1
|
Falsetti I, Palmini G, Iantomasi T, Brandi ML, Tonelli F. Mechanisms of Action of Phytoestrogens and Their Role in Familial Adenomatous Polyposis. Pharmaceutics 2024; 16:640. [PMID: 38794302 PMCID: PMC11125335 DOI: 10.3390/pharmaceutics16050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Familial adenomatous polyposis (FAP) is a rare disease characterized by the development of adenomatous polyps in the colon and rectum already in adolescence. If left untreated, patients develop colorectal cancer (CRC) with a 100% probability. To date, the gold standard of FAP management is surgery, which is associated with morbidity and mortality. A chemopreventive agent capable of delaying, preventing and reversing the development of CRC has been sought. Several classes of drugs have been used but to date no chemopreventive drug has been found for the management of this disease. In recent years, the importance of estrogen receptors in FAP and CRC, particularly the β subtype, has emerged. Indeed, the expression of the latter is strongly reduced in adenomatous polyps and CRC and is inversely correlated with the aggressiveness of the disease. Since phytoestrogens have a high affinity for this receptor, they have been suggested for use as chemopreventive agents in FAP and CRC. A combination of phytoestrogens and insoluble fibres has proved particularly effective. In this review, the various mechanisms of action of phytoestrogens were analyzed and the effectiveness of using phytoestrogens as an effective chemopreventive strategy was discussed.
Collapse
Affiliation(s)
- Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (T.I.)
| | - Gaia Palmini
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50129 Florence, Italy; (G.P.); (M.L.B.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (T.I.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50129 Florence, Italy; (G.P.); (M.L.B.)
| | - Francesco Tonelli
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50129 Florence, Italy; (G.P.); (M.L.B.)
| |
Collapse
|
2
|
Hisano K, Mizuuchi Y, Ohuchida K, Kawata J, Torata N, Zhang J, Katayama N, Tsutsumi C, Nakamura S, Okuda S, Otsubo Y, Tamura K, Nagayoshi K, Ikenaga N, Shindo K, Nakata K, Oda Y, Nakamura M. Microenvironmental changes in familial adenomatous polyposis during colorectal cancer carcinogenesis. Cancer Lett 2024; 589:216822. [PMID: 38521200 DOI: 10.1016/j.canlet.2024.216822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Familial adenomatous polyposis (FAP) is a heritable disease that increases the risk of colorectal cancer (CRC) development because of heterozygous mutations in APC. Little is known about the microenvironment of FAP. Here, single-cell RNA sequencing was performed on matched normal tissues, adenomas, and carcinomas from four patients with FAP. We analyzed the transcriptomes of 56,225 unsorted single cells, revealing the heterogeneity of each cell type, and compared gene expression among tissues. Then we compared the gene expression with that of sporadic CRC. Furthermore, we analyzed specimens of 26 FAP patients and 40 sporadic CRC patients by immunohistochemistry. Immunosuppressiveness of myeloid cells, fibroblasts, and regulatory T cells was upregulated even in the early stages of carcinogenesis. CD8+ T cells became exhausted only in carcinoma, although the cytotoxicity of CD8+ T cells was gradually increased according to the carcinogenic step. When compared with those in the sporadic CRC microenvironment, the composition and function of each cell type in the FAP-derived CRC microenvironment had differences. Our findings indicate that an immunosuppressive microenvironment is constructed from a precancerous stage in FAP.
Collapse
Affiliation(s)
- Kyoko Hisano
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Jun Kawata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jinghui Zhang
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Katayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoichi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sho Okuda
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiki Otsubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Tamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinuko Nagayoshi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Horiguchi H, Kadomatsu T, Yumoto S, Masuda T, Miyata K, Yamamura S, Sato M, Morinaga J, Ohtsuki S, Baba H, Moroishi T, Oike Y. Tumor cell-derived ANGPTL2 promotes β-catenin-driven intestinal tumorigenesis. Oncogene 2022; 41:4028-4041. [PMID: 35831580 DOI: 10.1038/s41388-022-02405-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Uncontrolled proliferation of intestinal epithelial cells caused by mutations in genes of the WNT/β-catenin pathway is associated with development of intestinal cancers. We previously reported that intestinal stromal cell-derived angiopoietin-like protein 2 (ANGPTL2) controls epithelial regeneration and intestinal immune responses. However, the role of tumor cell-derived ANGPTL2 in intestinal tumorigenesis remained unclear. Here, we show that tumor cell-derived ANGPTL2 promotes β-catenin-driven intestinal tumorigenesis. ANGPTL2 deficiency suppressed intestinal tumor development in an experimental mouse model of sporadic colon cancer. We also found that increased ANGPTL2 expression in colorectal cancer (CRC) cells augments β-catenin pathway signaling and promotes tumor cell proliferation. Relevant to mechanism, our findings suggest that tumor cell-derived ANGPTL2 upregulates expression of OB-cadherin, which then interacts with β-catenin, blocking destruction complex-independent proteasomal degradation of β-catenin proteins. Moreover, our observations support a model whereby ANGPTL2-induced OB-cadherin expression in CRC cells is accompanied by decreased cell surface integrin α5β1 expression. These findings overall provide novel insight into mechanisms of β-catenin-driven intestinal tumorigenesis.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Shinsei Yumoto
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Shuji Yamamura
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
4
|
Benesova L, Ptackova R, Halkova T, Semyakina A, Svaton M, Fiala O, Pesek M, Minarik M. Detection and Quantification of ctDNA for Longitudinal Monitoring of Treatment in Non-Small Cell Lung Cancer Patients Using a Universal Mutant Detection Assay by Denaturing Capillary Electrophoresis. Pathol Oncol Res 2022; 28:1610308. [PMID: 35837614 PMCID: PMC9274771 DOI: 10.3389/pore.2022.1610308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022]
Abstract
Background: Observation of anticancer therapy effect by monitoring of minimal residual disease (MRD) is becoming an important tool in management of non-small cell lung cancer (NSCLC). The approach is based on periodic detection and quantification of tumor-specific somatic DNA mutation in circulating tumor DNA (ctDNA) extracted from patient plasma. For such repetitive testing, complex liquid-biopsy techniques relying on ultra-deep NGS sequencing are impractical. There are other, cost-effective, methods for ctDNA analysis, typically based on quantitative PCR or digital PCR, which are applicable for detecting specific individual mutations in hotspots. While such methods are routinely used in NSCLC therapy prediction, however, extension to cover broader spectrum of mutations (e.g., in tumor suppressor genes) is required for universal longitudinal MRD monitoring. Methods: For a set of tissue samples from 81 NSCLC patients we have applied a denaturing capillary electrophoresis (DCE) for initial detection of somatic mutations within 8 predesigned PCR amplicons covering oncogenes and tumor suppressor genes. Mutation-negative samples were then subjected to a large panel NGS sequencing. For each patient mutation found in tissue was then traced over time in ctDNA by DCE. Results: In total we have detected a somatic mutation in tissue of 63 patients. For those we have then prospectively analyzed ctDNA from collected plasma samples over a period of up to 2 years. The dynamics of ctDNA during the initial chemotherapy therapy cycles as well as in the long-term follow-up matched the clinically observed response. Conclusion: Detection and quantification of tumor-specific mutations in ctDNA represents a viable complement to MRD monitoring during therapy of NSCLC patients. The presented approach relying on initial tissue mutation detection by DCE combined with NGS and a subsequent ctDNA mutation testing by DCE only represents a cost-effective approach for its routine implementation.
Collapse
Affiliation(s)
- Lucie Benesova
- Center for Applied Genomics of Solid Tumors, Genomac Research Institute, Prague, Czechia
| | - Renata Ptackova
- Center for Applied Genomics of Solid Tumors, Genomac Research Institute, Prague, Czechia
| | - Tereza Halkova
- Center for Applied Genomics of Solid Tumors, Genomac Research Institute, Prague, Czechia
| | - Anastasiya Semyakina
- Center for Applied Genomics of Solid Tumors, Genomac Research Institute, Prague, Czechia
| | - Martin Svaton
- Department of Pneumology and Phtiseology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | - Ondrej Fiala
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Oncology and Radiotherapeutics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | - Milos Pesek
- Department of Pneumology and Phtiseology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | - Marek Minarik
- Elphogene, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Marek Minarik,
| |
Collapse
|
5
|
Davies J, Muralidhar S, Randerson-Moor J, Harland M, O'Shea S, Diaz J, Walker C, Nsengimana J, Laye J, Mell T, Chan M, Appleton L, Birkeälv S, Adams DJ, Cook GP, Ball G, Bishop DT, Newton-Bishop JA. Ulcerated melanoma: Systems biology evidence of inflammatory imbalance towards pro-tumourigenicity. Pigment Cell Melanoma Res 2022; 35:252-267. [PMID: 34826184 DOI: 10.1111/pcmr.13023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/03/2021] [Accepted: 11/23/2021] [Indexed: 01/05/2023]
Abstract
Microscopic ulceration is an independent predictor of melanoma death. Here, we used systems biology to query the role of host and tumour-specific processes in defining the phenotype. Albumin level as a measure of systemic inflammation was predictive of fewer tumour-infiltrating lymphocytes and poorer survival in the Leeds Melanoma Cohort. Ulcerated melanomas were thicker and more mitotically active (with corresponding transcriptomic upregulated cell cycle pathways). Sequencing identified tumoural p53 and APC mutations, and TUBB2B amplification as associated with the phenotype. Ulcerated tumours had perturbed expression of cytokine genes, consistent with protumourigenic inflammation and histological and transcriptomic evidence for reduced adaptive immune cell infiltration. Pathway/network analysis of multiomic data using neural networks highlighted a role for the β-catenin pathway in the ulceration, linking genomic changes in the tumour to immunosuppression and cell proliferation. In summary, the data suggest that ulceration is in part associated with genomic changes but that host factors also predict melanoma death with evidence of reduced immune responses to the tumour.
Collapse
Affiliation(s)
- John Davies
- Leeds Institute of Data Analytics, University of Leeds, Leeds, UK
| | - Sathya Muralidhar
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | | | - Mark Harland
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Sally O'Shea
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Dermatology Department, South Infirmary-Victoria University Hospital Cork and University College Cork, Cork, Ireland
| | - Joey Diaz
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Christy Walker
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Jérémie Nsengimana
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Population Health Sciences Institute, University of Newcastle, Newcastle upon Tyne, UK
| | - Jon Laye
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Tracey Mell
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - May Chan
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Lizzie Appleton
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Sofia Birkeälv
- Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Graham P Cook
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - David T Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | | |
Collapse
|
6
|
Palavalli Parsons LH, Challa S, Gibson BA, Nandu T, Stokes MS, Huang D, Lea JS, Kraus WL. Identification of PARP-7 substrates reveals a role for MARylation in microtubule control in ovarian cancer cells. eLife 2021; 10:e60481. [PMID: 33475085 PMCID: PMC7884071 DOI: 10.7554/elife.60481] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
PARP-7 (TiPARP) is a mono(ADP-ribosyl) transferase whose protein substrates and biological activities are poorly understood. We observed that PARP7 mRNA levels are lower in ovarian cancer patient samples compared to non-cancerous tissue, but PARP-7 protein nonetheless contributes to several cancer-related biological endpoints in ovarian cancer cells (e.g. growth, migration). Global gene expression analyses in ovarian cancer cells subjected to PARP-7 depletion indicate biological roles for PARP-7 in cell-cell adhesion and gene regulation. To identify the MARylated substrates of PARP-7 in ovarian cancer cells, we developed an NAD+ analog-sensitive approach, which we coupled with mass spectrometry to identify the PARP-7 ADP-ribosylated proteome in ovarian cancer cells, including cell-cell adhesion and cytoskeletal proteins. Specifically, we found that PARP-7 MARylates α-tubulin to promote microtubule instability, which may regulate ovarian cancer cell growth and motility. In sum, we identified an extensive PARP-7 ADP-ribosylated proteome with important roles in cancer-related cellular phenotypes.
