories are similar in morphology as well as in non-random radial positioning as those found in other derived protostome and deuterostome organisms. Specific monitoring of four gene loci, piwi, BgPrx, actin and ferritin, revealed non-random radial positioning of the genome. This indicates that specific parts of the snail genome reside in reproducible nuclear addresses. To determine whether exposure to parasite is reflected in genome organization, the interphase spatial positioning of genes was assessed after co-culturing Bge cells with either normal or irradiation attenuated miracidia for 30 min to 24 h. The loci of actin and ferritin, genes that are up-regulated in the snail when subjected to infection, were visualized by fluorescence in situ hybridisation (FISH) and their radial nuclear positions i.e. their position in the interphase nucleus with respect to the nuclear edge/envelope, mapped. Interestingly, large scale gene repositioning correlated to temporal kinetics of gene expression levels in Bge cells co-cultured with normal miracidia while irradiated parasites failed to elicit similar gene expression or gene loci repositioning as demonstrated using the ferritin gene. This indicates that normal but not attenuated schistosomes provide stimuli that evoke host responses that are reflected in the host's nuclear architecture. We believe that this is not only the first time that gene-repositioning studies have been attempted in a mollusc but also demonstrates a parasite influencing the interphase genome organization of its host.
Collapse
Affiliation(s)
- Matty Knight
- Biomedical Research Institute, 12111 Parklawn Dr. Rockville, MD 20852, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Gillespie PJ, Blow JJ. Clusters, factories and domains: The complex structure of S-phase comes into focus. Cell Cycle 2010; 9:3218-26. [PMID: 20724827 PMCID: PMC3041163 DOI: 10.4161/cc.9.16.12644] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 12/24/2022] Open
Abstract
During S-phase of the cell cycle, chromosomal DNA is replicated according to a complex replication timing program, with megabase-sized domains replicating at different times. DNA fibre analysis reveals that clusters of adjacent replication origins fire near-synchronously. Analysis of replicating cells by light microscopy shows that DNA synthesis occurs in discrete foci or factories. The relationship between timing domains, origin clusters and replication foci is currently unclear. Recent work, using a hybrid Xenopus/hamster replication system, has shown that when CDK levels are manipulated during S-phase the activation of replication factories can be uncoupled from progression through the replication timing program. Here, we use data from this hybrid system to investigate potential relationships between timing domains, origin clusters and replication foci. We suggest that each timing domain typically comprises several replicon clusters, which are usually processed sequentially by replication factories. We discuss how replication might be regulated at different levels to create this complex organisation and the potential involvement of CDKs in this process.
Collapse
Affiliation(s)
- Peter J Gillespie
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | |
Collapse
|
29
|
Lu J, Li F, Murphy CS, Davidson MW, Gilbert DM. G2 phase chromatin lacks determinants of replication timing. ACTA ACUST UNITED AC 2010; 189:967-80. [PMID: 20530209 PMCID: PMC2886351 DOI: 10.1083/jcb.201002002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chromatin spatial organization helps establish the replication timing decision point at early G1. However, at G2, although retained, chromatin organization is no longer necessary or sufficient to maintain the replication timing program. DNA replication in all eukaryotes follows a defined replication timing program, the molecular mechanism of which remains elusive. Using a Xenopus laevis egg extract replication system, we previously demonstrated that replication timing is established during early G1 phase of the cell cycle (timing decision point [TDP]), which is coincident with the repositioning and anchorage of chromatin in the newly formed nucleus. In this study, we use this same system to show that G2 phase chromatin lacks determinants of replication timing but maintains the overall spatial organization of chromatin domains, and we confirm this finding by genome-wide analysis of rereplication in vivo. In contrast, chromatin from quiescent cells retains replication timing but exhibits disrupted spatial organization. These data support a model in which events at the TDP, facilitated by chromatin spatial organization, establish determinants of replication timing that persist independent of spatial organization until the process of chromatin replication during S phase erases those determinants.
