1
|
Ni L, Li P, Li M, Huang S, Dang N. SERPINB8 and furin regulate ITGAX expression and affect the proliferation and invasion of melanoma cells. Exp Dermatol 2023; 32:24-29. [PMID: 36134483 DOI: 10.1111/exd.14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 01/12/2023]
Abstract
In the past 10 years, the systemic treatment of advanced melanoma has undergone tremendous changes through the development of targeted therapy. However, there is still a long way to go. This study aims to characterize the function and interaction of ITGAX, SERPINB8 and furin in BRAF V600E mutant melanoma. Differentially expressed genes related to BRAF V600E mutation and BRAFi treatment were obtained by analysing GSE141484 and GSE22838. two kinds of BRAFi (Vemurafenib, 10 μM; Dabrafenib, 1 μM) were used to treat A375 and 1205Lu cells, respectively. The expression of ITGAX, SERPINB8 and Furin in A375 and 1205Lu cells was down-regulated by specific siRNAs, and cell proliferation, clone formation and invasion were detected by CCK-8, colony formation and transwell assays. The physical binding of furin and SERPINB8 was detected by immunoprecipitation. BRAFi treatment down-regulated the ITGAX and SERPINB8 expression and did not change furin expression. Knockdown of ITGAX and SERPINB8 both inhibited the proliferation and invasion of A375 and 1205Lu cells. Knocking down SERPINB8 down-regulated the expression of ITGAX. Furin knockdown and inhibitors all up-regulated the protein level of ITGAX. SERPINB8 can physically bind to furin. In summary, SERPINB8 and furin regulate the expression of ITGAX in melanoma cells, and ITGAX significantly promotes the proliferation and invasion of melanoma cells.
Collapse
Affiliation(s)
- Li Ni
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Pin Li
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingming Li
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuhong Huang
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Garima G, Thanvi S, Singh A, Verma V. Epidermal Growth Factor Receptor Variant III Mutation, an Emerging Molecular Marker in Glioblastoma Multiforme Patients: A Single Institution Study on the Indian Population. Cureus 2022; 14:e26412. [PMID: 35911278 PMCID: PMC9335135 DOI: 10.7759/cureus.26412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background Glioblastoma is the most frequent and the most aggressive primary malignant brain tumor in adults. Standard treatment includes surgical removal of the tumor followed by concomitant chemotherapy and radiotherapy. Temozolomide, an oral alkylating agent, is currently the most commonly used chemotherapy. However, the median survival of glioblastoma multiforme (GBM) patients remains very low. Epidermal growth factor receptor variant III (EGFRvIII) is a novel marker for GBM patients of Indian origin as very few studies have been done on this molecular marker in our country. This is the first study utilizing this molecular marker among GBM patients in Rajasthan, India. This was a single institutional study that aimed to estimate the proportion of EGFRvIII mutation in GBM patients of Indian origin. Methodology This was a non-randomized, ambispective, single institutional observational study done on 35 brain tissue biopsies of histopathologically diagnosed and confirmed cases of GBM based on the World Health Organization 2007 Classification received in the pathology department of Dr. Sampurnanand Medical College, Jodhpur from 2015 to 2020 after applying inclusion and exclusion criteria. Molecular study of the EGFRvIII marker was conducted in all cases of GBM in the same institution on the RNA extracted from selected biopsy samples. Statistical analysis was performed using the SPSS version 22.0 software package (IBM Corp., Armonk, NY USA). The correlation between age and gender with EGFR-positive cases was analyzed, and EGFR positivity compared with previous studies. Results The occurrence of the EGFRvIII mutation was found to be 17.4% (6/35 cases). The mean age of presentation of a tumor with this mutation was estimated to be 54.3 years. Males were more commonly found to be affected (66.6%, 4/6 cases). Conclusions Thus, the identification of this mutation would segregate patients who may benefit from newer therapeutic approaches. In the future, personalized treatment may be advised for GBM patients depending on the presence of the EGFRvIII mutation.
Collapse
|
3
|
Shah MK, Leary EA, Darling EM. Integration of hyper-compliant microparticles into a 3D melanoma tumor model. J Biomech 2018; 82:46-53. [PMID: 30392774 DOI: 10.1016/j.jbiomech.2018.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022]
Abstract
Multicellular spheroids provide a physiologically relevant platform to study the microenvironment of tumors and therapeutic applications, such as microparticle-based drug delivery. The goal of this study was to investigate the incorporation/penetration of compliant polyacrylamide microparticles (MPs), into either cancer or normal human cell spheroids. Incorporation of collagen-1-coated MPs (stiffness: 0.1 and 9 kPa; diameter: 15-30 µm) into spheroids (diameter ∼100 µm) was tracked for up to 22 h. Results indicated that cells within melanoma spheroids were more influenced by MP mechanical properties than cells within normal cell spheroids. Melanoma spheroids had a greater propensity to incorporate and displace the more compliant MPs over time. Mature spheroids composed of either cell type were able to recognize and integrate MPs. While many tumor models exist to study drug delivery and efficacy, the study of uptake and incorporation of cell-sized MPs into established spheroids/tissues or tumors has been limited. The ability of hyper-compliant MPs to successfully penetrate 3D tumor models with natural extracellular matrix deposition provides a novel platform for potential delivery of drugs and other therapeutics into the core of tumors and micrometastases.