Collapse
Affiliation(s)
- Lavanya H Palavalli Parsons
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Bryan A Gibson
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - MiKayla S Stokes
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Cardiology, Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jayanthi S Lea
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
7
|
Li J, Wang R, Zhou X, Wang W, Gao S, Mao Y, Wu X, Guo L, Liu H, Wen L, Fu W, Tang F. Genomic and transcriptomic profiling of carcinogenesis in patients with familial adenomatous polyposis. Gut 2020; 69:1283-1293. [PMID: 31744909 PMCID: PMC7306982 DOI: 10.1136/gutjnl-2019-319438] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Familial adenomatous polyposis (FAP) is characterised by the development of hundreds to thousands of adenomas at different evolutionary stages in the colon and rectum that will inevitably progress to adenocarcinomas if left untreated. Here, we investigated the genetic alterations and transcriptomic transitions from precancerous adenoma to carcinoma. DESIGN Whole-exome sequencing, whole-genome sequencing and single-cell RNA sequencing were performed on matched adjacent normal tissues, multiregionally sampled adenomas at different stages and carcinomas from six patients with FAP and one patient with MUTYH-associated polyposis (n=56 exomes, n=56 genomes and n=8,757 single cells). Genomic alterations (including copy number alterations and somatic mutations), clonal architectures and transcriptome dynamics during adenocarcinoma carcinogenesis were comprehensively investigated. RESULTS Genomic evolutionary analysis showed that adjacent lesions from the same patient with FAP can originate from the same cancer-primed cell. In addition, the tricarboxylic acid cycle pathway was strongly repressed in adenomas and was then slightly alleviated in carcinomas. Cells from the 'normal' colon epithelium of patients with FAP already showed metabolic reprogramming compared with cells from the normal colon epithelium of patients with sporadic colorectal cancer. CONCLUSIONS The process described in the previously reported field cancerisation model also occurs in patients with FAP and can contribute to the formation of adjacent lesions in patients with FAP. Reprogramming of carbohydrate metabolism has already occurred at the precancerous adenoma stage. Our study provides an accurate picture of the genomic and transcriptomic landscapes during the initiation and progression of carcinogenesis, especially during the transition from adenoma to carcinoma.
Collapse
Affiliation(s)
- Jingyun Li
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China,Biomedical Pioneering Innovation Center & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Rui Wang
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China,Biomedical Pioneering Innovation Center & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xin Zhou
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Wendong Wang
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Shuai Gao
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Yunuo Mao
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Xinglong Wu
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Limei Guo
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Peking University, Beijing, China
| | - Haijing Liu
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Peking University, Beijing, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Wei Fu
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing, China .,Biomedical Pioneering Innovation Center & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
8
|
Aghabozorgi AS, Bahreyni A, Soleimani A, Bahrami A, Khazaei M, Ferns GA, Avan A, Hassanian SM. Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; current status and perspectives. Biochimie 2018; 157:64-71. [PMID: 30414835 DOI: 10.1016/j.biochi.2018.11.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common forms of solid tumors in the world with high rates of mortality and morbidity. Most cases of CRCs are initiated by inactivating mutations in a tumor suppressor gene, adenomatous polyposis coli (APC), leading to constitutive activation of the Wnt signaling pathway. This review summarizes the roles of somatic and germline mutations of the APC gene in hereditary as well as sporadic forms of CRC. We also discuss the diagnostic and prognostic value of the APC gene in the pathogenesis of CRC for a better understanding of CRC disease.
Collapse
Affiliation(s)
- Amirsaeed Sabeti Aghabozorgi
- Department of Human Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amirhossein Bahreyni
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Begam N, Jamil K, Raju GS. Promoter epigenetics of APC gene and its implication in sporadic breast cancer patients from South Indian population. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Peptidomimetic inhibitors of APC-Asef interaction block colorectal cancer migration. Nat Chem Biol 2017; 13:994-1001. [PMID: 28759015 DOI: 10.1038/nchembio.2442] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 06/20/2017] [Indexed: 01/16/2023]
Abstract
The binding of adenomatous polyposis coli (APC) to its receptor Asef relieves the negative intramolecular regulation of Asef and leads to aberrant cell migration in human colorectal cancer. Because of its crucial role in metastatic dissemination, the interaction between APC and Asef is an attractive target for anti-colorectal-cancer therapy. We rationally designed a series of peptidomimetics that act as potent inhibitors of the APC interface. Crystal structures and biochemical and cellular assays showed that the peptidomimetics in the APC pocket inhibited the migration of colorectal cells by disrupting APC-Asef interaction. By using the peptidomimetic inhibitor as a chemical probe, we found that CDC42 was the downstream GTPase involved in APC-stimulated Asef activation in colorectal cancer cells. Our work demonstrates the feasibility of exploiting APC-Asef interaction to regulate the migration of colorectal cancer cells, and provides what to our knowledge is the first class of protein-protein interaction inhibitors available for the development of cancer therapeutics targeting APC-Asef signaling.
Collapse
|
11
|
Horiguchi H, Endo M, Kawane K, Kadomatsu T, Terada K, Morinaga J, Araki K, Miyata K, Oike Y. ANGPTL2 expression in the intestinal stem cell niche controls epithelial regeneration and homeostasis. EMBO J 2017; 36:409-424. [PMID: 28043948 PMCID: PMC5694950 DOI: 10.15252/embj.201695690] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022] Open
Abstract
The intestinal epithelium continually self-renews and can rapidly regenerate after damage. Dysregulation of intestinal epithelial homeostasis leads to severe inflammatory bowel disease. Additionally, aberrant signaling by the secreted protein angiopoietin-like protein 2 (ANGPTL2) causes chronic inflammation in a variety of diseases. However, little is known about the physiologic role of ANGPTL2 in normal tissue homeostasis and during wound repair following injury. Here, we assessed ANGPTL2 function in intestinal physiology and disease in vivo Although intestinal development proceeded normally in Angptl2-deficient mice, expression levels of the intestinal stem cell (ISC) marker gene Lgr5 decreased, which was associated with decreased transcriptional activity of β-catenin in Angptl2-deficient mice. Epithelial regeneration after injury was significantly impaired in Angptl2-deficient relative to wild-type mice. ANGPTL2 was expressed and functioned within the mesenchymal compartment cells known as intestinal subepithelial myofibroblasts (ISEMFs). ANGPTL2 derived from ISEMFs maintained the intestinal stem cell niche by modulating levels of competing signaling between bone morphogenetic protein (BMP) and β-catenin. These results support the importance of ANGPTL2 in the stem cell niche in regulating stemness and epithelial wound healing in the intestine.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
- Institute of Resource Development and Analysis, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Kohki Kawane
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku Kyoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| |
Collapse
|
12
|
Yedid N, Kalma Y, Malcov M, Amit A, Kariv R, Caspi M, Rosin-Arbesfeld R, Ben-Yosef D. The effect of a germline mutation in the APC gene on β-catenin in human embryonic stem cells. BMC Cancer 2016; 16:952. [PMID: 28010732 PMCID: PMC5180406 DOI: 10.1186/s12885-016-2809-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
Background Most cases of colorectal cancer (CRC) are initiated by inactivation mutations in the APC gene, which is a negative regulator of the Wnt-β-catenin pathway. Patients with familial adenomatous polyposis (FAP) inherit a germline mutation in one APC allele, and loss of the second allele leads to the development of polyps that will turn malignant if not removed. It is not fully understood which molecular mechanisms are activated by APC loss and when the loss of the second APC allele occurs. Methods Two FAP human embryonic stem cell (hESCs) lines were derived from APC mutated embryos following pre-implantation genetic diagnosis (PGD) for FAP. These FAP-hESCs were cultured in vitro and following extended culture: 1) β-catenin expression was analyzed by Western blot analysis; 2) Wnt-β-catenin/TCF-mediated transcription luciferase assay was performed; 3) cellular localization of β-catenin was evaluated by immunoflorecence confocal microscopy; and 4) DNA sequencing of the APC gene was performed. Results We have established a novel human in-vitro model for studying malignant transformation, using hESCs that carry a germline mutation in the APC gene following PGD for FAP. Extended culturing of FAP1 hESCs led to activation of the Wnt signaling pathway, as demonstrated by enhanced β-catenin/TCF-mediated activity. Additionally, β-catenin showed a distinct perinuclear distribution in most (91 %) of the FAP1 hESCs high passage colonies. DNA sequencing of the whole gene detected several polymorphisms in FAP1 hESCs, however, no somatic mutations were discovered in the APC gene. On the other hand, no changes in β-catenin were detected in the FAP2 hESCs, demonstrating the natural diversity of the human FAP population. Conclusions Our results describe the establishment of novel hESC lines from FAP patients with a predisposition for cancer mutation. These cells can be maintained in culture for long periods of time and may serve as a platform for studying the initial molecular and cellular changes that occur during early stages of malignant transformation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2809-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nofar Yedid
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yael Kalma
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mira Malcov
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ami Amit
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Revital Kariv
- Departmant of Gastroenterology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Tel-Aviv University, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Tel-Aviv University, Tel Aviv, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel. .,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
13
|
Hetland G, Eide DM, Tangen JM, Haugen MH, Mirlashari MR, Paulsen JE. The Agaricus blazei-Based Mushroom Extract, Andosan™, Protects against Intestinal Tumorigenesis in the A/J Min/+ Mouse. PLoS One 2016; 11:e0167754. [PMID: 28002446 PMCID: PMC5176274 DOI: 10.1371/journal.pone.0167754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/18/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The novel A/J Min/+ mouse, which is a model for human Familial Adenomatous Polyposis (FAP), develops spontaneously multiple adenocarcinomas in the colon as well as in the small intestine. Agaricus blazei Murill (AbM) is an edible Basidiomycetes mushroom that has been used in traditional medicine against cancer and other diseases. The mushroom contains immunomodulating β-glucans and is shown to have antitumor effects in murine cancer models. Andosan™ is a water extract based on AbM (82%), but it also contains the medicinal Basidiomycetes mushrooms Hericeum erinaceus and Grifola frondosa. METHODS AND FINDINGS Tap water with 10% Andosan™ was provided as the only drinking water for 15 or 22 weeks to A/J Min/+ mice and A/J wild-type mice (one single-nucleotide polymorphism (SNP) difference), which then were exsanguinated and their intestines preserved in formaldehyde and the serum frozen. The intestines were examined blindly by microscopy and also stained for the tumor-associated protease, legumain. Serum cytokines (pro- and anti-inflammatory, Th1-, Th2 -and Th17 type) were measured by Luminex multiplex analysis. Andosan™ treated A/J Min/+ mice had a significantly lower number of adenocarcinomas in the intestines, as well as a 60% significantly reduced intestinal tumor load (number of tumors x size) compared to control. There was also reduced legumain expression in intestines from Andosan™ treated animals. Moreover, Andosan™ had a significant cytotoxic effect correlating with apoptosis on the human cancer colon cell line, Caco-2, in vitro. When examining serum from both A/J Min/+ and wild type mice, there was a significant increase in anti-tumor Th1 type and pro-inflammatory cytokines in the Andosan™ treated mice. CONCLUSIONS The results from this mouse model for colorectal cancer shows significant protection of orally administered Andosan™ against development of intestinal cancer. This is supported by the finding of less legumain in intestines of Andosan™ treated mice and increased systemic Th1 cytokine response. The mechanism is probably both immuno-modulatory and growth inhibition of tumor cells by induction of apoptosis.
