1
|
Prakash K, Satishkartik S, Ramalingam S, Gangadaran P, Gnanavel S, Aruljothi KN. Investigating the multifaceted role of nucleolin in cellular function and Cancer: Structure, Regulation, and therapeutic implications. Gene 2025; 957:149479. [PMID: 40210024 DOI: 10.1016/j.gene.2025.149479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/20/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
Nucleolin (NCL), a highly conserved and multifunctional phosphoprotein, is primarily localized in the nucleolus and participates in various cellular compartments, including the nucleoplasm, cytoplasm, and plasma membrane. Initially discovered in the 1970 s, NCL is integral to ribosome biogenesis through its roles in ribosomal RNA transcription, processing, and assembly. Beyond ribosome synthesis, NCL plays critical roles in cellular processes such as DNA and RNA metabolism, chromatin remodeling, and cell cycle regulation, underscoring its essentiality for cell viability. Structurally, NCL comprises multiple functional domains, which facilitates interaction with various kinases and other proteins. NCL's extensive post-translational modifications influence its localization and function. Importantly, NCL has emerged as a key player in multiple pathologies, particularly cancer, where it contributes to tumor growth, metastasis, and drug resistance. On the cell surface, NCL acts as a co-receptor for growth factors and other ligands, facilitating oncogenic signaling. Additionally, its regulation of non-coding RNAs, stabilization of oncogenic mRNAs, and involvement in immune evasion highlight its potential as a therapeutic target. This review provides an unexplored in-depth overview of NCL's structure, functions, and modifications, with a focus on its role in cancer biology and its therapeutic implications.
Collapse
Affiliation(s)
- Kruthika Prakash
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Srisri Satishkartik
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Satish Ramalingam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - S Gnanavel
- Biomaterials Laboratory, Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - K N Aruljothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India.
| |
Collapse
|
2
|
Porat J, Flynn RA. Cell surface RNA biology: new roles for RNA binding proteins. Trends Biochem Sci 2025; 50:402-416. [PMID: 40157881 PMCID: PMC12048239 DOI: 10.1016/j.tibs.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 04/01/2025]
Abstract
Much of our understanding of RNA-protein interactions, and how these interactions shape gene expression and cell state, have come from studies looking at these interactions in vitro or inside the cell. However, recent data demonstrates the presence of extracellular and cell surface-associated RNA such as glycosylated RNA (glycoRNA), suggesting an entirely new environment and cellular topology in which to study RNA-RNA binding protein (RBP) interactions. Here, we explore emerging ideas regarding the landscape of cell surface RNA and RBPs. We also discuss open questions concerning the trafficking and anchoring of RBPs to the cell surface, whether cell surface RBPs (csRBPs) directly interact with cell surface RNA, and how changes in the presentation of csRBPs may drive autoimmune responses.
Collapse
Affiliation(s)
- Jennifer Porat
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Jo H, Ju S, Kim M, Beon J, Jang SY, Pack SP, Son CY, Kim JS, Oh SS. Aptamer-Guided, Hydrolysis-Resistant Deoxyoxanosine Enables Epitope- and Moiety-Selective Conjugation to Nonengineered Proteins Even in Complex Environments. J Am Chem Soc 2025; 147:9328-9340. [PMID: 39933564 DOI: 10.1021/jacs.4c15674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
In protein engineering, researchers have extensively explored the incorporation of nonprotein entities into proteins to extend their functionalities to various applications; however, achieving precise modifications of proteins is still challenging. This study demonstrates epitope- and moiety-selective conjugation of nonengineered proteins by integrating "slow-reactive and hydrolysis-resistant" deoxyoxanosine (dOxa) into a "target- and epitope-selective" aptamer. The amine-reactive dOxa-containing aptamers are dominantly single-lysine-selective at recognition sites, achieving significantly high conjugation yields with remarkably low off-target reactions in complex environments under near-physiological conditions through a catalyst-free, one-pot reaction. When stoichiometrically controlled protein-DNA conjugates are efficiently produced for various proteins, high conjugation selectivity enables semipermanent regulation of enzymatic functions, targeted labeling in a protein mixture, and even heterofunctionalization of a single protein. As our dOxa-containing aptamers selectively react with the recognition sites of target proteins among nontargets, we demonstrate bioorthogonal labeling of live-cell surface nucleolin and PTK7 in amine-rich cell media, displaying their distinct distributions. Aptamer-guided dOxa positioning offers a promising strategy for site-specific modification of native proteins in complex environments, opening new avenues for the synergistic collaboration between nucleic acids and proteins.
Collapse
Affiliation(s)
- Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seonmin Ju
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea
| | - Minhye Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jiyun Beon
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Se-Young Jang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Chang Yun Son
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
4
|
Naveed A, Umer R, Fatemah A, Naveed R. Nucleolin a Central Player in Host Virus Interactions and its Role in Viral Progeny Production. Mol Biotechnol 2025:10.1007/s12033-025-01372-1. [PMID: 39821823 DOI: 10.1007/s12033-025-01372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/04/2025] [Indexed: 01/19/2025]
Abstract
Nucleolin (NCL) is a prevalent and widely distributed nucleolar protein in cells. While primarily located in the nucleolus, NCL is also found within the nucleoplasm, cytoplasm, and even on the cell surface. NCL's unique nature arises from its multifaceted roles and extensive interactions with various proteins. The structural stability of NCL is reliant on protease inhibitors, particularly in proliferating cells, indicating its essential role in cellular maintenance. This review is centered on elucidating the structure of NCL, its significance in host-viral interactions, and its various contributions to viral progeny production. This work is to enhance the scientific community's understanding of NCL functionality and its implications for viral infection processes. NCL is highlighted as a crucial host protein that viruses frequently target, exploiting it to support their own life cycles and establish infections. Understanding these interactions is key to identifying NCL's role in viral pathogenesis and its potential as a therapeutic target. Our current knowledge, alongside extensive scientific literature, underscores the critical role of host proteins like NCL in both viral infections and other diseases. As a target for viral exploitation, NCL supports viral replication and survival, making it a promising candidate for therapeutic intervention. By delving deeper into the intricacies of NCL-viral protein interactions, researchers may uncover effective antiviral mechanisms. This review aspires to inspire further research into NCL's role in viral infections and promote advancements in antiviral therapeutic development.
Collapse
Affiliation(s)
- Ahsan Naveed
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA.
| | - Rumaisa Umer
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA
| | - Ayzal Fatemah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA
- Albert B Chandler Hospital, University of Kentucky, Lexington, Fayette, USA
| | - Rabia Naveed
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
5
|
Ribeiro R, Moreira JN, Goncalves J. Development of a new affinity maturation protocol for the construction of an internalizing anti-nucleolin antibody library. Sci Rep 2024; 14:10608. [PMID: 38719911 PMCID: PMC11079059 DOI: 10.1038/s41598-024-61230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Over the last decades, monoclonal antibodies have substantially improved the treatment of several conditions. The continuous search for novel therapeutic targets and improvements in antibody's structure, demands for a constant optimization of their development. In this regard, modulation of an antibody's affinity to its target has been largely explored and culminated in the discovery and optimization of a variety of molecules. It involves the creation of antibody libraries and selection against the target of interest. In this work, we aimed at developing a novel protocol to be used for the affinity maturation of an antibody previously developed by our group. An antibody library was constructed using an in vivo random mutagenesis approach that, to our knowledge, has not been used before for antibody development. Then, a cell-based phage display selection protocol was designed to allow the fast and simple screening of antibody clones capable of being internalized by target cells. Next generation sequencing coupled with computer analysis provided an extensive characterization of the created library and post-selection pool, that can be used as a guide for future antibody development. With a single selection step, an enrichment in the mutated antibody library, given by a decrease in almost 50% in sequence diversity, was achieved, and structural information useful in the study of the antibody-target interaction in the future was obtained.
Collapse
Affiliation(s)
- Rita Ribeiro
- CNC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal
- Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal
| | - João N Moreira
- CNC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal.
- Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal.
| | - João Goncalves
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
6
|
Wang H, Yang S, Chen L, Li Y, He P, Wang G, Dong H, Ma P, Ding G. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33:174-222. [PMID: 38034499 PMCID: PMC10684566 DOI: 10.1016/j.bioactmat.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Carbon-based quantum dots (CQDs) have been shown to have promising application value in tumor diagnosis. Their use, however, is severely hindered by the complicated nature of the nanostructures in the CQDs. Furthermore, it seems impossible to formulate the mechanisms involved using the inadequate theoretical frameworks that are currently available for CQDs. In this review, we re-consider the structure-property relationships of CQDs and summarize the current state of development of CQDs-based tumor diagnosis based on biological theories that are fully developed. The advantages and deficiencies of recent research on CQDs-based tumor diagnosis are thus explained in terms of the manifestation of nine essential changes in cell physiology. This review makes significant progress in addressing related problems encountered with other nanomaterials.
Collapse
Affiliation(s)
- Hang Wang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Liangfeng Chen
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| |
Collapse
|
7
|
Zhuang X, Gallo G, Sharma P, Ha J, Magri A, Borrmann H, Harris JM, Tsukuda S, Bentley E, Kirby A, de Neck S, Yang H, Balfe P, Wing PA, Matthews D, Harris AL, Kipar A, Stewart JP, Bailey D, McKeating JA. Hypoxia inducible factors inhibit respiratory syncytial virus infection by modulation of nucleolin expression. iScience 2024; 27:108763. [PMID: 38261926 PMCID: PMC10797196 DOI: 10.1016/j.isci.2023.108763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a global healthcare problem, causing respiratory illness in young children and elderly individuals. Our knowledge of the host pathways that define susceptibility to infection and disease severity are limited. Hypoxia inducible factors (HIFs) define metabolic responses to low oxygen and regulate inflammatory responses in the lower respiratory tract. We demonstrate a role for HIFs to suppress RSV entry and RNA replication. We show that hypoxia and HIF prolyl-hydroxylase inhibitors reduce the expression of the RSV entry receptor nucleolin and inhibit viral cell-cell fusion. We identify a HIF regulated microRNA, miR-494, that regulates nucleolin expression. In RSV-infected mice, treatment with the clinically approved HIF prolyl-hydroxylase inhibitor, Daprodustat, reduced the level of infectious virus and infiltrating monocytes and neutrophils in the lung. This study highlights a role for HIF-signalling to limit multiple aspects of RSV infection and associated inflammation and informs future therapeutic approaches for this respiratory pathogen.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Parul Sharma
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jiyeon Ha
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helene Borrmann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Bentley
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adam Kirby
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Simon de Neck
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A.C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - David Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | | | - Anja Kipar
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Garapati K, Ding H, Charlesworth MC, Kim Y, Zenka R, Saraswat M, Mun DG, Chavan S, Shingade A, Lucien F, Zhong J, Kandasamy RK, Pandey A. sBioSITe enables sensitive identification of the cell surface proteome through direct enrichment of biotinylated peptides. Clin Proteomics 2023; 20:56. [PMID: 38053024 PMCID: PMC10696767 DOI: 10.1186/s12014-023-09445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Cell surface proteins perform critical functions related to immune response, signal transduction, cell-cell interactions, and cell migration. Expression of specific cell surface proteins can determine cell-type identity, and can be altered in diseases including infections, cancer and genetic disorders. Identification of the cell surface proteome remains a challenge despite several enrichment methods exploiting their biochemical and biophysical properties. METHODS Here, we report a novel method for enrichment of proteins localized to cell surface. We developed this new approach designated surface Biotinylation Site Identification Technology (sBioSITe) by adapting our previously published method for direct identification of biotinylated peptides. In this strategy, the primary amine groups of lysines on proteins on the surface of live cells are first labeled with biotin, and subsequently, biotinylated peptides are enriched by anti-biotin antibodies and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS By direct detection of biotinylated lysines from PC-3, a prostate cancer cell line, using sBioSITe, we identified 5851 peptides biotinylated on the cell surface that were derived from 1409 proteins. Of these proteins, 533 were previously shown or predicted to be localized to the cell surface or secreted extracellularly. Several of the identified cell surface markers have known associations with prostate cancer and metastasis including CD59, 4F2 cell-surface antigen heavy chain (SLC3A2) and adhesion G protein-coupled receptor E5 (CD97). Importantly, we identified several biotinylated peptides derived from plectin and nucleolin, both of which are not annotated in surface proteome databases but have been shown to have aberrant surface localization in certain cancers highlighting the utility of this method. CONCLUSIONS Detection of biotinylation sites on cell surface proteins using sBioSITe provides a reliable method for identifying cell surface proteins. This strategy complements existing methods for detection of cell surface expressed proteins especially in discovery-based proteomics approaches.