Collapse
Affiliation(s)
- Manisha K Shah
- Center for Biomedical Engineering, Brown University, RI, USA
| | | | - Eric M Darling
- Center for Biomedical Engineering, Brown University, RI, USA; Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, RI, USA; Department of Orthopaedics, Brown University, RI, USA; School of Engineering, Brown University, RI, USA.
| |
Collapse
|
4
|
Salesse S, Odoul L, Chazée L, Garbar C, Duca L, Martiny L, Mahmoudi R, Debelle L. Elastin molecular aging promotes MDA-MB-231 breast cancer cell invasiveness. FEBS Open Bio 2018; 8:1395-1404. [PMID: 30186741 PMCID: PMC6120250 DOI: 10.1002/2211-5463.12455] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/30/2018] [Accepted: 05/15/2018] [Indexed: 01/22/2023] Open
Abstract
Elastin is a long-lived extracellular matrix protein responsible for the structural integrity and function of tissues. Breast cancer elastosis is a complex phenomenon resulting in both the deposition of elastotic masses and the local production of elastin fragments. In invasive human breast cancers, an increase in elastosis is correlated with severity of the disease and age of the patient. Elastin-derived peptides (EDPs) are a hallmark of aging and are matrikines - matrix fragments having the ability to regulate cell physiology. They are known to promote processes linked to tumor progression, but their effects on breast cancer cells remain unexplored. Our data show that EDPs enhance the invasiveness of MDA-MB-231 breast cancer cells through the engagement of matrix metalloproteases 14 and 2. We therefore suggest that elastosis and/or an aged stroma could promote breast cancer cell invasiveness.
Collapse
Affiliation(s)
- Stéphanie Salesse
- UMR CNRS/URCA 7369 SFR CAP Santé Faculty of Sciences University of Reims Champagne-Ardenne France
| | - Ludivine Odoul
- UMR CNRS/URCA 7369 SFR CAP Santé Faculty of Sciences University of Reims Champagne-Ardenne France
| | - Lise Chazée
- UMR CNRS/URCA 7369 SFR CAP Santé Faculty of Sciences University of Reims Champagne-Ardenne France
| | - Christian Garbar
- Biopathology Department Institut Jean Godinot-Unicancer Reims France.,DERM-I-C EA7319 Université de Reims Champagne Ardenne France
| | - Laurent Duca
- UMR CNRS/URCA 7369 SFR CAP Santé Faculty of Sciences University of Reims Champagne-Ardenne France
| | - Laurent Martiny
- UMR CNRS/URCA 7369 SFR CAP Santé Faculty of Sciences University of Reims Champagne-Ardenne France
| | - Rachid Mahmoudi
- Faculty of Medicine, EA3797 University of Reims Champagne-Ardenne France.,Department of Geriatrics and Internal Medicine Maison Blanche Hospital Reims University Hospitals France
| | - Laurent Debelle
- UMR CNRS/URCA 7369 SFR CAP Santé Faculty of Sciences University of Reims Champagne-Ardenne France
| |
Collapse
|
5
|
Effect of dental implant materials on the extracellular matrix formation and cellular adhesion in MG-63 cells. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J 2013; 280:5350-70. [DOI: 10.1111/febs.12393] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Hui K. Gan
- Tumour Targeting Program; Ludwig Institute for Cancer Research; Heidelberg Victoria Australia
| | - Anna N. Cvrljevic
- Oncogenic Signaling Laboratory; Monash University; Clayton Victoria Australia
| | - Terrance G. Johns
- Oncogenic Signaling Laboratory; Monash University; Clayton Victoria Australia
| |
Collapse
|
7
|
Haasters F, Prall WC, Westphal I, Böcker W, Padula D, Mutschler W, Docheva D, Schieker M. Overexpression of dnIKK in mesenchymal stem cells leads to increased migration and decreased invasion upon TNFα stimulation. Biochem Biophys Res Commun 2013; 436:265-70. [DOI: 10.1016/j.bbrc.2013.05.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/22/2013] [Indexed: 12/13/2022]
|
8
|
Docampo MJ, Cabrera J, Rabanal RM, Bassols A. Expression of matrix metalloproteinase-2 and -9 and membrane-type 1 matrix metalloproteinase in melanocytic tumors of dogs and canine melanoma cell lines. Am J Vet Res 2011; 72:1087-96. [PMID: 21801067 DOI: 10.2460/ajvr.72.8.1087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate expression of matrix metalloproteinase (MMP)-2 and -9 and membrane-type 1 MMP (MT1-MMP) in melanocytomas and malignant melanomas of dogs, analyze in vitro production of MMPs by canine melanoma cell lines and primary dermal fibroblasts, and investigate mutual communication between tumor cells and fibroblasts and the influence of collagen on MMP regulation. SAMPLE 35 biopsy specimens from melanocytic tumors and primary dermal fibroblasts of dogs and 3 canine melanoma cell lines (CML-1, CML-10c2, and CML-6M). PROCEDURES MMP-2, MMP-9, and MT1-MMP were detected in tumor samples by use of immunohistochemical analysis. In vitro production was analyzed via reverse transcriptase-PCR assay, immunocytochemical analysis, zymography, and immunoblotting. RESULTS MMP-9 was overexpressed in malignant melanomas, compared with expression in melanocytomas, whereas no significant differences in MMP-2 and MT1-MMP immunostaining were detected. Stromal cells also often had positive staining results. In vitro, all 3 melanoma cell lines and dermal fibroblasts had evidence of MMP-2 and MT1-MMP, but only melanoma cells had evidence of MMP-9. Coculture of CML-1 or CML-10c2 cells and dermal fibroblasts induced an increase in expression of the active form of MMP-2. Culture of melanoma cells on type I collagen increased the activation state of MT1-MMP. CONCLUSIONS AND CLINICAL RELEVANCE MMP-9 expression was increased in malignant melanomas of dogs. Stromal cells were a source for MMPs. Stromal cells, in combination with matrix components such as type I collagen, can interact with tumor cells to regulate MMP production. Information about MMP production and regulation could help in the development of new treatments.