Collapse
Affiliation(s)
- Geir Hetland
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag M. Eide
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon M. Tangen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Acute Medicine & National CBRNE Medical and Advisory Centre–Norway, Oslo University Hospital, Oslo, Norway
| | - Mads H. Haugen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital – The Norwegian Radium Hospital, Oslo, Norway
| | | | - Jan E. Paulsen
- Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, Oslo, Norway
| |
Collapse
|
14
|
Steppeler C, Sødring M, Paulsen JE. Colorectal Carcinogenesis in the A/J Min/+ Mouse Model is Inhibited by Hemin, Independently of Dietary Fat Content and Fecal Lipid Peroxidation Rate. BMC Cancer 2016; 16:832. [PMID: 27806694 PMCID: PMC5094071 DOI: 10.1186/s12885-016-2874-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/22/2016] [Indexed: 12/30/2022] Open
Abstract
Background Intake of red meat is considered a risk factor for colorectal cancer (CRC) development, and heme, the prosthetic group of myoglobin, has been suggested as a potential cause. One of the proposed molecular mechanisms of heme-induced CRC is based on an increase in the rate of lipid peroxidation catalysed by heme. Methods In the present work, the novel A/J Min/+ mouse model for Apc-driven colorectal cancer was used to investigate the effect of dietary heme (0.5 μmol/g), combined with high (40 energy %) or low (10 energy %) dietary fat levels, on intestinal carcinogenesis. At the end of the dietary intervention period (week 3–11), spontaneously developed lesions in the colon (flat aberrant crypt foci (flat ACF) and tumors) and small intestine (tumors) were scored and thiobarbituric reactive substances (TBARS), a biomarker for lipid peroxidation was analysed in feces. Results Dietary hemin significantly reduced colonic carcinogenesis. The inhibitory effect of hemin was not dependent on the dietary fat level, and no association could be established between colonic carcinogenesis and the lipid oxidation rate measured as fecal TBARS. Small intestinal carcinogenesis was not affected by hemin. Fat tended to stimulate intestinal carcinogenesis. Conclusions Contradicting the hypothesis, dietary hemin did inhibit colonic carcinogenesis in the present study. The results indicate that fecal TBARS concentration is not directly related to intestinal lesions and is therefore not a suitable biomarker for CRC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2874-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina Steppeler
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033, Oslo, Norway.
| | - Marianne Sødring
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033, Oslo, Norway
| | - Jan Erik Paulsen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033, Oslo, Norway
| |
Collapse
|
15
|
Moen B, Henjum K, Måge I, Knutsen SH, Rud I, Hetland RB, Paulsen JE. Effect of Dietary Fibers on Cecal Microbiota and Intestinal Tumorigenesis in Azoxymethane Treated A/J Min/+ Mice. PLoS One 2016; 11:e0155402. [PMID: 27196124 PMCID: PMC4873001 DOI: 10.1371/journal.pone.0155402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/28/2016] [Indexed: 12/23/2022] Open
Abstract
Foods naturally high in dietary fiber are generally considered to protect against development of colorectal cancer (CRC). However, the intrinsic effect of dietary fiber on intestinal carcinogenesis is unclear. We used azoxymethane (AOM) treated A/J Min/+ mice, which developed a significantly higher tumor load in the colon than in the small intestine, to compare the effects of dietary inulin (IN), cellulose (CE) or brewers spent grain (BSG) on intestinal tumorigenesis and cecal microbiota. Each fiber was tested at two dose levels, 5% and 15% (w/w) content of the AIN-93M diet. The microbiota was investigated by next-generation sequencing of the 16S rRNA gene (V4). We found that mice fed IN had approximately 50% lower colonic tumor load than mice fed CE or BSG (p<0.001). Surprisingly, all three types of fiber caused a dose dependent increase of colonic tumor load (p<0.001). The small intestinal tumor load was not affected by the dietary fiber interventions. Mice fed IN had a lower bacterial diversity than mice fed CE or BSG. The Bacteroidetes/Firmicutes ratio was significantly (p = 0.003) different between the three fiber diets with a higher mean value in IN fed mice compared with BSG and CE. We also found a relation between microbiota and the colonic tumor load, where many of the operational taxonomic units (OTUs) related to low tumor load were significantly enriched in mice fed IN. Among the OTUs related to low tumor load were bacteria affiliated with the Bacteroides genus. These results suggest that type of dietary fiber may play a role in the development of CRC, and that the suppressive effect of IN on colonic tumorigenesis is associated with profound changes in the cecal microbiota profile.
Collapse
Affiliation(s)
- Birgitte Moen
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Kristi Henjum
- Department of Pharmacology, Oslo University and Oslo University Hospital, Oslo, Norway
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Ingrid Måge
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Svein Halvor Knutsen
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Ida Rud
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Ragna Bogen Hetland
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Jan Erik Paulsen
- Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, Oslo Norway
| |
Collapse
|
16
|
Chen QW, Zhang XM, Zhou JN, Zhou X, Ma GJ, Zhu M, Zhang YY, Yu J, Feng JF, Chen SQ. Analysis of Small Fragment Deletions of the APC gene in Chinese Patients with Familial Adenomatous Polyposis, a Precancerous Condition. Asian Pac J Cancer Prev 2016; 16:4915-20. [PMID: 26163615 DOI: 10.7314/apjcp.2015.16.12.4915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Familial adenomatous polyposis (FAP) is an autosomal dominant inherited disease mainly caused by mutations of the adenomatous polyposis coli (APC) gene with almost complete penetrance. These colorectal polyps are precancerous lesions that will inevitable develop into colorectal cancer at the median age of 40-year old if total proctocolectomy is not performed. So identification of APC germline mutations has great implications for genetic counseling and management of FAP patients. In this study, we screened APC germline mutations in Chinese FAP patients, in order to find novel mutations and the APC gene germline mutation characteristics of Chinese FAP patients. MATERIALS AND METHODS The FAP patients were diagnosed by clinical manifestations, family histories, endoscope and biopsy. Then patients peripheral blood samples were collected, afterwards, genomic DNA was extracted. The mutation analysis of the APC gene was conducted by direct polymerase chain reaction (PCR) sequencing for micromutations and multiplex ligation-dependent probe amplification (MLPA) for large duplications and/or deletions. RESULTS We found 6 micromutations out of 14 FAP pedigrees, while there were no large duplications and/or deletions found. These germline mutations are c.5432C>T(p. Ser1811Leu), two c.3926_3930delAAAAG (p.Glu1309AspfsX4), c.3921_3924delAAAA (p.Ile1307MetfsX13), c3184_3187delCAAA(p.Gln1061AspfsX59) and c4127_4126delAT (p.Tyr1376LysfsX9), respectively, and all deletion mutations resulted in a premature stop codon. At the same time, we found c.3921_3924delAAAA and two c.3926_3930delAAAAG are located in AAAAG short tandem repeats, c3184_3187delCAAA is located in the CAAA interrupted direct repeats, and c4127_4128 del AT is located in the 5'-CCTGAACA-3' ,3'-ACAAGTCC-5 palindromes (inverted repeats) of the APC gene. Furthermore, deletion mutations are mostly located at condon 1309. CONCLUSIONS Though there were no novel mutations found as the pathogenic gene of FAP in this study, we found nucleotide sequence containing short tandem repeats and palindromes (inverted repeats), especially the 5 bp base deletion at codon 1309, are mutations in high incidence area in APC gene.
Collapse
Affiliation(s)
- Qing-Wei Chen
- Department of Medical Oncology, Jiangsu Cancer Hospital affiliated to Nanjing Medical University, Nanjing, Jiangsu, P.R. China E-mail : J Feng: ; S. Chen:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sødring M, Gunnes G, Paulsen JE. Spontaneous initiation, promotion and progression of colorectal cancer in the novel A/J Min/+ mouse. Int J Cancer 2015; 138:1936-46. [PMID: 26566853 DOI: 10.1002/ijc.29928] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
The C57BL/6J multiple intestinal neoplasia (Min/+) mouse is a widely used murine model for familial adenomatous polyposis, a hereditary form of human colorectal cancer. However, it is a questionable model partly because the vast majority of tumors arise in the small intestine, and partly because the fraction of tumors that progress to invasive carcinomas is minuscule. A/J mice are typically more susceptible to carcinogen-induced colorectal cancer than C57BL/6J mice. To investigate whether the novel Min/+ mouse on the A/J genetic background could be a better model for colorectal cancer, we examined the spontaneous intestinal tumorigenesis in 81 A/J Min/+ mice ranging in age from 4 to 60 weeks. The A/J Min/+ mouse exhibited a dramatic increase in number of colonic lesions when compared to what has been reported for the conventional Min/+ mouse; however, an increase in small intestinal lesions did not occur. In addition, this novel mouse model displayed a continual development of colonic lesions highlighted by the transition from early lesions (flat ACF) to tumors over time. In mice older than 40 weeks, 13 colonic (95% CI: 8.7-16.3) and 21 small intestinal (95% CI: 18.6-24.3) tumors were recorded. Notably, a considerable proportion of those lesions progressed to carcinomas in both the colon (21%) and small intestine (51%). These findings more closely reflect aspects of human colorectal carcinogenesis. In conclusion, the novel A/J Min/+ mouse may be a relevant model for initiation, promotion and progression of colorectal cancer.