Collapse
Affiliation(s)
- Kishore Garapati
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Husheng Ding
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - Roman Zenka
- Proteomics Core, Mayo Clinic, Rochester, MN, USA
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sandip Chavan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ashish Shingade
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Jun Zhong
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Richard K Kandasamy
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Custer SK, Gilson T, Astroski JW, Nanguneri SR, Iurillo AM, Androphy EJ. COPI coatomer subunit α-COP interacts with the RNA binding protein Nucleolin via a C-terminal dilysine motif. Hum Mol Genet 2023; 32:3263-3275. [PMID: 37658769 PMCID: PMC10656708 DOI: 10.1093/hmg/ddad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
The COPI coatomer subunit α-COP has been shown to co-precipitate mRNA in multiple settings, but it was unclear whether the interaction with mRNA was direct or mediated by interaction with an adapter protein. The COPI complex often interacts with proteins via C-terminal dilysine domains. A search for candidate RNA binding proteins with C-terminal dilysine motifs yielded Nucleolin, which terminates in a KKxKxx sequence. This protein was an especially intriguing candidate as it has been identified as an interacting partner for Survival Motor Neuron protein (SMN). Loss of SMN causes the neurodegenerative disease Spinal Muscular Atrophy. We have previously shown that SMN and α-COP interact and co-migrate in axons, and that overexpression of α-COP reduced phenotypic severity in cell culture and animal models of SMA. We show here that in an mRNA independent manner, endogenous Nucleolin co-precipitates endogenous α-COP and ε-COP but not β-COP which may reflect an interaction with the so-called B-subcomplex rather a complete COPI heptamer. The ability of Nucleolin to bind to α-COP requires the presence of the C-terminal KKxKxx domain of Nucleolin. Furthermore, we have generated a point mutant in the WD40 domain of α-COP which eliminates its ability to co-precipitate Nucleolin but does not interfere with precipitation of partners mediated by non-KKxKxx motifs such as the kainate receptor subunit 2. We propose that via interaction between the C-terminal dilysine motif of Nucleolin and the WD40 domain of α-COP, Nucleolin acts an adaptor to allow α-COP to interact with a population of mRNA.
Collapse
Affiliation(s)
- Sara K Custer
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Timra Gilson
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Jacob W Astroski
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Siddarth R Nanguneri
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Alyssa M Iurillo
- Indiana University School of Medicine, 340 West 10 St, Indianapolis, IN 46202, United States
| | - Elliot J Androphy
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| |
Collapse
|
10
|
Ianiro G, Niro A, Rosa L, Valenti P, Musci G, Cutone A. To Boost or to Reset: The Role of Lactoferrin in Energy Metabolism. Int J Mol Sci 2023; 24:15925. [PMID: 37958908 PMCID: PMC10650157 DOI: 10.3390/ijms242115925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Many pathological conditions, including obesity, diabetes, hypertension, heart disease, and cancer, are associated with abnormal metabolic states. The progressive loss of metabolic control is commonly characterized by insulin resistance, atherogenic dyslipidemia, inflammation, central obesity, and hypertension, a cluster of metabolic dysregulations usually referred to as the "metabolic syndrome". Recently, nutraceuticals have gained attention for the generalized perception that natural substances may be synonymous with health and balance, thus becoming favorable candidates for the adjuvant treatment of metabolic dysregulations. Among nutraceutical proteins, lactoferrin (Lf), an iron-binding glycoprotein of the innate immune system, has been widely recognized for its multifaceted activities and high tolerance. As this review shows, Lf can exert a dual role in human metabolism, either boosting or resetting it under physiological and pathological conditions, respectively. Lf consumption is safe and is associated with several benefits for human health, including the promotion of oral and gastrointestinal homeostasis, control of glucose and lipid metabolism, reduction of systemic inflammation, and regulation of iron absorption and balance. Overall, Lf can be recommended as a promising natural, completely non-toxic adjuvant for application as a long-term prophylaxis in the therapy for metabolic disorders, such as insulin resistance/type II diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antonella Niro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| |
Collapse
|
11
|
Kumar C, Mylavarapu SVS. Nucleolin is required for multiple centrosome-associated functions in early vertebrate mitosis. Chromosoma 2023; 132:305-315. [PMID: 37615728 DOI: 10.1007/s00412-023-00808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/10/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Nucleolin is a multifunctional RNA-binding protein that resides predominantly not only in the nucleolus, but also in multiple other subcellular pools in the cytoplasm in mammalian cells, and is best known for its roles in ribosome biogenesis, RNA stability, and translation. During early mitosis, nucleolin is required for equatorial mitotic chromosome alignment prior to metaphase. Using high resolution fluorescence imaging, we reveal that nucleolin is required for multiple centrosome-associated functions at the G2-prophase boundary. Nucleolin depletion led to dissociation of the centrosomes from the G2 nuclear envelope, a delay in the onset of nuclear envelope breakdown, reduced inter-centrosome separation, and longer metaphase spindles. Our results reveal novel roles for nucleolin in early mammalian mitosis, establishing multiple important functions for nucleolin during mammalian cell division.
Collapse
Affiliation(s)
- Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, -121001, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, -121001, India.
| |
Collapse
|
12
|
Kieser QJ, Granoski MJ, McClelland RD, Griffiths C, Bilawchuk LM, Stojic A, Elawar F, Jamieson K, Proud D, Marchant DJ. Actin cytoskeleton remodeling disrupts physical barriers to infection and presents entry receptors to respiratory syncytial virus. J Gen Virol 2023; 104:001923. [PMID: 38015055 PMCID: PMC10768689 DOI: 10.1099/jgv.0.001923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
RSV is the leading cause of infant hospitalizations and a significant cause of paediatric and geriatric morbidity worldwide. Recently, we reported that insulin-like growth factor 1 receptor (IGF1R) was a receptor for respiratory syncytial virus (RSV) in airway epithelial cells and that activation of IGF1R recruited the coreceptor, nucleolin (NCL), to the cell surface. Cilia and mucus that line the airways pose a significant barrier to viral and bacterial infection. The cortical actin cytoskeleton has been shown by others to mediate RSV entry, so we studied the roles of the RSV receptors and actin remodelling during virus entry. We found that IGF1R expression and phosphorylation were associated with the ability of RSV to infect cells. Confocal immunofluorescence imaging showed that actin projections, a hallmark of macropinocytosis, formed around viral particles 30 min after infection. Consistent with prior reports we also found that virus particles were internalized into early endosome antigen-1 positive endosomes within 90 min. Inhibiting actin polymerization significantly reduced viral titre by approximately ten-fold. Inhibiting PI3 kinase and PKCζ in stratified air-liquid interface (ALI) models of the airway epithelium had similar effects on reducing the actin remodelling observed during infection and attenuating viral entry. Actin projections were associated with NCL interacting with RSV particles resting on apical cilia of the ALIs. We conclude that macropinocytosis-like actin projections protrude through normally protective cilia and mucus layers of stratified airway epithelium that helps present the IGF1R receptor and the NCL coreceptor to RSV particles waiting at the surface.
Collapse
Affiliation(s)
- Quinten J. Kieser
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G-2E1, Canada
| | - Madison J. Granoski
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G-2E1, Canada
| | - Ryley D. McClelland
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G-2E1, Canada
| | - Cameron Griffiths
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908,, USA
| | - Leanne M. Bilawchuk
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G-2E1, Canada
| | - Aleksandra Stojic
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G-2E1, Canada
| | - Farah Elawar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G-2E1, Canada
| | - Kyla Jamieson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - David Proud
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - David J. Marchant
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G-2E1, Canada
| |
Collapse
|
13
|
Thongchot S, Aksonnam K, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Nucleolin‑based targeting strategies in cancer treatment: Focus on cancer immunotherapy (Review). Int J Mol Med 2023; 52:81. [PMID: 37477132 PMCID: PMC10555485 DOI: 10.3892/ijmm.2023.5284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
The benefits of treating several types of cancers using immunotherapy have recently been established. The overexpression of nucleolin (NCL) in a number of types of cancer provides an attractive antigen target for the development of novel anticancer immunotherapeutic treatments. NCL is a multifunctional protein abundantly distributed in the nucleus, cytoplasm and cell membrane. It influences carcinogenesis, and the proliferation, survival and metastasis of cancer cells, leading to cancer progression. Additionally, the meta‑analysis of total and cytoplasmic NCL overexpression indicates a poor prognosis of patients with breast cancer. The AS1411 aptamers currently appear to have therapeutic action in the phase II clinical trial. The authors' research group has recently explored the anticancer function of NCL through the activation of T cells by dendritic cell‑based immunotherapy. The present review describes and discusses the mechanisms through which the multiple functions of NCL can participate in the progression of cancer. In addition, the studies that define the utility of NCL‑dependent anticancer therapies are summarized, with specific focus being paid to cancer immunotherapeutic approaches.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Krittaya Aksonnam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| |
Collapse
|
14
|
Tang H, Zhang D, Jiang F, Yu L, Tang H, Zhu J, Wu S, Niu H. Enhancement of Cell Adhesion by Anaplasma phagocytophilum Nucleolin-Interacting Protein AFAP. J Pers Med 2023; 13:jpm13020302. [PMID: 36836536 PMCID: PMC9965380 DOI: 10.3390/jpm13020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Anaplasma phagocytophilum, the aetiologic agent of human granulocytic anaplasmosis (HGA), is an obligate intracellular Gram-negative bacterium. During infection, A. phagocytophilum enhances the adhesion of neutrophils to the infected endothelial cells. However, the bacterial factors contributing to this phenomenon remain unknown. In this study, we characterized a type IV secretion system substrate of A. phagocytophilum, AFAP (an actin filament-associated Anaplasma phagocytophilum protein) and found that it dynamically changed its pattern and subcellular location in cells and enhanced cell adhesion. Tandem affinity purification combined with mass spectrometry identified host nucleolin as an AFAP-interacting protein. Further study showed the disruption of nucleolin by RNA interference, and the treatment of a nucleolin-binding DNA aptamer AS1411 attenuated AFAP-mediated cell adhesion, indicating that AFAP enhanced cell adhesion in a nucleolin-dependent manner. The characterization of cell adhesion-enhancing AFAP and the identification of host nucleolin as its interaction partner may help understand the mechanism underlying A. phagocytophilum-promoting cell adhesion, facilitating the elucidation of HGA pathogenesis.
