1
|
Agarwal A, Chandran A, Raza F, Ungureanu IM, Hilcenko C, Stott K, Bright NA, Morone N, Warren AJ, Lautenschläger J. VAMP2 regulates phase separation of α-synuclein. Nat Cell Biol 2024; 26:1296-1308. [PMID: 38951707 PMCID: PMC11322000 DOI: 10.1038/s41556-024-01451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
α-Synuclein (αSYN), a pivotal synaptic protein implicated in synucleinopathies such as Parkinson's disease and Lewy body dementia, undergoes protein phase separation. We reveal that vesicle-associated membrane protein 2 (VAMP2) orchestrates αSYN phase separation both in vitro and in cells. Electrostatic interactions, specifically mediated by VAMP2 via its juxtamembrane domain and the αSYN C-terminal region, drive phase separation. Condensate formation is specific for R-SNARE VAMP2 and dependent on αSYN lipid membrane binding. Our results delineate a regulatory mechanism for αSYN phase separation in cells. Furthermore, we show that αSYN condensates sequester vesicles and attract complexin-1 and -2, thus supporting a role in synaptic physiology and pathophysiology.
Collapse
Affiliation(s)
- Aishwarya Agarwal
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Aswathy Chandran
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Farheen Raza
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Protein and Cellular Sciences, GSK, Stevenage, UK
| | - Irina-Maria Ungureanu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Christine Hilcenko
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicholas A Bright
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Alan J Warren
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Janin Lautenschläger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
2
|
Pan K, Jinnah HA, Hess EJ, Smith Y, Villalba RM. Ultrastructural analysis of nigrostriatal dopaminergic terminals in a knockin mouse model of DYT1 dystonia. Eur J Neurosci 2024; 59:1407-1427. [PMID: 38123503 DOI: 10.1111/ejn.16197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 12/23/2023]
Abstract
DYT1 dystonia is associated with decreased striatal dopamine release. In this study, we examined the possibility that ultrastructural changes of nigrostriatal dopamine terminals could contribute to this neurochemical imbalance using a serial block face/scanning electron microscope (SBF/SEM) and three-dimensional reconstruction to analyse striatal tyrosine hydroxylase-immunoreactive (TH-IR) terminals and their synapses in a DYT1(ΔE) knockin (DYT1-KI) mouse model of DYT1 dystonia. Furthermore, to study possible changes in vesicle packaging capacity of dopamine, we used transmission electron microscopy to assess the synaptic vesicle size in striatal dopamine terminals. Quantitative comparative analysis of 80 fully reconstructed TH-IR terminals in the WT and DYT1-KI mice indicate (1) no significant difference in the volume of TH-IR terminals; (2) no major change in the proportion of axo-spinous versus axo-dendritic synapses; (3) no significant change in the post-synaptic density (PSD) area of axo-dendritic synapses, while the PSDs of axo-spinous synapses were significantly smaller in DYT1-KI mice; (4) no significant change in the contact area between TH-IR terminals and dendritic shafts or spines, while the ratio of PSD area/contact area decreased significantly for both axo-dendritic and axo-spinous synapses in DYT1-KI mice; (5) no significant difference in the mitochondria volume; and (6) no significant difference in the synaptic vesicle area between the two groups. Altogether, these findings suggest that abnormal morphometric changes of nigrostriatal dopamine terminals and their post-synaptic targets are unlikely to be a major source of reduced striatal dopamine release in DYT1 dystonia.
