1
|
Zhang W, Zhang Q, Yang N, Shi Q, Su H, Lin T, He Z, Wang W, Guo H, Shen P. Crosstalk between IL-15Rα + tumor-associated macrophages and breast cancer cells reduces CD8 + T cell recruitment. Cancer Commun (Lond) 2022; 42:536-557. [PMID: 35615815 PMCID: PMC9198341 DOI: 10.1002/cac2.12311] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Accepted: 05/10/2022] [Indexed: 12/23/2022] Open
Abstract
Background Interleukin‐15 (IL‐15) is a promising immunotherapeutic agent owing to its powerful immune‐activating effects. However, the clinical benefits of these treatments are limited. Crosstalk between tumor cells and immune cells plays an important role in immune escape and immunotherapy drug resistance. Herein, this study aimed to obtain in‐depth understanding of crosstalk in the tumor microenvironment for providing potential therapeutic strategies to prevent tumor progression. Methods T‐cell killing assays and co‐culture models were developed to determine the role of crosstalk between macrophages and tumor cells in breast cancer resistant to IL‐15. Western blotting, histological analysis, CRISPR‐Cas9 knockout, multi‐parameter flow cytometry, and tumor cell‐macrophage co‐injection mouse models were developed to examine the mechanism by which IL‐15Rα+ tumor‐associated macrophages (TAMs) regulate breast cancer cell resistance to IL‐15. Results We found that macrophages contributed to the resistance of tumor cells to IL‐15, and tumor cells induced macrophages to express high levels of the α subunit of the IL‐15 receptor (IL‐15Rα). Further investigation showed that IL‐15Rα+ TAMs reduced the protein levels of chemokine CX3C chemokine ligand 1 (CX3CL1) in tumor cells to inhibit the recruitment of CD8+ T cells by releasing the IL‐15/IL‐15Rα complex (IL‐15Rc). Administration of an IL‐15Rc blocking peptide markedly suppressed breast tumor growth and overcame the resistance of cancer cells to anti‐ programmed cell death protein 1 (PD‐1) antibody immunotherapy. Interestingly, Granulocyte‐macrophage colony‐stimulating factor (GMCSF) induced γ chain (γc) expression to promote tumor cell‐macrophage crosstalk, which facilitated tumor resistance to IL‐15. Additionally, we observed that the non‐transcriptional regulatory function of hypoxia inducible factor‐1alpha (HIF‐1α) was essential for IL‐15Rc to regulate CX3CL1 expression in tumor cells. Conclusions The IL‐15Rc‐HIF‐1α‐CX3CL1 signaling pathway serves as a crosstalk between macrophages and tumor cells in the tumor microenvironment of breast cancer. Targeting this pathway may provide a potential therapeutic strategy for enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Wenlong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.,Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Qing Zhang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Nanfei Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Qian Shi
- Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229-3904, USA
| | - Huifang Su
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Tingsheng Lin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Zhonglei He
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Eircode D04 V1W8, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Eircode D04 V1W8, Ireland
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.,Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
| |
Collapse
|
2
|
Hamdan D, Robinson LA. Role of the CX 3CL1-CX 3CR1 axis in renal disease. Am J Physiol Renal Physiol 2021; 321:F121-F134. [PMID: 34121453 DOI: 10.1152/ajprenal.00059.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive infiltration of immune cells into the kidney is a key feature of acute and chronic kidney diseases. The family of chemokines comprises key drivers of this process. Fractalkine [chemokine (C-X3-C motif) ligand 1 (CX3CL1)] is one of two unique chemokines synthesized as a transmembrane protein that undergoes proteolytic cleavage to generate a soluble species. Through interacting with its cognate receptor, chemokine (C-X3-C motif) receptor 1 (CX3CR1), CX3CL1 was originally shown to act as a conventional chemoattractant in the soluble form and as an adhesion molecule in the transmembrane form. Since then, other functions of CX3CL1 beyond leukocyte recruitment have been described, including cell survival, immunosurveillance, and cell-mediated cytotoxicity. This review summarizes diverse roles of CX3CL1 in kidney disease and potential uses as a therapeutic target and novel biomarker. As the CX3CL1-CX3CR1 axis has been shown to contribute to both detrimental and protective effects in various kidney diseases, a thorough understanding of how the expression and function of CX3CL1 are regulated is needed to unlock its therapeutic potential.
Collapse
Affiliation(s)
- Diana Hamdan
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Lisa A Robinson
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Valin A, Del Rey MJ, Municio C, Usategui A, Romero M, Fernández-Felipe J, Cañete JD, Blanco FJ, Ruano Y, Criado G, Pablos JL. IL6/sIL6R regulates TNFα-inflammatory response in synovial fibroblasts through modulation of transcriptional and post-transcriptional mechanisms. BMC Mol Cell Biol 2020; 21:74. [PMID: 33126846 PMCID: PMC7596982 DOI: 10.1186/s12860-020-00317-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Introduction The clinical efficacy of specific interleukin-6 inhibitors has confirmed the central role of IL6 in rheumatoid arthritis (RA). However the local role of IL6, in particular in synovial fibroblasts (SF) as a direct cellular target to IL6/sIL6R signal is not well characterized. The purpose of the study was to characterize the crosstalk between TNFα and IL6/sIL6R signaling to the effector pro-inflammatory response of SF. Methods SF lines were stimulated with either TNFα, IL6/sIL6R, or both together, for the time and dose indicated for each experiment, and where indicated, cells were treated with inhibitors actinomycin D, adalimumab, ruxolitinib and cycloheximide. mRNA expression of cytokines, chemokines and matrix metalloproteases (MMPs) were analyzed by quantitative RT-PCR. Level of IL8/CXCL8 and CCL8 in culture supernatants was measured by ELISA. Mononuclear and polymorphonuclear cells migration assays were assessed by transwell using conditioned medium from SF cultures. Statistical analyses were performed as indicated in the corresponding figure legends and a p-value < 0.05 was considered statistically significant. Results The stimulation of SF with IL6/sIL6R and TNFα, cooperatively promotes the expression of mono- and lymphocytic chemokines such as IL6, CCL8 and CCL2, as well as matrix degrading enzymes such as MMP1, while inhibiting the induction of central neutrophil chemokines such as IL8/CXCL8. These changes in the pattern of chemokines expression resulted in reduced polymorphonuclear (PMN) and increased mononuclear cells (MNC) chemoattraction by SF. Mechanistic analyses of the temporal expression of genes demonstrated that the cooperative regulation mediated by these two factors is mostly induced through de novo transcriptional mechanisms activated by IL6/sIL6R. Furthermore, we also demonstrate that TNFα and IL6/sIL6R cooperation is partially mediated by the expression of secondary factors signaling through JAK/STAT pathways. Conclusions These results point out to a highly orchestrated response to IL6 in TNFα-induced SF and provide additional insights into the role of IL6/sIL6R in the context of RA, highlighting the contribution of IL6/sIL6R to the interplay of SF with other inflammatory cells. Supplementary information Supplementary information accompanies this paper at 10.1186/s12860-020-00317-7.