Collapse
Affiliation(s)
- Hongcheng Tang
- Department of Microbiology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Daxiu Zhang
- Clinical Laboratory Center, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Fenfen Jiang
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Lifeng Yu
- Clinical Laboratory Center, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Hui Tang
- Clinical Laboratory Center, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Jiafeng Zhu
- Department of Microbiology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Shuyan Wu
- Department of Microbiology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Hua Niu
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin 541001, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
- Correspondence:
| |
Collapse
|
15
|
Dzhumashev D, Timpanaro A, Ali S, De Micheli AJ, Mamchaoui K, Cascone I, Rössler J, Bernasconi M. Quantum Dot-Based Screening Identifies F3 Peptide and Reveals Cell Surface Nucleolin as a Therapeutic Target for Rhabdomyosarcoma. Cancers (Basel) 2022; 14:5048. [PMID: 36291832 PMCID: PMC9600270 DOI: 10.3390/cancers14205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Active drug delivery by tumor-targeting peptides is a promising approach to improve existing therapies for rhabdomyosarcoma (RMS), by increasing the therapeutic effect and decreasing the systemic toxicity, e.g., by drug-loaded peptide-targeted nanoparticles. Here, we tested 20 different tumor-targeting peptides for their ability to bind to two RMS cell lines, Rh30 and RD, using quantum dots Streptavidin and biotin-peptides conjugates as a model for nanoparticles. Four peptides revealed a very strong binding to RMS cells: NCAM-1-targeting NTP peptide, nucleolin-targeting F3 peptide, and two Furin-targeting peptides, TmR and shTmR. F3 peptide showed the strongest binding to all RMS cell lines tested, low binding to normal control myoblasts and fibroblasts, and efficient internalization into RMS cells demonstrated by the cytoplasmic delivery of the Saporin toxin. The expression of the nucleophosphoprotein nucleolin, the target of F3, on the surface of RMS cell lines was validated by competition with the natural ligand lactoferrin, by colocalization with the nucleolin-binding aptamer AS1411, and by the marked sensitivity of RMS cell lines to the growth inhibitory nucleolin-binding N6L pseudopeptide. Taken together, our results indicate that nucleolin-targeting by F3 peptide represents a potential therapeutic approach for RMS.
Collapse
Affiliation(s)
- Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Safa Ali
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Andrea J. De Micheli
- Department of Oncology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 3032 Zurich, Switzerland
| | - Kamel Mamchaoui
- Centre de Recherche en Myologie, Institut de Myologie, INSERM, Sorbonne Université, F-75013 Paris, France
| | - Ilaria Cascone
- IMRB, INSERM, University Paris Est Creteil, 94010 Creteil, France
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d’Investigation Clinique Biothérapie, 94010 Créteil, France
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 3032 Zurich, Switzerland
| |
Collapse
|
16
|
Elucidation of the role of nucleolin as a cell surface receptor for nucleic acid-based adjuvants. NPJ Vaccines 2022; 7:115. [PMID: 36202858 PMCID: PMC9537314 DOI: 10.1038/s41541-022-00541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/22/2022] [Indexed: 11/15/2022] Open
Abstract
Nucleic acid-based adjuvants such as CpG oligonucleotides (CpG ODNs) and poly(I:C) are potential vaccine adjuvants for infectious diseases and cancers. However, the mechanism by which their cell surface receptors promote their uptake into dendritic cells (DCs) and shuttle them to intracellular Toll-like receptors remains to be further investigated. Here, we demonstrated a role for nucleolin, a multifunctional DNA- and RNA-binding protein and a major constituent of the nucleolus, as one of the cell-surface receptors for nucleic acid-based adjuvants. Nucleolin on mouse DC surface bound directly to A-type CpG ODN, B-type CpG ODN, and poly(I:C) and promoted their internalization into cells following DC maturation in vitro. In human DCs, nucleolin also contributed to the binding and internalization of both types of CpG ODNs and subsequent cytokine production. Furthermore, nucleolin played a crucial role in cytokine production and activating antigen-specific antibodies and T cell responses induced by B-type CpG ODN in vivo in mice. Our findings provide valuable information that can help improve the efficacy and safety of these adjuvants.
Collapse
|
17
|
Nucleolin Therapeutic Targeting Decreases Pancreatic Cancer Immunosuppression. Cancers (Basel) 2022; 14:cancers14174265. [PMID: 36077801 PMCID: PMC9454580 DOI: 10.3390/cancers14174265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The pancreatic ductal adenocarcinoma (PDAC) microenvironment is highly fibrotic and hypoxic, with poor immune cell infiltration. Recently, we showed that nucleolin (NCL) inhibition normalizes tumour vessels and impairs PDAC growth. Methods: Immunocompetent mouse models of PDAC were treated by the pseudopeptide N6L, which selectively inhibits NCL. Tumour-infiltrating immune cells and changes in the tumour microenvironment were analysed. Results: N6L reduced the proportion of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and increased tumour-infiltrated T lymphocytes (TILs) with an activated phenotype. Low-dose anti-VEGFR2 treatment normalized PDAC vessels but did not modulate the immune suppressive microenvironment. RNAseq analysis of N6L-treated PDAC tumours revealed a reduction of cancer-associated fibroblast (CAF) expansion in vivo and in vitro. Notably, N6L treatment decreased IL-6 levels both in tumour tissues and in serum. Treating mPDAC by an antibody blocking IL-6 reduced the proportion of Tregs and MDSCs and increased the amount of TILs, thus mimicking the effects of N6L. Conclusions: These results demonstrate that NCL inhibition blocks the amplification of lymphoid and myeloid immunosuppressive cells and promotes T cell activation in PDAC through a new mechanism of action dependent on the direct inhibition of the tumoral stroma.
Collapse
|
18
|
Tonello F, Massimino ML, Peggion C. Nucleolin: a cell portal for viruses, bacteria, and toxins. Cell Mol Life Sci 2022; 79:271. [PMID: 35503380 PMCID: PMC9064852 DOI: 10.1007/s00018-022-04300-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
The main localization of nucleolin is the nucleolus, but this protein is present in multiple subcellular sites, and it is unconventionally secreted. On the cell surface, nucleolin acts as a receptor for various viruses, some bacteria, and some toxins. Aim of this review is to discuss the characteristics that make nucleolin able to act as receptor or co-receptor of so many and different pathogens. The important features that emerge are its multivalence, and its role as a bridge between the cell surface and the nucleus. Multiple domains, short linear motifs and post-translational modifications confer and modulate nucleolin ability to interact with nucleic acids, with proteins, but also with carbohydrates and lipids. This modular multivalence allows nucleolin to participate in different types of biomolecular condensates and to move to various subcellular locations, where it can act as a kind of molecular glue. It moves from the nucleus to the cell surface and can accompany particles in the reverse direction, from the cell surface into the nucleus, which is the destination of several pathogens to manipulate the cell in their favour.
Collapse
Affiliation(s)
- Fiorella Tonello
- CNR of Italy, Neuroscience Institute, viale G. Colombo 3, 35131, Padua, Italy.
| | | | - Caterina Peggion
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi, 58/B, 35131, Padua, Italy
| |
Collapse
|
19
|
Yamada K, Kizawa R, Yoshida A, Koizumi R, Motohashi S, Shimoyama Y, Hannya Y, Yoshida S, Oikawa T, Shimoda M, Yoshida K. Extracellular PKCδ signals to EGF receptor for tumor proliferation in liver cancer cells. Cancer Sci 2022; 113:2378-2385. [PMID: 35490382 PMCID: PMC9277411 DOI: 10.1111/cas.15386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Protein kinase C delta (PKCδ) is a multifunctional PKC family member and has been implicated in many types of cancers, including liver cancer. Recently, we have reported that PKCδ is secreted from liver cancer cells, and involved in cell proliferation and tumor growth. However, it remains unclear whether the extracellular PKCδ directly regulates cell surface growth factor receptors. Here, we identify epidermal growth factor receptor (EGFR) as a novel interacting protein of the cell surface PKCδ in liver cancer cells. Imaging studies showed that secreted PKCδ interacted with EGFR‐expressing cells in both autocrine and paracrine manners. Biochemical analysis revealed that PKCδ bound to the extracellular domain of EGFR. We further found that a part of the amino acid sequence on the C‐terminal region of PKCδ was similar to the putative EGFR binding site of EGF. In this regard, the point mutant of PKCδ in the binding site lacked the ability to bind to the extracellular domain of EGFR. Upon an extracellular PKCδ‐EGFR association, ERK1/2 activation, downstream of EGFR signaling, was apparently induced in liver cancer cells. This study indicates that extracellular PKCδ behaves as a growth factor and provides a molecular basis for extracellular PKCδ‐targeting therapy for liver cancer.
Collapse
Affiliation(s)
- Kohji Yamada
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Ryusuke Kizawa
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Ayano Yoshida
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Rei Koizumi
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Saya Motohashi
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Yuya Shimoyama
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Yoshito Hannya
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Saishu Yoshida
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology Department of Internal Medicine The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Masayuki Shimoda
- Department of Pathology The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| |
Collapse
|
20
|
Santos T, Miranda A, Imbert L, Jardim A, Caneira CRF, Chu V, Conde JP, Campello MPC, Paulo A, Salgado G, Cabrita EJ, Cruz C. Pre-miRNA-149 G-quadruplex as a molecular agent to capture nucleolin. Eur J Pharm Sci 2022; 169:106093. [PMID: 34922315 DOI: 10.1016/j.ejps.2021.106093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/14/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
One of the most significant challenges in capturing and detecting biomarkers is the choice of an appropriate biomolecular receptor. Recently, RNA G-quadruplexes emerged as plausible receptors due to their ability to recognize with high-affinity proteins. Herein, we have unveiled and characterized the capability of the precursor microRNA 149 to form a G-quadruplex structure and determined the role that some ligands may have in its folding and binding capacity to nucleolin. The G-quadruplex formation was induced by K+ ions and stabilized by ligands, as demonstrated by nuclear magnetic resonance and circular dichroism experiments. Surface plasmon resonance measurements showed a binding affinity of precursor microRNA 149 towards ligands in the micromolar range (10-5-10-6 M) and a strong binding affinity to nucleolin RNA-binding domains 1 and 2 (8.38 × 10-10 M). Even in the presence of the ligand PhenDC3, the binding remains almost identical and in the same order of magnitude (4.46 × 10-10 M). The molecular interactions of the RNA G-quadruplex motif found in precursor miRNA 149 (5'-GGGAGGGAGGGACGGG- 3') and nucleolin RNA-binding domains 1 and 2 were explored by means of molecular docking and molecular dynamics studies. The results showed that RNA G-quadruplex binds to a cavity between domains 1 and 2 of the protein. Then, complex formation was also evaluated through polyacrylamide gel electrophoresis. The results suggest that precursor microRNA 149/ligands and precursor microRNA 149/nucleolin RNA-binding domains 1 and 2 form stable molecular complexes. The in vitro co-localization of precursor microRNA 149 and nucleolin in PC3 cells was demonstrated using confocal microscopy. Finally, a rapid and straightforward microfluidic strategy was employed to check the ability of precursor microRNA 149 to capture nucleolin RNA-binding domains 1 and 2. The results revealed that precursor microRNA 149 can capture nucleolin RNA-binding domains 1 and 2 labeled with Fluorescein 5-isothiocyanate in a concentration-dependent manner, but PhenDC3 complexation seems to decrease the ability of precursor microRNA 149 to capture the protein. Overall, our results proved the formation of the G-quadruplex structure in the precursor microRNA 149 and the ability to recognize and detect nucleolin. This proof-of-concept study could open up a new framework for developing new strategies to design improved molecular receptors for capture and detection of nucleolin in complex biological samples.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - André Miranda
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Lionel Imbert
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France; Univ. Grenoble Alpes, CNRS, CEA, EMBL Integrated Structural Biology Grenoble (ISBG), Grenoble, France
| | - Andreia Jardim
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Catarina R F Caneira
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Virgínia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - João P Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 1397), 2695-066 Bobadela LRS, Portugal; DECN -Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 1397), 2695-066 Bobadela LRS, Portugal; DECN -Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Gilmar Salgado
- Univ. Bordeaux, ARNA Laboratory INSERM, U1212, CNRS UMR 5320, IECB, Pessac, France
| | - Eurico J Cabrita
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
21
|
Lalani S, Tan SH, Tan KO, Lim HX, Ong KC, Wong KT, Poh CL. Molecular mechanism of L-SP40 peptide and in vivo efficacy against EV-A71 in neonatal mice. Life Sci 2021; 287:120097. [PMID: 34715144 DOI: 10.1016/j.lfs.2021.120097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/15/2021] [Accepted: 10/23/2021] [Indexed: 10/20/2022]
Abstract
AIMS Enterovirus A71 (EV-A71) is an etiological agent of hand foot and mouth disease (HFMD) and has the potential to cause severe neurological infections in children. L-SP40 peptide was previously known to inhibit EV-A71 by prophylactic action. This study aimed to identify the mechanism of inhibition in Rhabdomyosarcoma (RD) cells and in vivo therapeutic potential of L-SP40 peptide in a murine model. MAIN METHODS A pull-down assay was performed to identify the binding partner of the L-SP40 peptide. Co-immunoprecipitation and co-localization assays with the L-SP40 peptide were employed to confirm the receptor partner in RD cells. The outcomes were validated using receptor knockdown and antibody blocking assays. The L-SP40 peptide was further evaluated for the protection of neonatal mice against lethal challenge by mouse-adapted EV-A71. KEY FINDINGS The L-SP40 peptide was found to interact and co-localize with nucleolin, the key attachment receptor of Enteroviruses A species, as demonstrated in the pull-down, co-immunoprecipitation and co-localization assays. Knockdown of nucleolin from RD cells led to a significant reduction of 3.5 logs of viral titer of EV-A71. The L-SP40 peptide demonstrated 80% protection of neonatal mice against lethal challenge by the mouse-adapted virus with a drastic reduction in the viral loads in the blood (~4.5 logs), skeletal muscles (1.5 logs) and brain stem (1.5 logs). SIGNIFICANCE L-SP40 peptide prevented severe hind limb paralysis and death in suckling mice and could serve as a potential broad-spectrum antiviral candidate to be further evaluated for safety and potency in future clinical trials against EV-A71.