Collapse
Affiliation(s)
- Junjie Lu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | |
Collapse
|
30
|
Harnicarová Horáková A, Bártová E, Kozubek S. Chromatin structure with respect to histone signature changes during cell differentiation. Cell Struct Funct 2010; 35:31-44. [PMID: 20424340 DOI: 10.1247/csf.09021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Here, we would like to point out important milestones in the study of nuclear radial positioning and gene expression during differentiation processes. In addition, changes in the histone signature that significantly precede various differentiation pathways are reviewed. We address the regulatory functions of chromatin structure and histone epigenetic marks that give rise to gene expression patterns that are specific to distinct differentiation pathways. The functional relevance of nuclear architecture and epigenetic traits is preferentially discussed in the context of in vitro induced enterocytic differentiation and pluripotent or differentiated embryonic stem cells. We especially focus on the recapitulation of nuclear events that have been characterized for some genes and proto-oncogenes that are important for development and differentiation.
Collapse
|
31
|
Abstract
The nuclear periphery is a specialized environment in the nucleus that contributes to genome organization and correspondingly to gene regulation. Mammalian chromosomes and certain genes occupy defined positions within the nucleus that are heritable and tissue specific. Genes located at the nuclear periphery tend to be inactive and this negative regulation can be reversed when they are released from the periphery in certain differentiation systems. Recent work using specially designed systems has shown that genes can be artificially tethered to the nuclear periphery by an affinity mechanism. The next important step will be to identify the endogenous NE (nuclear envelope) and chromatin proteins that participate in affinity-driven NE tethering and determine how they are regulated.
Collapse
|
32
|
Frum RA, Khondker ZS, Kaufman DG. Temporal differences in DNA replication during the S phase using single fiber analysis of normal human fibroblasts and glioblastoma T98G cells. Cell Cycle 2010; 8:3133-48. [PMID: 19738421 DOI: 10.4161/cc.8.19.9682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have recently shown that replication forks pause near origins in normal human fibroblasts (NHF1-hTERT) but not glioblastoma T98G cells. This observation led us to question whether other differences in the replication program may exist between these cell types that may relate to their genetic integrity. To identify differences, we detected immunoflourescently the sequential incorporation of the nucleotide analogs IdU and CldU into replicating DNA at the start of every hour of a synchronized S phase. We then characterized the patterns of labeled replicating DNA tracks and quantified the percentages and lengths of the tracks found at these hourly intervals. From the directionality of labeling in single extended replicating DNA fibers, tracks were categorized as single bidirectional origins, unidirectional elongations, clusters of origins firing in tandem, or merging forks (terminations). Our analysis showed that the start of S phase is enriched in single bidirectional origins in NHF1-hTERT cells, followed by an increase in clustering during mid S phase and an increase in merging forks during late S phase. Early S phase in T98G cells also largely consisted of single bidirectional origin initiations; however, an increase in clustering was delayed until an hour later, and clusters were shorter in mid/late S phase than in NHF1-hTERT cells. The spike in merging forks also did not occur until an hour later in T98G cells. Our observations suggest models to explain the temporal replication of single and clustered origins, and suggest differences in the replication program in a normal and cancer cell line.
Collapse
Affiliation(s)
- Rebecca A Frum
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|
33
|
Schirmer EC. The epigenetics of nuclear envelope organization and disease. Mutat Res 2008; 647:112-21. [PMID: 18722388 DOI: 10.1016/j.mrfmmm.2008.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/16/2008] [Accepted: 07/23/2008] [Indexed: 01/09/2023]
Abstract
Mammalian chromosomes and some specific genes have non-random positions within the nucleus that are tissue-specific and heritable. Work in many organisms has shown that genes at the nuclear periphery tend to be inactive and altering their partitioning to the interior results in their activation. Proteins of the nuclear envelope can recruit chromatin with specific epigenetic marks and can also recruit silencing factors that add new epigenetic modifications to chromatin sequestered at the periphery. Together these findings indicate that the nuclear envelope is a significant epigenetic regulator. The importance of this function is emphasized by observations of aberrant distribution of peripheral heterochromatin in several human diseases linked to mutations in NE proteins. These debilitating inherited diseases range from muscular dystrophies to the premature aging progeroid syndromes and the heterochromatin changes are just one early clue for understanding the molecular details of how they work. The architecture of the nuclear envelope provides a unique environment for epigenetic regulation and as such a great deal of research will be required before we can ascertain the full range of its contributions to epigenetics.