Collapse
Affiliation(s)
- Marianne Sødring
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Gjermund Gunnes
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Jan Erik Paulsen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
18
|
TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis. Oncoscience 2015; 2:555-66. [PMID: 26097888 PMCID: PMC4468341 DOI: 10.18632/oncoscience.166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/17/2015] [Indexed: 02/06/2023] Open
Abstract
Truncating mutations in the tumor suppressor gene adenomatous polyposis coli (APC) are the initiating step in the vast majority of sporadic colorectal cancers, and they underlie familial adenomatous polyposis (FAP) syndromes. Modeling of APC- driven tumor formation in the mouse has contributed substantially to our mechanistic understanding of the associated disease, but additional models are needed to explore therapeutic opportunities and overcome current limitations of mouse models. We report on a novel and penetrant genetic cancer model in Xenopus tropicalis, an aquatic tetrapod vertebrate with external development, diploid genome and short life cycle. Tadpoles and froglets derived from embryos injected with TAL effector nucleases targeting the apc gene rapidly developed intestinal hyperplasia and other neoplasms observed in FAP patients, including desmoid tumors and medulloblastomas. Bi-allelic apc mutations causing frame shifts were detected in the tumors, which displayed activation of the Wnt/β-catenin pathway and showed increased cellular proliferation. We further demonstrate that simultaneous double bi-allelic mutation of apc and a non-relevant gene is possible in the neoplasias, opening the door for identification and characterization of effector or modifier genes in tumors expressing truncated apc. Our results demonstrate the power of modeling human cancer in Xenopus tropicalis using mosaic TALEN-mediated bi-allelic gene disruption.
Collapse
|
19
|
Effects of hemin and nitrite on intestinal tumorigenesis in the A/J Min/+ mouse model. PLoS One 2015; 10:e0122880. [PMID: 25836260 PMCID: PMC4383626 DOI: 10.1371/journal.pone.0122880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/24/2015] [Indexed: 12/20/2022] Open
Abstract
Red and processed meats are considered risk factors for colorectal cancer (CRC); however, the underlying mechanisms are still unclear. One cause for the potential link between CRC and meat is the heme iron in red meat. Two pathways by which heme and CRC promotion may be linked have been suggested: fat peroxidation and N-nitrosation. In the present work we have used the novel A/J Min/+ mouse model to test the effects of dietary hemin (a model of red meat), and hemin in combination with nitrite (a model of processed meat) on intestinal tumorigenesis. Mice were fed a low Ca2+ and vitamin D semi-synthetic diet with added hemin and/or nitrite for 8 weeks post weaning, before termination followed by excision and examination of the intestinal tract. Our results indicate that dietary hemin decreased the number of colonic lesions in the A/J Min/+ mouse. However, our results also showed that the opposite occurred in the small intestine, where dietary hemin appeared to stimulate tumor growth. Furthermore, we find that nitrite, which did not have an effect in the colon, appeared to have a suppressive effect on tumor growth in the small intestine.
Collapse
|
20
|
Oostindjer M, Alexander J, Amdam GV, Andersen G, Bryan NS, Chen D, Corpet DE, De Smet S, Dragsted LO, Haug A, Karlsson AH, Kleter G, de Kok TM, Kulseng B, Milkowski AL, Martin RJ, Pajari AM, Paulsen JE, Pickova J, Rudi K, Sødring M, Weed DL, Egelandsdal B. The role of red and processed meat in colorectal cancer development: a perspective. Meat Sci 2014; 97:583-96. [DOI: 10.1016/j.meatsci.2014.02.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 02/07/2023]
|
21
|
Ras transformation uncouples the kinesin-coordinated cellular nutrient response. Proc Natl Acad Sci U S A 2014; 111:10568-73. [PMID: 25002494 DOI: 10.1073/pnas.1411016111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The kinesin family members (KIFs) KIF2A and KIF2C depolymerize microtubules, unlike the majority of other kinesins, which transport cargo along microtubules. KIF2A regulates the localization of lysosomes in the cytoplasm, which assists in activation of the mechanistic target of rapamycin complex 1 (mTORC1) on the lysosomal surface. We find that the closely related kinesin KIF2C also influences lysosomal organization in immortalized human bronchial epithelial cells (HBECs). Expression of KIF2C and, to a lesser extent, KIF2A in untransformed and mutant K-Ras-transformed cells is regulated by ERK1/2. Prolonged inhibition of ERK1/2 activation with PD0325901 mimics nutrient deprivation by disrupting lysosome organization and decreasing mTORC1 activity in HBEC, suggesting a long-term mechanism for optimization of mTORC1 activity by ERK1/2. We tested the hypothesis that up-regulation of KIF2C and KIF2A by ERK1/2 caused aberrant lysosomal positioning and mTORC1 activity in a mutant K-Ras-dependent cancer and cancer model. In Ras-transformed cells, however, mTORC1 activity and lysosome organization appear independent of ERK1/2 and these kinesins although ERK1/2 activity and the kinesins are required for Ras-dependent proliferation and migration. We conclude that mutant K-Ras repurposes these signaling and regulatory proteins to support the transformed phenotype.
Collapse
|
22
|
Abstract
Metastasis is the leading cause of cancer-related deaths, but it is unclear how cancer cells escape their primary sites in epithelia and disseminate to other sites in the body. One emerging possibility is that transformed epithelial cells could invade the underlying tissue by a process called cell extrusion, which epithelia use to remove cells without disrupting their barrier function. Typically, during normal cell turnover, live cells extrude apically from the epithelium into the lumen and later die by anoikis; however, several oncogenic mutations shift cell extrusion basally, towards the tissue that the epithelium encases. Tumour cells with high levels of survival and motility signals could use basal extrusion to escape from the tissue and migrate to other sites within the body.
Collapse
Affiliation(s)
- Gloria M Slattum
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, USA
| | - Jody Rosenblatt
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, USA
| |
Collapse
|
23
|
van Heumen BWH, Roelofs HMJ, te Morsche RHM, Nagengast FM, Peters WHM. Duodenal mucosal risk markers in patients with familial adenomatous polyposis: effects of celecoxib/ursodeoxycholic acid co-treatment and comparison with patient controls. Orphanet J Rare Dis 2013; 8:181. [PMID: 24245549 PMCID: PMC4225600 DOI: 10.1186/1750-1172-8-181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/15/2013] [Indexed: 12/23/2022] Open
Abstract
Background Familial adenomatous polyposis (FAP) is a disease characterized by the development of hundreds to thousands of adenomatous polyps in the colorectum early in life. Virtually all patients with FAP will develop colorectal cancer before the age of 40 to 50 years, unless prophylactic colectomy is performed, which significantly improves their prognosis. The mortality pattern has changed and duodenal cancer now is one of the main cancer-related causes of death in these patients. Practically all patients with FAP develop premalignant duodenal adenomas, which may develop to duodenal cancer in approximately 3-7% of patients. Duodenal cancer in patients with FAP has a poor prognosis. The clinical challenge is to identify patients at high-risk for duodenal carcinoma. Chemoprevention would be desirable to avoid duodenectomy. The main goal of this study is to identify risk markers in normal duodenal mucosa of patients with FAP, that could help identify patients at increased risk for malignant transformation. Methods Messenger RNA (mRNA) levels of glutathione S-transferase A1 (GSTA1), glutathione S-transferase P1 (GSTP1), KIAA1199, E-cadherin, peroxisome proliferative activated receptor δ (PPARδ), caspase-3, cyclin D1, β-catenin, and cyclooxygenase-2 (COX-2) were measured in duodenal mucosa, using the QuantiGene 2.0 Plex assay. Levels in normal appearing mucosa of patients with FAP (n = 37) were compared with levels in non-FAP patient controls (n = 16). In addition, levels before and after treatment with either celecoxib & ursodeoxycholic acid (UDCA, n = 14) or celecoxib & placebo (n = 13) were evaluated in patients with FAP. Results mRNA levels of glutathione S-transferase A1 (28.16% vs. 38.24%, p = 0.008) and caspase-3 (3.30% vs. 5.31%, p = 0.001) were significantly lower in patients with FAP vs. non-FAP patient controls, respectively. COX-2 mRNA levels in normal duodenal mucosa of patients with FAP were found to be unexpectedly low. None of the potential risk markers was influenced by celecoxib or celecoxib & UDCA. Conclusions Protection against toxins and carcinogens (GSTA1) and apoptosis (caspase-3) is low in patients with FAP, which could contribute to increased susceptibility for malignant transformation of duodenal mucosa. Trial registration http://ClinicalTrials.gov number NCT00808743
Collapse
Affiliation(s)
- Bjorn W H van Heumen
- Department of Gastroenterology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells. Oncogene 2013; 33:5457-66. [PMID: 24240690 PMCID: PMC4025984 DOI: 10.1038/onc.2013.486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 12/12/2022]
Abstract
We show that expression of the microtubule depolymerizing kinesin KIF2C is induced by transformation of immortalized human bronchial epithelial cells by expression of K-RasG12V and knockdown of p53. Further investigation demonstrates that this is due to the K-Ras/ERK1/2 MAPK pathway, as loss of p53 had little effect on KIF2C expression. In addition to KIF2C, we also found that the related kinesin KIF2A is modestly upregulated in this model system; both proteins are expressed more highly in many lung cancer cell lines compared to normal tissue. As a consequence of their depolymerizing activity, these kinesins increase dynamic instability of microtubules. Depletion of either of these kinesins impairs the ability of cells transformed with mutant K-Ras to migrate and invade matrigel. However, depletion of these kinesins does not reverse the epithelial-mesenchymal transition caused by mutant K-Ras. Our studies indicate that increased expression of microtubule destabilizing factors can occur during oncogenesis to support enhanced migration and invasion of tumor cells.
Collapse
|
25
|
Suganthi M, Sangeetha G, Gayathri G, Ravi Sankar B. Biphasic dose-dependent effect of lithium chloride on survival of human hormone-dependent breast cancer cells (MCF-7). Biol Trace Elem Res 2012; 150:477-86. [PMID: 23054864 DOI: 10.1007/s12011-012-9510-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/19/2012] [Indexed: 12/31/2022]
Abstract
Lithium, the first element of Group I in the periodic system, is used to treat bipolar psychiatric disorders. Lithium chloride (LiCl) is a selective inhibitor of glycogen synthase kinase-3β (GSK-3β), a serine/threonine kinase that regulates many cellular processes, in addition to its role in the regulation of glycogen synthase. GSK-3β is emerged as a promising drug target for various neurological diseases, type-2 diabetes, cancer, and inflammation. Several works have demonstrated that lithium can either inhibit or stimulate growth of normal and cancer cells. Hence, the present study is focused to analyze the underlying mechanisms that dictate the biphasic oncogenic properties of LiCl. In the current study, we have investigated the dose-dependent effects of LiCl on human breast cancer cells (MCF-7) by assessing the consequences on cytotoxicity and protein expressions of signaling molecules crucial for the maintenance of cell survival. The results showed breast cancer cells respond in a diverse manner to LiCl, i.e., at lower concentrations (1, 5, and 10 mM), LiCl induces cell survival by inhibiting apoptosis through regulation of GSK-3β, caspase-2, Bax, and cleaved caspase-7 and by activating anti-apoptotic proteins (Akt, β-catenin, Bcl-2, and cyclin D1). In contrast, at high concentrations (50 and 100 mM), it induces apoptosis by reversing these effects. Moreover, LiCl also alters the sodium and potassium levels thereby altering the membrane potential of MCF-7 cells. Thus it is inferred that LiCl exerts a dose-dependent biphasic effect on breast cancer cells (MCF-7) by altering the apoptotic/anti-apoptotic balance.