Collapse
Affiliation(s)
- Salima Lalani
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Jalan University, 50603 Kuala Lumpur, Malaysia
| | - Kuan Onn Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Hui Xuan Lim
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Jalan University, 50603 Kuala Lumpur, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Jalan University, 50603 Kuala Lumpur, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
22
|
Zheng J, Li D, Jiao J, Duan C, Wang Z, Xiang Y. Dual aptamer recognition-based G-quadruplex nanowires to selectively analyze cancer-derived exosomes. Talanta 2021; 235:122748. [PMID: 34517616 DOI: 10.1016/j.talanta.2021.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 11/15/2022]
Abstract
Cancer-derived exosomes have emerged as a valuable biomarker for cancer diagnosis and prognosis. However, the heterogeneity of exosomes often leads to low selectivity based on the single recognition method. Given this, we have developed a dual-aptamer recognition strategy based on G-quadruplex nanowires for selective analysis of exosomes. In this work, target exosomes were first captured by CD63 aptamers modified on magnetic beads (MBs) and then combined with AS1411 aptamer, which shows high binding affinity to nucleolin when forming stable G-quadruplex structure. Then the free myc monomer can spontaneously assemble into higher order G-wire superstructures on the allosteric AS1411, and resulting enhanced fluorescence signal, which can realize sensitive and specific analysis of the target exosomes. This dual-aptamer recognition-based method is simple and universal for different types of exosomes, which is of great significance for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Ji Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Jin Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Zhongyun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|
23
|
Luo H, Zhang Y, Deng Y, Li L, Sheng Z, Yu Y, Lin Y, Chen X, Feng P. Nxhl Controls Angiogenesis by Targeting VE-PTP Through Interaction With Nucleolin. Front Cell Dev Biol 2021; 9:728821. [PMID: 34733844 PMCID: PMC8558974 DOI: 10.3389/fcell.2021.728821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Precise regulation of angiogenesis is required for organ development, wound repair, and tumor progression. Here, we identified a novel gene, nxhl (New XingHuo light), that is conserved in vertebrates and that plays a crucial role in vascular integrity and angiogenesis. Bioinformatic analysis uncovered its essential roles in development based on co-expression with several key developmental genes. Knockdown of nxhl in zebrafish causes global and pericardial edema, loss of blood circulation, and vascular defects characterized by both reduced vascularization in intersegmental vessels and decreased sprouting in the caudal vein plexus. The nxhl gene also affects human endothelial cell behavior in vitro. We found that nxhl functions in part by targeting VE-PTP through interaction with NCL (nucleolin). Loss of ptprb (a VE-PTP ortholo) in zebrafish resulted in defects similar to nxhl knockdown. Moreover, nxhl deficiency attenuates tumor invasion and proteins (including VE-PTP and NCL) associated with angiogenesis and EMT. These findings illustrate that nxhl can regulate angiogenesis via a novel nxhl-NCL-VE-PTP axis, providing a new therapeutic target for modulating vascular formation and function, especially for cancer treatment.
Collapse
Affiliation(s)
- Honglin Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yongde Zhang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yanfei Deng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zhaoan Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanling Yu
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiaohan Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Pengfei Feng
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
24
|
Gabanella F, Barbato C, Fiore M, Petrella C, de Vincentiis M, Greco A, Minni A, Corbi N, Passananti C, Di Certo MG. Fine-Tuning of mTOR mRNA and Nucleolin Complexes by SMN. Cells 2021; 10:3015. [PMID: 34831238 PMCID: PMC8616268 DOI: 10.3390/cells10113015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence points to the Survival Motor Neuron (SMN) protein as a key determinant of translation pathway. Besides its role in RNA processing and sorting, several works support a critical implication of SMN in ribosome biogenesis. We previously showed that SMN binds ribosomal proteins (RPs) as well as their encoding transcripts, ensuring an appropriate level of locally synthesized RPs. SMN impacts the translation machinery in both neural and non-neural cells, in agreement with the concept that SMN is an essential protein in all cell types. Here, we further assessed the relationship between SMN and translation-related factors in immortalized human fibroblasts. We focused on SMN-nucleolin interaction, keeping in mind that nucleolin is an RNA-binding protein, highly abundant within the nucleolus, that exhibits a central role in ribosomes production. Nucleolin may also affects translation network by binding the mammalian target of rapamycin (mTOR) mRNA and promoting its local synthesis. In this regard, for the first time we provided evidence that SMN protein itself associates with mTOR transcript. Collectively, we found that: (1) SMN coexists with nucleolin-mTOR mRNA complexes at subcellular level; (2) SMN deficiency impairs nucleolar compartmentalization of nucleolin, and (3) this event correlates with the nuclear retention of mTOR mRNA. These findings suggest that SMN may regulate not only structural components of translation machinery, but also their upstream regulating factors.
Collapse
Affiliation(s)
- Francesca Gabanella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291-00161 Rome, Italy; (N.C.); (C.P.)
| | - Christian Barbato
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| | - Marco Fiore
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| | - Carla Petrella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (M.d.V.); (A.G.); (A.M.)
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (M.d.V.); (A.G.); (A.M.)
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (M.d.V.); (A.G.); (A.M.)
| | - Nicoletta Corbi
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291-00161 Rome, Italy; (N.C.); (C.P.)
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291-00161 Rome, Italy; (N.C.); (C.P.)
| | - Maria Grazia Di Certo
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| |
Collapse
|
25
|
McClelland RD, Culp TN, Marchant DJ. Imaging Flow Cytometry and Confocal Immunofluorescence Microscopy of Virus-Host Cell Interactions. Front Cell Infect Microbiol 2021; 11:749039. [PMID: 34712624 PMCID: PMC8546218 DOI: 10.3389/fcimb.2021.749039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Viruses are diverse pathogens that use host factors to enter cells and cause disease. Imaging the entry and replication phases of viruses and their interactions with host factors is key to fully understanding viral infections. This review will discuss how confocal microscopy and imaging flow cytometry are used to investigate virus entry and replication mechanisms in fixed and live cells. Quantification of viral images and the use of cryo-electron microscopy to gather structural information of viruses is also explored. Using imaging to understand how viruses replicate and interact with host factors, we gain insight into cellular processes and identify novel targets to develop antiviral therapeutics and vaccines.
Collapse
Affiliation(s)
- Ryley D McClelland
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, Katz Center for Health Research, University of Alberta, Edmonton, AB, Canada
| | - Tyce N Culp
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, Katz Center for Health Research, University of Alberta, Edmonton, AB, Canada
| | - David J Marchant
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, Katz Center for Health Research, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
26
|
Chalabi-Dchar M, Cruz E, Mertani HC, Diaz JJ, Courty J, Cascone I, Bouvet P. Nucleolin Aptamer N6L Reprograms the Translational Machinery and Acts Synergistically with mTORi to Inhibit Pancreatic Cancer Proliferation. Cancers (Basel) 2021; 13:cancers13194957. [PMID: 34638443 PMCID: PMC8508287 DOI: 10.3390/cancers13194957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Pancreatic cancer is an aggressive disease characterized by its invasiveness, rapid progression, and resistance to conventional therapy. There is a need to identify new molecules to improve current therapies. The aim of this study was to analyze how the pancreatic cancer cells react to the treatment with an inhibitor of nucleolin, N6L. To this end, we analyzed how the translation was affected in the cells during the treatment. We discovered that in response to N6L, a signaling pathway called the mTOR pathway was activated and was involved in the activation of translation of a subset of mRNA that could be involved in the resistance of the cells to the treatment. Indeed, we showed that the combined action of inhibitors of the mTOR pathway with N6L synergistically inhibited the cancer cells’ proliferation. We propose that this new combination of molecules could be a novel therapeutic option for pancreatic cancer. Abstract We previously showed that N6L, a pseudopeptide that targets nucleolin, impairs pancreatic ductal adenocarcinoma (PDAC) growth and normalizes tumor vessels in animal models. In this study, we analyzed the translatome of PDAC cells treated with N6L to identify the pathways that were either repressed or activated. We observed a strong decrease in global protein synthesis. However, about 6% of the mRNAs were enriched in the polysomes. We identified a 5′TOP motif in many of these mRNAs and demonstrated that a chimeric RNA bearing a 5‘TOP motif was up-regulated by N6L. We demonstrated that N6L activates the mTOR pathway, which is required for the translation of these mRNAs. An inhibitory synergistic effect in PDAC cell lines, including patient-derived xenografts and tumor-derived organoids, was observed when N6L was combined with mTOR inhibitors. In conclusion, N6L reduces pancreatic cells proliferation, which then undergoes translational reprogramming through activation of the mTOR pathway. N6L and mTOR inhibitors act synergistically to inhibit the proliferation of PDAC and human PDX cell lines. This combotherapy of N6L and mTOR inhibitors could constitute a promising alternative to treat pancreatic cancer.
Collapse
Affiliation(s)
- Mounira Chalabi-Dchar
- Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, CEDEX 08, F-69373 Lyon, France; (M.C.-D.); (E.C.); (H.C.M.); (J.-J.D.)
| | - Elisabeth Cruz
- Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, CEDEX 08, F-69373 Lyon, France; (M.C.-D.); (E.C.); (H.C.M.); (J.-J.D.)
| | - Hichem C. Mertani
- Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, CEDEX 08, F-69373 Lyon, France; (M.C.-D.); (E.C.); (H.C.M.); (J.-J.D.)
| | - Jean-Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, CEDEX 08, F-69373 Lyon, France; (M.C.-D.); (E.C.); (H.C.M.); (J.-J.D.)
| | - José Courty
- INSERM, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, F-94010 Créteil, France; (J.C.); (I.C.)
| | - Ilaria Cascone
- INSERM, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, F-94010 Créteil, France; (J.C.); (I.C.)
| | - Philippe Bouvet
- Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, CEDEX 08, F-69373 Lyon, France; (M.C.-D.); (E.C.); (H.C.M.); (J.-J.D.)
