1
|
Huang KC, Huang TW, Chuang PY, Yang TY, Chang SF. Zoledronate induces cell cycle arrest and differentiation by upregulating p21 in mouse MC3T3-E1 preosteoblasts. Int J Med Sci 2019; 16:751-756. [PMID: 31217743 PMCID: PMC6566742 DOI: 10.7150/ijms.32612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/23/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Increasing research has recently been focused on the supplementary use of drugs such as bisphosphonates that are known to influence bone turnover to prevent and treat periprosthetic bone loss and subsequent implant loosening following total joint replacements. However, there are still concerns about the conflicting effects of bisphosphonate treatment on osteoblastic bone formation in the literature. Methods: In this study, we investigate the role of zoledronate (ZOL) in regulating cell cycle distribution and differentiation in mouse MC3T3-E1 preosteoblasts and also explore the mechanism underlying this effect of ZOL. We examined the expression levels of osteocalcin (OCN) by quantitative polymerase chain reaction (qPCR), the total amount of CDK6, p21 and p27 proteins by Western blot analysis, and the cell cycle distribution by flow cytometric analysis in mouse MC3T3-E1 preosteoblasts to evaluate the effect of ZOL. Small interfering RNAs (siRNAs) were used to assess the individual contributions of genes to specific osteoblast phenotypes. Results: In addition to increased OCN expression, we found that ZOL treatment induces the G0/G1 arrest and results in the increase of p21 and p27 expressions and decrease of CDK6 expression in mouse MC3T3-E1 preosteoblasts. Both p21 and p27 mediates ZOL-induced cell cycle exit; however, p21, but not p27, is responsible for the increase of ZOL-induced OCN expression in these cells. Conclusions: These results endorse that ZOL might have an anabolic effect on osteoblasts. The CDK inhibitor p21 plays a key role in regulating osteoblast differentiation by controlling proliferation-related events in mouse MC3T3-E1 preosteoblasts.
Collapse
Affiliation(s)
- Kuo-Chin Huang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan.,Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan
| | - Tsan-Wen Huang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Po-Yao Chuang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Tien-Yu Yang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| |
Collapse
|
2
|
Fukuda N, Saitoh M, Kobayashi N, Miyazono K. Execution of BMP-4-induced apoptosis by p53-dependent ER dysfunction in myeloma and B-cell hybridoma cells. Oncogene 2006; 25:3509-17. [PMID: 16449972 DOI: 10.1038/sj.onc.1209393] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bone morphogenic protein (BMP)-4 inhibits proliferation and induces the apoptosis of myeloma cells. However, little is known about the molecular mechanisms of how BMP-4 executes this apoptosis. In this report, we investigated the roles of p53 and the endoplasmic reticulum (ER) in BMP-4-induced apoptosis of mouse hybridoma HS-72 cells. We found that 3 ng/ml of BMP-4 is sufficient to induce the expression of proapoptotic proteins, puma and bax, in a p53-dependent mechanism, and facilitate Ca(2+) release from the ER to the cytosol, resulting in the activation of caspase-12 and ER dysfunction. Similarly to HS-72 cells, multiple myeloma cells with wild-type p53 genes show much higher sensitivity to BMP-4-induced apoptosis than cells without wild-type p53 genes, suggesting that wild-type p53 status is required for dysfunction of the ER during BMP-4-induced apoptosis in ER-enriched cells, such as hybridoma and myeloma cells. These findings demonstrate that the presence of wild-type p53 genes and enrichment of the ER determines the sensitivity to effective apoptosis by BMP-4, and suggest that ER stress-inducing agents would be valuable in the treatment of multiple myeloma.