Collapse
Affiliation(s)
- María-José Docampo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | |
Collapse
|
9
|
Abaffy T, Möller M, Riemer DD, Milikowski C, DeFazio RA. A case report - Volatile metabolomic signature of malignant melanoma using matching skin as a control. JOURNAL OF CANCER SCIENCE & THERAPY 2011; 3:140-144. [PMID: 22229073 PMCID: PMC3251165 DOI: 10.4172/1948-5956.1000076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Melanoma is the most serious form of skin cancer. The quest for melanoma diagnostic biomarkers is paramount since early detection of melanoma and surgical excision represent the only effective treatment of this capricious disease. Our recent study tested the hypothesis that melanoma forms a unique volatile signature that is different than control, healthy tissue. Here, we are reporting a case study, the analysis of the volatile metabolic signature of a malignant melanoma using matched, non-neoplastic skin tissue from the same patient as a control. This is a significant improvement in the methodology, since it is well known that diet, skin type, genetic background, age, sex and environment all contribute to individual variation in the skin volatile signature. In the present study, we have identified 32 volatile compounds; 9 volatile compounds were increased in melanoma when compared to normal skin and 23 volatile compounds were detected only in melanoma and not in normal skin. Out of these 32 compounds, 10 have been reported previously by our group, thus confirming our results and adding additional confidence in our untargeted metabolomics approach for detection of melanoma biomarkers.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Molecular and Cellular Pharmacology, University of Miami, Miami, Fl, USA
| | - Mecker Möller
- Dewitt Daughtry Department of Surgery, Division of Surgical Oncology, University of Miami, Miami, Fl, USA
| | - Daniel D. Riemer
- Marine and Atmospheric Chemistry, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Fl, USA
| | | | | |
Collapse
|
10
|
A matrix metalloproteinase-1/protease activated receptor-1 signaling axis promotes melanoma invasion and metastasis. Oncogene 2009; 28:4237-48. [PMID: 19734937 PMCID: PMC2788659 DOI: 10.1038/onc.2009.272] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hallmarks of malignant melanoma are its propensity to metastasize and its resistance to treatment, giving patients with advanced disease a poor prognosis. The transition of melanoma from non-invasive radial growth phase (RGP) to invasive and metastatically competent vertical growth phase (VGP) is a major step in tumor progression, yet the mechanisms governing this transformation are unknown. Matrix Metalloproteinase-1 (MMP-1) is highly expressed by VGP melanomas, and is thought to contribute to melanoma progression by degrading type I collagen within the skin to facilitate melanoma invasion. Protease activated receptor-1 (PAR-1) is activated by MMP-1, and is also expressed by VGP melanomas. However, the effects MMP-1 signaling through PAR-1 have not been examined in melanoma. Here, we demonstrate that an MMP-1/PAR-1 signaling axis exists in VGP melanoma, and is necessary for melanoma invasion. Introduction of MMP-1 into RGP melanoma cells induced gene expression associated with tumor progression and promoted invasion in vitro, and enhanced tumor growth and conferred metastatic capability in vivo. This study demonstrates that both the type I collagenase and PAR-1 activating functions of MMP-1 are required for melanoma progression, and suggests that MMP-1 may be a major contributor to the transformation of melanoma from non-invasive to malignant disease.
Collapse
|
11
|
Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, van Rheenen J, Deryugina E, Friedl P. Collagen-based cell migration models in vitro and in vivo. Semin Cell Dev Biol 2009; 20:931-41. [PMID: 19682592 DOI: 10.1016/j.semcdb.2009.08.005] [Citation(s) in RCA: 492] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 08/04/2009] [Indexed: 01/07/2023]
Abstract
Fibrillar collagen is the most abundant extracellular matrix (ECM) constituent which maintains the structure of most interstitial tissues and organs, including skin, gut, and breast. Density and spatial alignments of the three-dimensional (3D) collagen architecture define mechanical tissue properties, i.e. stiffness and porosity, which guide or oppose cell migration and positioning in different contexts, such as morphogenesis, regeneration, immune response, and cancer progression. To reproduce interstitial cell movement in vitro with high in vivo fidelity, 3D collagen lattices are being reconstituted from extracted collagen monomers, resulting in the re-assembly of a fibrillar meshwork of defined porosity and stiffness. With a focus on tumor invasion studies, we here evaluate different in vitro collagen-based cell invasion models, employing either pepsinized or non-pepsinized collagen extracts, and compare their structure to connective tissue in vivo, including mouse dermis and mammary gland, chick chorioallantoic membrane (CAM), and human dermis. Using confocal reflection and two-photon-excited second harmonic generation (SHG) microscopy, we here show that, depending on the collagen source, in vitro models yield homogeneous fibrillar texture with a quite narrow range of pore size variation, whereas all in vivo scaffolds comprise a range from low- to high-density fibrillar networks and heterogeneous pore sizes within the same tissue. Future in-depth comparison of structure and physical properties between 3D ECM-based models in vitro and in vivo are mandatory to better understand the mechanisms and limits of interstitial cell movements in distinct tissue environments.