Collapse
Affiliation(s)
- Alvaro Valin
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain. .,Present Address: Springer Healthcare Iberica SL, Madrid, Spain.
| | - Manuel J Del Rey
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Cristina Municio
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alicia Usategui
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marina Romero
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Jesús Fernández-Felipe
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Juan D Cañete
- Unitat d'Artritis, Servei de Reumatologia, Hospital Clínic de Barcelona and Institut d'Investigacions Biomèdiques August Pí i Sunyer, Barcelona, Spain
| | - Francisco J Blanco
- Laboratorio de Investigación Osteoarticular y del Envejecimiento, Instituto de Investigación Biomédica de A Coruña, INIBIC, A Coruña, Spain
| | - Yolanda Ruano
- Servicio de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Gabriel Criado
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - José L Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain. .,Servicio de Reumatología, Hospital 12 de Octubre, Universidad Complutense de Madrid, 28041, Madrid, Spain.
| |
Collapse
|
4
|
Affiliation(s)
- Rachel McLoughlin
- Institute of Nephrology Wales College of Medicine Cardiff University, Heath Park Cardiff, United Kingdom
| |
Collapse
|
5
|
Donnenberg AD, Luketich JD, Donnenberg VS. Secretome of pleural effusions associated with non-small cell lung cancer (NSCLC) and malignant mesothelioma: therapeutic implications. Oncotarget 2019; 10:6456-6465. [PMID: 31741710 PMCID: PMC6849644 DOI: 10.18632/oncotarget.27290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION We compared the secretome of metastatic (non-small cell lung cancer (NSCLC)) and primary (mesothelioma) malignant pleural effusions, benign effusions and the published plasma profile of patients receiving chimeric antigen receptor T cells (CAR-T), to determine factors unique to neoplasia in pleural effusion (PE) and those accompanying an efficacious peripheral anti-tumor immune response. MATERIALS AND METHODS Cryopreserved cell-free PE fluid from 101 NSCLC patients, 8 mesothelioma and 13 with benign PE was assayed for a panel of 40 cytokines/chemokines using the Luminex system. RESULTS Profiles of benign and malignant PE were dominated by high concentrations of sIL-6Rα, CCL2/MCP1, CXCL10/IP10, IL-6, TGFβ1, CCL22/MDC, CXCL8/IL-8 and IL-10. Malignant PE contained significantly higher (p < 0.01, Bonferroni-corrected) concentrations of MIP1β, CCL22/MDC, CX3CL1/fractalkine, IFNα2, IFNγ, VEGF, IL-1α and FGF2. When grouped by function, mesothelioma PE had lower effector cytokines than NSCLC PE. Comparing NSCLC PE and published plasma levels of CAR-T recipients, both were dominated by sIL-6Rα and IL-6 but NSCLC PE had more VEGF, FGF2 and TNFα, and less IL-2, IL-4, IL-13, IL-15, MIP1α and IFNγ. CONCLUSIONS An immunosuppressive, wound-healing environment characterizes both benign and malignant PE. A dampened effector response (IFNα2, IFNγ, MIP1α, TNFα and TNFβ) was detected in NSCLC PE, but not mesothelioma or benign PE. The data indicate that immune effectors are present in NSCLC PE and suggest that the IL-6/sIL-6Rα axis is a central driver of the immunosuppressive, tumor-supportive pleural environment. A combination localized antibody-based immunotherapy with or without cellular therapy may be justified in this uniformly fatal condition.
Collapse
Affiliation(s)
- Albert D. Donnenberg
- University of Pittsburgh School of Medicine, Department of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Centers, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - James D. Luketich
- UPMC Hillman Cancer Centers, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Department of Cardiothoracic Surgery, Pittsburgh, PA, USA
| | - Vera S. Donnenberg
- UPMC Hillman Cancer Centers, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Department of Cardiothoracic Surgery, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Hox V, O'Connell MP, Lyons JJ, Sackstein P, Dimaggio T, Jones N, Nelson C, Boehm M, Holland SM, Freeman AF, Tweardy DJ, Olivera A, Metcalfe DD, Milner JD. Diminution of signal transducer and activator of transcription 3 signaling inhibits vascular permeability and anaphylaxis. J Allergy Clin Immunol 2016; 138:187-199. [PMID: 26948077 PMCID: PMC4931983 DOI: 10.1016/j.jaci.2015.11.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/29/2015] [Accepted: 11/06/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND During IgE-mediated immediate hypersensitivity reactions, vascular endothelial cells permeabilize in response to mast cell mediators. We have demonstrated previously that patients and mice with signal transducer and activator of transcription 3 (STAT3) mutations (autosomal dominant hyper-IgE syndrome [AD-HIES]) are partially protected from anaphylaxis. OBJECTIVES We sought to study the mechanism by which STAT3 contributes to anaphylaxis and determine whether small-molecule inhibition of STAT3 can prevent anaphylaxis. METHODS Using unaffected and STAT3-inhibited or genetic loss-of-function samples, we performed histamine skin prick tests, investigated the contribution of STAT3 to animal models of anaphylaxis, and measured endothelial cell permeability, gene and protein expression, and histamine receptor-mediated signaling. RESULTS Although mouse mast cell degranulation was minimally affected by STAT3 blockade, mast cell mediator-induced anaphylaxis was blunted in Stat3 mutant mice with AD-HIES and in wild-type mice subjected to small-molecule STAT3 inhibition. Histamine skin prick test responses were diminished in patients with AD-HIES. Human umbilical vein endothelial cells derived from patients with AD-HIES or treated with a STAT3 inhibitor did not signal properly through Src or cause appropriate dissolution of the adherens junctions made up of the proteins vascular endothelial-cadherin and β-catenin. Furthermore, we found that diminished STAT3 target microRNA17-92 expression in human umbilical vein endothelial cells from patients with AD-HIES is associated with increased phosphatase and tensin homolog (PTEN) expression, which inhibits Src, and increased E2F transcription factor 1 expression, which regulates β-catenin cellular dynamics. CONCLUSIONS These data demonstrate that STAT3-dependent transcriptional activity regulates critical components for the architecture and functional dynamics of endothelial junctions, thus permitting vascular permeability.
Collapse
Affiliation(s)
- Valerie Hox
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael P O'Connell
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Paul Sackstein
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Thomas Dimaggio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Nina Jones
- Clinical Research Directorate/CMRP, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Md
| | - Celeste Nelson
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Manfred Boehm
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - David J Tweardy
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Md
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
7
|
Poniatowski ŁA, Wojdasiewicz P, Krawczyk M, Szukiewicz D, Gasik R, Kubaszewski Ł, Kurkowska-Jastrzębska I. Analysis of the Role of CX3CL1 (Fractalkine) and Its Receptor CX3CR1 in Traumatic Brain and Spinal Cord Injury: Insight into Recent Advances in Actions of Neurochemokine Agents. Mol Neurobiol 2016; 54:2167-2188. [PMID: 26927660 PMCID: PMC5355526 DOI: 10.1007/s12035-016-9787-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
CX3CL1 (fractalkine) is the only member of the CX3C (delta) subfamily of chemokines which is unique and combines the properties of both chemoattractant and adhesion molecules. The two-form ligand can exist either in a soluble form, like all other chemokines, and as a membrane-anchored molecule. CX3CL1 discloses its biological properties through interaction with one dedicated CX3CR1 receptor which belongs to a family of G protein-coupled receptors (GPCR). The CX3CL1/CX3CR1 axis acts in many physiological phenomena including those occurring in the central nervous system (CNS), by regulating the interactions between neurons, microglia, and immune cells. Apart from the role under physiological conditions, the CX3CL1/CX3CR1 axis was implied to have a role in different neuropathologies such as traumatic brain injury (TBI) and spinal cord injury (SCI). CNS injuries represent a serious public health problem, despite improvements in therapeutic management. To date, no effective treatment has been determined, so they constitute a leading cause of death and severe disability. The course of TBI and SCI has two consecutive poorly demarcated phases: the initial, primary injury and secondary injury. Recent evidence has implicated the role of the CX3CL1/CX3CR1 axis in neuroinflammatory processes occurring after CNS injuries. The importance of the CX3CL1/CX3CR1 axis in the pathophysiology of TBI and SCI in the context of systemic and direct local immune response is still under investigation. This paper, based on a review of the literature, updates and summarizes the current knowledge about CX3CL1/CX3CR1 axis involvement in TBI and SCI pathogenesis, indicating possible molecular and cellular mechanisms with a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Łukasz A Poniatowski
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland.