Collapse
Affiliation(s)
- N Fukuda
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
3
|
Yamato K, Fen J, Kobuchi H, Nasu Y, Yamada T, Nishihara T, Ikeda Y, Kizaki M, Yoshinouchi M. Induction of cell death in human papillomavirus 18-positive cervical cancer cells by E6 siRNA. Cancer Gene Ther 2005; 13:234-41. [PMID: 16138119 DOI: 10.1038/sj.cgt.7700891] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cervical cancer is caused by high-risk types of human papillomavirus (HPV) such as HPV16 and HPV18, which possess the E6 and E7 oncogenes, whose concurrent expression is a prerequisite for cancer development and maintaining malignant phenotypes. Silencing these oncogenes is considered to be applicable in molecular therapies of human cervical cancer. However, it remains to be determined whether E6, E7, or both should be silenced to obtain most efficient antitumor activity by an HPV small-interfering RNA (siRNA). Herein, we report two types of siRNAs targeting HPV18 E6, that exerted a negative growth effect on HPV18-positive cervical cancer cells (HeLa and SW756), in part, inducing cell death. One siRNA (Ex-18E6), designed to target both E6-E7 mRNA and its splicing variant, E6*I-E7 mRNA, efficiently knocked down both E6 and E7 expression. The other (Sp-18E6), designed to specifically target E6-E7 mRNA but not E6*I-E7 mRNA, suppressed E6 to a similar level as Ex-18E6; however, it less efficiently inhibited E7 as compared to Ex-18E6. Although both siRNAs induced cell death, Sp-18E6 siRNA induced more prominent cell death than Ex-18E6. Our results suggest that E6-specific suppression may induce more potent anticancer activity than simultaneous E6 and E7 suppression, and that E6-specific targeting is a promising strategy for siRNA-based therapy for HPV-positive cervical cancer.
Collapse
Affiliation(s)
- K Yamato
- Molecular Cellular Oncology and Microbiology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Murnaghan M, McIlmurray L, Mushipe MT, Li G. Time for treating bone fracture using rhBMP-2: a randomised placebo controlled mouse fracture trial. J Orthop Res 2005; 23:625-31. [PMID: 15885484 DOI: 10.1016/j.orthres.2004.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 12/22/2004] [Indexed: 02/04/2023]
Abstract
Although the mechanisms of osteoinduction by bone morphogenic proteins (BMPs) are increasingly understood, the most appropriate time to administer BMPs exogenously is yet to be clarified. The purpose of this study was to investigate when BMP may be administered to a fracture arena to maximise the enhancement of healing. Forty mice with externally fixed left femoral fractures were randomised into four groups: Group I, the control group was given a placebo of 30 microl saline at day 0; Groups II, III and IV were given 30 microl saline plus 2.5 microg rhBMP-2, at post-operative days 0, 4 or 8, respectively. Sequential radiographs were taken at days 0, 8, 16. On day 22 the mice were sacrificed and both femora were harvested for biomechanical assessment in 3-point bending and histological evaluation. Radiographic analysis indicated that healing of fractures in Groups II and III was significantly greater (p < 0.05) than those in Groups I and IV, at both 16 and 22 days post-fracture. The highest median bone mineral content at the fracture site was evidenced in Group III and II. Furthermore, Group III also had the highest relative ultimate load values, followed by Groups II, IV and I. Greater percentage peak loads were observed between Group I and both Groups II and III (p < 0.05). Histological examination confirmed that at 22 days post-fracture, only fractures in Groups II and III had united with woven bone, and Groups I and IV still had considerable amounts of fibrous tissue and cartilage at the fracture gap. Data presented herein indicates that there is a time after fracture when rhBMP administration is most effective, and this may be at the time of surgery as well as in the early fracture healing phases.