Collapse
Affiliation(s)
- Ke Pan
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Physical Therapy & Human Movement Sciences, Northwestern University, Chicago, Illinois, USA
| | - Hyder A Jinnah
- Department of Neurology, Emory University, Atlanta, Georgia, USA
- Department of Human Genetics and Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Ellen J Hess
- Department of Neurology, Emory University, Atlanta, Georgia, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA
| | - Yoland Smith
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Rosa M Villalba
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Vadisiute A, Meijer E, Szabó F, Hoerder-Suabedissen A, Kawashita E, Hayashi S, Molnár Z. The role of snare proteins in cortical development. Dev Neurobiol 2022; 82:457-475. [PMID: 35724379 PMCID: PMC9539872 DOI: 10.1002/dneu.22892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/01/2022]
Abstract
Neural communication in the adult nervous system is mediated primarily through chemical synapses, where action potentials elicit Ca2+ signals, which trigger vesicular fusion and neurotransmitter release in the presynaptic compartment. At early stages of development, the brain is shaped by communication via trophic factors and other extracellular signaling, and by contact-mediated cell-cell interactions including chemical synapses. The patterns of early neuronal impulses and spontaneous and regulated neurotransmitter release guide the precise topography of axonal projections and contribute to determining cell survival. The study of the role of specific proteins of the synaptic vesicle release machinery in the establishment, plasticity, and maintenance of neuronal connections during development has only recently become possible, with the advent of mouse models where various members of the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex have been genetically manipulated. We provide an overview of these models, focusing on the role of regulated vesicular release and/or cellular excitability in synaptic assembly, development and maintenance of cortical circuits, cell survival, circuit level excitation-inhibition balance, myelination, refinement, and plasticity of key axonal projections from the cerebral cortex. These models are important for understanding various developmental and psychiatric conditions, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Auguste Vadisiute
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Elise Meijer
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Florina Szabó
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Eri Kawashita
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | - Shuichi Hayashi
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
The Multispecialty Toxin: A Literature Review of Botulinum Toxin. Plast Reconstr Surg Glob Open 2022; 10:e4228. [PMID: 35402123 PMCID: PMC8987218 DOI: 10.1097/gox.0000000000004228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/26/2022]
Abstract
Botulinum toxin (BoNT) is a potent biological exotoxin produced from Clostridium botulinum. Although it was first used therapeutically to treat strabismus, its clinical role has since expanded rapidly over the years to include treatment of a variety of head and neck, gastrointestinal, urogenital, musculoskeletal, neurological, dermatological, and cosmetic disorders. The main purpose of this review is to provide a brief updated overview of the history, mechanism of action, and clinical applications of BoNT therapy across multiple medical specialties, including the most common adverse effects and recommended Botox dosages.
Collapse
|
5
|
Rindi G, Wiedenmann B. Neuroendocrine neoplasia of the gastrointestinal tract revisited: towards precision medicine. Nat Rev Endocrinol 2020; 16:590-607. [PMID: 32839579 DOI: 10.1038/s41574-020-0391-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Over the past 5 years, a number of notable research advances have been made in the field of neuroendocrine cancer, specifically with regard to neuroendocrine cancer of the gastrointestinal tract. The aim of this Review is to provide an update on current knowledge that has proven effective for the clinical management of patients with these tumours. For example, for the first time in the tubular gastrointestinal tract, well-differentiated high-grade (grade 3) tumours and mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs) are defined in the WHO classification. This novel classification enables efficient identification of the most aggressive well-differentiated neuroendocrine tumours and helps in defining the degree of aggressiveness of MiNENs. The Review also discusses updates to epidemiology, cell biology (including vesicle-specific components) and the as-yet-unresolved complex genetic background that varies according to site and differentiation status. The Review summarizes novel diagnostic instruments, including molecules associated with the secretory machinery, novel radiological approaches (including pattern recognition techniques), novel PET tracers and liquid biopsy combined with DNA or RNA assays. Surgery remains the treatment mainstay; however, peptide receptor radionuclide therapy with novel radioligands and new emerging medical therapies (including vaccination and immunotherapy) are evolving and being tested in clinical trials, which are summarized and critically reviewed here.