| | - Piotr Wojdasiewicz
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland.,Department of Rheumaorthopaedics, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland
| | - Maciej Krawczyk
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland.,Department of Pediatric and Neurological Rehabilitation, Faculty of Rehabilitation, Józef Piłsudski University of Physical Education, Marymoncka 34, 00-968, Warsaw, Poland
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland
| | - Robert Gasik
- Department of Rheumaorthopaedics, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland
| | - Łukasz Kubaszewski
- Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Orthopaedics and Traumatology, Wiktor Dega Orthopaedic and Rehabilitation Clinical Hospital, Poznań University of Medical Sciences, 28 Czerwca 1956 135/147, 61-545, Poznań, Poland
| | | |
Collapse
|
8
|
IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16:448-57. [DOI: 10.1038/ni.3153] [Citation(s) in RCA: 1715] [Impact Index Per Article: 171.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
|
9
|
The role of fractalkine (CX3CL1) in regulation of CD4(+) cell migration to the central nervous system in patients with relapsing-remitting multiple sclerosis. Clin Immunol 2015; 157:121-32. [PMID: 25596452 DOI: 10.1016/j.clim.2015.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/03/2015] [Accepted: 01/05/2015] [Indexed: 11/23/2022]
Abstract
Fractalkine (CX3CL1) levels are increased in the cerebrospinal fluid (CSF) of patients with clinically isolated syndrome (CIS), as well as in the CSF and serum samples from patients with relapsing-remitting multiple sclerosis (RRMS). A higher percentage of circulating CD4(+) T-cells expressed its surface receptor (CX3CR1) and intracellular adhesion molecule (ICAM-1) in RRMS patients in comparison to healthy controls (HCs). The CX3CR1(+)ICAM-1(+)CD4(+) T-cells are enriched in the CSF of the RRMS patients. In vitro migration studies revealed that CD4(+) T-cells, which migrated toward a CX3CL1 gradient, expressed higher levels of ICAM-1 than non-migrating cells. CX3CL1 significantly increased IFN-γ and TNF-α gene expression and IFN-γ secretion by CD4(+) T-cells derived from the RRMS patients. CX3CL1 upregulated ICAM-1 expression on the surface of RRMS patient-derived but not HC-derived CD4(+) T-cells. Thus, CX3CL1 induces recruitment of CX3CR1(+)ICAM-1(+)CD4(+) T-cells into the central nervous system (CNS) during the early inflammatory response in MS.
Collapse
|
10
|
Sickinger S, Maier H, König S, Vallant N, Kofler M, Schumpp P, Schwelberger H, Hermann M, Obrist P, Schneeberger S, Margreiter R, Troppmair J, Pratschke J, Aigner F. Lipocalin-2 as mediator of chemokine expression and granulocyte infiltration during ischemia and reperfusion. Transpl Int 2013; 26:761-9. [PMID: 23701109 DOI: 10.1111/tri.12116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/11/2013] [Accepted: 04/20/2013] [Indexed: 11/28/2022]
Abstract
Lipocalin-2 (Lcn2) expression contributes to ischemia and reperfusion injury (IRI) by enhancing pro-inflammatory responses. The aim of this work was to elucidate the regulation of Lcn2 during hypoxia and its effects on the expression of key chemokines and adhesion molecules. Lcn2 wt and Lcn2(-/-) mice were used in a heterotopic heart transplantation model. Quantitative RT-PCR was applied for chemokine gene expression analysis. Reporter gene studies were used to elucidate the regulation of the Lcn2 promoter by hypoxia. HIF-1β expression led to a 2.4-fold induction of the Lcn2 promoter. Apart from an earlier onset of granulocyte infiltration in the Lcn2 wt setting after 2 h of reperfusion compared with the Lcn2(-/-) setting (P < 0.013), exogenous application of recombinant Lcn2 revealed a trend toward increase of granulocyte infiltration. Analyzed chemokines were expressed significantly higher in the Lcn2 wt setting at 2 h of reperfusion (P ≤ 0.05). The number of apoptotic cells observed in Lcn2(-/-) grafts was significantly higher than in the Lcn2 wt setting. Our results indicate that Lcn2 affects granulocyte infiltration in the reperfused graft by modulating the expression of chemokines, their receptors and the apoptotic rate.
Collapse
Affiliation(s)
- Stephan Sickinger
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nakano M, Fujii T, Hashimoto M, Yukawa N, Yoshifuji H, Ohmura K, Nakaizumi A, Mimori T. Type I interferon induces CX3CL1 (fractalkine) and CCL5 (RANTES) production in human pulmonary vascular endothelial cells. Clin Exp Immunol 2012; 170:94-100. [PMID: 22943205 PMCID: PMC3444721 DOI: 10.1111/j.1365-2249.2012.04638.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Type I interferon (IFN) medications cause various adverse reactions, including vascular diseases. Although an association between chemokines and vascular diseases has also been reported, the relationship between type I IFN and chemokines in vascular endothelial cells (VEC) remains unclear. To provide clues to pathogenesis of the diseases, we analysed the effects of type I IFN on chemokine production in human VEC. Type I IFN induced higher CX3CL1 (fractalkine) mRNA expression and protein secretion in pulmonary arterial VEC than in umbilical vein VEC. Type I IFN also induced CCL5 [regulated upon activation normal T cell expressed and secreted (RANTES)] production in VEC, especially in lung micro-VEC. IFN-β induced much higher chemokine production than IFN-α, and Janus protein tyrosine kinase (JAK) inhibitor I prevented type I IFN-induced chemokine secretion. Type I IFN-induced chemokines may be involved in the pathophysiology of pulmonary vascular diseases, and the JAK inhibitor may serve as a therapeutic option for these diseases.
Collapse
Affiliation(s)
- M Nakano
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Raspé C, Höcherl K, Rath S, Sauvant C, Bucher M. NF-κB-mediated inverse regulation of fractalkine and CX3CR1 during CLP-induced sepsis. Cytokine 2012; 61:97-103. [PMID: 23026294 DOI: 10.1016/j.cyto.2012.08.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/21/2022]
Abstract
Fractalkine is a unique member of the CX3C chemokine family by unfolding its potential through the chemokine (C-X3-C motif) receptor 1 (CX3CR1) with dual function acting both as an adhesion molecule and a soluble chemokine. The regulation of this chemokine is still not clear. Therefore, we were interested in the regulation of fractalkine and of CX3CR1 in experimental sepsis. In addition, we investigated the role of NF-κB for the regulation of fractalkine and of CX3CR1. Using a mouse model of cecal ligation and puncture (CLP)-induced sepsis, we found elevated fractalkine mRNA levels in the heart, lung, kidney, and liver, as well as increased plasma levels 24 and 48h after CLP, respectively. In parallel, CLP resulted in a significant downregulation of CX3CR1 mRNA receptor expression in all investigated murine tissues. Septic mice that were pretreated with the selective NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) were found to have a decreased liberation of proinflammtory cytokines such as TNF-α, IL-1β, IL-6, or IFN-γ. Further PDTC pretreatment attenuated CLP-induced downregulation of CX3CR1 mRNA as well as CLP-induced upregulation of fractalkine mRNA expression in the heart, lung, kidney, liver, and the increase in fractalkine plasma levels of septic mice. In addition, CLP-induced downregulation of renal CX3CR1 protein expression was inhibited by PDTC-pretreatment. Taken together, our data indicate a CLP-induced inverse regulation of the expression between the relating ligand and the receptor with an upregulation of fractalkine and downregulation of CX3CR1, which seems to be mediated by the transcripting factor NF-κB likely via reduced liberation of proinflammtory cytokines in the whole murine organism.