Collapse
Affiliation(s)
- Mark Murnaghan
- The Department of Trauma and Orthopaedic Surgery, School of Medicine, Queen's University of Belfast, Musgrave Park Hospital, Northern Ireland, UK
| | | | | | | |
Collapse
|
5
|
Peterková R, Peterka M, Lesot H. The developing mouse dentition: a new tool for apoptosis study. Ann N Y Acad Sci 2004; 1010:453-66. [PMID: 15033770 DOI: 10.1196/annals.1299.083] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Developing limb or differentiating neural and blood cells are traditional models used to study programmed cell death in mammals. The developing mouse dentition can also be an attractive model for studying apoptosis regulation. Apoptosis is most extant during early odontogenesis in mice. The embryonic tooth pattern is comprised not only of anlagen of functional teeth (incisor, molars), but also of vestiges of ancestral tooth primordia that must be suppressed. Apoptosis is involved in (a) the elimination of vestigial tooth primordia in the prospective toothless gap (diastema) between the incisor and molars and (b) the shaping of germs in functional teeth. This type of apoptosis occurs in the dental epithelium according to a characteristic temporo-spatial pattern. Where apoptosis concentrates, specific signaling is also found. We proposed a hypothesis to explain the stimulation of apoptosis in the dental epithelium by integrating two concepts: (1) The regulation of epithelial budding by positional information generated from interactions between growth-activating and growth-inhibiting signals, and (2) apoptosis stimulation by the failure of death-suppressing signals. During the budding of the dental epithelium, local excess in growth inhibitors (e.g., Bmps) might lead to the epithelial cells' failure to receive adequate growth-activating (apoptosis-suppressing) signals (e.g., Fgfs). The resulting signal imbalance leads to cell "suicide" by apoptosis. Understanding of apoptosis regulation in the vestigial tooth primordia can help to elucidate the mechanism of their suppression during evolution and to identify factors essential for tooth survival. The latter knowledge will be important for developing a technology of tooth engineering.
Collapse
Affiliation(s)
- Renata Peterková
- Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | | | |
Collapse
|
6
|
Yoshinouchi M, Yamada T, Kizaki M, Fen J, Koseki T, Ikeda Y, Nishihara T, Yamato K. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol Ther 2004; 8:762-8. [PMID: 14599809 DOI: 10.1016/j.ymthe.2003.08.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human papillomavirus type 16 (HPV16), a causative agent of cervical cancers, encodes the E6 and E7 oncogenes, whose simultaneous expression is pivotal for malignant transformation and maintenance of malignant phenotypes. In the hope of developing a gene-specific therapy for HPV-related cancer, we examined the effects of E6 short-interfering RNA (siRNA) on the expression of these oncogenes and on the cell growth of HPV16-related cervical cancer cells. Using SiHa cervical cancer cells, we demonstrated that E6 siRNA decreased the levels of mRNA encoding E6 as well as that encoding E7 protein and also induced nuclear accumulation of p53, the most important target of E6. E6 siRNA suppressed monolayer and anchorage-independent growth of SiHa cells, which was associated with p21(CIP1/WAF1) induction and hypophosphorylation of retinoblastoma protein. Further, SiHa cells treated with E6 siRNA formed tumors in NOD/SCID mice that were significantly smaller than in those treated with control siRNA. Our results show HPV E6 siRNA as a candidate for gene-specific therapy for HPV-related cervical cancer.