Collapse
Affiliation(s)
- Katarina Wolf
- Department of Cell Biology, Nijmegen Center for Molecular Life Science, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Blackburn JS, Rhodes CH, Coon CI, Brinckerhoff CE. RNA Interference Inhibition of Matrix Metalloproteinase-1 Prevents Melanoma Metastasis by Reducing Tumor Collagenase Activity and Angiogenesis. Cancer Res 2007; 67:10849-58. [DOI: 10.1158/0008-5472.can-07-1791] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Klose A, Wilbrand-Hennes A, Zigrino P, Weber E, Krieg T, Mauch C, Hunzelmann N. Contact of high-invasive, but not low-invasive, melanoma cells to native collagen I induces the release of mature cathepsin B. Int J Cancer 2006; 118:2735-43. [PMID: 16381007 DOI: 10.1002/ijc.21700] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Metastasis of malignant tumor cells involves cell-cell and cell-matrix interactions, which regulate the expression and localization of proteolytic enzymes. In the present study, we investigated the expression and localization of the lysosomal cysteine proteinase cathepsin B and its natural inhibitors cystatin A, B and C in high- (MV3), intermediate- (SKmel28) and low-invasive (SKmel23, WM164) human melanoma cell lines grown on plastic or in contact with monomeric or fibrillar collagen type I. Neither the transcript levels of cathepsin B nor those of the natural inhibitors, cystatin B and C, were altered by the interaction of melanoma cells with collagen type I. However, protein expression and cellular localization of cathepsin B and its inhibitors were markedly affected. In contrast to low-invasive cells, high-invasive cells constitutively released procathepsin B when cultured on plastic. In addition, contact of invasive cells with fibrillar collagen type I resulted in the release of both mature forms of the protease. Perturbation studies using inhibitory antibodies against the beta1 subunit of the integrin receptor indicated a role for the beta1 integrin receptor family in the regulation of cathepsin B release. Cystatin B protein expression was much lower in high-invasive cells in both culture conditions, when compared to low-invasive cells. Cystatin C expression was comparable in all cells, but cell contact to fibrillar collagen type I induced its expression. These results strongly implicate a pivotal role of cell-matrix interactions for the regulation of cathepsin B localization and activity in melanoma cells.
Collapse
Affiliation(s)
- Anke Klose
- Department of Dermatology, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Trisciuoglio D, Desideri M, Ciuffreda L, Mottolese M, Ribatti D, Vacca A, Del Rosso M, Marcocci L, Zupi G, Del Bufalo D. Bcl-2 overexpression in melanoma cells increases tumor progression-associated properties and in vivo tumor growth. J Cell Physiol 2006; 205:414-21. [PMID: 15920759 DOI: 10.1002/jcp.20413] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we demonstrated that bcl-2 overexpression in human melanoma cells consistently enhanced the activity of multiple metastasis-related proteinases, in vitro cell invasion, and in vivo tumor growth. In particular, by using the M14 parental cell line, the MN8 control clone, and two bcl-2 overexpressing derivatives, we found that bcl-2 overexpressing cells exposed to hypoxia, when compared to parental cells, expressed higher level of several metalloproteases (MMPs) such as MMP-2, MMP-7, MT1-MMP, and tissue inhibitors of metalloproteases-1 and -2. Moreover, bcl-2 overexpression in melanoma cells enhanced in vitro invasion on matrigel and, in vivo tumor growth. The more aggressive behavior of bcl-2 transfectants tumors is significantly associated to an increase in MMP-2 expression as well as in a more elevated microvessel density as compared to the parental line. Taken together, our data suggest that bcl-2 plays a pivotal role in the regulation of molecules associated with the migratory and invasive phenotype, contributing, in cooperation to hypoxia, to tumor progression.
Collapse
Affiliation(s)
- Daniela Trisciuoglio
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Demou ZN, Awad M, McKee T, Perentes JY, Wang X, Munn LL, Jain RK, Boucher Y. Lack of Telopeptides in Fibrillar Collagen I Promotes the Invasion of a Metastatic Breast Tumor Cell Line. Cancer Res 2005; 65:5674-82. [PMID: 15994941 DOI: 10.1158/0008-5472.can-04-1682] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Defective fibrillar collagen polymerization in primary tumors has been correlated with increased metastasis. However, it is unclear how collagen organization influences tumor invasion. In this study, we show that collagen I polymerized without telopeptides (the flanking regions of collagen molecules) can differentially affect the three-dimensional migration of mammary carcinoma cells. MDA-MB-231 cells capable of proteolytic degradation and mesenchymal motion, invaded telopeptide-intact and telopeptide-free collagen gels to the same extent. In contrast, MDA-MB-435S cells, with typical features of amoeboid cells (poor collagenolytic activity, rounded cell morphology), were 5-fold more invasive in telopeptide-free than telopeptide-intact collagen. A fraction of the MDA-MB-435S cells that invaded telopeptide-intact or telopeptide-free collagen had a rounded morphology; however, in telopeptide-free collagen, a significant fraction of the cells switched from a rounded to elongated morphology (protrusion formation). The dynamic changes in cellular shape facilitated MDA-MB-435S locomotion through the narrow interfiber gaps, which were smaller than cell diameters. Based on the spherical morphology of MDA-MB-435S cells, we tested if the changes in cell shape and invasion were related to RhoA-ROCK activity; GTP-bound RhoA was measured in pull-down assays. RhoA activity was 1.8-fold higher for MDA-MB-435S cells seeded on telopeptide-free than telopeptide-intact collagen. Y27632 inhibition of ROCK, a Rho effector, significantly reduced the changes in cellular morphodynamics and the invasion of MDA-MB-435S cells but did not alter the invasion of MDA-MB-231 cells. Thus, the higher RhoA activity of MDA-MB-435S cells in telopeptide-free collagen enhances the changes in cellular morphodynamics associated with motility and invasion.
Collapse
Affiliation(s)
- Zoe N Demou
- Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cell adhesion and migration are essential for embryonic development, tissue regeneration, but also for tumor development. The physical link between the extracellular matrix (ECM) and the actin cytoskeleton is mainly mediated by receptors of the integrin family. Through signals transduced upon integrin ligation to ECM proteins, this family of proteins plays key roles in regulating tumor growth and metastasis as well as tumor angiogenesis. During melanoma development, changes in integrin expression, intracellular control of integrin functions and signals perceived from integrin ligand binding impact upon the ability of tumor cells to interact with their environment and enable melanoma cells to convert from a sessile, stationary to a migratory and invasive phenotype. Antagonists of several integrins are now under evaluation in clinical trials to determine their potential as therapeutics for malignant melanoma and other kinds of cancer.