Collapse
Affiliation(s)
- Guido Rindi
- Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Bertram Wiedenmann
- Charité, Campus Virchow Klinikum and Charité Mitte, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
6
|
Martín-Cófreces NB, Sánchez-Madrid F. Sailing to and Docking at the Immune Synapse: Role of Tubulin Dynamics and Molecular Motors. Front Immunol 2018; 9:1174. [PMID: 29910809 PMCID: PMC5992405 DOI: 10.3389/fimmu.2018.01174] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022] Open
Abstract
The different cytoskeleton systems and their connecting molecular motors move vesicles and intracellular organelles to shape cells. Polarized cells with specialized functions display an exquisite spatio-temporal regulation of both cytoskeletal and organelle arrangements that support their specific tasks. In particular, T cells rapidly change their shape and cellular function through the establishment of cell surface and intracellular polarity in response to a variety of cues. This review focuses on the contribution of the microtubule-based dynein/dynactin motor complex, the tubulin and actin cytoskeletons, and different organelles to the formation of the antigen-driven immune synapse.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
7
|
Fan J, Wang Y, Liu L, Zhang H, Zhang F, Shi L, Yu M, Gao F, Xu Z. cTAGE5 deletion in pancreatic β cells impairs proinsulin trafficking and insulin biogenesis in mice. J Cell Biol 2017; 216:4153-4164. [PMID: 29133483 PMCID: PMC5716288 DOI: 10.1083/jcb.201705027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/31/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023] Open
Abstract
In this study, Fan et al. show that cTAGE5 interacts with the v-SNARE Sec22b to regulate proinsulin processing and COPII-dependent trafficking from the ER to the Golgi, thereby influencing glucose tolerance. Proinsulin is synthesized in the endoplasmic reticulum (ER) in pancreatic β cells and transported to the Golgi apparatus for proper processing and secretion into plasma. Defects in insulin biogenesis may cause diabetes. However, the underlying mechanisms for proinsulin transport are still not fully understood. We show that β cell–specific deletion of cTAGE5, also known as Mea6, leads to increased ER stress, reduced insulin biogenesis in the pancreas, and severe glucose intolerance in mice. We reveal that cTAGE5/MEA6 interacts with vesicle membrane soluble N-ethyl-maleimide sensitive factor attachment protein receptor Sec22b. Sec22b and its interaction with cTAGE5/MEA6 are essential for proinsulin processing. cTAGE5/MEA6 may coordinate with Sec22b to control the release of COPII vesicles from the ER, and thereby the ER-to-Golgi trafficking of proinsulin. Importantly, transgenic expression of human cTAGE5/MEA6 in β cells can rescue not only the defect in islet structure, but also dysfunctional insulin biogenesis and glucose intolerance on cTAGE5/Mea6 conditional knockout background. Together our data provide more insight into the underlying mechanism of the proinsulin trafficking pathway.
Collapse
Affiliation(s)
- Junwan Fan
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Liang Liu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongsheng Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Feng Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei Shi
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mei Yu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China .,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
8
|
Gordon DE, Chia J, Jayawardena K, Antrobus R, Bard F, Peden AA. VAMP3/Syb and YKT6 are required for the fusion of constitutive secretory carriers with the plasma membrane. PLoS Genet 2017; 13:e1006698. [PMID: 28403141 PMCID: PMC5406017 DOI: 10.1371/journal.pgen.1006698] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/26/2017] [Accepted: 03/15/2017] [Indexed: 11/19/2022] Open
Abstract
The cellular machinery required for the fusion of constitutive secretory vesicles with the plasma membrane in metazoans remains poorly defined. To address this problem we have developed a powerful, quantitative assay for measuring secretion and used it in combination with combinatorial gene depletion studies in Drosophila cells. This has allowed us to identify at least three SNARE complexes mediating Golgi to PM transport (STX1, SNAP24/29 and Syb; STX1, SNAP24/29 and YKT6; STX4, SNAP24 and Syb). RNAi mediated depletion of YKT6 and VAMP3 in mammalian cells also blocks constitutive secretion suggesting that YKT6 has an evolutionarily conserved role in this process. The unexpected role of YKT6 in plasma membrane fusion may in part explain why RNAi and gene disruption studies have failed to produce the expected phenotypes in higher eukaryotes.