- Ecole Normale Supérieure de Lyon, Université de Lyon 1, F-69007 Lyon, France
- Correspondence:
| |
Collapse
|
27
|
Moe GR, Steirer LM, Lee JA, Shivakumar A, Bolanos AD. A cancer-unique glycan: de-N-acetyl polysialic acid (dPSA) linked to cell surface nucleolin depends on re-expression of the fetal polysialyltransferase ST8SIA2 gene. J Exp Clin Cancer Res 2021; 40:293. [PMID: 34544457 PMCID: PMC8451149 DOI: 10.1186/s13046-021-02099-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polysialic acid (polySia) modifies six cell surface proteins in humans mainly during fetal development and some blood cells in adults. Two genes in humans, ST8SIA2 and ST8SIA4, code for polysialyltransferases that synthesize polySia. ST8SIA2 is highly expressed during fetal development and in cancer but not in adult normal human cells. ST8SIA4 is expressed in fetal and adult brain, spleen, thymus, and peripheral blood leukocytes and in cancer. We identified a derivative of polySia containing de-N-acetyl neuraminic acid residues (dPSA), which is expressed on the cell surface of human cancer cell lines and tumors but not normal cells. METHODS dPSA-modified proteins in several human cancer cell lines and normal blood cells were identified using co-immunoprecipitation with anti-dPSA antibodies, mass spectroscopy and Western blot. RNAi and CRISPR were used to knockdown and knockout, respectively, the polysialyltransferase genes in human melanoma SK-MEL-28 and neuroblastoma CHP-134 cell lines, respectively, to determine the effect on production of cell surface dPSA measured by flow cytometry and fluorescence microscopy. RESULTS We found that dPSA is linked to or associated with nucleolin, a nuclear protein reported to be on the cell surface of cancer but not normal cells. Knocking down expression of ST8SIA2 with RNAi or knocking out each gene individually and in combination using CRISPR showed that cell surface dPSA depended on expression of ST8SIA2. CONCLUSIONS The presence of dPSA specifically in a broad range of human cancers but not human adult normal cells offers novel possibilities for diagnosis, prevention and treatment targeting the dPSA antigen that appears to be cancer-specific, consistent across not only human cancers but also species, and may be an unrecognized mechanism of immune shielding.
Collapse
Affiliation(s)
- Gregory R Moe
- UCSF Benioff Children's Hospital Oakland, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA.
| | - Lindsay M Steirer
- UCSF Benioff Children's Hospital Oakland, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Joshua A Lee
- UCSF Benioff Children's Hospital Oakland, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Adarsha Shivakumar
- UCSF Benioff Children's Hospital Oakland, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | - Alejandro D Bolanos
- UCSF Benioff Children's Hospital Oakland, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| |
Collapse
|
28
|
Brignole C, Bensa V, Fonseca NA, Del Zotto G, Bruno S, Cruz AF, Malaguti F, Carlini B, Morandi F, Calarco E, Perri P, Moura V, Emionite L, Cilli M, De Leonardis F, Tondo A, Amoroso L, Conte M, Garaventa A, Sementa AR, Corrias MV, Ponzoni M, Moreira JN, Pastorino F. Cell surface Nucleolin represents a novel cellular target for neuroblastoma therapy. J Exp Clin Cancer Res 2021; 40:180. [PMID: 34078433 PMCID: PMC8170797 DOI: 10.1186/s13046-021-01993-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Nucleolin (NCL) is a protein overexpressed and partially localized on the cell surface of tumor cells of adult cancers. Little is known about NCL and pediatric tumors and nothing is reported about cell surface NCL and NB. METHODS NB cell lines, Schwannian stroma-poor NB tumors and bone marrow (BM)-infiltrating NB cells were evaluated for the expression of cell surface NCL by Flow Cytometry, Imaging Flow Cytometry and Immunohistochemistry analyses. The cytotoxic activity of doxorubicin (DXR)-loaded nanocarriers decorated with the NCL-recognizing F3 peptide (T-DXR) was evaluated in terms of inhibition of NB cell proliferation and induction of cell death in vitro, whereas metastatic and orthotopic animal models of NB were used to examine their in vivo anti-tumor potential. RESULTS NB cell lines, NB tumor cells (including patient-derived and Patient-Derived Xenografts-PDX) and 70% of BM-infiltrating NB cells show cell surface NCL expression. NCL staining was evident on both tumor and endothelial tumor cells in NB xenografts. F3 peptide-targeted nanoparticles, co-localizing with cell surface NCL, strongly associates with NB cells showing selective tumor cell internalization. T-DXR result significantly more effective, in terms of inhibition of cell proliferation and reduction of cell viability in vitro, and in terms of delay of tumor growth in all NB animal model tested, when compared to both control mice and those treated with the untargeted formulation. CONCLUSIONS Our findings demonstrate that NCL could represent an innovative therapeutic cellular target for NB.
Collapse
Affiliation(s)
- Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Veronica Bensa
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Nuno A Fonseca
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- TREAT U, SA - Parque Industrial de Taveiro, Lote 44, 3045-508, Coimbra, Portugal
| | - Genny Del Zotto
- Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Ana F Cruz
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Fabiana Malaguti
- Department of Pathology, Istituto Giannina Gaslini, Genoa, Italy
| | - Barbara Carlini
- Department of Pathology, Istituto Giannina Gaslini, Genoa, Italy
| | - Fabio Morandi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enzo Calarco
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vera Moura
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- TREAT U, SA - Parque Industrial de Taveiro, Lote 44, 3045-508, Coimbra, Portugal
| | - Laura Emionite
- Animal Facility, IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Cilli
- Animal Facility, IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Annalisa Tondo
- UOC Oncologia Pediatrica, Ospedale Meyer, Florence, Italy
| | | | | | | | - Angela R Sementa
- Department of Pathology, Istituto Giannina Gaslini, Genoa, Italy
| | - Maria V Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Joao N Moreira
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| |
Collapse
|
29
|
Ferrara B, Belbekhouche S, Habert D, Houppe C, Vallée B, Bourgoin-Voillard S, Cohen JL, Cascone I, Courty J. Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. NANOTECHNOLOGY 2021; 32:322001. [PMID: 33892482 DOI: 10.1088/1361-6528/abfb30] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Conventional chemotherapy used against cancer is mostly limited due to their non-targeted nature, affecting normal tissue and causing undesirable toxic effects to the affected tissue. With the aim of improving these treatments both therapeutically and in terms of their safety, numerous studies are currently being carried out using nanoparticles (NPs) as a vector combining tumor targeting and carrying therapeutic tools. In this context, it appears that nucleolin, a molecule over-expressed on the surface of tumor cells, is an interesting therapeutic target. Several ligands, antagonists of nucleolin of various origins, such as AS1411, the F3 peptide and the multivalent pseudopeptide N6L have been developed and studied as therapeutic tools against cancer. Over the last ten years or so, numerous studies have been published demonstrating that these antagonists can be used as tumor targeting agents with NPs from various origins. Focusing on nucleolin ligands, the aim of this article is to review the literature recently published or under experimentation in our research team to evaluate the efficacy and future development of these tools as anti-tumor agents.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sabrina Belbekhouche
- Université Paris-Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, F-94320 Thiais, France
| | - Damien Habert
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Claire Houppe
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Benoit Vallée
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sandrine Bourgoin-Voillard
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics/Prométhée Proteomic Platform, UGA-INSERM U1055-CHUGA, Grenoble, France
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, PROMETHEE Proteomic Platform, Grenoble, France
| | - José L Cohen
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Ilaria Cascone
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - José Courty
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| |
Collapse
|
30
|
Wu S, Teo BHD, Wee SYK, Chen J, Lu J. The GAR/RGG motif defines a family of nuclear alarmins. Cell Death Dis 2021; 12:477. [PMID: 33980825 PMCID: PMC8116331 DOI: 10.1038/s41419-021-03766-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023]
Abstract
The nucleus is the target of autoantibodies in many diseases, which suggests intrinsic nuclear adjuvants that confer its high autoimmunogenicity. Nucleolin (NCL) is one abundant nucleolar autoantigen in systemic lupus erythematosus (SLE) patients and, in lupus-prone mice, it elicits autoantibodies early. With purified NCL, we observed that it was a potent alarmin that activated monocytes, macrophages and dendritic cells and it was a ligand for TLR2 and TLR4. NCL released by necrotic cells also exhibited alarmin activity. The NCL alarmin activity resides in its glycine/arginine-rich (GAR/RGG) motif and can be displayed by synthetic GAR/RGG peptides. Two more GAR/RGG-containing nucleolar proteins, fibrillarin (FBRL) and GAR1, were also confirmed to be novel alarmins. Therefore, the GAR/RGG alarmin motif predicts a family of nucleolar alarmins. The apparent prevalence of nucleolar alarmins suggests their positive contribution to tissue homeostasis by inducing self-limiting tissue inflammation with autoimmunity only occurring when surveillance is broken down.
Collapse
Affiliation(s)
- Shan Wu
- grid.4280.e0000 0001 2180 6431Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD4, 5 Science Drive 2, Singapore, 117545 Singapore ,grid.4280.e0000 0001 2180 6431Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| | - Boon Heng Dennis Teo
- grid.4280.e0000 0001 2180 6431Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD4, 5 Science Drive 2, Singapore, 117545 Singapore ,grid.4280.e0000 0001 2180 6431Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| | - Seng Yin Kelly Wee
- grid.4280.e0000 0001 2180 6431Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD4, 5 Science Drive 2, Singapore, 117545 Singapore ,grid.4280.e0000 0001 2180 6431Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| | - Junjie Chen
- grid.4280.e0000 0001 2180 6431Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD4, 5 Science Drive 2, Singapore, 117545 Singapore ,grid.4280.e0000 0001 2180 6431Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| | - Jinhua Lu
- grid.4280.e0000 0001 2180 6431Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD4, 5 Science Drive 2, Singapore, 117545 Singapore ,grid.4280.e0000 0001 2180 6431Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
| |
Collapse
|
31
|
Miranda A, Santos T, Carvalho J, Alexandre D, Jardim A, Caneira CF, Vaz V, Pereira B, Godinho R, Brito D, Chu V, Conde JP, Cruz C. Aptamer-based approaches to detect nucleolin in prostate cancer. Talanta 2021; 226:122037. [PMID: 33676639 DOI: 10.1016/j.talanta.2020.122037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
Abstract
We have investigated the expression of nucleolin (NCL) in liquid biopsies of prostate cancer (PCa) patients and healthy controls to determine its correlation with tumor prognosis. To detect NCL we used a modified AS1411 aptamer designated by AS1411-N5. In presence of NCL, AS1411-N5 increases the fluorescence by assuming a G-quadruplex (G4) structure, while in the absence of NCL the fluorescence signal remains quenched. The structural characterization of AS1411-N5 was performed by biophysical studies, which demonstrated the formation of G4 parallel conformation in the presence of 100 mM K+ and the ability to recognize NCL with high affinity (KD = 138.1 ± 5.5 nM). Furthermore, the clinical relevance of NCL in PCa liquid biopsies was assessed by using an NCL-based ELISA assay. The protein was measured in the peripheral blood mononuclear cells (PBMCs) cell lysate of 158 individuals, including PCa patients and healthy individuals. The results depicted a remarkable increase of NCL levels in the PBMC's lysate of PCa patients (mean of 626.1 pg/mL whole blood) when compared to healthy individuals (mean of 198.5 pg/mL whole blood). The ELISA results also provided evidence for the usefulness of determining NCL levels in advanced PCa stages. Furthermore, a microfluidic assay showed the ability of AS1411-N5 in recognizing NCL in spiked human plasma samples.