Collapse
Affiliation(s)
- Silke Kuphal
- Institute of Pathology, University of Regensburg, Germany
| | | | | |
Collapse
|
17
|
Novel Biological Properties of Peptides Arising from Basement Membrane Proteins. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(05)56013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Pasco S, Ramont L, Maquart FX, Monboisse JC. Control of melanoma progression by various matrikines from basement membrane macromolecules. Crit Rev Oncol Hematol 2004; 49:221-33. [PMID: 15036262 DOI: 10.1016/j.critrevonc.2003.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2003] [Indexed: 11/25/2022] Open
Abstract
Many biological processes such as cell differentiation, cell migration or gene expression are tightly controlled by cell-cell interactions or by various cytokines. During tumor progression, cancer cells are in contact with extracellular matrix (ECM) macromolecules involving specific receptors such as integrins. The different stages of tumor progression, and mainly the proteolytic cascades implicated in extracellular matrix degradation and cell migration, may be controlled by the extracellular matrix macromolecules or by domains released by directed and limited proteolysis of these molecules. In this review, we summarise the biological effects of various peptides, named matrikines, derived from basement membranes (BM) components, such as laminins (LN), proteoglycans or collagens. These peptides may control tumor progression by regulating the proteolytic cascades leading to cancer cell dissemination and metastasis.
Collapse
Affiliation(s)
- Sylvie Pasco
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS FRE 2534, Faculté de Médecine, IFR 53 Biomolécules, 51 Rue Cognac Jay, 51095 Reims Cedex, France
| | | | | | | |
Collapse
|
19
|
Labrousse AL, Ntayi C, Hornebeck W, Bernard P. Stromal reaction in cutaneous melanoma. Crit Rev Oncol Hematol 2004; 49:269-75. [PMID: 15036266 DOI: 10.1016/j.critrevonc.2003.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2003] [Indexed: 12/18/2022] Open
Abstract
Cutaneous melanoma is a highly malignant tumor type which is characterized by its tendency to give rise to metastases. Stromal relationships are essential for growth and metastasis of solid tumors. In cutaneous melanoma, microscopic level of invasion (Breslow index), overall architecture of cells (horizontal or vertical growth phase), angiogenesis, vessel invasion are morphological features which may carry prognostic significance. As demonstrated by in vivo studies, stromal reaction in melanoma is mainly characterized by collagen and elastin proteolysis preferentially localized around the tumor at the invasive front along with variable angiogenesis and lymphocyte infiltration. On the basis of recent findings, it becomes increasingly evident that resident stromal cells (fibroblasts, endothelial cells) are implicated in the metastatic process, including proliferation, matrix degradation, or migration of melanoma cells through cell-cell cross-talk by soluble factors (proteases, cytokines, growth factors) or by direct contact.
Collapse
|
20
|
Baronas-Lowell D, Lauer-Fields JL, Borgia JA, Sferrazza GF, Al-Ghoul M, Minond D, Fields GB. Differential modulation of human melanoma cell metalloproteinase expression by alpha2beta1 integrin and CD44 triple-helical ligands derived from type IV collagen. J Biol Chem 2004; 279:43503-13. [PMID: 15292257 DOI: 10.1074/jbc.m405979200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor cell binding to components of the basement membrane is well known to trigger intracellular signaling pathways. Signaling ultimately results in the modulation of gene expression, facilitating metastasis. Type IV collagen is the major structural component of the basement membrane and is known to be a polyvalent ligand, possessing sequences bound by the alpha1beta1, alpha2beta1, and alpha3beta1 integrins, as well as cell surface proteoglycan receptors, such as CD44/chondroitin sulfate proteoglycan (CSPG). The role of alpha2beta1 integrin and CD44/CSPG receptor binding on human melanoma cell activation has been evaluated herein using triple-helical peptide ligands incorporating the alpha1(IV)382-393 and alpha1(IV)1263-1277 sequences, respectively. Gene expression and protein production of matrix metalloproteinases-1 (MMP-1), -2, -3, -13, and -14 were modulated with the alpha2beta1-specific sequence, whereas the CD44-specific sequence yielded significant stimulation of MMP-8 and lower levels of modulation of MMP-1, -2, -13, and -14. Analysis of enzyme activity confirmed different melanoma cell proteolytic potentials based on engagement of either the alpha2beta1 integrin or CD44/CSPG. These results are indicative of specific activation events that tumor cells undergo upon binding to select regions of basement membrane collagen. Based on the present study, triple-helical peptide ligands provide a general approach for monitoring the regulation of proteolysis in cellular systems.
Collapse
Affiliation(s)
- Diane Baronas-Lowell
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton 33431-0991, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Cauchard JH, Berton A, Godeau G, Hornebeck W, Bellon G. Activation of latent transforming growth factor beta 1 and inhibition of matrix metalloprotease activity by a thrombospondin-like tripeptide linked to elaidic acid. Biochem Pharmacol 2004; 67:2013-22. [PMID: 15135298 DOI: 10.1016/j.bcp.2004.01.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 01/23/2004] [Indexed: 10/26/2022]
Abstract
Impaired wound healing and skin aging are characterized by neutral protease-mediated destruction of matrix macromolecules associated with disturbance in tissue repair. We synthesized a fatty acyl-peptide derivative at aims to simultaneously activate latent TGF-beta through its peptide domain, KFK, and inhibit MMPs through its lipophilic moiety, elaidic acid. Elaidyl-KFK as well as KFK were shown to activate LAP-TGF-beta both in vitro, using a solid phase assay with immobilized LAP-TGF-beta, and ex vivo using human dermal fibroblasts cultures. In both assays, as much as up to 10% of LAP-TGF-beta added could be recovered as active form. KQK, KQFK as well as their lipopeptide counterparts were inactive. Elaidyl-KFK-mediated LAP-TGF-beta activation led to up-regulation of collagen and TIMP-1 production and down regulation of PMA-induced MMP-1 expression in fibroblasts cultures. Those effects could be suppressed by supplementing cell culture medium with blocking TGF-beta antibody. Elaidyl-KFK inhibited MMP-2, MMP-9, MMP-3, MMP-1, in vitro with IC(50) equal to 1.2, 1.0, 0.24 and 8.9 microM, respectively. Its ex vivo inhibitory capacity, as assessed using skin tissue sections, towards the elastin-degrading capacity of MMP-9 was even more pronounced. At a 1 microM concentration, the lipopeptide decreased by up to 80% enzyme activity. Thus, "Lipospondin," i.e. elaidyl-KFK might be considered as a promising model compound to prevent age-associated dermal alterations.