Collapse
Affiliation(s)
- C Raspé
- Clinic for Anaesthesiology and Surgical Intensive Care, Unversity Clinic Halle (Saale), Martin-Luther University Halle-Wittenberg, Germany.
| | | | | | | | | |
Collapse
|
13
|
Vascular effects of glycoprotein130 ligands--part I: pathophysiological role. Vascul Pharmacol 2011; 56:34-46. [PMID: 22197898 DOI: 10.1016/j.vph.2011.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/02/2011] [Accepted: 12/09/2011] [Indexed: 12/25/2022]
Abstract
The vessel wall is no longer considered as only an anatomical barrier for blood cells but is recognized as an active endocrine organ. Dysfunction of the vessel wall occurs in various disease processes including atherosclerosis, hypertension, peripheral artery disease, aneurysms, and transplant and diabetic vasculopathies. Different cytokines were shown to modulate the behavior of the cells, which constitute the vessel wall such as immune cells, endothelial cells and smooth muscle cells. Glycoprotein 130 (gp130) is a common cytokine receptor that controls the activity of a group of cytokines, namely, interleukin (IL)-6, oncostatin M (OSM), IL-11, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine (CLC), IL-27, and neuropoietin (NP). Gp130 and associated cytokines have abundantly diverse functions. Part I of this review focuses on the pathophysiological functions of gp130 ligands. We specifically describe vascular effects of these molecules and discuss the respective underlying molecular and cellular mechanisms.
Collapse
|
14
|
Abstract
Removal of unwanted, effete, or damaged cells through apoptosis, an active cell death culminating in phagocytic removal of cell corpses, is an important process throughout the immune system in development, control, and homeostasis. For example, neutrophil apoptosis is central to the resolution of acute inflammation, whereas autoreactive and virus-infected cells are similarly deleted. The AC removal process functions not only to remove cell corpses but further, to control inappropriate immune responses so that ACs are removed in an anti-inflammatory manner. Such ″silent″ clearance is mediated by the innate immune system via polarized monocyte/macrophage populations that use a range of PRRs and soluble molecules to promote binding and phagocytosis of ACs. Additionally, attractive signals are released from dying cells to recruit phagocytes to sites of death. Here, we review the molecular mechanisms associated with innate immune removal of and responses to ACs and outline how these may impact on tissue homeostasis and age-associated pathology (e.g., cardiovascular disease). Furthermore, we discuss how an aging innate immune system may contribute to the inflammatory consequences of aging and why the study of an aging immune system may be a useful path to advance characterization of mechanisms mediating effective AC clearance.
Collapse
|
15
|
Liu H, Jiang D. Fractalkine/CX3CR1 and atherosclerosis. Clin Chim Acta 2011; 412:1180-6. [PMID: 21492740 DOI: 10.1016/j.cca.2011.03.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/15/2011] [Accepted: 03/31/2011] [Indexed: 01/16/2023]
Abstract
Fractalkine is a unique chemokine which has both adhesive and chemoattractant functions. With the increasing emphasis on the importance of inflammation in atherosclerosis, more attention has been focused on the role of chemokines in atherosclerosis. It has been shown that fractalkine/CX3CR1 participates in the atherosclerotic pathological process through mediating the recruitment of leukocytes and the interaction of vascular cells and leukocytes. Some signal pathways are simultaneously activated through fractalkine/CX3CR1 coupling to promote the inflammatory response in atherosclerotic vessels. Additionally, fractalkine has cytotoxic effects on endothelium as well as anti-apoptosis and proliferative effects on vascular cells which consequently changes plaque components and stability in plaque. Several studies have showed that fractalkine or CX3CR1 deficiency in atherosclerotic mice would ameliorate the severity of plaque. Population studies on CX3CR1 polymorphism have confirmed that 280M-containing haplotype is associated with reduced risk of atherosclerotic disease. Despite the apparent association with atherosclerosis, further studies on fractalkine/CX3CR1 chemokine pair are clearly warranted to more fully elucidate this relationship.
Collapse
Affiliation(s)
- Hong Liu
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | | |
Collapse
|
16
|
Loppnow H, Buerke M, Werdan K, Rose-John S. Contribution of vascular cell-derived cytokines to innate and inflammatory pathways in atherogenesis. J Cell Mol Med 2011; 15:484-500. [PMID: 21199323 PMCID: PMC3922371 DOI: 10.1111/j.1582-4934.2010.01245.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 12/21/2010] [Indexed: 01/22/2023] Open
Abstract
Inflammation is a central element of atherogenesis. Innate pathways contribute to vascular inflammation. However, the initial molecular process(es) starting atherogenesis remain elusive. The various risk factors, represented by particular compounds (activators), may cause altered cellular functions in the endothelium (e.g. vascular endothelial cell activation or -dysfunction), in invading cells (e.g. inflammatory mediator production) or in local vessel wall cells (e.g. inflammatory mediators, migration), thereby triggering the innate inflammatory process. The cellular components of innate immunology include granulocytes, natural killer cells and monocytes. Among the molecular innate constituents are innate molecules, such as the toll-like receptors or innate cytokines. Interleukin-1 (IL-1) and IL-6 are among the innate cytokines. Cytokines are potent activators of a great number of cellular functions relevant to maintain or commove homeostasis of the vessel wall. Within the vessel wall, vascular smooth muscle cells (SMCs) can significantly contribute to the cytokine-dependent inflammatory network by: (i) production of cytokines, (ii) response to cytokines and (iii) cytokine-mediated interaction with invading leucocytes. The cytokines IL-1 and IL-6 are involved in SMC-leucocyte interaction. The IL-6 effects are proposed to be mediated by trans-signalling. Dysregulated cellular functions resulting from dysregulated cytokine production may be the cause of cell accumulation, subsequent low-density lipoprotein accumulation and deposition of extracellular matrix (ECM). The deposition of ECM, increased accumulation of leucocytes and altered levels of inflammatory mediators may constitute an 'innate-immunovascular-memory' resulting in an ever-growing response to anew invasion. Thus, SMC-fostered inflammation, promoted by invading innate cells, may be a potent component for development and acceleration of atherosclerosis.
Collapse
Affiliation(s)
- Harald Loppnow
- Department of Internal Medicine III, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | | | | | | |
Collapse
|
17
|
Isozaki T, Otsuka K, Sato M, Takahashi R, Wakabayashi K, Yajima N, Miwa Y, Kasama T. Synergistic induction of CX3CL1 by interleukin-1β and interferon-γ in human lung fibroblasts: involvement of signal transducer and activator of transcription 1 signaling pathways. Transl Res 2011; 157:64-70. [PMID: 21256458 DOI: 10.1016/j.trsl.2010.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/17/2010] [Accepted: 11/30/2010] [Indexed: 12/25/2022]
Abstract
CX3CL1 (fractalkine), a membrane-bound chemokine that induces both the adhesion and the migration of leukocytes, is involved in the recruitment of cells into tissues undergoing inflammatory responses. To explore the regulation of CX3CL1 in pulmonary inflammation and fibrosis, CX3CL1 expression in lung fibroblasts was examined. Normal human fibroblasts were obtained from Promocell (Lonza Walkersville Inc, Md) and were incubated in the presence or absence of various inflammatory stimuli. Culture supernatants were collected, and the soluble CX3CL1 levels were determined with an enzyme-linked immunosorbent assay. The expression of CX3CL1 mRNA transcripts in lung fibroblasts was assessed using quantitative TaqMan real-time polymerase chain reaction. Interleukin (IL)-1β or interferon (IFN)-γ individually induced negligible soluble CX3CL1 secretion by human lung fibroblasts after 24 h. However, the combination of IL-1β and IFN-γ induced dramatic increases in both soluble CX3CL1 protein and mRNA transcripts in a dose- and time-dependent manner. Synergistic up-regulation of cell-associated CX3CL1 protein also was observed after treatment with IL-1β and IFN-γ. The secretion and expression of lung fibroblast-derived CX3CL1 were markedly reduced by specific inhibitors of the STAT-1 transcription factor. These findings suggest that lung fibroblasts are an important cellular source of CX3CL1 and may play a role in pulmonary inflammation and fibrosis.