Collapse
Affiliation(s)
- André Miranda
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Tiago Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Josué Carvalho
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Daniela Alexandre
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal
| | - Andreia Jardim
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal; Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - CatarinaR F Caneira
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Vírgilio Vaz
- Serviço de Urologia do Centro Hospitalar Universitário Cova da Beira (CHUCB), Covilhã, Portugal
| | - Bruno Pereira
- Faculdade de Ciências da Saúde, Universidade da Beira Interior (FCS-UBI), Covilhã, Portugal; Instituto Português de Oncologia (IPO), Coimbra, Portugal
| | | | - Duarte Brito
- Instituto Português de Oncologia (IPO), Coimbra, Portugal
| | - Virgínia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - João P Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, Portugal.
| |
Collapse
|
32
|
Kozani PS, Kozani PS, Malik MT. AS1411-functionalized delivery nanosystems for targeted cancer therapy. EXPLORATION OF MEDICINE 2021; 2:146-166. [PMID: 34723284 PMCID: PMC8555908 DOI: 10.37349/emed.2021.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleolin (NCL) is a multifunctional nucleolar phosphoprotein harboring critical roles in cells such as cell proliferation, survival, and growth. The dysregulation and overexpression of NCL are related to various pathologic and oncological indications. These characteristics of NCL make it an ideal target for the treatment of various cancers. AS1411 is a synthetic quadruplex-forming nuclease-resistant DNA oligonucleotide aptamer which shows a considerably high affinity for NCL, therefore, being capable of inducing growth inhibition in a variety of tumor cells. The high affinity and specificity of AS1411 towards NCL make it a suitable targeting tool, which can be used for the functionalization of therapeutic payloaddelivery nanosystems to selectively target tumor cells. This review explores the advances in NCL-targeting cancer therapy through AS1411-functionalized delivery nanosystems for the selective delivery of a broad spectrum of therapeutic agents.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Carlos Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115/111, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
| | - Mohammad Tariq Malik
- Departments of Microbiology and Immunology, Regenerative Medicine, and Stem Cell Biology, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
33
|
Liu B, Yang W, Che C, Liu J, Si M, Gong Z, Gao R, Yang G. A Targeted Nano Drug Delivery System of AS1411 Functionalized Graphene Oxide Based Composites. ChemistryOpen 2021; 10:408-413. [PMID: 33605540 PMCID: PMC8015732 DOI: 10.1002/open.202000226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
A novel method for the preparation of antitumor drug vehicles has been optimized. Biological materials of chitosan oligosaccharide (CO) and γ-polyglutamic acid (γ-PGA) have previously been employed as modifiers to covalently modify graphene oxide (GO), which in turn loaded doxorubicin (DOX) to obtain a nano drug delivery systems of graphene oxide based composites (GO-CO-γ-PGA-DOX). The system was not equipped with the ability of initiative targeting, thus resulting into toxicity and side effects on normal tissues or organs. In order to further improve the targeting property of the system, the nucleic acid aptamer NH2 -AS1411 (APT) of targeted nucleolin (C23) was used to conjugate on GO-CO-γ-PGA to yield the targeted nano drug delivery system APT-GO-CO-γ-PGA. The structure, composition, dispersion, particle size and morphology properties of the synthesized complex have been studied using multiple characterization methods. Drug loading and release profile data showed that APT-GO-CO-γ-PGA is provided with high drug loading capacity and is capable of controlled and sustained release of DOX. Cell experimental results indicated that since C23 was overexpressed on the surface of Hela cells but not on the surface of Beas-2B cells, APT-GO-CO-γ-PGA-DOX can target Hela cells and make increase toxicity to Hela cells than Beas-2B cells, and the IC50 value of APT-GO-CO-γ-PGA-DOX was 3.23±0.04 μg/mL. All results proved that APT-GO-CO-γ-PGA can deliver antitumor drugs in a targeted manner, and achieve the effect of reducing poison, which indicated that the targeted carrier exhibits a broad application prospect in the field of biomedicine.
Collapse
Affiliation(s)
- Baoqing Liu
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Wenzhi Yang
- Institution School of Food Science and NutritionUniversity of LeedsWoodhouse LnLeedsLS2 9JTUK
| | - Chengchuan Che
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Jinfeng Liu
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Meiru Si
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Zhijin Gong
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Ruixia Gao
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| | - Ge Yang
- Qufu Normal UniversityCollege of Life Sciences57 Jingxuan West Road, Qufu CityShandongChina
| |
Collapse
|
34
|
Choo P, Liu T, Odom TW. Nanoparticle Shape Determines Dynamics of Targeting Nanoconstructs on Cell Membranes. J Am Chem Soc 2021; 143:4550-4555. [PMID: 33735562 DOI: 10.1021/jacs.1c00850] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoparticle carriers are effective drug delivery vehicles. Along with other design parameters including size, composition, and surface charge, particle shape strongly influences cellular uptake. How nanoparticle geometry affects targeted delivery under physiologically relevant conditions, however, is inconclusive. Here, we demonstrate that nanoconstruct core shape influences the dynamics of targeting ligand-receptor interactions on cancer cell membranes. By single-particle tracking of translational and rotational motion, we compared DNA aptamer AS1411 conjugated gold nanostars (AS1411-AuNS) and 50 nm gold spheres (AS1411-50NPs) on cells with and without targeted nucleolin membrane receptors. On nucleolin-expressing cells, AS1411-AuNS exhibited faster velocities under directed diffusion and translated over larger areas during restricted diffusion compared to AS1411-50NPs, despite their similar protein corona profiles. On nucleolin-inhibited cells, AS1411-AuNS showed faster rotation dynamics over smaller translational areas, while AS1411-50NPs did not display significant changes in translation. These differences in translational and rotational motions indicate that nanoparticle shape affects how targeting nanoconstructs bind to cell-membrane receptors.
Collapse
|
35
|
Yang BZ, Su ZY, Jou AFJ. Exploiting the Catalytic Ability of Polydopamine-Remodeling Gold Nanoparticles toward the Naked-Eye Detection of Cancer Cells at a Single-Cell Level. ACS APPLIED BIO MATERIALS 2021; 4:2821-2828. [PMID: 35014321 DOI: 10.1021/acsabm.1c00041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, a catalytic polydopamine-remodeling gold nanoparticle sensitized with an antinucleolin AS1411 probe (pAu nanoprobe) is synthesized, where the surface of the gold nanoparticles (AuNPs) is modified with a spontaneous self-polymerization of a polydopamine coating that imparts the probe functionalization ability and antispecific protein binding while the intrinsic catalytic property of the AuNPs is preserved. The functionalized AS1411 probe exerts specific recognition with nucleolin protein that is found to be overexpressed on the surface of breast cancer cells (MDA-MB-231). Scanning electron microscopy (SEM) confirms that the specific binding of the pAu nanoprobe occurs at the cancer cell surface. Taking advantage of the catalytic ability of the pAu nanoprobe in reducing blue-colored methylene blue (MB) to colorless leuco-MB, a colorimetric biosensing platform is established based on the accessible catalytic active sites on the pAu nanoprobe toward MB. The specific binding inhibits the pAu nanoprobe from efficiently catalyzing the reduction of MB, resulting in a "turn-off" catalytic biosensing platform. The catalytic conversion of MB is inversely proportional to the concentration of the nucleolin protein and the cancer cells, yielding a detection limit of 15 pM of the nucleolin protein and two cancer cells. The presence of five orders of magnitude higher concentration of bovine serum albumin hardly affects the catalytic ability of the pAu nanoprobe, that is, 88% catalytic ability is still preserved, which validates the specificity of the proposed pAu nanoprobe. In particular, a distinct color contrast creates a significant signal-to-noise ratio so as to enable single-cell level detection of two cancer cells by naked-eye judgment. Moreover, the undiluted, real human serum samples spiked with the cancer cells were examined with an impressive recovery of 94 ± 0.3%, which holds great promise in cancer cell screening.
Collapse
Affiliation(s)
- Bo-Zhao Yang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Chung Pei Road, Chung Li, Taoyuan 320314, Taiwan, ROC
| | - Zheng-Yuan Su
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung Pei Road, Chung Li, Taoyuan 320314, Taiwan, ROC
| | - Amily Fang-Ju Jou
- Department of Chemistry, Chung Yuan Christian University, No. 200, Chung Pei Road, Chung Li, Taoyuan 320314, Taiwan, ROC
| |
Collapse
|
36
|
Das S, De S, Sengupta S. Post-transcriptional regulation of MMP2 mRNA by its interaction with miR-20a and Nucleolin in breast cancer cell lines. Mol Biol Rep 2021; 48:2315-2324. [PMID: 33788053 DOI: 10.1007/s11033-021-06261-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2021] [Indexed: 11/25/2022]
Abstract
Matrix-metalloproteinase-2 (MMP2) is a foremost MMP, governing invasion of breast cancer cells during metastasis. miR-20a was reported to induce mesenchymal to epithelial transition in MDA-MB-231 cells and its endogenous expression varies directly with invasiveness of breast cancer cells. The inverse and direct correlation of invasiveness with miR-20a and Nucleolin respectively led us to study the post-transcriptional regulation of MMP2 by miR-20a and mRNA stabilizing protein, Nucleolin. Thus, understanding the mechanism of its regulation will enable modification of the invasion potential. MMP2 was found to be higher in MDA-MB-231 than MCF-7 cells both at RNA and protein levels. RNA-protein co-immunoprecipitation assay with Argonaute 2 revealed that MMP2 undergoes miRNA-mediated post-transcriptional regulation. miR-20a decreased MMP2 expression as well as its enzymatic activity as found by zymogram assay. Reporter assay showed that miR-20a directly binds to its putative binding site in MMP2 3'-UTR as per in silico prediction. miR-20a additionally impeded MMP2 mRNA stability, and binding of stabilizing trans-factor Nucleolin to its 3'-UTR was confirmed by RNA-protein co-immunoprecipitation assay. Partial down-regulation of Nucleolin by Si-RNA resulted in the downregulation of MMP2 and Nucleolin over-expression rescued the inhibitory effect of miR-20a on MMP2 expression. Delineating the mechanism of post-transcriptional regulation of MMP2, two of its potent regulators, miR-20a and Nucleolin were identified. It was established for the first time that MMP2 is a direct target of miR-20a. The results also elucidated that Nucleolin binds to MMP2 3' UTR and its abundance affects MMP2 expression.
Collapse
Affiliation(s)
- Sayantani Das
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Soumasree De
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Sumita Sengupta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India.
| |
Collapse
|
37
|
Ferreira JA, Relvas-Santos M, Peixoto A, M N Silva A, Lara Santos L. Glycoproteogenomics: Setting the Course for Next-generation Cancer Neoantigen Discovery for Cancer Vaccines. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:25-43. [PMID: 34118464 PMCID: PMC8498922 DOI: 10.1016/j.gpb.2021.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/25/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
Molecular-assisted precision oncology gained tremendous ground with high-throughput next-generation sequencing (NGS), supported by robust bioinformatics. The quest for genomics-based cancer medicine set the foundations for improved patient stratification, while unveiling a wide array of neoantigens for immunotherapy. Upfront pre-clinical and clinical studies have successfully used tumor-specific peptides in vaccines with minimal off-target effects. However, the low mutational burden presented by many lesions challenges the generalization of these solutions, requiring the diversification of neoantigen sources. Oncoproteogenomics utilizing customized databases for protein annotation by mass spectrometry (MS) is a powerful tool toward this end. Expanding the concept toward exploring proteoforms originated from post-translational modifications (PTMs) will be decisive to improve molecular subtyping and provide potentially targetable functional nodes with increased cancer specificity. Walking through the path of systems biology, we highlight that alterations in protein glycosylation at the cell surface not only have functional impact on cancer progression and dissemination but also originate unique molecular fingerprints for targeted therapeutics. Moreover, we discuss the outstanding challenges required to accommodate glycoproteomics in oncoproteogenomics platforms. We envisage that such rationale may flag a rather neglected research field, generating novel paradigms for precision oncology and immunotherapy.
Collapse
Affiliation(s)
- José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto 4200-072, Portugal.