Collapse
Affiliation(s)
- Jean-Hubert Cauchard
- Laboratory of Biochemistry and Molecular Biology, UMR 6198 CNRS, IFR-53 "Biomolecules", Faculty of Medicine, University of Reims Champagne-Ardenne, 51 Rue Cognacq Jay, 51095 Reims cedex, France
| | | | | | | | | |
Collapse
|
22
|
Ntayi C, Hornebeck W, Bernard P. Implication des métalloprotéinases matricielles (MMPs) dans la progression du mélanome cutané. ACTA ACUST UNITED AC 2004; 52:154-9. [PMID: 15063935 DOI: 10.1016/j.patbio.2004.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
Among skin cancers, melanoma is probably the most highly invasive and metastasizing, with a poor outcome. During melanoma progression, tumor cells must across the dermal-epidermal junction, and invade the dermis, its principal site of propagation. Therefore, degradation of matrix proteins constituting dermal-epidermal junction and dermis by proteolytic enzymes is an essential step of melanoma invasion. Serines proteinases and Matrix Metalloproteinases (MMPs) families are the main degrading substances involved in this process. Among MMPs, the expression of MMP-1, -2, -3, -9, -14, 15, -16 by melanoma cells was shown in vitro and in vivo, and correlated with the invasive phenotype. In addition to disrupt matrix proteins, MMPs can also cleave non matrix components such as cytokines, and growth factors. The modifications generated by the remodeling of matrix and non-matrix components can influence melanoma cells proliferation, adhesion, vascularization, survival, proteases expression, and migration. Thus, using inhibitors in order to control expression, activation and activity of MMPs could regulate cellular process which led to melanoma progression.
Collapse
Affiliation(s)
- C Ntayi
- Laboratoire de recherche en dermatologie, Faculté de médecine, Université de Reims-Champagne-Ardenne, 51, rue Cognacq-Jay, 51095 Reims, France.
| | | | | |
Collapse
|
23
|
Ntayi C, Labrousse AL, Debret R, Birembaut P, Bellon G, Antonicelli F, Hornebeck W, Bernard P. Elastin-Derived Peptides Upregulate Matrix Metalloproteinase-2-ediated Melanoma Cell Invasion Through Elastin-Binding Protein. J Invest Dermatol 2004; 122:256-65. [PMID: 15009703 DOI: 10.1046/j.0022-202x.2004.22228.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type I collagen mediates melanoma cells invasion through upregulation of matrix metalloproteinases-1 and -2 (MMP-1 and -2) expression and activation. We investigated here the contribution of elastin-derived peptides (ED), degradation products of elastin, the main component of elastic fibers in melanoma cells invasion and MMP-1 and -2 expression. Our results evidenced fragmentation of elastin at the invasive front of melanoma, particularly in the most invasive tumors where those fibers nearly totally vanished. By electron microscopy, elastolysis was found to occur mainly at the periphery of melanoma cells, where close contact between elastic fibers and cells could be noticed. Therefore, we showed in vitro that plating melanoma cells high tumorigenic potential on ED-coated dishes, selectively enhanced MMP-2, as membrane-type MMP-1 (MT1-MMP) production and activation. Nevertheless, pro-MMP-2 activation was not observed owing to the parallel increase in tissue inhibitor of metalloproteinase (TIMP)-2 expression. The effects of ED on melanoma cells were found to be mediated by splicing form of beta-galactosidase (S-Gal) occupancy, as being suppressed by lactose. Supplementing collagen lattices with ED led to consistent activation of MMP-2 that can be attributed to TIMP-2 downregulation. Upregulation of MMP-2 activation by ED led to enhanced melanoma cells invasion through S-Gal occupancy. Immunohistochemistry studies, confirmed that S-Gal expression was more prominent at the melanoma invasion site associated with a strong expression of MMP-2 and MT1-MMP. We hypothesize that ED following interactions with S-Gal elastin receptor can favor melanoma cells invasion through a three-dimensional type I collagen matrix by upregulating MMP-2 activation.