Collapse
Affiliation(s)
- Muralidharan Suganthi
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | | | | | | |
Collapse
|
26
|
Carlsson E, Krohn K, Ovaska K, Lindberg P, Häyry V, Maliniemi P, Lintulahti A, Korja M, Kivisaari R, Hussein S, Sarna S, Niiranen K, Hautaniemi S, Haapasalo H, Ranki A. Neuron navigator 3 alterations in nervous system tumors associate with tumor malignancy grade and prognosis. Genes Chromosomes Cancer 2012; 52:191-201. [DOI: 10.1002/gcc.22019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/18/2012] [Indexed: 01/03/2023] Open
Affiliation(s)
- Emilia Carlsson
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, HUS FI‐00029, Finland
| | - Kai Krohn
- Department of Pathology, Centre for Laboratory Medicine, Tampere FI‐33521, Finland
- CliniXion Oy, Tampere FI‐33520, Finland
| | - Kristian Ovaska
- Computational Systems Biology Laboratory, Institute of Biomedicine and Genome‐Scale Biology Research Program, University of Helsinki, Finland
| | | | - Valtteri Häyry
- Department of Biochemistry and Developmental Biology, Institute of Biomedicine, University of Helsinki, Helsinki FI‐00014, Finland
| | - Pilvi Maliniemi
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, HUS FI‐00029, Finland
| | - Anu Lintulahti
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, HUS FI‐00029, Finland
| | - Miikka Korja
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki FI‐00029, Finland
- Department of Medical Biochemistry and Genetics, University of Turku, Turku FI‐20520, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Central Hospital, Helsinki FI‐00029, Finland
| | - Samer Hussein
- Department of Biochemistry and Developmental Biology, Institute of Biomedicine, University of Helsinki, Helsinki FI‐00014, Finland
| | - Seppo Sarna
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki FI‐00014, Finland
| | - Kirsi Niiranen
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, HUS FI‐00029, Finland
| | - Sampsa Hautaniemi
- Computational Systems Biology Laboratory, Institute of Biomedicine and Genome‐Scale Biology Research Program, University of Helsinki, Finland
| | - Hannu Haapasalo
- Department of Pathology, Centre for Laboratory Medicine, Tampere FI‐33521, Finland
| | - Annamari Ranki
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, HUS FI‐00029, Finland
| |
Collapse
|
27
|
De Graeve FM, Van de Bor V, Ghiglione C, Cerezo D, Jouandin P, Ueda R, Shashidhara LS, Noselli S. Drosophila apc regulates delamination of invasive epithelial clusters. Dev Biol 2012; 368:76-85. [PMID: 22627290 DOI: 10.1016/j.ydbio.2012.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/09/2012] [Accepted: 05/14/2012] [Indexed: 11/17/2022]
Abstract
Border Cells in the Drosophila ovaries are a useful genetic model for understanding the molecular events underlying epithelial cell motility. During stage 9 of egg chamber development they detach from neighboring stretched cells and migrate between the nurse cells to reach the oocyte. RNAi screening allowed us to identify the dapc1 gene as being critical in this process. Clonal and live analysis showed a requirement of dapc1 in both outer border cells and contacting stretched cells for delamination. This mutant phenotype was rescued by dapc1 or dapc2 expression. Loss of dapc1 function was associated with an abnormal lasting accumulation of β-catenin/Armadillo and E-cadherin at the boundary between migrating border and stretched cells. Moreover, β-catenin/armadillo or E-cadherin downregulation rescued the dapc1 loss of function phenotype. Altogether these results indicate that Drosophila Apc1 is required for dynamic remodeling of β-catenin/Armadillo and E-cadherin adhesive complexes between outer border cells and stretched cells regulating proper delamination and invasion of migrating epithelial clusters.
Collapse
Affiliation(s)
- F M De Graeve
- Institut de Biologie Valrose, Université de Nice Sophia Antipolis, UMR CNRS 7277, UMR Inserm 1091, 28 Avenue Valrose, 06108 Nice Cedex 02, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Regulation of cell migration by dynamic microtubules. Semin Cell Dev Biol 2011; 22:968-74. [PMID: 22001384 DOI: 10.1016/j.semcdb.2011.09.017] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 09/29/2011] [Indexed: 11/22/2022]
Abstract
Microtubules define the architecture and internal organization of cells by positioning organelles and activities, as well as by supporting cell shape and mechanics. One of the major functions of microtubules is the control of polarized cell motility. In order to support the asymmetry of polarized cells, microtubules have to be organized asymmetrically themselves. Asymmetry in microtubule distribution and stability is regulated by multiple molecular factors, most of which are microtubule-associated proteins that locally control microtubule nucleation and dynamics. At the same time, the dynamic state of microtubules is key to the regulatory mechanisms by which microtubules regulate cell polarity, modulate cell adhesion and control force-production by the actin cytoskeleton. Here, we propose that even small alterations in microtubule dynamics can influence cell migration via several different microtubule-dependent pathways. We discuss regulatory factors, potential feedback mechanisms due to functional microtubule-actin crosstalk and implications for cancer cell motility.
Collapse
|
29
|
Miclea RL, van der Horst G, Robanus-Maandag EC, Löwik CWGM, Oostdijk W, Wit JM, Karperien M. Apc bridges Wnt/β-catenin and BMP signaling during osteoblast differentiation of KS483 cells. Exp Cell Res 2011; 317:1411-21. [PMID: 21402068 DOI: 10.1016/j.yexcr.2011.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/27/2011] [Accepted: 03/07/2011] [Indexed: 12/23/2022]
Abstract
The canonical Wnt signaling pathway influences the differentiation of mesenchymal cell lineages in a quantitative and qualitative fashion depending on the dose of β-catenin signaling. Adenomatous polyposis coli (Apc) is the critical intracellular regulator of β-catenin turnover. To better understand the molecular mechanisms underlying the role of Apc in regulating the differentiation capacity of skeletal progenitor cells, we have knocked down Apc in the murine mesenchymal stem cell-like KS483 cells by stable expression of Apc-specific small interfering RNA. In routine culture, KSFrt-Apc(si) cells displayed a mesenchymal-like spindle shape morphology, exhibited markedly decreased proliferation and increased apoptosis. Apc knockdown resulted in upregulation of the Wnt/β-catenin and the BMP/Smad signaling pathways, but osteogenic differentiation was completely inhibited. This effect could be rescued by adding high concentrations of BMP-7 to the differentiation medium. Furthermore, KSFrt-Apc(si) cells showed no potential to differentiate into chondrocytes or adipocytes. These results demonstrate that Apc is essential for the proliferation, survival and differentiation of KS483 cells. Apc knockdown blocks the osteogenic differentiation of skeletal progenitor cells, a process that can be overruled by high BMP signaling.
Collapse
Affiliation(s)
- Razvan L Miclea
- Department of Pediatrics, Leiden University Medical Centre, Leiden, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
30
|
Faro A, Boj SF, Clevers H. Fishing for intestinal cancer models: unraveling gastrointestinal homeostasis and tumorigenesis in zebrafish. Zebrafish 2010; 6:361-76. [PMID: 19929219 DOI: 10.1089/zeb.2009.0617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zebrafish has proven to be a highly versatile model for comprehensive studies of gene function in development. Given that the molecular pathways involved in epithelial carcinogenesis appear to be conserved across vertebrates, zebrafish is now considered as a valid model to study tumor biology. Development and homeostasis in multicellular organisms are dependent on a complex interplay between cell proliferation, migration, differentiation, and cell death. The Wnt signaling pathway is a major signaling pathway during embryonic development and is the key regulator of self-renewal homeostasis in several adult tissues. A large body of knowledge on adult stem-cell biology has arisen from the study of the intestinal epithelium over the past 20 years. The Wnt pathway has appeared as its principal regulator of homeostatic self-renewal. Moreover, most cancers of the intestine are caused by activating mutations in the Wnt pathway. Recently, zebrafish models have been developed to study Wnt pathway-induced cancer. An appealing avenue for cancer research in zebrafish is large-scale screens to identify chemotherapeutic and chemopreventive agents in conjunction with the in vivo imaging approaches that zebrafish affords.
Collapse
Affiliation(s)
- Ana Faro
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | | | | |
Collapse
|
31
|
Censi F, Falbo V, Floridia G, Salvatore M, Tosto F, De Rosa M, Resta N, Izzo P, Guanti G, Taruscio D. The Italian external quality control program for familial adenomatous polyposis of the colon: five years of experience. Genet Test Mol Biomarkers 2010; 14:175-81. [PMID: 20136519 DOI: 10.1089/gtmb.2009.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Familial adenomatous polyposis is a rare autosomal dominant inherited disease (incidence, 1/8000). More than 90% of families affected by familial adenomatous polyposis have a mutation in the tumor suppressor gene adenomatous polyposis coli (APC). Mutations in this gene are characterized by 100% penetrance, although there is a variation in phenotypic expression of the disease. According to a 2004 survey of the Italian Human Genetic Society, about 264 APC gene molecular genetic tests were performed by Italian laboratories per year. The Italian External Quality Assessment (IEQA), financially supported by the Ministry of Health and coordinated by the Istituto Superiore di Sanità, was started in 2000 to improve the quality of molecular genetic tests in Italy. In the frame of the IEQA, about 50% of public laboratories performing APC gene tests have been monitored. The number of responding public laboratories during the 5 years was 6, 7, 7, 7, and 5 from 2001 to 2006, respectively; on average, 96.3% of samples completely analyzed were correctly genotyped. Methods used by laboratories to detect mutation were direct sequencing, single-strand conformation polymorphism, protein truncation test, and denaturing high-performance liquid chromatography. Written reports were not homogeneous among laboratories, although a new form of written report was proposed to laboratories in 2004. It will be interesting to monitor the effects of the reporting model and the output of this educational action in the future.
Collapse
Affiliation(s)
- Federica Censi
- National Centre for Rare Diseases-Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Winkel A, Stricker S, Tylzanowski P, Seiffart V, Mundlos S, Gross G, Hoffmann A. Wnt-ligand-dependent interaction of TAK1 (TGF-β-activated kinase-1) with the receptor tyrosine kinase Ror2 modulates canonical Wnt-signalling. Cell Signal 2008; 20:2134-44. [DOI: 10.1016/j.cellsig.2008.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
|
33
|
Shinmura K, Suzuki M, Yamada H, Tao H, Goto M, Kamo T, Nagura K, Kageyama S, Kato M, Ogawa S, Maekawa M, Takamochi K, Suzuki K, Nakamura T, Sugimura H. Characterization of adenocarcinoma of the lung in a familial adenomatous polyposis patient. Pathol Int 2008; 58:706-712. [PMID: 18844936 DOI: 10.1111/j.1440-1827.2008.02297.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidence of several extracolonic tumors, such as duodenal carcinoma, is higher in familial adenomatous polyposis (FAP) patients than in the general population, but there is little information about lung carcinoma in FAP. A 43-year-old woman presented with a lung tumor 17 years after total colectomy for FAP. Pathohistological analysis of the lung tumor demonstrated mixed adenocarcinoma consisting of a papillary adenocarcinoma component and a bronchioloalveolar carcinoma component. Sequencing analysis indicated a germline APC mutation from TCA to TGA (stop) at codon 1110, but no pathogenic germline MYH mutations. The other APC allele in the lung carcinoma was not inactivated by somatic mutations, promoter methylation, or chromosomal deletion. No somatic mutations in any of the coding regions of the p53 gene or in the mutation hot spot regions of the K-ras or EGFR genes were detected in the carcinoma. Amplification, however, of three chromosome regions, 5p, 8q, and 12q14-12q21, was identified in the carcinoma on genome-wide high-resolution single-nucleotide polymorphism (SNP) microarray. The present results suggest that the chromosomal copy number alterations detected on SNP microarray were involved in the carcinogenesis of the adenocarcinoma of the lung in the present FAP patient.