Collapse
Affiliation(s)
- Mitsuo Yoshinouchi
- Department of Obstetrics and Gynecology, Okayama University Medical School, 700-8558, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Fregonesi PAG, Teresa DB, Duarte RA, Neto CB, de Oliveira MRB, Soares CP. p16(INK4A) immunohistochemical overexpression in premalignant and malignant oral lesions infected with human papillomavirus. J Histochem Cytochem 2003; 51:1291-7. [PMID: 14500697 DOI: 10.1177/002215540305101006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Human papillomavirus (HPV) is believed to promote the oncogenic process, and the correlation between viral oncoproteins and dysfunction of p16(INK4A) tumor suppressor protein in oral lesions is controversial. To test the hypothesis that anogenital HPV types participate in disruption of the regulation of p16(INK4A) suppressor protein in oral lesions, we analyzed 46 oral biopsy specimens for the presence of HPV 6/11 and 16/18 by in situ hybridization (ISH) and for p16(INK4A) expression by immunohistochemistry (IHC). Eighteen (39%) of the 46 oral lesions were HPV-positive and 28 (61%) were HPV-negative. HPV 6/11 DNA was found in 5 (11%) and HPV 16/18 in 13 (28%) of 46 biopsies. Nine of the 18 HPV-positive oral lesions (50%), assessed by catalyzed signal amplification coupled to ISH (CSA-ISH), gave high-intensity p16(INK4A) immunostaining. Focal and diffuse patterns were observed in 11/13 (77%) lesions with HPV 16/18, focal immunopositivity in 3/5 (80%) with HPV 6/11, and negative or sporadic p16-labeling in 18/28 (64%) without the presence of HPV DNA. These results showed a strong association between overexpression of p16 protein and malignant oral lesions, mainly those infected by HPV 16/18. We can conclude that high-risk HPV types are associated with p16 overexpression, and p16 may serve as a biomarker in oral cancer related to high-risk HPV infection.
Collapse
|
8
|
Eriksson C, Broberg M, Nygren H, Oster L. Novel in vivo method for evaluation of healing around implants in bone. J Biomed Mater Res A 2003; 66:662-8. [PMID: 12918050 DOI: 10.1002/jbm.a.10029] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A material implanted in bone is always inserted into coagulating blood. Protein and cell interactions during this initial implantation time will govern later healing. Many studies have focused on the tissue surrounding implants. We have developed a method for evaluation of healing around implants in bone by studying cells adhering to the implant surface. Hydrophilic titanium discs were inserted into rat tibiae. Samples were retrieved after 1, 2, 4, and 8 days of implantation and were analyzed by fluorescence microscopy techniques and scanning electron microscopy. Both proliferating and apoptotic cells were found on the surface. Generally, cells closest to the implant surface were nonviable whereas cells in the fibrin network a distance from the surface were viable. Bone morphogenetic protein-2 (BMP-2) is an osteogenic substance. An increase in BMP-2-positive cells was seen during the implantation period, and a population of large BMP-2-positive cells appeared on the surface after 4 days of implantation. The method developed here is a suitable tool for rapid evaluation of the initial healing around implant material.
Collapse
Affiliation(s)
- Cecilia Eriksson
- Institute of Anatomy and Cell Biology, University of Göteborg, Box 420, SE 405 30 Göteborg, Sweden.
| | | | | | | |
Collapse
|
9
|
Coskun V, Luskin MB. Intrinsic and extrinsic regulation of the proliferation and differentiation of cells in the rodent rostral migratory stream. J Neurosci Res 2002; 69:795-802. [PMID: 12205673 PMCID: PMC4211629 DOI: 10.1002/jnr.10336] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An overriding principle of development is that neurons become permanently postmitotic once they initiate differentiation. Work in our laboratory, however, has provided evidence for a population of progenitor cells in mammalian forebrain that express properties of differentiated neurons, even though they continue to divide. These neuronal progenitor cells are situated in the rostral migratory stream (RMS), which extends from a specialized portion of the subventricular zone surrounding the anterior tip of the lateral ventricle, referred to as the SVZa, to the middle of the olfactory bulb. As SVZa-derived cells migrate to the olfactory bulb, they undergo cell division, and they never deviate from the RMS. Once they reach their final destinations, they become terminally postmitotic interneurons. This Mini-Review concerns findings from our recent experiments designed to reveal the intrinsic and extrinsic