Collapse
Affiliation(s)
- Eric C Schirmer
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
34
|
Fedorova E, Zink D. Nuclear architecture and gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2174-84. [PMID: 18718493 DOI: 10.1016/j.bbamcr.2008.07.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/15/2008] [Accepted: 07/20/2008] [Indexed: 12/27/2022]
Abstract
The spatial organization of eukaryotic genomes in the cell nucleus is linked to their transcriptional regulation. In mammals, on which this review will focus, transcription-related chromatin positioning is regulated at the level of chromosomal sub-domains and individual genes. Most of the chromatin remains stably positioned during interphase. However, some loci display dynamic relocalizations upon transcriptional activation, which are dependent on nuclear actin and myosin. Transcription factors in association with chromatin modifying complexes seem to play a central role in regulating chromatin dynamics and positioning. Recent results obtained in this regard also give insight into the question how the different levels of transcriptional regulation are integrated and coordinated with other processes involved in gene expression. Corresponding findings will be discussed.
Collapse
Affiliation(s)
- Elena Fedorova
- Russian Academy of Sciences, I.P. Pavlov Institute of Physiology, Department of Sensory Physiology, Nab. Makarova 6, 199034 St. Petersburg, Russia
| | | |
Collapse
|
35
|
Abstract
Summary It has been postulated that bacterial DNA replication occurs via a factory mechanism in which unreplicated DNA is spooled into a centrally located replisome and newly synthesized DNA is discharged towards opposite cell poles. Although there is considerable support for this view, it does not fit with many key observations. I review new findings, and provide alternative interpretations for old findings, which challenge this model. As a whole, current data suggest that the replisome, at least in slowly growing Escherichia coli cells, tracks along a stationary chromosome. These replisomes are not stationary, tethered or restricted in their movement, but rather travel throughout the nucleoid. One possibility is that the replisome navigates along a chromosome made up of looped domains as has been previously envisioned.
Collapse
Affiliation(s)
- David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Khalil A, Grant JL, Caddle LB, Atzema E, Mills KD, Arneodo A. Chromosome territories have a highly nonspherical morphology and nonrandom positioning. Chromosome Res 2007; 15:899-916. [PMID: 17926137 DOI: 10.1007/s10577-007-1172-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 08/06/2007] [Accepted: 08/06/2007] [Indexed: 12/14/2022]
Abstract
Interphase chromosomes are organized into discrete chromosome territories (CTs) that may occupy preferred sub-nuclear positions. While chromosome size and gene density appear to influence positioning, the biophysical mechanisms behind CT localization, especially the relationship between morphology and positioning, remain obscure. One reason for this has been the difficulty in imaging, segmenting, and analyzing structures with variable or imprecise boundaries. This prompted us to develop a novel approach, based on the two-dimensional (2D) wavelet-transform modulus maxima (WTMM) method, adapted to perform objective and rigorous CT segmentation from nuclear background. The wavelet transform acts as a mathematical microscope to characterize spatial image information over a continuous range of size scales. This multiresolution nature, combined with full objectivity of the formalism, makes it more accurate than intensity-based segmentation algorithms and more appropriate than manual intervention. Using the WTMM method in combination with numerical simulation models, we show that CTs have a highly nonspherical 3D morphology, that CT positioning is nonrandom, and favors heterologous CT groupings. We discuss potential relationships between morphology, positioning, chromosomal function, and instability.
Collapse
Affiliation(s)
- A Khalil
- Department of Mathematics & Statistics, University of Maine, Orono, ME 04469, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
There are almost 1,300 entries for higher eukaryotes in the Nuclear Protein Database. The proteins' subcellular distribution patterns within interphase nuclei can be complex, ranging from diffuse to punctate or microspeckled, yet they all work together in a coordinated and controlled manner within the three-dimensional confines of the nuclear volume. In this review we describe recent advances in the use of quantitative methods to understand nuclear spatial organisation and discuss some of the practical applications resulting from this work.