Collapse
Affiliation(s)
- Kazuya Shinmura
- First Department of Pathology, Hamamastsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pedace L, Majore S, Megiorni F, Binni F, De Bernardo C, Antigoni I, Preziosi N, Mazzilli MC, Grammatico P. Identification of a novel duplication in the APC gene using multiple ligation probe amplification in a patient with familial adenomatous polyposis. ACTA ACUST UNITED AC 2008; 182:130-5. [PMID: 18406876 DOI: 10.1016/j.cancergencyto.2008.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/11/2008] [Accepted: 01/24/2008] [Indexed: 12/14/2022]
Abstract
Germline mutations in the adenomatous polyposis coli (APC) gene cause familial adenomatous polyposis (FAP), an autosomal dominant disease characterized by hundreds to thousands of adenomatous polyps in the colon and rectum, with progression to colorectal cancer. The majority of APC mutations are nucleotide substitutions and frameshift mutations that result in truncated proteins. Recently, large genomic alterations of the APC gene have been reported in FAP. DNA from 15 FAP patients, in whom no APC germline mutations were detected with denaturing high performance liquid chromatography, was analyzed with multiplex ligation-dependent probe amplification (MLPA) to evaluate gross genomic alterations in the APC gene. In one case, MLPA identified a novel duplication of exons 2-6 in one copy of the APC gene. Reverse transcriptase-polymerase chain reaction revealed that the mutant allele contained an in-frame multiexon duplication including 18 nucleotides located in exon 2, upstream of the ATG initiation codon. The presence of a premature stop codon in the duplicated sequence leads to the synthesis of a truncated APC polypeptide. These findings highlight the utility of evaluating infrequent APC mutation events in FAP patients using MLPA.
Collapse
Affiliation(s)
- Lucia Pedace
- Medical Genetics, Experimental Medicine Department, University of Rome La Sapienza, S. Camillo-Forlanini Hospital, Circ. ne Gianicolense n. 87, 00152 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Intestinal stem cells are adult, tissue-based stem cells located at the base of the intestinal crypt and are capable of regenerating all intestinal cell types. The progeny of mutated stem cells can expand to fill an entire crypt as a consequence of genetic drift, selective advantage or hitchhiking-eventually forming a clonal crypt population by a process called "niche succession". Cancer is believed to be a disease of stem cells. The digestive tract has a very high cancer prevalence partly due to rapid epithelial cell turnover and exposure to dietary toxins. Work on the hereditary cancer syndromes, including familial adenomatous polyposis (FAP), has led to significant advances, including the adenoma-carcinoma sequence. The initial mutation involved in this stepwise progression is in the "gatekeeper" tumour suppressor gene adenomatous polyposis coli (APC). In FAP somatic, second hits in this gene are non-random events, selected for by the position of the germline mutation. The early growth of adenomas is contentious, with two main theories, the "top-down" and "bottom-up" hypotheses, attempting to explain the spread of dysplastic tissue in the bowel. Initial X chromosome inactivation studies suggested that colorectal tumours were monoclonal; however, work on a rare XO/XY human patient with FAP and chimeric Min mice showed that approximately 76% of adenomas were polyclonal. A reduction in tumour multiplicity in the chimeric mouse model has been achieved by the introduction of a homozygous tumour resistance allele. This model has been used to suggest that short-range interaction between adjacent initiated crypts, not random polyp collision, is responsible for tumour polyclonality.
Collapse
Affiliation(s)
- S J Leedham
- Histopathology Department, Cancer Research UK, London, UK.
| | | |
Collapse
|
36
|
Ding S, McEntee MF, Whelan J, Zemel M. Adiposity-related protection of intestinal tumorigenesis: interaction with dietary calcium. Nutr Cancer 2007; 58:153-61. [PMID: 17640161 DOI: 10.1080/01635580701328248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although high-calcium diets have been reported to reduce the risk of colorectal cancer, our preliminary data with the adenomatous polyposis coli (Apc) Min mutation (Min/+;Apc(Min/+)) mouse shows a paradoxical increase in intestinal tumor loads (> 65%) with high calcium diets. Since we previously demonstrated that increasing dietary calcium reduces adiposity, and Apc(Min/+) mice on high calcium diets exhibited profound loss of adipose tissue, we hypothesized that loss of an adipose tissue-derived tumor suppressor factor(s) resulted in increased tumor susceptibility in animals on the high calcium diet. Accordingly, tumor prone Apc(Min/+) mice were crossed with obesity prone lethal yellow agouti (A(y)/a) mice to generate obese A(y)/Apc(Min/+) mice. Low (0.2%), normal (0.5%), and high (1.2%) calcium diets were fed to both A(y)/Apc(Min/+) mice and Apc(Min/+) mice from 35-40 days until 90 days of age (n=21/strain, n=7/diet group). The high calcium diet reduced weight gain in both strains (P < 0.01) and reduced fat pad mass by 46-57% in A(y)/Apc(Min/+)(P < 0.004) and by 65-82% in Apc(Min/+)(P < 0.03).Apc(Min/+) mice on the high calcium diet exhibited an increase in tumor number (76 vs. 29, P=0.009), but this effect was not seen in the A(y)/Apc(Min/+) mice. beta-Catenin and cyclin D1 gene expression were significantly induced with high calcium diet in intestinal tumor tissue of Apc(Min/+) mice but not in A(y)/Apc(Min/+) mice. We conclude that the differential effect of dietary calcium on intestinal tumorigenesis in lean vs. obese Apc(Min/+) may result from the loss of adipose-derived protective factor(s) due to the substantial loss of body fat in Apc(Min/+) mice fed a high calcium dairy diet, increasing beta-catenin and cyclin D1 in tumors.
Collapse
Affiliation(s)
- S Ding
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996-1920, USA
| | | | | | | |
Collapse
|
37
|
Wijn MA, Keller JJ, Giardiello FM, Brand HS. Oral and maxillofacial manifestations of familial adenomatous polyposis. Oral Dis 2007; 13:360-5. [PMID: 17577321 DOI: 10.1111/j.1601-0825.2006.01293.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Patients with familial adenomatous polyposis (FAP) develop multiple premalignant colorectal adenomas. Untreated, one or more of these polyps will progress to colorectal carcinoma in middle-aged adults. Extra-intestinal manifestations of FAP are frequently observed and this combination has been called Gardner's syndrome. Oral and maxillofacial symptoms of FAP include an increased risk of jaw osteomas, odontomas and supernumerary or unerupted teeth. Early diagnosis of FAP is crucial and may be life saving. As oral signs usually precede gastrointestinal symptoms, the dentist may play an important role in the diagnosis of FAP.
Collapse
Affiliation(s)
- M A Wijn
- Departments of Oral-Maxillofacial Surgery and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
38
|
Senda T, Iizuka-Kogo A, Onouchi T, Shimomura A. Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Med Mol Morphol 2007; 40:68-81. [PMID: 17572842 DOI: 10.1007/s00795-006-0352-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 12/19/2006] [Indexed: 01/17/2023]
Abstract
The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis and in most sporadic colorectal tumors. During both embryonic and postnatal periods, APC is widely expressed in a variety of tissues, including the brain and gastrointestinal tract. The APC gene product (APC) is a large multidomain protein consisting of 2843 amino acids. APC downregulates the Wnt signaling pathway through its binding to beta-catenin and Axin. Most mutated APC proteins in colorectal tumors lack the beta-catenin-binding regions and fail to inhibit Wnt signaling, leading to the overproliferation of tumor cells. Several mouse models (APC580D, APCDelta716, APC1309, APCMin, APC1638T) have been established to investigate carcinogenesis caused by APC mutations. APC also binds to APC-stimulated guanine nucleotide exchange factor, the kinesin superfamily-associated protein 3, IQGAP1, microtubules, EB1, and discs large (DLG). APC has both nuclear localization signals and nuclear export signals in its molecule, suggesting its occasional nuclear localization and export of beta-catenin from the nucleus. APC is highly expressed in the intestinal and colorectal epithelia and may be involved in homeostasis of the enterocyte renewal phenomena, in which proliferation, migration, differentiation, and apoptosis are highly regulated both temporally and spatially. Through the many binding proteins mentioned, APC can exert multiple functions involved in epithelial homeostasis.
Collapse
Affiliation(s)
- Takao Senda
- Department of Anatomy I, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan.
| | | | | | | |
Collapse
|
39
|
Jilong Y, Jian W, Xiaoyan Z, Xiaoqiu L, Xiongzeng Z. Analysis of APC/beta-catenin genes mutations and Wnt signalling pathway in desmoid-type fibromatosis. Pathology 2007; 39:319-25. [PMID: 17558858 DOI: 10.1080/00313020701329823] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The abnormalities of the Wnt signalling pathway in desmoid-type fibromatosis were analysed, with the purpose of exploring the mechanism of tumorigenesis and progression. METHODS The clinical and histopathological features of 96 cases were analysed. Beta-catenin, cyclin-D1, c-myc, and Ki-67 proteins were detected in 69 cases using formalin-fixed, paraffin-embedded tissues. Using the same materials, apoptosis of the tumour cells was investigated by terminal deoxynucleotidyl transferase mediated dUTP nick end-labelling (TUNEL) testing. Polymerase chain reaction (PCR), denaturing high performance liquid chromatography (DHPLC) assay, and sequencing were performed to detect abnormalities of the adenomatous polyposis coli (APC) and beta-catenin genes. RESULTS APC gene mutations were found in 18 cases (26.1%, 18/69). Somatic mutations of codon 41 in exon 3 of beta-catenin were detected in 13 cases (18.8%, 13/69). No correlation of beta-catenin abnormal expression with the mutations of APC gene or beta-catenin gene was identified (p>0.05). The cases with abnormal beta-catenin expression showed a higher level of c-myc protein expression (69.7%, 23/33) than those without (22.2%, 8/36, p = 0.001). The apoptotic indices (AIs) were significantly lower in cyclin-D1 positive cases and c-myc positive cases (p = 0.015, p = 0.007). CONCLUSIONS There are somatic mutations of the APC and beta-catenin gene in desmoid-type fibromatosis, and there are abnormalities in the Wnt signalling pathway. These abnormalities may result in aberrant cell proliferation and apoptosis, which are likely to be important factors in tumorigenesis and progression.