mechanisms governing the proliferation and differentiation of the unique SVZa neuronal progenitor cells. We have investigated the role(s) of cell cycle regulatory proteins, in particular, the cell cycle inhibitor p19(INK4d), in the control of SVZa cell proliferation. Several studies have indicated that cells withdraw from the cell cycle once they express p19(INK4d). To begin to investigate whether p19(INK4d)(+) SVZa-derived cells are postmitotic, we analyzed the pattern of p19(INK4d) expression by the cells of the RMS. A pronounced gradient of p19(INK4d) expression was demonstrated; progressively more cells are p19(INK4d) immunoreactive as the olfactory bulb is approached. In addition, the capacity of p19(INK4d)(+) cells to incorporate bromodeoxyuridine was investigated. From the results of these studies, we conclude that SVZa cells in the RMS can successively down-regulate their expression of p19(INK4d) as they migrate and that they repeatedly exit and reenter the cell cycle while en route to the olfactory bulb. These studies led us to investigate whether bone morphogenetic proteins (BMPs) are involved in the regulation of SVZa cell proliferation and p19(INK4d) expression, because, elsewhere in the CNS, BMPs modulate cell proliferation and influence cell fate decisions. To determine the effects of BMP signaling on SVZa cell proliferation and differentiation, we altered the expression of the BMP receptor Ia (BMPR-Ia) using retrovirally mediated gene transfer. The cells in the SVZa encoding the wild-type BMPR-Ia exit the cell cycle and do not appear to migrate through the RMS. Conversely, both within the SVZa and along the RMS, the majority of SVZa-derived cells encoding a dominant-negative BMPR-Ia gene do not express p19(INK4d). These findings indicate that p19(INK4d) expression is suppressed when BMP signaling is inhibited. Furthermore, SVZa-derived cells with both augmented and inhibited BMP signaling retain their neuronal commitment. Collectively, these studies have revealed that SVZa cell proliferation and differentiation is under the control of several interacting intrinsic and extrinsic factors.
Collapse
Affiliation(s)
| | - Marla B. Luskin
- Correspondence to: Marla B. Luskin, PhD, Department of Cell Biology, Emory University School of Medicine, Whitehead Biomedical Research Building, Room 546, 615 Michael Street, Atlanta, GA 30322.
| |
Collapse
|
10
|
Kizaki M, Nakazato T, Ito K, Kawamura C, Miyakawa Y, Ikeda Y. A novel therapeutic approach for hematological malignancies based on cellular differentiation and apoptosis. Int J Hematol 2002; 76 Suppl 1:250-2. [PMID: 12430859 DOI: 10.1007/bf03165253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hematological malignancies including acute leukemia, and multiple myeloma are disorders characterized by the accumulation of neoplastic hematopoietic cells, resulting in aggressive clinical manifestations with poor prognosis. The therapeutic approach to these disorders is basically chemotherapy for achieving complete remission based on the concept of total cell kill. However, severe side effects and complications such as serious infection and bleeding due to anti-cancer drugs are major problems in the clinical setting. In addition, repeated episodes of relapse of the disease may lead to refractory or chemotherapy-resistant disorders. These problems are occurred because anti-cancer agents have effects on both cancer cells and normal hematopoietic cells. The clinical evidences thus suggest the limitations of the chemotherapy for hematological malignancies: novel effective therapeutic approaches with less toxicity are therefore actively being sought. Differentiation-inducing therapy employing a physiologically active derivative of vitamin A, all-trans retinoic acid (ATRA), brought remarkably advances in the therapeutic outcome of APL at the end of last century. More recently, the clinical success of imatinib mesylate (STI571), potent competitive inhibitor of the Bcr/Abl protein tyrosine kinase, in the treatment of CML has focused enthusiasm toward molecular targeted therapy for the hematological malignancies. The therapeutic activity of these agents can be explained by their abilities to modify cellular growth, differentiation, and apoptosis in cells by activating unknown gene programs that molecular cellular proliferation. We have actively sought out new agents among natural products and cytokines with the ability to induce cellular differentiation and apoptosis. In this symposium, I will present our recent data of these novel compounds and their molecular mechanisms for inducing differentiation and apoptosis of hematological malignant cells.