Collapse
|
38
|
Balbach ST, Jauch A, Böhm-Steuer B, Cavaleri FM, Han YM, Boiani M. Chromosome stability differs in cloned mouse embryos and derivative ES cells. Dev Biol 2007; 308:309-21. [PMID: 17610862 DOI: 10.1016/j.ydbio.2007.05.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 04/26/2007] [Accepted: 05/16/2007] [Indexed: 02/08/2023]
Abstract
The mechanisms that have evolved to maintain genome stability during cell cycle progression are challenged when a somatic cell nucleus is placed in a meiotic environment such as the ooplasm. Chromosomal spindle aberrations ensue in the majority of reconstructed oocytes within 2 h of transplantation, but it is not known if they recover or persist with the onset of embryonic divisions. We analyzed the chromosomal spindles and the karyotype of cumulus cell-derived mouse clones through the initial and hence most critical mitoses. Cloned embryos start out with less aneuploidy than fertilized embryos but surpass them after ES cell derivation, as measured by frequencies of chromosome trisomies and structural rearrangements. Despite the limited proportion of cloned mouse embryos that reach late gestation, a phenotypic mutation lacking a karyotypic mark was found in a newborn mouse cloned in 2002 and has been inherited since by its offspring. These data concur with a prevalent epigenetic, rather than genetic, basis for cloned embryo failure, but they also warn against the temptation to think that all conditions of clones are epigenetic and recover during gametogenesis. The cloning procedure is defenseless (no matter how technically refined) towards pre-existing or induced subchromosomal mutations that are below the experimental detection limit of the cytogenetic assay.
Collapse
Affiliation(s)
- Sebastian T Balbach
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Gotoh E. Visualizing the dynamics of chromosome structure formation coupled with DNA replication. Chromosoma 2007; 116:453-62. [PMID: 17503067 DOI: 10.1007/s00412-007-0109-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/02/2007] [Accepted: 04/18/2007] [Indexed: 11/25/2022]
Abstract
A basic question of cell biology is how DNA folds to chromosome. Numbers of examples have suggested the involvement of DNA replication in chromosome structure formation. To visualize and identify the dynamics of chromosome structure formation and to elucidate the involvement of DNA replication in chromosome construction, Cy3-2'-deoxyuridine-5'-triphosphate direct-labeled active replicating DNA was observed in prematurely condensed chromosomes (PCCs) under a confocal scanning microscope utilized with drug-induced premature chromosome condensation (PCC) technique that facilitates the visualization of interphase chromatin as condensed chromosome form. S-phase PCCs revealed clearly the drastic dynamics of chromosome formation that transits during S-phase from a 'cloudy nebula' to numerous numbers of 'beads on a string' and finally to 'striped arrays of banding structured chromosome' along with the progress of DNA replication. The number, distribution, and shape of replication foci were also measured in individual subphases of S-phase more precisely than reported previously; maximally, approximately 1,400 foci of 0.35 microm average radius size were scored at the beginning of the S-phase, and the number reduced to approximately 100 at the end of the S-phase. Drug-induced PCC clearly provided the new insight that eukaryote DNA replication is tightly coupled with the chromosome condensation/compaction for the construction of the higher-ordered structure of the eukaryote chromosome.
Collapse
Affiliation(s)
- Eisuke Gotoh
- Division of Genetic Resources, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
40
|
Richter K, Nessling M, Lichter P. Experimental evidence for the influence of molecular crowding on nuclear architecture. J Cell Sci 2007; 120:1673-80. [PMID: 17430977 DOI: 10.1242/jcs.03440] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Many compounds in the cell nucleus are structurally organized. To assess the influence of structural organization on nuclear function, we investigated the physical mechanisms of structure formation by using molecular crowding as a parameter for nuclear integrity. Molecular crowding promotes compaction of macromolecular compounds depending on their size and shape without the need for site-specific interactions. HeLa and MCF7 cells were incubated with hypertonic medium to increase crowding of their macromolecular content as a result of the osmotic loss of water. Supplementation of sucrose, sorbitol or NaCl to the growth medium shifted nuclear organization, observed by fluorescence and electron microscopy, towards compaction of chromatin and segregation of other nuclear compounds. With increasing hypertonic load and incubation time, this nuclear re-organization proceeded gradually, irrespective of the substances used, and reversibly relaxed to a regular phenotype upon re-incubation of cells in isotonic growth medium. Gradual and reversible re-organization are major features of controlled de-mixing by molecular crowding. Of fundamental importance for nuclear function, we discuss how macromolecular crowding could account for the stabilization of processes that involve large, macromolecular machines.