Collapse
Affiliation(s)
- Takeo Isozaki
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chou CH, Chen SU, Cheng JCH. Radiation-induced interleukin-6 expression through MAPK/p38/NF-kappaB signaling pathway and the resultant antiapoptotic effect on endothelial cells through Mcl-1 expression with sIL6-Ralpha. Int J Radiat Oncol Biol Phys 2009; 75:1553-61. [PMID: 19931737 DOI: 10.1016/j.ijrobp.2009.08.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 07/15/2009] [Accepted: 08/19/2009] [Indexed: 12/23/2022]
Abstract
PURPOSE To investigate the mechanism of interleukin-6 (IL-6) activity induced by ionizing radiation. METHODS AND MATERIALS Human umbilical vascular endothelial cells (HUVECs) were irradiated with different doses to induce IL-6. The IL-6 promoter assay and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to examine transcriptional regulation. Specific chemical inhibitors, decoy double-stranded oligodeoxynucleotides, and Western blotting were conducted to investigate the signal transduction pathway. Recombinant soluble human IL-6 receptor alpha-chain (sIL6-Ralpha) and specific small interfering RNA were used to evaluate the biologic function of radiation-induced IL-6. RESULTS Four grays of radiation induced the highest level of IL-6 protein. The promoter assay and RT-PCR data revealed that the induction of IL-6 was mediated through transcriptional regulation. The p38 inhibitor SB203580, by blocking nuclear factor-kappaB (NF-kappaB) activation, prevented both the transcriptional and translational regulation of radiation-induced IL-6 expression. The addition of sIL6-Ralpha rescued HUVECs from radiation-induced death in an IL-6 concentratio-dependent manner. The antiapoptotic effect of combined sIL6-Ralpha and radiation-induced IL-6 was inhibited by mcl-1-specific small interfering RNA. CONCLUSION Radiation transcriptionally induces IL-6 expression in endothelial cells through mitogen-activated protein kinase/p38-mediated NF-kappaB/IkappaB (inhibitor of NF-kappaB) complex activation. In the presence of sIL6-Ralpha, radiation-induced IL-6 expression acts through Mcl-1 expression to rescue endothelial cells from radiation-induced death.
Collapse
Affiliation(s)
- Chia-Hung Chou
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | |
Collapse
|
19
|
Valdivia-Silva JE, Franco-Barraza J, Silva ALE, Pont GD, Soldevila G, Meza I, García-Zepeda EA. Effect of pro-inflammatory cytokine stimulation on human breast cancer: implications of chemokine receptor expression in cancer metastasis. Cancer Lett 2009; 283:176-85. [PMID: 19409696 DOI: 10.1016/j.canlet.2009.03.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/02/2009] [Accepted: 03/30/2009] [Indexed: 11/30/2022]
Abstract
Interactions between tumour cells and microenvironments may affect their growth and metastasis formation. In search for a better understanding of the role of cellular mediators in the progression of cancer, we investigated the effect of pro-inflammatory cytokines IL-1, IL-6, TNF-alpha and IFN-gamma on the regulation of expression of chemokine receptors CXCR4, CXCR2, CX3CR1, CCR9, and CCR5 in the human breast cancer cell line MCF-7. Our results showed that IL-1 increased CXCR4 expression whereas TNF-alpha increased CX3CR1, CCR9 and CCR5. Interestingly, this regulation was not homogeneous, emphasizing the inherent heterogeneity in cancer that may be responsive to specific inflammatory microenvironments.
Collapse
Affiliation(s)
- Julio E Valdivia-Silva
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito exterior s/n, C.P. 04510 DF, Mexico
| | | | | | | | | | | | | |
Collapse
|
20
|
Loppnow H, Werdan K, Buerke M. Vascular cells contribute to atherosclerosis by cytokine- and innate-immunity-related inflammatory mechanisms. Innate Immun 2008; 14:63-87. [PMID: 18713724 DOI: 10.1177/1753425908091246] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are the human diseases with the highest death rate and atherosclerosis is one of the major underlying causes of cardiovascular diseases. Inflammatory and innate immune mechanisms, employing monocytes, innate receptors, innate cytokines, or chemokines are suggested to be involved in atherogenesis. Among the inflammatory pathways the cytokines are central players. Plasma levels of cytokines and related proteins, such as CRP, have been investigated in cardiovascular patients, tissue mRNA expression was analyzed and correlations to vascular diseases established. Consistent with these findings the generation of cytokine-deficient animals has provided direct evidence for a role of cytokines in atherosclerosis. In vitro cell culture experiments further support the suggestion that cytokines and other innate mechanisms contribute to atherogenesis. Among the initiation pathways of atherogenesis are innate mechanisms, such as toll-like-receptors (TLRs), including the endotoxin receptor TLR4. On the other hand, innate cytokines, such as IL-1 or TNF, or even autoimmune triggers may activate the cells. Cytokines potently activate multiple functions relevant to maintain or spoil homeostasis within the vessel wall. Vascular cells, not least smooth muscle cells, can actively contribute to the inflammatory cytokine-dependent network in the blood vessel wall by: (i) production of cytokines; (ii) response to these potent cell activators; and (iii) cytokine-mediated interaction with invading cells, such as monocytes, T-cells, or mast cells. Activation of these pathways results in accumulation of cells and increased LDL- and ECM-deposition which may serve as an 'immunovascular memory' resulting in an ever-growing response to subsequent invasions. Thus, vascular cells may potently contribute to the inflammatory pathways involved in development and acceleration of atherosclerosis.
Collapse
Affiliation(s)
- Harald Loppnow
- Martin-Luther-Universität Halle-Wittenberg, Universitätsklinik und Poliklinik für Innere Medizin , Halle (Saale), Germany.
| | | | | |
Collapse
|
21
|
Nevo I, Sagi-Assif O, Meshel T, Ben-Baruch A, Jöhrer K, Greil R, Trejo LEL, Kharenko O, Feinmesser M, Yron I, Witz IP. The involvement of the fractalkine receptor in the transmigration of neuroblastoma cells through bone-marrow endothelial cells. Cancer Lett 2008; 273:127-39. [PMID: 18778890 DOI: 10.1016/j.canlet.2008.07.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 06/01/2008] [Accepted: 07/30/2008] [Indexed: 12/13/2022]
Abstract
Transendothelial migration (TEM) of tumor cells is a crucial step in metastasis formation. The prevailing paradigm is that the mechanism underlying TEM of tumor cells is similar to that of leukocytes involving adhesion molecules and chemokines. Fractalkine (CX3CL1) is a unique membrane-bound chemokine that functions also as an adhesion molecule. CX3CL1 can be cleaved to a soluble fragment, capable of attracting fractalkine receptor (CX3CR1)-expressing cells. In the present study, we asked if CX3CR1 is involved in the TEM of neuroblastoma cells. We demonstrated that biologically functional CX3CR1 is expressed by several neuroblastoma cell lines. Most importantly, CX3CR1-expressing neuroblastoma cells were stimulated by CX3CL1 to transmigrate through human bone-marrow endothelial cells. A dose dependent phosphorylation of ERK1/2 and AKT was induced in CX3CR1-expressing neuroblastoma cells by soluble CX3CL1. In addition to CX3CR1, neuroblastoma cells also express the CX3CL1 ligand. Membrane CX3CL1 expression was downregulated and the shedding of soluble CX3CL1 was upregulated by PKC activation. Taken together, the results of this study indicate that CX3CR1 plays a functional role in transmigration of neuroblastoma cells through bone-marrow endothelium. These results led us to hypothesize that the CX3CR1-CX3CL1 axis takes part in bone-marrow metastasis of neuroblastoma.