Collapse
Affiliation(s)
- Masahiro Kizaki
- Division of Hematology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
B-cell development to antibody-producing plasma cells requires the concerted function of a large number of genes and proteins. Genome-level expression profiling during human B-cell maturation was studied in anti-immunoglobulin M-stimulated Ramos cells. cDNA microarrays were used to follow changes in the transcriptome over several days. Close to 1500 genes had significantly altered expression at least at one time point. The genes were organized into clusters based on expression profiles and were further characterized based on the functions of the coded proteins. Several groups of genes important for B cells were analyzed. Here we concentrate on genes involved in signal transduction and cytokines and their receptors. The results provide knowledge on the development of humoral immunity. Several new genes were found to be essential for B-cell development. They can be used as targets for research and possibly for drug development.
Collapse
Affiliation(s)
- Juha Ollila
- Department of Biosciences, Division of Biochemistry, P.O. Box 56, FIN-00014, University of Helsinki, Finland
| | | |
Collapse
|
12
|
Kawamura C, Kizaki M, Ikeda Y. Bone morphogenetic protein (BMP)-2 induces apoptosis in human myeloma cells. Leuk Lymphoma 2002; 43:635-9. [PMID: 12002771 DOI: 10.1080/10428190290012182] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BMPs (bone morphogenetic proteins), members of the transforming growth factor (TGF)-beta superfamily, are a group of related proteins which are capable of inducing the formation of cartilage and bone, but are now regarded as multifunctional cytokines. However, little is known about their role in hematopoiesis. Recently, we found a novel function of BMPs to hematopoietic cells in that BMP-2 induces apoptosis not only in human myeloma cell lines, but also in primary samples from patients with multiple myeloma in vitro. BMP-2 caused cell cycle arrest in the G1 phase which was associated with accumulation of p21CIP1/WAF1 and p27KIP1, and the subsequent apoptosis of myeloma cells. Further analysis showed that BMP-2 induced down-regulation of Bcl-X(L) through the inactivation of STAT3, resulting in the induction of apoptosis in myeloma cells. We conclude that BMP-2 may have the potential to be one of the novel therapeutic agents for treatment in patients with multiple myeloma because of the beneficial effects on both myeloma cells and bone diseases. In this review, we summarize data concerning BMPs and BMP-2-induced apoptosis of myeloma cells including our own recent experimental data.
Collapse
Affiliation(s)
- Chiharu Kawamura
- Division of Hematology, Keio University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
13
|
Sato T, Koseki T, Yamato K, Saiki K, Konishi K, Yoshikawa M, Ishikawa I, Nishihara T. p53-independent expression of p21(CIP1/WAF1) in plasmacytic cells during G(2) cell cycle arrest induced by Actinobacillus actinomycetemcomitans cytolethal distending toxin. Infect Immun 2002; 70:528-34. [PMID: 11796579 PMCID: PMC127681 DOI: 10.1128/iai.70.2.528-534.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytolethal distending toxin (CDT) from Actinobacillus actinomycetemcomitans has been shown to induce cell cycle arrest in the G(2)/M phase in HeLa cells. In the present study, the mechanism of CDT-induced cell cycle arrest was investigated by using HS-72 cells, a murine B-cell hybridoma cell line. Using flow cytometric analysis, we found that the recombinant CDT (rCDT) from A. actinomycetemcomitans induced G(2) cell cycle arrest in HS-72 cells and that rCDT upregulated expression of the cyclin-dependent kinase inhibitor p21(CIP1/WAF1) and the tumor suppressor protein p53. HS-72 cells transfected with the E6/E7 gene of human papillomavirus type 16, which lacked rCDT-induced accumulation of p53, exhibited expression of p21(CIP1/WAF1) or G(2) cell cycle arrest upon exposure to rCDT. Furthermore, ectopic expression of a dominant negative p53 mutant did not inhibit rCDT-mediated p21(CIP1/WAF1) expression or G(2) cell cycle arrest in HS-72 cells. These results suggest that the CDT from A. actinomycetemcomitans induces p21(CIP1/WAF1) expression and G(2) cell cycle arrest in B-lineage cells by p53-independent pathways. Together with additional observations made with HeLa cells and COS-1 cells cultured with the rCDT from A. actinomycetemcomitans, the results of this study indicate that CDT-induced p53 accumulation may not be required for G(2) cell cycle arrest and that an increased level of p21(CIP1/WAF1) may be important for sustaining G(2) cell cycle arrest in several mammalian cells.