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal; REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4169-007, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal
| | - André M N Silva
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4169-007, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto 4200-072, Portugal
| |
Collapse
|
38
|
Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis. Pharmaceuticals (Basel) 2021; 14:ph14010060. [PMID: 33451077 PMCID: PMC7828541 DOI: 10.3390/ph14010060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors. Moreover, the acquisition of certain oncological features may be partially attributed to alterations in the levels, location or function of nucleolin, a multifunctional protein involved in several cellular processes. This review aims at integrating the established hallmarks of cancer with the plasticity of cancer cells as an emerging hallmark; responsible for tumor heterogeneity; therapy resistance and relapse. The discussion will contextualize the involvement of nucleolin in the establishment of cancer hallmarks and its application as a marker protein for targeted anticancer therapies
Collapse
|
39
|
Anti-Influenza Activity of the Ribonuclease Binase: Cellular Targets Detected by Quantitative Proteomics. Int J Mol Sci 2020; 21:ijms21218294. [PMID: 33167434 PMCID: PMC7663932 DOI: 10.3390/ijms21218294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Unpredictable influenza pandemics, annual epidemics, and sporadic poultry-to-human avian influenza virus infections with high morbidity and mortality rates dictate a need to develop new antiviral approaches. Targeting cellular pathways and processes is a promising antiviral strategy shown to be effective regardless of viral subtypes or viral evolution of drug-resistant variants. Proteomics-based searches provide a tool to reveal the druggable stages of the virus life cycle and to understand the putative antiviral mode of action of the drug(s). Ribonucleases (RNases) of different origins not only demonstrate antiviral effects that are mediated by the direct RNase action on viral and cellular RNAs but can also exert their impact by signal transduction modulation. To our knowledge, studies of the RNase-affected cell proteome have not yet been performed. To reveal cellular targets and explain the mechanisms underlying the antiviral effect employed by the small extra-cellular ribonuclease of Bacillus pumilus (binase) both in vitro and in vivo, qualitative shotgun and quantitative targeted proteomic analyses of the influenza A virus (IAV) H1N1pdm09-infected A549 cells upon binase treatment were performed. We compared proteomes of mock-treated, binase-treated, virus-infected, and virus-infected binase-treated cells to determine the proteins affected by IAV and/or binase. In general, IAV demonstrated a downregulating strategy towards cellular proteins, while binase had an upregulating effect. With the help of bioinformatics approaches, coregulated cellular protein sets were defined and assigned to their biological function; a possible interconnection with the progression of viral infection was conferred. Most of the proteins downregulated by IAV (e.g., AKR1B1, AKR1C1, CCL5, PFN1, RAN, S100A4, etc.) belong to the processes of cellular metabolism, response to stimulus, biological regulation, and cellular localization. Upregulated proteins upon the binase treatment (e.g., AKR1B10, CAP1, HNRNPA2B1, PFN1, PPIA, YWHAB, etc.) are united by the processes of biological regulation, cellular localization, and immune and metabolic processes. The antiviral activity of binase against IAV was expressed by the inversion of virus-induced proteomic changes, resulting in the inhibition of virus-associated processes, including nuclear ribonucleoprotein export (NCL, NPM1, Nup205, and Bax proteins involved) and cytoskeleton remodeling (RDX, PFN1, and TUBB) induced by IAV at the middle stage of single-cycle infection in A549 cells. Modulation of the immune response could be involved as well. Overall, it seems possible that binase exerts its antiviral effects in multiple ways.
Collapse
|
40
|
Podratz JL, Tang JJ, Polzin MJ, Schmeichel AM, Nesbitt JJ, Windebank AJ, Madigan NN. Mechano growth factor interacts with nucleolin to protect against cisplatin-induced neurotoxicity. Exp Neurol 2020; 331:113376. [PMID: 32511954 DOI: 10.1016/j.expneurol.2020.113376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 01/01/2023]
Abstract
Mechano growth factor (MGF) is an alternatively spliced form of insulin-like growth factor-1 (IGF-1) that has shown to be neuroprotective against 6-hydroxydopamine toxicity and ischemic injury in the brain. MGF also induces neural stem cell proliferation in the hippocampus and preserves olfactory function in aging mice. Cisplatin is a chemotherapy drug that induces peripheral neuropathy in 30-40% of treated patients. Our studies were designed to see if MGF would protect dorsal root ganglion (DRG) neurons from cisplatin-induced neurotoxicity and to identify potential mechanisms that may be involved. Expression of endogenous MGF in adult DRG neurons in vivo ameliorated cisplatin-induced thermal hyperalgesia. Exogenous MGF and MGF with a cysteine added to the N-terminus (CMGF) also protected embryonic DRG neurons from cisplatin-induced cell death in vitro. Mass spectroscopy analysis of proteins bound to MGF showed that nucleolin is a key-binding partner. Antibodies against nucleolin prevented the neuroprotective effect of MGF and CMGF in culture. Both nucleolin and MGF are located in the nucleolus of DRG neurons. RNAseq of RNA associated with MGF indicated that MGF may be involved in RNA processing, protein targeting and transcription/translation. Nucleolin is an RNA binding protein that is readily shuttled between the nucleus, cytoplasm and plasma membrane. Nucleolin and MGF may work together to prevent cisplatin-induced neurotoxicity. Exploring the known mechanisms of nucleolin may help us better understand the mechanisms of cisplatin toxicity and how MGF protects DRG neurons.
Collapse
Affiliation(s)
- J L Podratz
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - J J Tang
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - M J Polzin
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - A M Schmeichel
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - J J Nesbitt
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - A J Windebank
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America.
| | - N N Madigan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
41
|
Sheetz T, Mills J, Tessari A, Pawlikowski M, Braddom AE, Posid T, Zynger DL, James C, Embrione V, Parbhoo K, Foray C, Coppola V, Croce CM, Palmieri D. NCL Inhibition Exerts Antineoplastic Effects against Prostate Cancer Cells by Modulating Oncogenic MicroRNAs. Cancers (Basel) 2020; 12:1861. [PMID: 32664322 PMCID: PMC7408652 DOI: 10.3390/cancers12071861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in men and second most common cause of cancer-related deaths in the United States. Androgen deprivation therapy (ADT) is only temporarily effective for advanced-stage PCa, as the disease inevitably progresses to castration-resistant prostate cancer (CRPC). The protein nucleolin (NCL) is overexpressed in several types of human tumors where it is also mislocalized to the cell surface. We previously reported the identification of a single-chain fragment variable (scFv) immuno-agent that is able to bind NCL on the surface of breast cancer cells and inhibit proliferation both in vitro and in vivo. In the present study, we evaluated whether NCL could be a valid therapeutic target for PCa, utilizing DU145, PC3 (CRPC), and LNCaP (androgen-sensitive) cell lines. First, we interrogated the publicly available databases and noted that higher NCL mRNA levels are associated with higher Gleason Scores as well as with recurrent and metastatic tumors. Then, using our anti-NCL scFv, we demonstrated that NCL is expressed on the surface of all three tested cell lines and that NCL inhibition results in reduced proliferation and migration. We also measured the inhibitory effect of NCL targeting on the biogenesis of oncogenic microRNAs such as miR-21, -221 and -222, which was cell context dependent. Taken together, our data provide evidence that NCL targeting inhibits the key hallmarks of malignancy in PCa cells and may provide a novel therapeutic option for patients with advanced-stage PCa.
Collapse
Affiliation(s)
- Tyler Sheetz
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Urology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Joseph Mills
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Anna Tessari
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Megan Pawlikowski
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ashley E. Braddom
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Tasha Posid
- Department of Urology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Debra L. Zynger
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Cindy James
- Mass Spectroscopy and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA;
| | - Valerio Embrione
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kareesma Parbhoo
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Claudia Foray
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
42
|
Liu K, Xu C, Liu J. Regulation of cell binding and entry by DNA origami mediated spatial distribution of aptamers. J Mater Chem B 2020; 8:6802-6809. [PMID: 32373880 DOI: 10.1039/d0tb00663g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the effects of surface density and distribution of ligands on their recognition and binding is critical for the regulation of cellular behaviors. However, the correlation of spatial distribution of ligands particularly with cell binding and subsequent entry has been rarely explored. Here, we describe the use of DNA origami mediated spatial distribution of aptamers to regulate receptor ligand binding. Aptamers with tunable yet accurate density and orientation are anchored by virtue of the convenience and precision of DNA origami nanoboxes (DONs) to tailor their attachments. Cell assays demonstrate that the binding of DONs depends on both the density and orientation of aptamers, in which two adjacent aptamers exhibit the highest cellular uptake. The spatial distribution dependent uptake is further validated by utilizing two human cancer cell lines expressed with different levels of membrane receptors. Additionally, anticancer doxorubicin loaded DONs show internalization dependent proliferation inhibition of tumor cells. DNA origami mediated spatial distribution of ligands not only provides a unique method to tune cellular behaviors, but also offers new insights for the optimization of targeted drug delivery for cancer treatment.
Collapse
Affiliation(s)
- Ke Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | | | | |
Collapse
|
43
|
Darche M, Cossutta M, Caruana L, Houppe C, Gilles ME, Habert D, Guilloneau X, Vignaud L, Paques M, Courty J, Cascone I. Antagonist of nucleolin, N6L, inhibits neovascularization in mouse models of retinopathies. FASEB J 2020; 34:5851-5862. [PMID: 32141122 DOI: 10.1096/fj.201901876r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
Retinal vascular diseases (RVD) have been identified as a major cause of blindness worldwide. These pathologies, including the wet form of age-related macular degeneration, retinopathy of prematurity, and diabetic retinopathy are currently treated by intravitreal delivery of anti-vascular endothelial growth factor (VEGF) agents. However, repeated intravitreal injections can lead to ocular complications and resistance to these treatments. Thus, there is a need to find new targeted therapies. Nucleolin regulates the endothelial cell (EC) activation and angiogenesis. In previous studies, we designed a pseudopeptide, N6L, that binds the nucleolin and blocks the tumor angiogenesis. In this study, the effect of N6L was investigated in two experimental models of retinopathies including oxygen-induced retinopathy (OIR) and choroidal neovascularization (CNV). We found that in mouse OIR, intraperitoneal injection of N6L is delivered to activated ECs and induced a 50% reduction of pathological neovascularization. The anti-angiogenic effect of N6L has been tested in CNV model in which the systemic injection of N6L induced a 33% reduction of angiogenesis. This effect is comparable to those obtained with VEGF-trap, a standard of care drug for RVD. Interestingly, with preventive and curative treatments, neoangiogenesis is inhibited by 59%. Our results have potential interest in the development of new therapies targeting other molecules than VEGF for RVD.
Collapse
Affiliation(s)
- Marie Darche
- CRRET Laboratory, CNRS ERL 9215, University of Paris-Est Créteil, Créteil, France
- Clinical Investigation Center 1423, Centre Hospitalier National des Quinze-Vingts, Institut Hospitalo-Universitaire ForeSight, Sorbonne Université, Paris, France
| | - Mélissande Cossutta
- CRRET Laboratory, CNRS ERL 9215, University of Paris-Est Créteil, Créteil, France
| | - Laure Caruana
- CRRET Laboratory, CNRS ERL 9215, University of Paris-Est Créteil, Créteil, France
| | - Claire Houppe
- CRRET Laboratory, CNRS ERL 9215, University of Paris-Est Créteil, Créteil, France
| | | | - Damien Habert
- CRRET Laboratory, CNRS ERL 9215, University of Paris-Est Créteil, Créteil, France
| | - Xavier Guilloneau
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Lucile Vignaud
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Michel Paques
- Clinical Investigation Center 1423, Centre Hospitalier National des Quinze-Vingts, Institut Hospitalo-Universitaire ForeSight, Sorbonne Université, Paris, France
| | - José Courty
- CRRET Laboratory, CNRS ERL 9215, University of Paris-Est Créteil, Créteil, France
| | - Ilaria Cascone
- CRRET Laboratory, CNRS ERL 9215, University of Paris-Est Créteil, Créteil, France
| |
Collapse
|
44
|
Corneal neovascularization is inhibited with nucleolin-binding aptamer, AS1411. Exp Eye Res 2020; 193:107977. [PMID: 32081668 DOI: 10.1016/j.exer.2020.107977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
Corneal neovascularization (CNV) is a common sight-threatening pathology that can be induced by a variety of inflammatory and angiogenic stimuli. Current CNV treatments include anti-inflammatory drugs and antibody-based inhibitors of vascular endothelial growth factor (VEGF). However, these are not always effective and novel therapeutic approaches are needed. Previous work has indicated a role for nucleolin (NCL) in VEGF-mediated neoangiogenesis in a suture-induced CNV model. The major goal for this current study is to test the effect of AS1411, a NCL-binding DNA aptamer that has reached human clinical trials, on neovascularization in a murine model of VEGF-mediated CNV. Our results show that topical administration of AS1411 can significantly inhibit corneal neovascularization in this model. Mechanistic studies indicate that AS1411 reduces the VEGF-stimulated proliferation, migration, and tube formation of primary cells obtained from human limbus stroma (HLSC). AS1411 treatment also significantly reduced VEGF-stimulated induction of miR-21 and miR-221 in HLSC, suggesting a role for these pro-angiogenic miRNAs in mediating the effects of AS1411 in this system. In sum, this new research further supports a role for NCL in the molecular etiology of CNV and identifies AS1411 as a potential anti-angiogenic CNV treatment that works by a novel mechanism of action.