Collapse
Affiliation(s)
- Ido Nevo
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim NH, Lee MY, Park SJ, Choi JS, Oh MK, Kim IS. Auranofin blocks interleukin-6 signalling by inhibiting phosphorylation of JAK1 and STAT3. Immunology 2007; 122:607-14. [PMID: 17645497 PMCID: PMC2266044 DOI: 10.1111/j.1365-2567.2007.02679.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Auranofin (AF) is a sulphur-containing gold compound. Because of its anti-inflammatory and immunosuppressive activities, AF has been widely used for the therapeutic treatment of rheumatoid arthritis. However, little is known about its mechanism of action. To elucidate the molecular mechanism underlying the anti-inflammatory effect of AF, we studied the effects of AF on cellular responses to interleukin-6 (IL-6). In HepG2 human hepatoma cells, AF markedly inhibited IL-6-induced phosphorylation of janus kinase 1 (JAK1) and signal transducer and activator of transcription 3 (STAT3) and STAT3 translocation into the nucleus. Consistent with this, AF diminished IL-6-induced production of the acute-phase proteins, haptoglobin, fibrinogen, C3 complement and alpha(1)-acid glycoprotein, and gene expression of vascular endothelial growth factor, all of whose transcriptional activities are regulated by STAT3. The inhibitory activity of AF on STAT3 phosphorylation was also demonstrated in primary cells, i.e. fibroblast-like synoviocytes from rheumatoid arthritis patients, human umbilical vein endothelial cells and rat astrocytes. Auranofin-mediated inhibition of STAT3 phosphorylation was recovered by pretreatment with antioxidants containing thiol groups. These findings suggest that the anti-inflammatory action of AF is associated with a blockade of JAK1/STAT3 signalling. Thiol-group-reactive proteins may be involved in AF-induced suppression of JAK1/STAT3 phosphorylation.
Collapse
Affiliation(s)
- Nam-Hoon Kim
- Department of Natural Sciences, College of Medicine, The Catholic Unviersity of Korea, Socho-Gu, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
23
|
Yang S, Hu S, Choudhry MA, Rue LW, Bland KI, Chaudry IH. Anti-rat soluble IL-6 receptor antibody down-regulates cardiac IL-6 and improves cardiac function following trauma-hemorrhage. J Mol Cell Cardiol 2006; 42:620-30. [PMID: 17313958 DOI: 10.1016/j.yjmcc.2006.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 12/11/2006] [Indexed: 11/27/2022]
Abstract
Although anti-IL-6-mAb down-regulates cardiac IL-6 and attenuates IL-6-mediated cardiac dysfunction following trauma-hemorrhage, it is not known whether blockade of IL-6 receptor will down-regulate cardiac IL-6 and improve cardiac function under those conditions. Six groups of male adult rats (275-325 g) were used: sham/trauma-hemorrhage+vehicle, sham/trauma-hemorrhage+IgG, sham/trauma-hemorrhage+anti-rat sIL-6R. Rats underwent trauma-hemorrhage (removal of 60% of the circulating blood volume and fluid resuscitation after 90 min). Vehicle (V), normal goat IgG or anti-rat sIL-6R (16.7 microg/kg BW) was administered intra-peritoneally in the middle of resuscitation. Two hours later, cardiac function was measured by ICG dilution technique; blood samples collected, cardiomyocytes isolated, and cardiomyocyte nuclei were then extracted. Cardiac IL-6, IL-6R, gp130, IkappaB-alpha/P-IkappaB-alpha, NF-kappaB, and ICAM-1 expressions were measured by immunoblotting. Plasma IL-6 and cardiomyocyte NF-kappaB DNA-binding activity were determined by ELISA. In additional animals, heart harvested and cardiac MPO activity and CINC-1 and -3 were also measured. In another group of rats, cardiac function was measure by microspheres at 24 h following trauma-hemorrhage. Cardiac function was depressed and cardiac IL-6, P-IkappaB-alpha, NF-kappaB and its DNA-binding activity, ICAM-1, MPO activity, and CINC-1 and -3 were markedly increased after trauma-hemorrhage. Moreover, cardiac dysfunction was evident even 24 h after trauma-hemorrhage. Administration of sIL-6R following trauma-hemorrhage: (1) improved cardiac output at 2 h and 24 h (p<0.05); (2) down-regulated both cardiac IL-6 and IL-6R (p<0.05); and (3) attenuated cardiac P-IkappaB-alpha, NF-kappaB, NF-kappaB DNA-binding activity, ICAM-1, CINC-1, -3, and MPO activity (p<0.05). IgG did not significantly influence the above parameters. Thus, IL-6-mediated up-regulation of cardiac NF-kappaB, ICAM-1, CINC-1, -3, and MPO activity likely contributes to altered cardiac function following trauma-hemorrhage. Since IL-6R blockade after trauma-hemorrhage down-regulates cardiac IL-6 and improves cardiac functions, blockade of IL-6R following trauma-hemorrhage appears to be a novel and effective adjunct for improving organ and cell function under those conditions.
Collapse
Affiliation(s)
- Shaolong Yang
- Center for Surgical Research and Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
24
|
Mitsuyama K, Sata M, Rose-John S. Interleukin-6 trans-signaling in inflammatory bowel disease. Cytokine Growth Factor Rev 2006; 17:451-61. [PMID: 17045835 DOI: 10.1016/j.cytogfr.2006.09.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The pathogenesis of inflammatory bowel disease (IBD) is complex, involving a wide range of molecules including cytokines. Recent investigations support the important role of an interleukin-6 (IL-6) signaling pathway in the development of IBD. However, the molecular mechanisms of this pathway in the intestine remain incompletely understood. The circulating and intestinal levels of IL-6 as well as soluble IL-6 receptor (sIL-6R) are increased in patients with IBD. It is remarkable that the mucosal T cells of IBD patients are extremely resistant to apoptosis and that a large fraction of these cells express membrane-bound gp130 but not IL-6R. The accumulated evidence strongly supports the hypothesis that the development and perpetuation of IBD relies on the increased formation of IL-6/sIL-6R complexes interacting with membrane-bound gp130 on T cells via trans-signaling. These studies suggest that IL-6 trans-signaling may play a role in the development of IBD; they therefore imply the possibility of a selective therapeutic strategy to target this signaling.