Collapse
Affiliation(s)
- David E. Gordon
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, United States of America
| | - Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | - Kamburpola Jayawardena
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, United Kingdom
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | - Andrew A. Peden
- Department of Biomedical Science & Centre for Membrane Interactions and Dynamics (CMIAD), The University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Song P, Zhi H, Wu B, Cui X, Chen X. Soybean Golgi SNARE 12 protein interacts with Soybean mosaic virus encoded P3N-PIPO protein. Biochem Biophys Res Commun 2016; 478:1503-8. [PMID: 27553272 DOI: 10.1016/j.bbrc.2016.08.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
Soybean mosaic virus (SMV), a member of the Potyvirus genus, is one of the most prevalent and devastating viral pathogens in soybean-growing regions worldwide. It is generally accepted that symptom development of a viral plant disease results from molecular interactions between the virus and its host plant. P3N-PIPO, as a trans-frame protein consisting of the amino-terminal half of P3 fused to PIPO of the Potyvirus, plays a key role of viral cell-to-cell movement. This study provides evidence that Golgi SNARE 12 (designated as GOS12) protein of soybean interacts with SMV P3N-PIPO via a two-hybrid yeast system by screening a soybean cDNA library. Bimolecular fluorescence complementation (BiFC) assay further confirmed the interaction, which occurred in the cytomembrane of Nicotiana benthamiana cells. We also confirmed that the domain involved in the interaction is PIPO domain of P3N-PIPO by two-hybrid yeast system and BiFC. It is possible that the GOS12 is an essential host factor for PD targeting of P3N-PIPO protein of potyvirus.
Collapse
Affiliation(s)
- Puwen Song
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, PR China
| | - Haijian Zhi
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Bingyue Wu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, PR China
| | - Xiaoyan Cui
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, PR China.
| | - Xin Chen
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, PR China.
| |
Collapse
|
10
|
Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6. Sci Rep 2016; 6:30282. [PMID: 27493064 PMCID: PMC4974504 DOI: 10.1038/srep30282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/13/2016] [Indexed: 11/08/2022] Open
Abstract
Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view.
Collapse
|
11
|
Bustos-Morán E, Blas-Rus N, Martín-Cófreces NB, Sánchez-Madrid F. Orchestrating Lymphocyte Polarity in Cognate Immune Cell-Cell Interactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:195-261. [PMID: 27692176 DOI: 10.1016/bs.ircmb.2016.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The immune synapse (IS) is a specialized structure established between different immune cells that fulfills several functions, including a role as a communication bridge. This intimate contact between a T cell and an antigen-presenting cell promotes the proliferation and differentiation of lymphocytes involved in the contact. T-cell activation requires the specific triggering of the T-cell receptor (TCR), which promotes the activation of different signaling pathways inducing the polarization of the T cell. During this process, different adhesion and signaling receptors reorganize at specialized membrane domains, concomitantly to the polarization of the tubulin and actin cytoskeletons, forming stable polarization platforms. The centrosome also moves toward the IS, driving the movement of different organelles, such as the biosynthetic, secretory, degrading machinery, and mitochondria, to sustain T-cell activation. A proper orchestration of all these events is essential for T-cell effector functions and the accomplishment of a complete immune response.
Collapse
Affiliation(s)
- Eugenio Bustos-Morán
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain
| | - Noelia Blas-Rus
- Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| |
Collapse
|
12
|
Patrussi L, Baldari CT. The Rab GTPase Rab8 as a shared regulator of ciliogenesis and immune synapse assembly: From a conserved pathway to diverse cellular structures. Small GTPases 2015; 7:16-20. [PMID: 26587735 DOI: 10.1080/21541248.2015.1111852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Among them, Rab8 is an essential participant in primary cilium formation. In a report recently published in the Journal of Cell Science, Finetti and colleagues identify Rab8 as a novel player in vesicular traffic in the non-ciliated T lymphocytes, which contributes to the assembly of the specialized signaling platform known as the immune synapse. By interacting with the v-SNARE VAMP-3, Rab8 is indeed responsible for the final docking/fusion step in T cell receptor (TCR) recycling to the immune synapse. A second important take-home message which comes to light from this work is that VAMP-3 also interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of Smoothened at the plasma membrane. Hence the data presented in this report, in addition to identifying Rab8 as a novel player in vesicular traffic to the immune synapse, reveal how both ciliated and non-ciliated cells take advantage of a conserved pathway to build highly specific cellular structures.