Collapse
Affiliation(s)
- Karsten Richter
- Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
41
|
Goetze S, Mateos-Langerak J, Gierman HJ, de Leeuw W, Giromus O, Indemans MHG, Koster J, Ondrej V, Versteeg R, van Driel R. The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol 2007; 27:4475-87. [PMID: 17420274 PMCID: PMC1900058 DOI: 10.1128/mcb.00208-07] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The three-dimensional (3D) organization of the chromosomal fiber in the human interphase nucleus is an important but poorly understood aspect of gene regulation. Here we quantitatively analyze and compare the 3D structures of two types of genomic domains as defined by the human transcriptome map. While ridges are gene dense and show high expression levels, antiridges, on the other hand, are gene poor and carry genes that are expressed at low levels. We show that ridges are in general less condensed, more irregularly shaped, and located more closely to the nuclear center than antiridges. Six human cell lines that display different gene expression patterns and karyotypes share these structural parameters of chromatin. This shows that the chromatin structures of these two types of genomic domains are largely independent of tissue-specific variations in gene expression and differentiation state. Moreover, we show that there is remarkably little intermingling of chromatin from different parts of the same chromosome in a chromosome territory, neither from adjacent nor from distant parts. This suggests that the chromosomal fiber has a compact structure that sterically suppresses intermingling. Together, our results reveal novel general aspects of 3D chromosome architecture that are related to genome structure and function.
Collapse
Affiliation(s)
- Sandra Goetze
- Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The discovery that many inherited diseases are linked to interacting nuclear envelope proteins has raised the possibility that human genetic studies could be assisted by a fusion with proteomics. Two principles could be applied. In the first, the proteome of an organelle associated with a genetically variable disease is determined. The chromosomal locations of the genes encoding the organellar proteins are then determined. If a related disease is linked to a large chromosomal region that includes a gene identified in the organelle, then that gene has an increased likelihood of causing the disease. Directly sequencing this allele from patient samples might speed identification compared with further genetic linkage studies as has been demonstrated for multiple diseases associated with the nuclear envelope. The second principle is that if an organelle has been implicated in the pathology of a particular disorder, then comparison of the organelle proteome from control and patient cells might highlight differences that could indicate the causative protein. The distinct, tissue-specific pathologies associated with nuclear envelope diseases suggest that many tissues will have a set of disorders linked to this organelle, and there are numerous as yet unmapped or partially mapped syndromes that could benefit from such an approach.
Collapse
Affiliation(s)
- Gavin S Wilkie
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom
| | | |
Collapse
|
43
|
Harnicarová A, Kozubek S, Pacherník J, Krejci J, Bártová E. Distinct nuclear arrangement of active and inactive c-myc genes in control and differentiated colon carcinoma cells. Exp Cell Res 2006; 312:4019-35. [PMID: 17046748 DOI: 10.1016/j.yexcr.2006.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 01/05/2023]
Abstract
Using sequential RNA-DNA fluorescence in situ hybridization, the nuclear arrangement of both the active and inactive c-myc gene as well as its transcription was investigated in colon cancer HT-29 cells induced to differentiate into enterocytes. Cytogenetic studies revealed the presence of two chromosomes 8 in HT-29 cells, of which the one containing c-myc gene amplicons was substantially larger and easily distinguished from the normal chromosome. This observation enabled detection of both activity and nuclear localization of c-myc genes in single cells and in individual chromosome territories. Similar transcriptional activity of the c-myc gene was observed in both the normal and derivative chromosome 8 territories showing no influence of the amplification on the c-myc gene expression. Our experiments demonstrate strikingly specific nuclear and territorial arrangements of active genes as compared with inactive ones: on the periphery of their territories facing to the very central region of the cell nucleus. Nuclear arrangement of c-myc genes and transcripts was conserved during cell differentiation and, therefore, independent of the level of differentiation-specific c-myc gene expression. However, after the induction of differentiation, a more internal territorial location was found for the single copy c-myc gene of normal chromosome 8, while amplicons conserved their territorial topography.