Collapse
Affiliation(s)
- Keiichi Mitsuyama
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Asahi-machi 67, Kurume 830-0011, Japan.
| | | | | |
Collapse
|
25
|
Moon SO, Kim W, Sung MJ, Lee S, Kang KP, Kim DH, Lee SY, So JN, Park SK. Resveratrol suppresses tumor necrosis factor-alpha-induced fractalkine expression in endothelial cells. Mol Pharmacol 2006; 70:112-9. [PMID: 16614140 DOI: 10.1124/mol.106.022392] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Up-regulation of fractalkine is involved in vascular and tissue damage in inflammatory conditions. Resveratrol has been shown to have anti-inflammatory, antioxidant, and antitumor activities. Its regulatory effects on expression of fractalkine in vascular endothelial cells and fractalkine receptor CX3CR1 in monocytes have not been studied. We evaluated the effects of resveratrol on fractalkine expression in human umbilical vein endothelial cells and CX3CR1 expression in THP-1 cells in response to treatment with tumor necrosis factor (TNF)-alpha. TNF-alpha significantly induced fractalkine mRNA and protein expression in endothelial cells. Resveratrol strongly suppressed TNF-alpha-induced fractalkine expression in endothelial cells through suppression of nuclear factor-kappaB and Sp1 activities. Resveratrol decreased the number of TNF-alpha-induced fractalkine-positive endothelial cells and CX3CR1-positive cells determined by flow cytometric analysis. Resveratrol suppressed TNF-alpha-stimulated monocytes adhesion to human umbilical vein endothelial cells. Immunohistochemical analysis revealed that resveratrol suppressed TNF-alpha-induced arterial endothelial fractalkine expression in heart, kidney, and intestine and decreased ED-1-positive cell infiltration in intestinal villi. Resveratrol may provide a new pharmacological approach for suppressing fractalkine/CX3CR1-mediated injury in inflammatory conditions.
Collapse
Affiliation(s)
- Sang-Ok Moon
- Renal Regeneration Laboratory and Department of Internal Medicine, Chonbuk National University Medical School, San 2-20 Keumam-dong, Jeonju, 561-180, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jones SA. Directing transition from innate to acquired immunity: defining a role for IL-6. THE JOURNAL OF IMMUNOLOGY 2005; 175:3463-8. [PMID: 16148087 DOI: 10.4049/jimmunol.175.6.3463] [Citation(s) in RCA: 565] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Appropriate control of leukocyte recruitment and activation is a fundamental requirement for competent host defense and resolving inflammation. A pivotal event that defines the successful outcome of any inflammatory event is the transition from innate to acquired immunity. In IL-6 deficiency, this process appears defective, and a series of in vivo studies have documented important roles for IL-6 in both the resolution of innate immunity and the development of acquired immune responses. Within this review, particular attention will be given to the regulatory properties of the soluble IL-6 receptor and how its activity may affect chronic disease progression.
Collapse
Affiliation(s)
- Simon A Jones
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
27
|
Jones SA, Richards PJ, Scheller J, Rose-John S. IL-6 transsignaling: the in vivo consequences. J Interferon Cytokine Res 2005; 25:241-53. [PMID: 15871661 DOI: 10.1089/jir.2005.25.241] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokine receptors exist in membrane-bound and soluble forms. They bind their ligands with comparable affinity. Although most soluble receptors are antagonists because they compete with their membrane counterparts for their ligands, some soluble receptors are agonists. In this case, on target cells, the complex of cytokine and soluble cytokine receptor binds to a second receptor subunit and initiates intracellular signal transduction. The soluble receptors of the interleukin-6 (IL-6) family of cytokines--soluble IL-6 receptor (sIL-6R), sIL-11R, and soluble ciliary neurotrophic factor receptor (sCNTFR)--are agonists. In vivo, the IL-6/sIL-6R complex stimulates several types of target cells not stimulated by IL-6 alone, as they do not express the membrane- bound IL-6R. This process has been named transsignaling. We have shown recently that in several chronic inflammatory diseases, such as chronic inflammatory bowl disease, peritonitis, and rheumatoid arthritis, as well as in colon cancer, transsignaling via the sIL-6R complexed to IL-6 is a crucial point in the maintenance of the disease. The mechanism by which the IL-6/sIL-6R complex regulates the inflammatory or neoplastic state is discussed.
Collapse
Affiliation(s)
- Simon A Jones
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US, Wales, UK
| | | | | | | |
Collapse
|
28
|
Imaizumi T, Yoshida H, Satoh K. The Molecular and Cellular Biology of C and CX3C Chemokines and Their Receptors. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(04)55004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Sukkar MB, Issa R, Xie S, Oltmanns U, Newton R, Chung KF. Fractalkine/CX3CL1 production by human airway smooth muscle cells: induction by IFN-gamma and TNF-alpha and regulation by TGF-beta and corticosteroids. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1230-40. [PMID: 15321787 DOI: 10.1152/ajplung.00014.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chemokine synthesis by airway smooth muscle cells (ASMC) may be an important process underlying inflammatory cell recruitment in airway inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Fractalkine (FKN) is a recently described CX(3)C chemokine that has dual functions, serving as both a cell adhesion molecule and a chemoattractant for monocytes and T cells, expressing its unique receptor, CX(3)CR1. We investigated FKN expression by human ASMC in response to the proinflammatory cytokines IL-1beta, TNF-alpha, and IFN-gamma, the T helper 2-type cytokines IL-4, IL-10, and IL-13, and the fibrogenic cytokine transforming growth factor (TGF)-beta. Neither of these cytokines alone had any significant effect on ASMC FKN production. Combined stimulation with IFN-gamma and TNF-alpha induced FKN mRNA and protein expression in a time- and concentration-dependent manner. TGF-beta had a significant inhibitory effect on cytokine-induced FKN mRNA and protein expression. Dexamethasone (10(-8)-10(-6) M) significantly upregulated cytokine-induced FKN mRNA and protein expression. Finally, we used selective inhibitors of the mitogen-activated protein kinases c-Jun NH(2)-terminal kinase (JNK) (SP-610025), p38 (SB-203580), and extracellular signal-regulated kinase (PD-98095) to investigate their role in FKN production. SP-610025 (25 microM) and SB-203580 (20 microM), but not PD-98095, significantly attenuated cytokine-induced FKN protein synthesis. IFN-gamma- and TNF-alpha-induced JNK phosphorylation remained unaltered in the presence of TGF-beta but was inhibited by dexamethasone, indicating that JNK is not involved in TGF-beta- or dexamethasone-mediated regulation of FKN production. In summary, FKN production by human ASMC in vitro is regulated by inflammatory and anti-inflammatory factors.
Collapse
Affiliation(s)
- Maria B Sukkar
- Department of Thoracic Medicine, National Heart and Lung Institute, Imperial College, London, Dovehouse St., SW3 6LY, London, UK
| | | | | | | | | | | |
Collapse
|
30
|
McLoughlin RM, Hurst SM, Nowell MA, Harris DA, Horiuchi S, Morgan LW, Wilkinson TS, Yamamoto N, Topley N, Jones SA. Differential regulation of neutrophil-activating chemokines by IL-6 and its soluble receptor isoforms. THE JOURNAL OF IMMUNOLOGY 2004; 172:5676-83. [PMID: 15100312 DOI: 10.4049/jimmunol.172.9.5676] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interleukin-6 signaling via its soluble receptor (sIL-6R) differentially regulates inflammatory chemokine expression and leukocyte apoptosis to coordinate transition from neutrophil to mononuclear cell infiltration. sIL-6R activities may, however, be influenced in vivo by the occurrence of two sIL-6R isoforms that are released as a consequence of differential mRNA splicing (DS) or proteolytic cleavage (PC) of the cognate IL-6R (termed DS- and PC-sIL-6R). Using human peritoneal mesothelial cells and a murine model of peritoneal inflammation, studies described in this work have compared the ability of both isoforms to regulate neutrophil recruitment. In this respect, DS- and PC-sIL-6R were comparable in their activities; however, these studies emphasized that IL-6 trans signaling differentially controls neutrophil-activating CXC chemokine expression. In vitro, stimulation of mesothelial cells with IL-6 in combination with either DS-sIL-6R or PC-sIL-6R showed no induction of CXC chemokine ligand (CXCL)1 (GRO alpha) and CXCL8 (IL-8), whereas both isoforms enhanced CXCL5 (ENA-78) and CXCL6 (granulocyte chemotactic protein-2) expression. Moreover, when complexed with IL-6, both isoforms specifically inhibited the IL-1 beta-induced secretion of CXCL8. These findings were paralleled in vivo, in which induction of peritoneal inflammation in IL-6-deficient (IL-6(-/-)) mice resulted in enhanced keratinocyte-derived chemokine and macrophage-inflammatory protein-2 (the murine equivalent of CXCL1 and CXCL8) levels, but reduced LPS-induced CXC chemokine (the murine equivalent of CXCL5) expression. Reconstitution of IL-6 signaling in IL-6(-/-) mice with IL-6 and its soluble receptor isoforms corrected this chemokine imbalance and suppressed overall neutrophil infiltration. These data confirm that sIL-6R-mediated signaling primarily limits neutrophil influx; however, induction of CXCL5 and CXCL6 may regulate other neutrophil responses.