Collapse
Affiliation(s)
- Laura Patrussi
- a Department of Life Sciences , University of Siena , Siena , Italy
| | - Cosima T Baldari
- a Department of Life Sciences , University of Siena , Siena , Italy
| |
Collapse
|
13
|
Liu T, Singh P, Jenkins JT, Jagota A, Bykhovskaia M, Hui CY. A continuum model of docking of synaptic vesicle to plasma membrane. J R Soc Interface 2015; 12:20141119. [PMID: 25551140 DOI: 10.1098/rsif.2014.1119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neurotransmitter release from neuronal terminals is governed by synaptic vesicle fusion. Vesicles filled with transmitters are docked at the neuronal membrane by means of the SNARE machinery. After a series of events leading up to the fusion pore formation, neurotransmitters are released into the synaptic cleft. In this paper, we study the mechanics of the docking process. A continuum model is used to determine the deformation of a spherical vesicle and a plasma membrane, under the influence of SNARE-machinery forces and electrostatic repulsion. Our analysis provides information on the variation of in-plane stress in the membranes, which is known to affect fusion. Also, a simple model is proposed to study hemifusion.
Collapse
|
14
|
Weng J, Yang Y, Wang W. Lipid regulated conformational dynamics of the longin SNARE protein Ykt6 revealed by molecular dynamics simulations. J Phys Chem A 2014; 119:1554-62. [PMID: 25268560 DOI: 10.1021/jp5075708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformation and subcellular localization of R-SNARE protein Ykt6 are regulated by the lipidation state of its C-terminal CCAIM motif. Biochemical and crystallography studies showed that lipid molecules binding at a hydrophobic pocket at the interface between the longin domain and the SNARE core can lock Ykt6 at a closed conformation and mimic the farnesylated state of Ykt6. In this study, we performed in silico farnesylation of Ykt6 and explored the conformational dynamics of Ykt6 using conventional and steered MD simulations. We found that the farnesylated Ykt6 model structure is stable during the 2 μs simulation and the farnesyl group adopts conformations similar to those of the DPC molecule bound to Ykt6. Both DPC binding and farnesylation were found to reduce the conformational flexibility of Ykt6 and hinder the dissociation of SNARE core from the longin domain. The dissociation of the αF-αG segment is the rate-limiting step during the putative closed-to-open conformational transition of Ykt6, and the key residues involved in this process are consistent with the experimental mutagenesis study.
Collapse
Affiliation(s)
- Jingwei Weng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and ‡Institutes of Biomedical Sciences, Fudan University , Shanghai 200433, P.R. China
| | | | | |
Collapse
|
15
|
Botulinum toxin A in postherpetic neuralgia: a parallel, randomized, double-blind, single-dose, placebo-controlled trial. Clin J Pain 2014; 29:857-64. [PMID: 23370074 DOI: 10.1097/ajp.0b013e31827a72d2] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Cumulative evidence support a beneficial effect of botulinum toxin A (BTX-A) in postherpetic neuralgia (PHN). We aimed to assess efficacy, safety, and tolerability of BTX-A in the management of PHN, performing a randomized, double-blind, single-dose, placebo-controlled trial. METHODS Thirty adults with PHN were randomized either to BTX-A or placebo. Severity of pain was evaluated by patients using a visual analogue scale (VAS) and quality of sleep was assessed using a 5-item questionnaire. Primary outcome was reduction in VAS score, with a greater than 50% reduction being considered clinically significant. Secondary outcomes were reduction in sleep score and maintenance of VAS score after treatment, with over 50% maintenance considered clinically meaningful. RESULTS Thirteen patients from the experimental arm achieved an at least 50% reduction in VAS score, compared with none of the placebo patients (NNT=1.2, 95% CI, 2-1; ARR=0.87, 95% CI, 055-096; P<0.001). BTX-A patients showed significant reduction in VAS pain scores between baseline and week 2, which persisted for a median period of 16 weeks. BTX-A patients showed significant reduction in sleep scores between baseline and week 2, which remained unchanged until 16th week (P<0.001). Treatment was well tolerated. DISCUSSION Data confirm that BTX-A is effective and well tolerated in the treatment of PHN.