Collapse
Affiliation(s)
- Yang Jilong
- Department of Bone and Soft Tissue Tumor, Cancer Hospital, Tianjin Medical University. Tianjin, China.
| | | | | | | | | |
Collapse
|
40
|
Gebhardt R, Baldysiak-Figiel A, Krügel V, Ueberham E, Gaunitz F. Hepatocellular expression of glutamine synthetase: an indicator of morphogen actions as master regulators of zonation in adult liver. ACTA ACUST UNITED AC 2007; 41:201-66. [PMID: 17368308 DOI: 10.1016/j.proghi.2006.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamine synthetase (GS) has long been known to be expressed exclusively in pericentral hepatocytes most proximal to the central veins of liver lobuli. This enzyme as well as its peculiar distribution complementary to the periportal compartment for ureogenesis plays an important role in nitrogen metabolism, particularly in homeostasis of blood levels of ammonium ions and glutamine. Despite this fact and intensive studies in vivo and in vitro, many aspects of the regulation of its activity on the protein and on the genetic level remained enigmatic. Recent experimental advances using transgenic mice and new analytic tools have revealed the fundamental role of morphogens such as wingless-type MMTV integration site family member signals (Wnt), beta-catenin, and adenomatous polyposis coli in the regulation of this particular enzyme. In addition, novel information concerning the structure of transcription factor binding sites within regulatory regions of the GS gene and their interactions with signalling pathways could be collected. In this review we focus on all aspects of the regulation of GS in the liver and demonstrate how the new findings have changed our view of the determinants of liver zonation. What appeared as a simple response of hepatocytes to blood-derived factors and local cellular interactions must now be perceived as a fundamental mechanism of adult tissue patterning by morphogens that were considered mainly as regulators of developmental processes. Though GS may be the most obvious indicator of morphogen action among many other targets, elucidation of the complex regulation of the expression of the GS gene could pave the road for a better understanding of the mechanisms involved in patterning of liver parenchyma. Based on current knowledge we propose a new concept of how morphogens, hormones and other factors may act in concert, in order to restrict gene expression to small subpopulations of one differentiated cell type, the hepatocyte, in different anatomical locations. Although many details of this regulatory network are still missing, and an era of exciting new discoveries is still about to come, it can already be envisioned that similar mechanisms may well be active in other organs contributing to the fine-tuning of organ-specific functions.
Collapse
Affiliation(s)
- Rolf Gebhardt
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
41
|
Steffensen IL, Schut HAJ, Nesland JM, Tanaka K, Alexander J. Role of nucleotide excision repair deficiency in intestinal tumorigenesis in multiple intestinal neoplasia (Min) mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 611:71-82. [PMID: 16962818 DOI: 10.1016/j.mrgentox.2006.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 06/23/2006] [Accepted: 07/08/2006] [Indexed: 10/24/2022]
Abstract
Mice deficient in the Xeroderma pigmentosum group A (Xpa) gene are defective in nucleotide excision repair (NER) and highly susceptible to skin carcinogenesis after dermal exposure to UV light or chemicals. Min (multiple intestinal neoplasia) mice, heterozygous for a germline nonsense mutation in the tumor suppressor gene adenomatous polyposis coli (Apc), develop intestinal tumors spontaneously and show additional intestinal tumors after exposure to the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). In this study, we investigated the impact of loss of XPA function on PhIP-induced intestinal tumorigenesis in F1 offspring of Min/+ (Apc(+/-)) mice crossed with Xpa gene-deficient mice. Apc(+/-) mice lacking both alleles of Xpa had higher susceptibility towards toxicity of PhIP, higher levels of PhIP-DNA adducts in the middle and distal small intestines, as well as in liver, and a higher number of small intestinal tumors at 11 weeks, compared with Apc(+/-) mice with one or two intact Xpa alleles. Localization of tumors was not affected, being highest in middle and distal small intestines in all genotypes. At 11 weeks of age, the number of spontaneous intestinal tumors was not significantly increased by homozygous loss of Xpa, but untreated Apc(+/-)/Xpa(-/-) mice had significantly shorter life-spans than their XPA-proficient littermates. Heterozygous loss of Xpa did not affect any of the measured end points. In conclusion, the Xpa gene and the NER pathway are involved in repair of bulky PhIP-DNA adducts in the intestines and the liver, and most probably of DNA lesions leading to spontaneous intestinal tumors. These results confirm a role of the NER pathway also in protection against cancer in internal organs, additional to its well-known importance in protection against skin cancer. An effect of Apc(+/-) on adduct levels, additional to that of Xpa(-/-), indicates that the truncated APC protein may affect a repair pathway other than NER.
Collapse
Affiliation(s)
- Inger-Lise Steffensen
- Department of Food Toxicology, Division of Environmental Medicine, Norwegian Institute of Public Health, NO-0403 Oslo, Norway.
| | | | | | | | | |
Collapse
|
42
|
Arachchige Don AS, Dallapiazza RF, Bennin DA, Brake T, Cowan CE, Horne MC. Cyclin G2 is a centrosome-associated nucleocytoplasmic shuttling protein that influences microtubule stability and induces a p53-dependent cell cycle arrest. Exp Cell Res 2006; 312:4181-204. [PMID: 17123511 PMCID: PMC1862360 DOI: 10.1016/j.yexcr.2006.09.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/21/2006] [Accepted: 09/26/2006] [Indexed: 01/14/2023]
Abstract
Cyclin G2 is an atypical cyclin that associates with active protein phosphatase 2A. Cyclin G2 gene expression correlates with cell cycle inhibition; it is significantly upregulated in response to DNA damage and diverse growth inhibitory stimuli, but repressed by mitogenic signals. Ectopic expression of cyclin G2 promotes cell cycle arrest, cyclin dependent kinase 2 inhibition and the formation of aberrant nuclei [Bennin, D. A., Don, A. S., Brake, T., McKenzie, J. L., Rosenbaum, H., Ortiz, L., DePaoli-Roach, A. A., and Horne, M. C. (2002). Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B' subunits in active complexes and induces nuclear aberrations and a G(1)/S-phase cell cycle arrest. J Biol Chem 277, 27449-67]. Here we report that endogenous cyclin G2 copurifies with centrosomes and microtubules (MT) and that ectopic G2 expression alters microtubule stability. We find exogenous and endogenous cyclin G2 present at microtubule organizing centers (MTOCs) where it colocalizes with centrosomal markers in a variety of cell lines. We previously reported that cyclin G2 forms complexes with active protein phosphatase 2A (PP2A) and colocalizes with PP2A in a detergent-resistant compartment. We now show that cyclin G2 and PP2A colocalize at MTOCs in transfected cells and that the endogenous proteins copurify with isolated centrosomes. Displacement of the endogenous centrosomal scaffolding protein AKAP450 that anchors PP2A at the centrosome resulted in the depletion of centrosomal cyclin G2. We find that ectopic expression of cyclin G2 induces microtubule bundling and resistance to depolymerization, inhibition of polymer regrowth from MTOCs and a p53-dependent cell cycle arrest. Furthermore, we determined that a 100 amino acid carboxy-terminal region of cyclin G2 is sufficient to both direct GFP localization to centrosomes and induce cell cycle inhibition. Colocalization of endogenous cyclin G2 with only one of two GFP-centrin-tagged centrioles, the mature centriole present at microtubule foci, indicates that cyclin G2 resides primarily on the mother centriole. Copurification of cyclin G2 and PP2A subunits with microtubules and centrosomes, together with the effects of ectopic cyclin G2 on cell cycle progression, nuclear morphology and microtubule growth and stability, suggests that cyclin G2 may modulate the cell cycle and cellular division processes through modulation of PP2A and centrosomal associated activities.
Collapse
Affiliation(s)
| | | | - David A. Bennin
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
| | - Tiffany Brake
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
| | - Colleen E. Cowan
- The Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109
| | - Mary C. Horne
- The Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
- *Correspondence to: Mary C. Horne, 2-530 BSB, 51 Newton Rd, Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, Phone: (319) 335-8267, FAX: (319) 335-8930, E-mail:
| |
Collapse
|
43
|
You S, Ohmori M, Peña MMO, Nassri B, Quiton J, Al-Assad ZA, Liu L, Wood PA, Berger SH, Liu Z, Wyatt MD, Price RL, Berger FG, Hrushesky WJM. Developmental abnormalities in multiple proliferative tissues of Apc(Min/+) mice. Int J Exp Pathol 2006; 87:227-36. [PMID: 16709231 PMCID: PMC2517368 DOI: 10.1111/j.1365-2613.2006.00477.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Germ-line mutation of the Apc gene has been linked to familial adenomatous polyposis (FAP) that predisposes to colon cancer. Apc(Min/+) mice, heterozygous for the Apc gene mutation, progressively develop small intestinal tumours in a manner that is analogous to that observed in the colon of patients with FAP (Su et al. 1992; Fodde et al. 1994; Moser et al. 1995). We have studied the effects of Apc gene mutation on murine intestinal and extra-intestinal, proliferatively active tissues. We have contrasted the histology to that of the age- and sex-matched wild-type C57BL/6 mice. Histological assessment of the normal appearing intestinal mucosa demonstrates minimal change in size of crypts. In contrast, villi are longer in the ileum of Apc(Min/+) mice relative to C57BL/6 mice at 12 and 15 weeks of age. Vigorous splenic haematopoiesis in Apc(Min/+) mice was seen at 12 and 15 weeks of age, as reflected by marked splenomegaly, increased splenic haematopoietic cells and megakaryocytes. Peripheral blood counts, however, did not differ between C57BL/6 and Apc(Min/+) mice at 15 weeks of age. Lymphoid depletion in Apc(Min/+) mice was characterized by diminished numbers of splenic lymphoid follicles and small intestinal Peyer's patches. The ovaries of 12- and 15-week-old Apc(Min/+) mice exhibited increased numbers of atretic follicles, and estrous cycling by serial vaginal smears showed tendency of elongation in the mutant mice during these age ranges. The testicles of 10-week-old Apc(Min/+) mice showed increased numbers of underdeveloped seminiferous tubules. Collectively, these data suggest that, in addition to its obvious effects upon intestinal adenoma formation, Apc gene mutation causes impairment of developmental and apparent differentiation blockade in proliferative tissues, including those of the haematopoietic system, lymphoid and reproductive tract.