Collapse
Affiliation(s)
- Rachel M McLoughlin
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Imaizumi T, Yoshida H, Satoh K. Regulation of CX3CL1/fractalkine expression in endothelial cells. J Atheroscler Thromb 2004; 11:15-21. [PMID: 15067194 DOI: 10.5551/jat.11.15] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
CX3CL1/fractalkine is a chemokine with a unique CX3C motif. Fractalkine is synthesized in endothelial cells as a membrane protein, and the N-terminal domain containing a CX3C motif is cleaved and secreted. CX3CR1, the specific receptor for fractalkine, is expressed in monocytes and lymphocytes. Membrane-bound fractalkine works as an adhesion molecule for these leukocytes and the secreted form as a chemotactic factor. Fractalkine is produced by endothelial cells stimulated with tumor necrosis factor-alpha, interleukin-1 (IL-1), lipopolysaccharide and interferon-gamma. Expression of fractalkine in endothelial cells is inhibited by the soluble form of IL-6 receptor-alpha, 15-deoxy-Delta(12,14)-prostaglandin J(2), and hypoxia. The expression of fractalkine is tightly regulated and fractalkine plays an important role in the interaction between leukocytes and endothelial cells.
Collapse
Affiliation(s)
- Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University School of Medicine, Aomori, Japan.
| | | | | |
Collapse
|
32
|
Yamashita K, Imaizumi T, Hatakeyama M, Tamo W, Kimura D, Kumagai M, Yoshida H, Satoh K. Effect of hypoxia on the expression of fractalkine in human endothelial cells. TOHOKU J EXP MED 2004; 200:187-94. [PMID: 14580149 DOI: 10.1620/tjem.200.187] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CX3CL1/fractalkine is a chemokine with a unique CX3C motif. Hypoxia mediates the expression of various genes, such as vascular endothelial growth factor (VEGF), cyclooxygenase-2, and plasminogen-activator inhibitor-1, in vascular endothelial cells. We studied the effect of hypoxia on the expression of fractalkine induced by interferon-gamma (IFN-gamma) in endothelial cells. Human umbilical vein endothelial cells were cultured, and the stimulation of the cells with IFN-gamma was found to induce the expression of fractalkine. Hypoxia inhibited the expression of fractalkine mRNA and protein by IFN-gamma, and this effect was observed with concomitant increase in VEGF expression. Desferrioxamine, an iron chelator that mimics hypoxia in vitro, also inhibited the fractalkine production induced by IFN-gamma. Hypoxia did not affect the degradation of fractalkine mRNA. The inhibition of fractalkine expression by hypoxia was reversed on returning the cultures to reoxygenation condition. Inhibition of IFN-induced fractalkine expression by hypoxia was not affected by the presence of a radical scavenger, N-acetyl-L-cysteine, and the involvement of reactive oxygen species may be excluded. Inhibition of fractalkine expression by hypoxia may be involved in the pathophysiology of ischemic diseases.
Collapse
Affiliation(s)
- Koji Yamashita
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Nowell MA, Richards PJ, Horiuchi S, Yamamoto N, Rose-John S, Topley N, Williams AS, Jones SA. Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble glycoprotein 130. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:3202-9. [PMID: 12960349 DOI: 10.4049/jimmunol.171.6.3202] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies in IL-6-deficient (IL-6(-/-)) mice highlight that IL-6 contributes to arthritis progression. However, the molecular mechanism controlling its activity in vivo remains unclear. Using an experimental arthritis model in IL-6(-/-) mice, we have established a critical role for the soluble IL-6R in joint inflammation. Although intra-articular administration of IL-6 itself was insufficient to reconstitute arthritis within these mice, a soluble IL-6R-IL-6 fusion protein (HYPER-IL-6) restored disease activity. Histopathological assessment of joint sections demonstrated that HYPER-IL-6 increased arthritis severity and controlled intrasynovial mononuclear leukocyte recruitment through the CC-chemokine CCL2. Activation of synovial fibroblasts by soluble IL-6R and IL-6 emphasized that these cells may represent the source of CCL2 in vivo. Specific blockade of soluble IL-6R signaling in wild-type mice using soluble gp130 ameliorated disease. Consequently, soluble IL-6R-mediated signaling represents a promising therapeutic target for the treatment of rheumatoid arthritis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antigens, CD/pharmacology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Cell Movement/genetics
- Cell Movement/immunology
- Chemokine CCL2/biosynthesis
- Cytokine Receptor gp130
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Humans
- Interleukin-6/administration & dosage
- Interleukin-6/deficiency
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Male
- Membrane Glycoproteins/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Isoforms/analysis
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/pharmacology
- Protein Isoforms/physiology
- Receptors, Interleukin-6/administration & dosage
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/genetics
- Receptors, Interleukin-6/physiology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/therapeutic use
- Severity of Illness Index
- Signal Transduction/genetics
- Signal Transduction/immunology
- Solubility
- Synovial Fluid/chemistry
- Synovial Fluid/immunology
- Synovial Fluid/metabolism
Collapse
Affiliation(s)
- Mari A Nowell
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Imaizumi T, Matsumiya T, Tamo W, Shibata T, Fujimoto K, Kumagai M, Yoshida H, Cui XF, Tanji K, Hatakeyama M, Wakabayashi K, Satoh K. 15-Deoxy-D12,14-prostaglandin J2 inhibits CX3CL1/fractalkine expression in human endothelial cells. Immunol Cell Biol 2002; 80:531-6. [PMID: 12406386 DOI: 10.1046/j.1440-1711.2002.01111.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma)is a member of nuclear hormone receptor superfamily, and is knownto play a role in various biological processes including inflammatoryresponses and adipocyte differentiation. CX3CL1/fractalkineis a potent agonist for chemotaxis and adhesion of monocytes and lymphocytes. Endothelial cells produce fractalkine when stimulated with cytokinessuch as interleukin-1 (IL-1), tumour necrosis factor-alpha andinterferon-gamma (IFN-gamma). We herein report that 15-deoxy-n12,14 -prostaglandinJ2 (15d-PGJ2), a PPAR-gamma agonist,inhibits the expression of fractalkine induced by IFN-gamma orIL-1beta in human endothelial cells. Agonist for PPAR-alpha (WY14643)or PPAR-gamma (ciglitazone) did not inhibit the cytokine-inducedfractalkine expression, and the effect of 15d-PGJ2 maybe independent of PPAR. 15-Deoxy-D12,14 prostaglandinJ2 also inhibited the adhesion of blood mononuclear cellsto endothelial monolayers treated with IFN-gamma or IL-1beta. The data suggest that 15d-PGJ2 regulates inflammatoryreactions, at least in part, through the inhibition of fractalkineexpression and leucocyte traffic through the endothelium.
Collapse
Affiliation(s)
- Tadaatsu Imaizumi
- Departments of Vascular Biology, Hirosaki University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|