Collapse
|
16
|
Chan SN, Tang BL. Location and membrane sources for autophagosome formation - from ER-mitochondria contact sites to Golgi-endosome-derived carriers. Mol Membr Biol 2013; 30:394-402. [PMID: 24175710 DOI: 10.3109/09687688.2013.850178] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances have revealed much about the signaling events and molecular components associated with autophagy. Although it is clear that there are multiple points of intersection and connection between autophagy and known vesicular membrane transport processes between membrane compartments, autophagy is modulated by a distinct set of molecular components, and the autophagosome has a unique membrane composition. A key question that has yet to be resolved with regards to autophagosome formation is its membrane source. Various evidences have indicated that membranes from the endoplasmic reticulum (ER), mitochondria, Golgi, endosomes and the plasma membrane could all potentially act as a source of autophagosomal membrane in non-specialized macroautophagy. Recent investigations have generated advances in terms of the mitochondria's involvement in starvation-induced autophagy, and refined localization of autophagosome formation to ER-mitochondria contact sites. On the other hand, data accumulates on the delivery of membrane sources to the pre-autophagosome structure by Atg9-containing mobile carriers, which likely originated from the Golgi-endosome system. The answer to the question on the origin of membrane materials for autophagosome biogenesis awaits further reconciliation of these different findings.
Collapse
Affiliation(s)
- Shu Ning Chan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Medical Drive , Singapore
| | | |
Collapse
|
17
|
A computational prediction of structure and function of novel homologue of Arabidopsis thaliana Vps51/Vps67 subunit in Corchorus olitorius. Interdiscip Sci 2013; 4:256-67. [PMID: 23354814 DOI: 10.1007/s12539-012-0139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 06/05/2012] [Accepted: 07/29/2012] [Indexed: 10/27/2022]
Abstract
Vps mediated vesicular transport is important for transferring macromolecules trapped inside a vesicle. Although highly abundant, Vps shows tremendous sequence variation among diverse array of species. However, this difference in sequence, which seems to also translate into substantial functional variation, is hardly characterized in Corchorus spp. Here, our computational study investigates structural and functional features of one of the Vps subunit namely Vps51/Vps67 in C. olitorius. Broad scale structural characterization revealed novel information about the overall Vps structure and binding sites. Moreover, functional analyses indicate interaction partners which were unexplored to date. Since membrane trafficking is essentially associated with nutrient uptake and chemical de-toxification, characterization of the Vps subunit can well provide us with better insight into important agronomic traits such as stress response, immune response and phytoremediation capacity.
Collapse
|
18
|
Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 2012; 70:2099-121. [PMID: 22986507 DOI: 10.1007/s00018-012-1156-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/01/2023]
Abstract
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e., secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane, and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules.
Collapse
|
19
|
Zhu Y, Ning D, Wang F, Liu C, Xu Y, Jia X, Zhu D. Effect of thyroxine on munc-18 and syntaxin-1 expression in dorsal hippocampus of adult-onset hypothyroid rats. Eur J Histochem 2012; 56:e22. [PMID: 22688303 DOI: 10.4081/ejh.2012.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 12/05/2011] [Accepted: 01/12/2012] [Indexed: 12/11/2022] Open
Abstract
Adult-onset hypothyroidism induces a variety of impairments on hippocampus-dependent neurocognitive functioningin which many synaptic proteins in hippocampus neurons are involved. Here, we observed the effect of adult-onset hypothyroidism on the expression of syntaxin-1 and munc-18 in the dorsal hippocampus and whether the altered proteins could be restored by levothyroxine (T4) treatment. All rats were separated into 4 groups randomly: hypothyroid group, 5 μg T4/100 g body weight (BW) treated group, 20 μg T4/100g BW treated group and control group. The radioimmunoassay kits were applied to assay the levels of serum T3 and T4, and the levels of syntaxin-1 and munc-18 in hippocampus were assessed by immunohistochemistry and Western blot. Both analysis corroborated that syntaxin-1 in the hypothyroid group was significantly higher. Munc-18 was lower in four layers of CA3 and dentate gyrus by immunohistochemistry. After two weeks of treatment with 5 μg T4/100g BW for hypothyroidism, syntaxin-1 levels were completely restored, whereas the recovery of munc-18 only located in two of the four impaired layers. Twenty μg T4/100g BW treatment normalized munc-18 levels. These data suggested that adult-onset hypothyroidism induced increment of syntaxin-1 and decrement of munc-18 in the dorsal hippocampus, which could be restored by T4 treatment. Larger dosage of T4 caused more effective restorations.