Collapse
Affiliation(s)
- Andrea Harnicarová
- Laboratory of Molecular Cytology and Cytometry, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
44
|
Shopland LS, Lynch CR, Peterson KA, Thornton K, Kepper N, Hase JV, Stein S, Vincent S, Molloy KR, Kreth G, Cremer C, Bult CJ, O'Brien TP. Folding and organization of a contiguous chromosome region according to the gene distribution pattern in primary genomic sequence. ACTA ACUST UNITED AC 2006; 174:27-38. [PMID: 16818717 PMCID: PMC2064156 DOI: 10.1083/jcb.200603083] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Specific mammalian genes functionally and dynamically associate together within the nucleus. Yet, how an array of many genes along the chromosome sequence can be spatially organized and folded together is unknown. We investigated the 3D structure of a well-annotated, highly conserved 4.3-Mb region on mouse chromosome 14 that contains four clusters of genes separated by gene “deserts.” In nuclei, this region forms multiple, nonrandom “higher order” structures. These structures are based on the gene distribution pattern in primary sequence and are marked by preferential associations among multiple gene clusters. Associating gene clusters represent expressed chromatin, but their aggregation is not simply dependent on ongoing transcription. In chromosomes with aggregated gene clusters, gene deserts preferentially align with the nuclear periphery, providing evidence for chromosomal region architecture by specific associations with functional nuclear domains. Together, these data suggest dynamic, probabilistic 3D folding states for a contiguous megabase-scale chromosomal region, supporting the diverse activities of multiple genes and their conserved primary sequence organization.
Collapse
|
45
|
Holmquist GP, Ashley T. Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genome Res 2006; 114:96-125. [PMID: 16825762 DOI: 10.1159/000093326] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/15/2005] [Indexed: 11/19/2022] Open
Abstract
Histone modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution.
Collapse
Affiliation(s)
- G P Holmquist
- Biology Department, City of Hope Medical Center, Duarte, CA, USA.
| | | |
Collapse
|
46
|
Zink D. The temporal program of DNA replication: new insights into old questions. Chromosoma 2006; 115:273-87. [PMID: 16552593 DOI: 10.1007/s00412-006-0062-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/10/2006] [Accepted: 02/23/2006] [Indexed: 01/26/2023]
Abstract
During the last decades it has been shown that the replication timing program in metazoans is related to chromosome structure, the nuclear positioning and AT/GC content of chromosomal loci, their patterns of histone modifications, and their transcriptional regulation. Here, the current state of knowledge concerning these relationships is reviewed. An integrated view on structure-function relationships in the nucleus is provided and the determination and functional role of the replication timing program is discussed in this context. A corresponding comprehensive model is developed and a key aspect of this model is the suggestion that mammalian chromosomes are organized into stable units equivalent to replicon clusters. It is proposed that the nuclear positions of these units would depend on their histone modifications and determine the replication timing of the whole unit. It is furthermore predicted that replication timing is only indirectly linked to transcriptional regulation and contributes to the maintenance of gene expression patterns. These clear predictions, and the fact that the tools are at hand now to further test them, open an avenue towards solving the long standing problem on how replication timing is determined in metazoan cells.
Collapse
Affiliation(s)
- Daniele Zink
- Department Biologie II, Ludwig-Maximilians-Universität München, Biozentrum, Planegg-Martinsried, Germany.
| |
Collapse
|
47
|
Polyakov VY, Zatsepina OV, Kireev II, Prusov AN, Fais DI, Sheval EV, Koblyakova YV, Golyshev SA, Chentsov YS. Structural-functional model of the mitotic chromosome. BIOCHEMISTRY (MOSCOW) 2006; 71:1-9. [PMID: 16457612 DOI: 10.1134/s0006297906010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present review the structural role of noncoding DNA, mechanisms of differential staining of mitotic chromosomes, and structural organization of different levels of DNA compactization are discussed. A structural-functional model of the mitotic chromosome is proposed based on the principle of discreteness of structural levels of DNA compactization.