Collapse
Affiliation(s)
- Carole Ntayi
- Department of Dermatology, CNRS FRE 2534, Faculty of Medicine, University of Reims, Champagne-Ardenne, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu S, Guo R, Simpson LG, Xiao ZS, Burnham CE, Quarles LD. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 2003; 278:37419-26. [PMID: 12874285 DOI: 10.1074/jbc.m304544200] [Citation(s) in RCA: 360] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inactivating mutations of Phex cause X-linked hypophosphatemia (XLH) by increasing levels of a circulating phosphaturic factor. FGF23 is a candidate for this phosphaturic factor. Elevated serum FGF23 levels correlate with the degree of hypophosphatemia in XLH, suggesting that loss of Phex function in this disorder results in either diminished degradation and/or increased biosynthesis of FGF23. To establish the mechanisms whereby Phex regulates FGF23, we assessed Phex-dependent hydrolysis of recombinant FGF23 in vitro and measured fgf23 message levels in the Hyp mouse homologue of XLH. In COS-7 cells, overexpression of FGF23 resulted in its degradation into N- and C-terminal fragments by an endogenous decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone-sensitive furin-type convertase. Phex-dependent hydrolysis of full-length FGF23 or its N- and C-terminal fragments could not be demonstrated in the presence or absence of decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone in COS-7 cells expressing Phex and FGF23. In a reticulolysate system, apparent cleavage of FGF23 occurred with wild-type Phex, the inactive Phex-3'M mutant, and vector controls, indicating nonspecific metabolism of FGF23 by contaminating enzymes. These findings suggest that FGF23 is not a direct Phex substrate. In contrast, by real-time reverse transcriptase PCR, the levels of fgf23 transcripts were highest in bone, the predominant site of Phex expression. In addition, Hyp mice displayed a bone-restricted increase in fgf23 transcripts in association with inactivating Phex mutations. Increased expression of fgf23 was also observed in Hyp-derived osteoblasts in culture. These findings suggest that Phex, possibly through the actions of unidentified Phex substrates or other downstream effectors, regulates fgf23 expression as part of a potential hormonal axis between bone and kidney that controls systemic phosphate homeostasis and mineralization.
Collapse
Affiliation(s)
- Shiguang Liu
- Department of Medicine, Center for Bone and Mineral Disorders, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
25
|
Nawrocki-Raby B, Gilles C, Polette M, Martinella-Catusse C, Bonnet N, Puchelle E, Foidart JM, Van Roy F, Birembaut P. E-Cadherin mediates MMP down-regulation in highly invasive bronchial tumor cells. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:653-61. [PMID: 12875984 PMCID: PMC1868220 DOI: 10.1016/s0002-9440(10)63692-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The disorganization of E-cadherin/catenin complexes and the overexpression of matrix metalloproteinases (MMPs) are frequently involved in the capacity of epithelial cells to acquire an invasive phenotype. The functional link between E-cadherin and MMPs was studied by transfecting invasive bronchial BZR tumor cells with human E-cadherin cDNA. Using different in vitro (cell dispersion, modified Boyden chamber) and in vivo assays (human airway epithelial xenograft), we showed that E-cadherin-positive clones displayed a decrease of invasive abilities. As shown by immunoprecipitation, the re-expressed E-cadherin was able to sequestrate one part of free cytoplasmic beta-catenin in BZR cells. The decrease of beta-catenin transcriptional activity in E-cadherin-transfected clones was demonstrated using the TOP-FLASH reporter construct. Finally, we observed a decrease of MMP-1, MMP-3, MMP-9, and MT1-MMP, both at the mRNA and at the protein levels, in E-cadherin-positive clones whereas no changes in MMP-2, TIMP-1, or TIMP-2 were observed when compared with control clones. Moreover, zymography analysis revealed a loss of MMP-2 activation ability in E-cadherin-positive clones treated with the concanavalin A lectin. These data demonstrate a direct role of E-cadherin/catenin complex organization in the regulation of MMPs and suggest an implication of this regulation in the expression of an invasive phenotype by bronchial tumor cells.
Collapse
Affiliation(s)
- Béatrice Nawrocki-Raby
- Institut National de la Santé et de la Recherche Mèdicale (INSERM) Unité Mixte de Recherche Santé (UMRS) 514, Laboratoire Pol Bouin, Reims, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hornebeck W, Maquart FX. Proteolyzed matrix as a template for the regulation of tumor progression. Biomed Pharmacother 2003; 57:223-30. [PMID: 12888258 DOI: 10.1016/s0753-3322(03)00049-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pericellular proteolysis plays a pivotal function in cell invasion, a hallmark of tumor growth and metastasis. The minidegradome constituted of two matrix metalloproteinases (MMP), i.e. MMP-2 and MT1-MMP, associated with tissue inhibitor of metalloprotease-2 (TIMP-2) and integrin (alpha(v)beta(3)) or CD(44), is mainly involved in such invasive program. It catalyzes matrix degradation but, alternatively, proteolytic exposure of matricryptic sites or matrikines liberation by those enzymes regulates either positively or negatively tumor cell migration. That applies to types I and IV collagens, elastin, laminin 5, as described here, but such phenomenon might be extended to other matrix macromolecules. The development of tumors from epithelium origin is related to aging. Senescent fibroblasts are characterized by increased expression of MMPs, (particularly collagenase-1 (MMP-1) and stromelysin-1 (MMP-3)) and deposited matrix by those aged cells was shown to favor cancer cell growth. Thus, compositional variation of matrix-surrounding tumor cells, with formation of matricryptic sites and matrikines, can be considered as one main epigenetic factor contributing to tumor progression. A matrix-directed pharmacological approach in cancer is now emerging.
Collapse
Affiliation(s)
- William Hornebeck
- Faculté de Médecine, Centre National de la Recherche Scientifique (CNRS, FRE 2534), IFR 53 Biomolécules, Université de Reims, Champagne Ardenne, 51, rue Cognacq Jay, 51095 Reims cedex, France.