Collapse
Affiliation(s)
- Y Zhu
- Department of Endocrinology, Anhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Antón OM, Andrés-Delgado L, Reglero-Real N, Batista A, Alonso MA. MAL protein controls protein sorting at the supramolecular activation cluster of human T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2011; 186:6345-56. [PMID: 21508261 DOI: 10.4049/jimmunol.1003771] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T cell membrane receptors and signaling molecules assemble at the immunological synapse (IS) in a supramolecular activation cluster (SMAC), organized into two differentiated subdomains: the central SMAC (cSMAC), with the TCR, Lck, and linker for activation of T cells (LAT), and the peripheral SMAC (pSMAC), with adhesion molecules. The mechanism of protein sorting to the SMAC subdomains is still unknown. MAL forms part of the machinery for protein targeting to the plasma membrane by specialized mechanisms involving condensed membranes or rafts. In this article, we report our investigation of the dynamics of MAL during the formation of the IS and its role in SMAC assembly in the Jurkat T cell line and human primary T cells. We observed that under normal conditions, a pool of MAL rapidly accumulates at the cSMAC, where it colocalized with condensed membranes, as visualized with the membrane fluorescent probe Laurdan. Mislocalization of MAL to the pSMAC greatly reduced membrane condensation at the cSMAC and redistributed machinery involved in docking microtubules or transport vesicles from the cSMAC to the pSMAC. As a consequence of these alterations, the raft-associated molecules Lck and LAT, but not the TCR, were missorted to the pSMAC. MAL, therefore, regulates membrane order and the distribution of microtubule and transport vesicle docking machinery at the IS and, by doing so, ensures correct protein sorting of Lck and LAT to the cSMAC.
Collapse
Affiliation(s)
- Olga M Antón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Thayanidhi N, Helm JR, Nycz DC, Bentley M, Liang Y, Hay JC. Alpha-synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol Biol Cell 2010; 21:1850-63. [PMID: 20392839 PMCID: PMC2877643 DOI: 10.1091/mbc.e09-09-0801] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This work demonstrates that α-synuclein inhibits the biosynthetic secretory pathway of mammalian cells potently and directly under nontoxic conditions and in the absence of insoluble α-synuclein aggregates. A potential mechanism involving α-synuclein binding to ER/Golgi SNAREs and inhibiting fusogenic SNARE complex assembly is elucidated. Toxicity of human α-synuclein when expressed in simple organisms can be suppressed by overexpression of endoplasmic reticulum (ER)-to-Golgi transport machinery, suggesting that inhibition of constitutive secretion represents a fundamental cause of the toxicity. Whether similar inhibition in mammals represents a cause of familial Parkinson's disease has not been established. We tested elements of this hypothesis by expressing human α-synuclein in mammalian kidney and neuroendocrine cells and assessing ER-to-Golgi transport. Overexpression of wild type or the familial disease-associated A53T mutant α-synuclein delayed transport by up to 50%; however, A53T inhibited more potently. The secretory delay occurred at low expression levels and was not accompanied by insoluble α-synuclein aggregates or mistargeting of transport machinery, suggesting a direct action of soluble α-synuclein on trafficking proteins. Co-overexpression of ER/Golgi arginine soluble N-ethylmaleimide-sensitive factor attachment protein receptors (R-SNAREs) specifically rescued transport, indicating that α-synuclein antagonizes SNARE function. Ykt6 reversed α-synuclein inhibition much more effectively than sec22b, suggesting a possible neuroprotective role for the enigmatic high expression of ykt6 in neurons. In in vitro reconstitutions, purified α-synuclein A53T protein specifically inhibited COPII vesicle docking and fusion at a pre-Golgi step. Finally, soluble α-synuclein A53T directly bound ER/Golgi SNAREs and inhibited SNARE complex assembly, providing a potential mechanism for toxic effects in the early secretory pathway.