Collapse
|
45
|
Yuan WF, Wan LY, Peng H, Zhong YM, Cai WL, Zhang YQ, Ai WB, Wu JF. The influencing factors and functions of DNA G-quadruplexes. Cell Biochem Funct 2020; 38:524-532. [PMID: 32056246 PMCID: PMC7383576 DOI: 10.1002/cbf.3505] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/28/2022]
Abstract
G‐quadruplexes form folded structures because of tandem repeats of guanine sequences in DNA or RNA. They adopt a variety of conformations, depending on many factors, including the type of loops and cations, the nucleotide strand number, and the main strand polarity of the G‐quadruplex. Meanwhile, the different conformations of G‐quadruplexes have certain influences on their biological functions, such as the inhibition of transcription, translation, and DNA replication. In addition, G‐quadruplex binding proteins also affect the structure and function of G‐quadruplexes. Some chemically synthesized G‐quadruplex sequences have been shown to have biological activities. For example, bimolecular G‐quadruplexes of AS1411 act as targets of exogenous drugs that inhibit the proliferation of malignant tumours. G‐quadruplexes are also used as vehicles to deliver nanoparticles. Thus, it is important to identify the factors that influence G‐quadruplex structures and maintain the stability of G‐quadruplexes. Herein, we mainly discuss the factors influencing G‐quadruplexes and the synthetic G‐quadruplex, AS1411. Significance of the study This review summarizes the factors that influence G‐quadruplexes and the functions of the synthetic G‐quadruplex, AS1411. It also discusses the use of G‐quadruplexes for drug delivery in tumour therapy.
Collapse
Affiliation(s)
- Wen-Fang Yuan
- Medical College, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Lin-Yan Wan
- The People's Hospital, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Hu Peng
- Medical College, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.,Surgeon, The Yiling Hospital of Yichang, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Yuan-Mei Zhong
- Medical College, China Three Gorges University, Yichang, China
| | - Wen-Li Cai
- Medical College, China Three Gorges University, Yichang, China
| | - Yan-Qiong Zhang
- Medical College, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Wen-Bing Ai
- Surgeon, The Yiling Hospital of Yichang, Yichang, China
| | - Jiang-Feng Wu
- Medical College, China Three Gorges University, Yichang, China.,The People's Hospital, China Three Gorges University, Yichang, China.,Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.,Surgeon, The Yiling Hospital of Yichang, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| |
Collapse
|
46
|
Goldson TM, Turner KL, Huang Y, Carlson GE, Caggiano EG, Oberhauser AF, Fennewald SM, Burdick MM, Resto VA. Nucleolin mediates the binding of cancer cells to L-selectin under conditions of lymphodynamic shear stress. Am J Physiol Cell Physiol 2020; 318:C83-C93. [PMID: 31644306 PMCID: PMC6985834 DOI: 10.1152/ajpcell.00035.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) cells bind to lymphocytes via L-selectin in a shear-dependent manner. This interaction takes place exclusively under low-shear stress conditions, such as those found within the lymph node parenchyma. This represents a novel functional role for L-selectin-selectin ligand interactions. Our previous work has characterized as-of-yet unidentified L-selectin ligands expressed by HNSCC cells that are specifically active under conditions of low shear stress consistent with lymph flow. Using an affinity purification approach, we now show that nucleolin expressed on the surface of HNSCC cells is an active ligand for L-selectin. Parallel plate chamber flow-based experiments and atomic force microscopy (AFM) experiments show that nucleolin is the main functional ligand under these low-force conditions. Furthermore, AFM shows a clear relationship between work of deadhesion and physiological loading rates. Our results reveal nucleolin as the first major ligand reported for L-selectin that operates under low-shear stress conditions.
Collapse
Affiliation(s)
- Tovë M Goldson
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- University of Texas Medical Branch Cancer Center, Galveston, Texas
| | - Kevin L Turner
- Department of Mechanical Engineering, Ohio University, Athens, Ohio
| | - Yinan Huang
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - Grady E Carlson
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio
| | - Emily G Caggiano
- Biological Sciences Program, Honors Tutorial College, Ohio University, Athens, Ohio
| | - Andres F Oberhauser
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Susan M Fennewald
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- University of Texas Medical Branch Cancer Center, Galveston, Texas
| | - Monica M Burdick
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, Ohio
| | - Vicente A Resto
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- University of Texas Medical Branch Cancer Center, Galveston, Texas
| |
Collapse
|
47
|
Romano S, Fonseca N, Simões S, Gonçalves J, Moreira JN. Nucleolin-based targeting strategies for cancer therapy: from targeted drug delivery to cytotoxic ligands. Drug Discov Today 2019; 24:1985-2001. [PMID: 31271738 DOI: 10.1016/j.drudis.2019.06.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/08/2019] [Accepted: 06/26/2019] [Indexed: 01/10/2023]
Abstract
Cancer is currently the second leading cause of death worldwide and current therapeutic approaches remain ineffective in several cases. Therefore, there is a need to develop more efficacious therapeutic agents, especially for subtypes of cancer lacking targeted therapies. Limited drug penetration into tumors impairs the efficacy of therapies targeting cancer cells. One of the strategies to overcome this problem is targeting the more accessible tumor vasculature via molecules such as nucleolin, which is expressed at the surface of cancer and angiogenic endothelial cells, thus enabling a dual cellular targeting strategy. In this review, we present and discuss nucleolin-based targeting strategies that have been developed for cancer therapy, with a special focus on recent antibody-based approaches.
Collapse
Affiliation(s)
- Sofia Romano
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Nuno Fonseca
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; TREAT U, SA, Parque Industrial de Taveiro, Lote 44, 3045-508 Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548 Portugal
| | - João Gonçalves
- iMed. ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548 Portugal.
| |
Collapse
|
48
|
Wan LY, Yuan WF, Ai WB, Ai YW, Wang JJ, Chu LY, Zhang YQ, Wu JF. An exploration of aptamer internalization mechanisms and their applications in drug delivery. Expert Opin Drug Deliv 2019; 16:207-218. [PMID: 30691313 DOI: 10.1080/17425247.2019.1575808] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/25/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION As 'chemical antibodies', aptamers have some advantages, such as lack of immunogenicity, rapid tissue penetration, cell internalization and so on. Consequently, more and more aptamers have been screened out by the systematic evolution of ligands through exponential enrichment for the desired cells or membrane receptors. On the basis of the result, researchers use aptamers to guide drug targeting to the desired cells and internalization in vivo. AREAS COVERED In this review, we explore the mechanisms of cargo- or aptamer-mediated internalization, and then briefly summarize five strategies for exploring the mechanism of aptamer internalization. Finally, we focus on four types of applications involving aptamer internalization: aptamers as drugs, aptamers as chemical drug-delivery systems, aptamer-based chimeras and aptamer-conjugated nanoparticles or block copolymer micelles. EXPERT OPINION Two aptamer-internalization mechanisms are known, namely receptor-mediated endocytosis and macropinocytosis. The latter mechanism, which is has only been verified in the internalization of nucleolin aptamer shuttles between the nucleus and cytoplasm, may be important for nuclear internalization and cargo molecule escape from the endosomal compartment. Thus, it is feasible to use some strategies to further explore the macropinocytosis internalization mechanism and then to screen for aptamers similar to the nucleolin aptamer for use with the desired cell types as a targeted delivery tool.
Collapse
Affiliation(s)
- Lin-Yan Wan
- a The People's Hospital , China Three Gorges University , Yichang , China
- b Institute of Organ Fibrosis and Targeted Drug Delivery , China Three Gorges University , Yichang , China
| | - Wen-Fang Yuan
- b Institute of Organ Fibrosis and Targeted Drug Delivery , China Three Gorges University , Yichang , China
- c Medical College , China Three Gorges University , Yichang , China
| | - Wen-Bing Ai
- d The Yiling Hospital of Yichang , Yichang , Hubei , China
| | - Yao-Wei Ai
- a The People's Hospital , China Three Gorges University , Yichang , China
- b Institute of Organ Fibrosis and Targeted Drug Delivery , China Three Gorges University , Yichang , China
| | - Jiao-Jiao Wang
- c Medical College , China Three Gorges University , Yichang , China
| | - Liang-Yin Chu
- e School of Chemical Engineering , Sichuan University , Chengdu , China
| | - Yan-Qiong Zhang
- b Institute of Organ Fibrosis and Targeted Drug Delivery , China Three Gorges University , Yichang , China
- c Medical College , China Three Gorges University , Yichang , China
| | - Jiang-Feng Wu
- a The People's Hospital , China Three Gorges University , Yichang , China
- b Institute of Organ Fibrosis and Targeted Drug Delivery , China Three Gorges University , Yichang , China
- c Medical College , China Three Gorges University , Yichang , China
- d The Yiling Hospital of Yichang , Yichang , Hubei , China
| |
Collapse
|
49
|
Chromatin control in double strand break repair. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019. [PMID: 30798938 DOI: 10.1016/bs.apcsb.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
DNA double strand breaks (DSB) are the most deleterious type of damage inflicted on DNA by various environmental factors and as consequences of normal cellular metabolism. The multistep nature of DSB repair and the need to assemble large protein complexes at repair sites necessitate multiple chromatin changes there. This review focuses on the key findings of how chromatin regulators exert temporal and spatial control on DSB repair. These mechanisms coordinate repair with cell cycle progression, lead to DSB repair pathway choice, provide accessibility of repair machinery to damaged sites and move the lesions to nuclear environments permissive for repair.
Collapse
|
50
|
Gao Z, Hu J, Wang X, Yang Q, Liang Y, Ma C, Liu D, Liu K, Hao X, Gu M, Liu X, Jiao XA, Liu X. The PA-interacting host protein nucleolin acts as an antiviral factor during highly pathogenic H5N1 avian influenza virus infection. Arch Virol 2018; 163:2775-2786. [PMID: 29974255 DOI: 10.1007/s00705-018-3926-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Polymerase acidic (PA) protein is a multifunctional regulator of influenza A virus (IAV) replication and pathogenesis. In a previous study, we reported that nucleolin (NCL) is a novel PA-interacting host protein. In this study, we further explored the role of NCL during highly pathogenic H5N1 avian influenza virus infection. We found that depletion of endogenous NCL in mammalian cells by siRNA targeting during H5N1 infection resulted in significantly increased viral polymerase activity, elevated viral mRNA, cRNA and vRNA synthesis, accelerated viral replication, and enhanced apoptosis and necrosis. Moreover, siRNA silencing of NCL significantly exacerbated the inflammatory response, resulting in increased secretion of IL-6, TNF-α, TNF-β, CCL-4, CCL-8, IFN-α, IFN-β and IFN-γ. Conversely, overexpression of NCL significantly decreased IAV replication. Collectively, these data show that NCL acts as a novel potential antiviral factor during H5N1 infection. Further studies exploring the antiviral mechanisms of NCL may accelerate the development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Qian Yang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Chunxi Ma
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Kaituo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xin-An Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|