Collapse
Affiliation(s)
- Tsuyoshi Sato
- Department of Oral Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Thomas DM, Carty SA, Piscopo DM, Lee JS, Wang WF, Forrester WC, Hinds PW. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell 2001; 8:303-16. [PMID: 11545733 DOI: 10.1016/s1097-2765(01)00327-6] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The incidence of osteosarcoma is increased 500-fold in patients who inherit mutations in the RB gene. To understand why the retinoblastoma protein (pRb) is specifically targeted in osteosarcoma, we studied its function in osteogenesis. Loss of pRb but not p107 or p130 blocks late osteoblast differentiation. pRb physically interacts with the osteoblast transcription factor, CBFA1, and associates with osteoblast-specific promoters in vivo in a CBFA1-dependent fashion. Association of pRb with CBFA1 and promoter sequences results in synergistic transactivation of an osteoblast-specific reporter. This transactivation function is lost in tumor-derived pRb mutants, underscoring a potential role in tumor suppression. Thus, pRb functions as a direct transcriptional coactivator promoting osteoblast differentiation, which may contribute to the targeting of pRb in osteosarcoma.
Collapse
Affiliation(s)
- D M Thomas
- Department of Pathology and, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Heldin NE. BMP-7-induced cell cycle arrest of anaplastic thyroid carcinoma cells via p21(CIP1) and p27(KIP1). Biochem Biophys Res Commun 2001; 285:773-81. [PMID: 11453659 DOI: 10.1006/bbrc.2001.5212] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to investigate the effect of bone morphogenetic protein (BMP-7) on thyroid carcinoma cell growth. Addition of BMP-7 inhibited the proliferation of four out of six human anaplastic thyroid carcinoma cell lines, observed as decreased incorporation of (3)H-thymidine and decreased cell number. The growth inhibitory effect was cell density-dependent; sparse cells were inhibited by BMP-7 whereas dense cells were not. Cell cycle analysis by flow cytometry showed an increased fraction of cells in the G1-phase and subsequent decrease in both S- and G2/M-phase after BMP-7 stimulation. Furthermore, BMP-7 caused an upregulation of the cyclin-dependent kinase inhibitors (CDKIs) p21 and p27, decreased activity of Cdk2 and Cdk6, and hypophosphorylation of the retinoblastoma protein (pRb). These findings suggest a growth inhibitory effect of BMP-7 on anaplastic thyroid carcinoma cells by inhibition of Cdk activity shifting the Rb protein to the hypophosphorylated state.
Collapse
|
16
|
Yamato K, Hashimoto S, Imamura T, Uchida H, Okahashi N, Koseki T, Ishisaki A, Kizaki M, Miyazono K, Ikeda Y, Nishihara T. Activation of the p21(CIP1/WAF1) promoter by bone morphogenetic protein-2 in mouse B lineage cells. Oncogene 2001; 20:4383-92. [PMID: 11466619 DOI: 10.1038/sj.onc.1204572] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2000] [Revised: 04/20/2001] [Accepted: 04/30/2001] [Indexed: 12/23/2022]
Abstract
BMPs exert a negative growth effect on various types of cells. We have previously reported that BMP-2 inhibited the growth of HS-72 mouse hybridoma cells by inducing p21(CIP1/WAF1) expression. In the present study, we demonstrated that BMP-2 activated the mouse p21(CIP1/WAF1) promoter in HS-72 cells, and that a 29-base pair (b) region of the promoter (-1928/-1900 relative to the TATA box), conserved between mice and humans, was responsive to BMP-2 as well as expression of Smad1, Smad4, and constitutively active mutants of BMP type I receptors. Furthermore, an oligonucleotide containing the 29-b region was found to be associated with Smad4 and phosphorylated Smad1 in the nuclear extract of BMP-2-stimulated HS-72 cells. These results suggested that BMP-2 might activate p21(CIP1/WAF1) transcription by inducing a binding of Smad4 and Smad1 to the 29-b region in HS-72 cells.