| | | |
Collapse
|
27
|
Lauer-Fields JL, Sritharan T, Stack MS, Nagase H, Fields GB. Selective hydrolysis of triple-helical substrates by matrix metalloproteinase-2 and -9. J Biol Chem 2003; 278:18140-5. [PMID: 12642591 DOI: 10.1074/jbc.m211330200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of proteases in the tumor cell invasion process is multifaceted. Members of the matrix metalloproteinase (MMP) family have been implicated in primary and metastatic tumor growth, angiogenesis, and degradation of extracellular matrix (ECM) components. Differentiating between the up-regulation of MMP production and the presence of activated MMPs can be difficult but may well dictate which MMPs are critical to invasion. Because the hydrolysis of collagens is one of the committed steps in ECM turnover, we have investigated selective MMP action on collagenous substrates as a means to evaluate active MMPs. Two triple-helical peptide (THP) models of the MMP-9 cleavage site in type V collagen, alpha1(V)436-450 THP and alpha1(V)436-447 fTHP, were hydrolyzed by MMP-2 and MMP-9 at the Gly-Val bond, analogous to the bond cleaved by MMP-9 in the corresponding native collagen. Kinetic analyses showed k(cat)/K(m) values of 14,002 and 5,449 s(-1)m(-1) for MMP-2 and -9 hydrolysis of alpha1(V)436-447 fTHP, respectively. These values, along with individual k(cat) and K(m) values, are comparable with collagen hydrolysis by MMP-2 and -9. Neither THP was hydrolyzed by MMP-1, -3, -13, or -14. alpha1(V)436-447 fTHP and a general fluorogenic THP were used to screen for triple-helical peptidase activity in alpha(2)beta(1) integrin-stimulated melanoma cells. Binding of the alpha(2)beta(1) integrin resulted in the production of substantial triple-helical peptidase activity, the majority (>95%) of which was non-MMP-2/-9. THPs were found to provide highly selective substrates for members of the MMP family and can be used to evaluate active MMP production in cellular systems.
Collapse
Affiliation(s)
- Janelle L Lauer-Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431-0991, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Cancer cells possess a broad spectrum of migration and invasion mechanisms. These include both individual and collective cell-migration strategies. Cancer therapeutics that are designed to target adhesion receptors or proteases have not proven to be effective in slowing tumour progression in clinical trials--this might be due to the fact that cancer cells can modify their migration mechanisms in response to different conditions. Learning more about the cellular and molecular basis of these different migration/invasion programmes will help us to understand how cancer cells disseminate and lead to new treatment strategies.
Collapse
Affiliation(s)
- Peter Friedl
- Department of Dermatology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | | |
Collapse
|
29
|
Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Bröcker EB, Friedl P. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 2003; 160:267-77. [PMID: 12527751 PMCID: PMC2172637 DOI: 10.1083/jcb.200209006] [Citation(s) in RCA: 1074] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Invasive tumor dissemination in vitro and in vivo involves the proteolytic degradation of ECM barriers. This process, however, is only incompletely attenuated by protease inhibitor-based treatment, suggesting the existence of migratory compensation strategies. In three-dimensional collagen matrices, spindle-shaped proteolytically potent HT-1080 fibrosarcoma and MDA-MB-231 carcinoma cells exhibited a constitutive mesenchymal-type movement including the coclustering of beta 1 integrins and MT1-matrix metalloproteinase (MMP) at fiber bindings sites and the generation of tube-like proteolytic degradation tracks. Near-total inhibition of MMPs, serine proteases, cathepsins, and other proteases, however, induced a conversion toward spherical morphology at near undiminished migration rates. Sustained protease-independent migration resulted from a flexible amoeba-like shape change, i.e., propulsive squeezing through preexisting matrix gaps and formation of constriction rings in the absence of matrix degradation, concomitant loss of clustered beta 1 integrins and MT1-MMP from fiber binding sites, and a diffuse cortical distribution of the actin cytoskeleton. Acquisition of protease-independent amoeboid dissemination was confirmed for HT-1080 cells injected into the mouse dermis monitored by intravital multiphoton microscopy. In conclusion, the transition from proteolytic mesenchymal toward nonproteolytic amoeboid movement highlights a supramolecular plasticity mechanism in cell migration and further represents a putative escape mechanism in tumor cell dissemination after abrogation of pericellular proteolysis.
Collapse
Affiliation(s)
- Katarina Wolf
- Department of Dermatology, University of Würzburg, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hornebeck W, Emonard H, Monboisse JC, Bellon G. Matrix-directed regulation of pericellular proteolysis and tumor progression. Semin Cancer Biol 2002; 12:231-41. [PMID: 12083853 DOI: 10.1016/s1044-579x(02)00026-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The microenvironment of cancer cells, composed of extracellular matrix (ECM) macromolecules, plays a pivotal function in tumor progression. ECM preexisting modules or cryptic sites revealed by partial enzymatic hydrolysis positively or negatively regulate matrix metalloproteinase (MMP) expression and activation, further influencing matrix invasion by cancer cells. Pericellular activation of gelatinase A (MMP-2) proceeds via the formation of a complex involving its inhibitor, TIMP-2, its activator(s), MT-MMPs and alphavbeta3 integrin forming a docking system. This proteinase has been invariably linked to cancer cell invasive potential and is often predictive of a poor survival. MMP-2 degrades most ECM macromolecules and appears to act as a main 'decryptase'. ECM modulation of MMP-2 activation pathway thus influences angiogenesis and tumor growth. For instance the noncollagenous domain of alpha3 chain of type IV collagen, through alphavbeta3 integrin binding, inhibits both MT1-MMP and alphavbeta3 integrin expression from melanoma cells and empedes cell migration and proliferation. At the opposite, a particular module in elastin (VGVAPG) with type VIII beta turn conformation stimulates MT1-MMP and proMMP-2 activation through binding to S-gal elastin receptor, and increases the matrix invasive capacity of several cancer cell lines and endothelial cells. Endocytosis emerges as a main mechanism controlling MMP-2, and also other MMPs; it proceeds via the formation of a MMP-thrombospondin(s) complex further recognized by the LRP scavenger receptor. ECM undergoes conspicuous variations with aging linked to alterations of tissue organization and post-translational modifications of matrix constituents that modify cell-matrix interactions and MMP-2 activation pathway.
Collapse
Affiliation(s)
- William Hornebeck
- Institut Fédératif de Recherche Biomolécules (IFR 53), Centre National de la Recherche Scientifique (CNRS, FRE 2534), Faculté de Médecine, Université de Reims-Champagne Ardenne, France.
| | | | | | | |
Collapse
|