Collapse
Affiliation(s)
- Shaojin You
- Center for Colon Cancer Research, Dorn Research Institute, WJB Dorn Veterans Affairs Medical Center (151), Columbia, SC 29209, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rao VP, Poutahidis T, Ge Z, Nambiar PR, Boussahmain C, Wang YY, Horwitz BH, Fox JG, Erdman SE. Innate Immune Inflammatory Response against Enteric Bacteria Helicobacter hepaticus Induces Mammary Adenocarcinoma in Mice. Cancer Res 2006; 66:7395-400. [PMID: 16885333 DOI: 10.1158/0008-5472.can-06-0558] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammation associated with bacterial infections is a risk factor for cancers in humans, yet its role in breast cancer remains poorly understood. We have previously shown that innate immune inflammatory response against intestinal bacteria is sufficient to induce colon cancer. Here we report that infecting Rag2-deficient C57BL/6 Apc(Min/+) mice with an intestinal bacterial pathogen, Helicobacter hepaticus, significantly promotes mammary carcinoma in females and enhances intestinal adenoma multiplicity by a tumor necrosis factor alpha (TNFalpha)-dependent mechanism. The mammary and intestinal tumor development as well as the increase in proinflammatory mediators is suppressed by adoptive transfer of interleukin 10-competent CD4+CD45RB(lo)CD25+ regulatory (T(R)) cells. Furthermore, prior exposure of donor mice to H. hepaticus significantly enhances antitumor potency of their T(R) cells. Interestingly, these microbially experienced T(R) cells suppress tumorigenesis more effectively in recipient mice irrespective of their tumor etiology. These data suggest that infections with enteric pathogens enhance T(R)-cell potency and protect against epithelial cancers later in life, potentially explaining paradoxical increases in cancer risk in developed countries having more stringent hygiene practices. The possibility that dysregulated gut microbial infections in humans may lead to cancer in anatomically distant organs, such as breast, highlights the need for novel immune-based strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Varada P Rao
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pukrop T, Klemm F, Hagemann T, Gradl D, Schulz M, Siemes S, Trümper L, Binder C. Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci U S A 2006; 103:5454-9. [PMID: 16569699 PMCID: PMC1459376 DOI: 10.1073/pnas.0509703103] [Citation(s) in RCA: 277] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Indexed: 02/06/2023] Open
Abstract
Interactions between neoplastic and stromal cells contribute to tumor progression. Wnt genes, involved in cell migration and often deregulated in cancers, are attractive candidates to regulate these effects. We have recently shown that coculture of breast cancer cells with macrophages enhances invasiveness via matrix metalloproteases and TNF-alpha. Here we demonstrate that coculture of MCF-7 cells and macrophages leads to up-regulation of Wnt 5a in the latter. This was accompanied by activation of AP-1/c-Jun in MCF-7. Recombinant Wnt 5a mimicked the coculture effect. Wnt 5a was also detectable in tumor-associated macrophages in primary breast cancers. Experiments with agonists and antagonists of Wnt signaling revealed that a functional canonical pathway in the tumor cells was a necessary prerequisite; however, noncanonical signaling via Wnt 5a and the Jun-N-terminal kinase pathway was critical for invasiveness. It was also responsible for induction of matrix metalloprotease-7, known to release TNF-alpha. All these effects could be antagonized by dickkopf-1. Our results indicate that Wnt 5a is essential for macrophage-induced invasiveness, because it regulates tumor cell migration as well as proteolytic activity of the macrophages. The function of Wnt 5a as either a suppressor or promoter of malignant progression seems to be modulated by intercellular interactions. Wnt 5a detection in tumor-associated macrophages in breast cancer biopsies supports the assumption that similar events play a role in vivo.
Collapse
Affiliation(s)
- T. Pukrop
- *Department of Haematology/Oncology, Georg-August University, 37099 Göttingen, Germany
| | - F. Klemm
- *Department of Haematology/Oncology, Georg-August University, 37099 Göttingen, Germany
| | - Th. Hagemann
- *Department of Haematology/Oncology, Georg-August University, 37099 Göttingen, Germany
- Cancer Research UK, Translational Oncology Laboratory, Queen Mary’s School of Medicine and Dentistry, London EC1M 6BQ, United Kingdom; and
| | - D. Gradl
- Institute of Zoology, University of Karlsruhe, 76128 Karlsruhe, Germany
| | - M. Schulz
- *Department of Haematology/Oncology, Georg-August University, 37099 Göttingen, Germany
| | - S. Siemes
- *Department of Haematology/Oncology, Georg-August University, 37099 Göttingen, Germany
| | - L. Trümper
- *Department of Haematology/Oncology, Georg-August University, 37099 Göttingen, Germany
| | - C. Binder
- *Department of Haematology/Oncology, Georg-August University, 37099 Göttingen, Germany
| |
Collapse
|
46
|
Abstract
Colorectal cancer (CRC) is a major cause of morbidity and mortality from cancers in the United States. Recent studies have revealed the paradigm in which sequential genetic changes (mutations) result in the progression from normal colonic tissues to frank carcinoma. In particular, the study of hereditary colorectal cancer and polyposis syndromes such as familial adenomatous polyposis and hereditary nonpolyposis colon cancer has contributed enormously to the understanding of the pathogenesis of CRC. Here we describe some of the common genetic pathways in CRC and the mechanisms of action for some of the key genes involved in the formation of CRC. The understanding of the genetic pathways and functions in CRC may lead to the development of novel therapeutic approaches for treating this deadly disease.
Collapse
|
47
|
Delfino FJ, Stevenson H, Smithgall TE. A growth-suppressive function for the c-fes protein-tyrosine kinase in colorectal cancer. J Biol Chem 2006; 281:8829-35. [PMID: 16455651 DOI: 10.1074/jbc.m507331200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human c-fes locus encodes a non-receptor protein-tyrosine kinase implicated in myeloid, vascular endothelial, and neuronal cell differentiation. A recent analysis of the tyrosine kinome in colorectal cancer identified c-fes as one of only seven genes with consistent kinase domain mutations. Although four mutations were identified (M704V, R706Q, V743M, S759F), the consequences of these mutations on Fes kinase activity were not explored. To address this issue, Fes mutants with these substitutions were co-expressed with STAT3 in human 293T cells. Surprisingly, the M704V, R706Q, and V743M mutations substantially reduced Fes autophosphorylation and STAT3 Tyr-705 phosphorylation compared with wild-type Fes, whereas S759F had little effect. These mutations had a similar impact on Fes kinase activity in a yeast expression system, suggesting that they inhibit Fes by affecting kinase domain structure. We have also demonstrated for the first time that endogenous Fes is strongly expressed at the base of colonic crypts where it co-localizes with epithelial cells positive for the progenitor cell marker Musashi-1. In contrast to normal colonic epithelium, Fes expression was reduced or absent in colon tumor sections from most individuals. Fes protein levels were also low or absent in a panel of human colorectal cancer cell lines, including HT-29 and HCT 116 cells. Introduction of Fes into these lines with a recombinant retrovirus suppressed their growth in soft agar. Together, our findings strongly implicate the c-Fes protein-tyrosine kinase as a tumor suppressor rather than a dominant oncogene in colorectal cancer.
Collapse
Affiliation(s)
- Frank J Delfino
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
48
|
Abstract
Familial adenomatous polyposis (FAP) is an autosomal-dominant colorectal cancer syndrome, caused by a germline mutation in the adenomatous polyposis coli (APC) gene, on chromosome 5q21. It is characterized by hundreds of adenomatous colorectal polyps, with an almost inevitable progression to colorectal cancer at an average age of 35 to 40 yr. Associated features include upper gastrointestinal tract polyps, congenital hypertrophy of the retinal pigment epithelium, desmoid tumors, and other extracolonic malignancies. Gardner syndrome is more of a historical subdivision of FAP, characterized by osteomas, dental anomalies, epidermal cysts, and soft tissue tumors. Other specified variants include Turcot syndrome (associated with central nervous system malignancies) and hereditary desmoid disease. Several genotype-phenotype correlations have been observed. Attenuated FAP is a phenotypically distinct entity, presenting with fewer than 100 adenomas. Multiple colorectal adenomas can also be caused by mutations in the human MutY homologue (MYH) gene, in an autosomal recessive condition referred to as MYH associated polyposis (MAP). Endoscopic screening of FAP probands and relatives is advocated as early as the ages of 10-12 yr, with the objective of reducing the occurrence of colorectal cancer. Colectomy remains the optimal prophylactic treatment, while the choice of procedure (subtotal vs proctocolectomy) is still controversial. Along with identifying better chemopreventive agents, optimizing screening of extracolonic cancers and applying new radiological and endoscopic technology to the diagnosis and management of extracolonic features are the major challenges for the future.
Collapse
Affiliation(s)
- Polymnia Galiatsatos
- Division of Gastroenterology, Department of Medicine, The Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
49
|
Tan KL, Wilson S, O'Neill C, Gordon D, Napier S. Something not quite right: Gardner syndrome diagnosed by multiple cutaneous lesions and genetic testing. Surgeon 2005; 3:412-5. [PMID: 16353862 DOI: 10.1016/s1479-666x(05)80052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gardner syndrome is a variant of familial adenomatous polyposis characterized by intestinal adenomatous polyps, which can progress to adenocarcinoma, and a variety of extraintestinal manifestations, including skin cysts, osteomas, soft tissue fibrous tumours and a characteristic ocular lesion. The extraintestinal manifestations are often the presenting feature but are usually not sufficiently characteristic on their own to trigger recognition of the syndrome. We report a case of a 17-year-old female who had been treated by a number of specialists over a 13-year period for a variety of cutaneous lesions without a hereditary condition being suspected. Gardner syndrome was considered only after excision of subcutaneous fibrous tumours from the mastoid region and paraspinal area and was confirmed by genetic testing in spite of the patient's refusal to undergo colonic endoscopic examination. Subsequent resection revealed approximately 70 adenomatous colonic polyps in the colon and rectum but no invasive tumour, highlighting the benefits of genetic testing in treatment planning.
Collapse
Affiliation(s)
- K L Tan
- Department of Plastic Surgery Ulster Hospital, Dundonald, Belfast, Northern Ireland.
| | | | | | | | | |
Collapse
|
50
|
Leedham SJ, Schier S, Thliveris AT, Halberg RB, Newton MA, Wright NA. From gene mutations to tumours--stem cells in gastrointestinal carcinogenesis. Cell Prolif 2005; 38:387-405. [PMID: 16300652 PMCID: PMC6496903 DOI: 10.1111/j.1365-2184.2005.00359.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 09/02/2005] [Indexed: 12/18/2022] Open
Abstract
Stem cells share many properties with malignant cells, such as the ability to self-renew and proliferate. Cancer is believed to be a disease of stem cells. The gastrointestinal tract has high cancer prevalence partly because of rapid epithelial cell turnover and exposure to dietary toxins. The molecular pathways of carcinogenesis differ according to the tissue. Work on hereditary cancer syndromes including familial adenomatous polyposis (FAP) has led to advances in our understanding of the events that occur in tumour development from a gastrointestinal stem cell. The initial mutation involved in the adenoma-carcinoma sequence is in the 'gatekeeper' tumour-suppressor gene adenomatous polyposis coli (APC). Somatic hits in this gene are non-random in FAP, with the type of mutation selected for by the position of the germline mutation. In the stomach, a metaplasia-dysplasia sequence occurs and is often related to Helicobacter pylori infection. Clonal expansion of mutated cells occurs by niche succession. Further expansion of the aberrant clone then occurs by the longitudinal division of crypts into two daughter units--crypt fission. Two theories seek to explain the early development of adenomas--the 'top down' and 'bottom up' hypotheses. Initial studies suggested that colorectal tumours were monoclonal; however, later work on chimeric mice and a sex chromosome mixoploid patient with FAP suggested that up to 76% of early adenomas were polyclonal. Introduction of a homozygous resistance allele has reduced tumour multiplicity in the mouse and has been used to rule out random collision of polyps as the cause of these observations. It is likely that short-range interaction between adjacent initiated crypts is responsible for polyclonality.
Collapse
Affiliation(s)
- S J Leedham
- Histopathology Unit, Cancer Research UK, London, UK.
| | | | | | | | | | | |
Collapse
|