Collapse
Affiliation(s)
- V Yu Polyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Foster HA, Bridger JM. The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 2005; 114:212-29. [PMID: 16133352 DOI: 10.1007/s00412-005-0016-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/29/2005] [Accepted: 07/04/2005] [Indexed: 01/15/2023]
Abstract
Genomes are housed within cell nuclei as individual chromosome territories. Nuclei contain several architectural structures that interact and influence the genome. In this review, we discuss how the genome may be organised within its nuclear environment with the position of chromosomes inside nuclei being either influenced by gene density or by chromosomes size. We compare interphase genome organisation in diverse species and reveal similarities and differences between evolutionary divergent organisms. Genome organisation is also discussed with relevance to regulation of gene expression, development and differentiation and asks whether large movements of whole chromosomes are really observed during differentiation. Literature and data describing alterations to genome organisation in disease are also discussed. Further, the nuclear structures that are involved in genome function are described, with reference to what happens to the genome when these structures contain protein from mutant genes as in the laminopathies.
Collapse
Affiliation(s)
- Helen A Foster
- Laboratory of Nuclear and Genomic Health, Cell and Chromosome Biology Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | | |
Collapse
|
49
|
Masata M, Malínský J, Fidlerová H, Smirnov E, Raska I. Dynamics of replication foci in early S phase as visualized by cross-correlation function. J Struct Biol 2005; 151:61-8. [PMID: 15894492 DOI: 10.1016/j.jsb.2005.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
To monitor gradual changes in the replication foci distribution during early S phase, different segments of newly synthesized DNA were visualized by immunocytochemical mapping of two consecutively incorporated deoxythymidine analogs in pulse-chase-pulse experiments in HeLa cells. The resulting dual-labeled fluorescence images were evaluated using cross-correlation function (CCF) analysis. General changes of CCF shape due to image deterioration caused by blur, noise, and lateral sampling (pixel size) were also discussed. Using CCF analysis of model images simulating either random initiation of new replication foci, or the firing of new foci in close proximity to completed ones, we were able to ascribe the changes in the early S replication foci distribution to the latter mechanism. In contrast to the data published previously, we monitored the dynamics of all replication foci for up to 3 h. In addition, we showed that the replication foci dynamics is well described by random walk model, so that the average de-localization of individual foci is proportional to square root of the applied chase.
Collapse
Affiliation(s)
- M Masata
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University, Albertov 4, CZ-12800 Prague 2, Czech Republic
| | | | | | | | | |
Collapse
|
50
|
Svetlova M, Solovjeva L, Blasius M, Shevelev I, Hubscher U, Hanawalt P, Tomilin N. Differential incorporation of halogenated deoxyuridines during UV-induced DNA repair synthesis in human cells. DNA Repair (Amst) 2005; 4:359-66. [PMID: 15661659 DOI: 10.1016/j.dnarep.2004.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 11/09/2004] [Indexed: 11/28/2022]
Abstract
Double labeling of interphase and metaphase chromosomes by 5-chlorodeoxyuridine (CldU) and 5-iododeoxyuridine (IdU) has been used in studies of the dynamics of DNA replication. Here, we have used this approach and confocal microscopy to analyze sites of DNA repair synthesis during nucleotide excision repair (NER) in quiescent human fibroblasts. Surprisingly, we have found that when both precursors are added at the same time to UV-irradiated cells they label different sites in the nucleus. In contrast, even very short periods of simultaneous IdU+CldU labeling of S-phase cells produced mostly overlapped IdU and CldU replication foci. The differential labeling of repair sites might be due to compartmentalization of I-dUTP and Cl-dUTP pools, or to differential utilization of these thymidine analogs by DNA polymerases delta and epsilon (Poldelta and Polepsilon). To explore the latter possibility we used purified mammalian polymerases to find that I-dUTP is efficiently utilized by both Poldelta and Polepsilon. However, we found that the UV-induced incorporation of IdU was more strongly stimulated by treatment of cells with hydroxyurea than was incorporation of CldU. This indicates that there may be distinct IdU and CldU-derived nucleotide pools differentially affected by inhibition of the ribonucleotide reductase pathway of dNTP synthesis and that is consistent with the view that differential incorporation of IdU and CldU during NER may be caused by compartmentalization of IdU- and CldU-derived nucleotide pools.
Collapse
Affiliation(s)
- Maria Svetlova
- Laboratory of Chromosome Stability, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|