Collapse
Affiliation(s)
- K Yamato
- Section of Molecular Cellular Oncology and Microbiology, Division of Oral Health Science, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Coskun V, Venkatraman G, Yang H, Rao MS, Luskin MB. Retroviral manipulation of the expression of bone morphogenetic protein receptor Ia by SVZa progenitor cells leads to changes in their p19(INK4d) expression but not in their neuronal commitment. Int J Dev Neurosci 2001; 19:219-27. [PMID: 11255035 PMCID: PMC4211639 DOI: 10.1016/s0736-5748(00)00092-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), a group of cytokines in the TGF-beta superfamily, have complex regulatory roles in the control of neural proliferation and cell fate decision. In this study, we analyzed the potential role(s) of BMP signaling on the regulation of the proliferation and differentiation of the unique progenitor cells of the neonatal anterior subventricular zone (SVZa). Unlike other progenitor cells of the brain, SVZa progenitor cells have the capacity to divide even though they express a neuronal phenotype. In order to augment or inhibit endogenous BMP signaling, we injected into the neonatal rat SVZa replication-deficient retroviruses encoding for either the wild-type BMP receptor subtype Ia (wt-BMPR-Ia) or a mutated dominant-negative version of BMPR-Ia (dn-BMPR-Ia) in conjunction with a reporter gene, human alkaline phosphatase (AP) and perfused the pups 1, 4 and 7 days post injection. We analyzed whether changing the expression of BMPR-Ia has an effect on the spatial-temporal expression pattern of the cyclin dependent kinase inhibitor, p19(INK4d), or on the phenotype of SVZa derived cells. The results of our study confirmed and extended our previous findings that in control (non injected) animals, the rostral migratory stream (RMS), traversed by the SVZa-derived cells en route to the olfactory bulb, exhibits an anterior(high)-posterior(low) gradient of p19(INK4d) expression; p19(INK4d) expression is essentially absent in the SVZa and highest in the subependymal zone in the middle of the olfactory bulb. However, SVZa progenitor cells encoding the wt-BMPR-Ia gene express p19(INK4d) within the SVZa, suggesting that the BMPs induce SVZa cells to ectopically undergo cell cycle exit within the SVZa. Furthermore, unlike striatal SVZ progenitor cells, which acquire an astrocytic phenotype when exposed to BMPs, SVZa progenitor cells retain their neuronal commitment under augmented BMP signaling.
Collapse
Affiliation(s)
- Volkan Coskun
- Department of Cell Biology, Emory University School of Medicine, 1648 Pierce Drive, Atlanta, GA 30322, USA
| | - Giri Venkatraman
- Department of Cell Biology, Emory University School of Medicine, 1648 Pierce Drive, Atlanta, GA 30322, USA
| | - Hui Yang
- Department of Cell Biology, Emory University School of Medicine, 1648 Pierce Drive, Atlanta, GA 30322, USA
| | - Mahendra S. Rao
- Department of Anatomy and Neurobiology, University of Utah School of Medicine, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | - Marla B. Luskin
- Department of Cell Biology, Emory University School of Medicine, 1648 Pierce Drive, Atlanta, GA 30322, USA
- Corresponding author. Tel.: +1-404-7276266; fax: +1-404-7276256. (M.B. Luskin)
| |
Collapse
|