Collapse
|
22
|
Baker SA, Haeri M, Yoo P, Gospe SM, Skiba NP, Knox BE, Arshavsky VY. The outer segment serves as a default destination for the trafficking of membrane proteins in photoreceptors. ACTA ACUST UNITED AC 2008; 183:485-98. [PMID: 18981232 PMCID: PMC2575789 DOI: 10.1083/jcb.200806009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Photoreceptors are compartmentalized neurons in which all proteins responsible for evoking visual signals are confined to the outer segment. Yet, the mechanisms responsible for establishing and maintaining photoreceptor compartmentalization are poorly understood. Here we investigated the targeting of two related membrane proteins, R9AP and syntaxin 3, one residing within and the other excluded from the outer segment. Surprisingly, we have found that only syntaxin 3 has targeting information encoded in its sequence and its removal redirects this protein to the outer segment. Furthermore, proteins residing in the endoplasmic reticulum and mitochondria were similarly redirected to the outer segment after removing their targeting signals. This reveals a pattern where membrane proteins lacking specific targeting information are delivered to the outer segment, which is likely to reflect the enormous appetite of this organelle for new material necessitated by its constant renewal. This also implies that every protein residing outside the outer segment must have a means to avoid this "default" trafficking flow.
Collapse
Affiliation(s)
- Sheila A Baker
- Albert Eye Research Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Members of a mammalian SNARE complex interact in the endoplasmic reticulum in vivo and are found in COPI vesicles. Eur J Cell Biol 2008; 87:863-78. [DOI: 10.1016/j.ejcb.2008.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/19/2008] [Accepted: 07/03/2008] [Indexed: 11/18/2022] Open
|
24
|
Wang L, Bittner MA, Axelrod D, Holz RW. The structural and functional implications of linked SNARE motifs in SNAP25. Mol Biol Cell 2008; 19:3944-55. [PMID: 18596234 DOI: 10.1091/mbc.e08-04-0344] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We investigated the functional and structural implications of SNAP25 having two SNARE motifs (SN1 and SN2). A membrane-bound, intramolecular FRET probe was constructed to report on the folding of N-terminal SN1 and C-terminal SN2 in living cells. Membrane-bound constructs containing either or both SNARE motifs were also singly labeled with donor or acceptor fluorophores. Interaction of probes with other SNAREs was monitored by the formation of SDS-resistant complexes and by changes in FRET measured in vitro using spectroscopy and in the plasma membrane of living cells using TIRF microscopy. The probes formed the predicted SDS-resistant SNARE complexes. FRET measurements revealed that syntaxin induced a close association of the N-termini of SN1 and SN2. This association required that the SNARE motifs reside in the same molecule. Unexpectedly, the syntaxin-induced FRET was prevented by VAMP. Both full-length SNAP25 constructs and the combination of its separated, membrane-bound constituent chains supported secretion in permeabilized chromaffin cells that had been allowed to rundown. However, only full-length SNAP25 constructs enabled robust secretion from intact cells or permeabilized cells before rundown. The experiments suggest that the bidentate structure permits specific conformations in complexes with syntaxin and VAMP and facilitates the function of SN1 and SN2 in exocytosis.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, USA
| | | | | | | |
Collapse
|
25
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
26
|
Involvement of vesicle-associated membrane protein 7 in human gastric epithelial cell vacuolation induced by Helicobacter pylori-produced VacA. Infect Immun 2008; 76:2296-303. [PMID: 18362137 DOI: 10.1128/iai.01573-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori-produced cytotoxin VacA induces intracellular vacuolation. The VacA-induced vacuole is assumed to represent the pathological status of intracellular trafficking. The fusion mechanism of the endosomes requires the formation of a tight complex between the Q-SNAREs and the R-SNAREs. We recently reported that syntaxin 7, a family member of the Q-SNARE protein, is involved in VacA-induced vacuole formation. In order to further elucidate the molecular mechanism, we identified the participation of vesicle-associated membrane protein 7 (VAMP7) as a partner of syntaxin 7. Immunocytochemistry revealed endogenous VAMP7 to be localized to the vacuoles induced by VacA. A Northern blotting study demonstrated that VacA intoxication increased VAMP7 mRNA in a time-dependent manner. VAMP7 was coimmunoprecipitated with syntaxin 7, and the amounts of endogenous VAMP7 and syntaxin 7 bound to syntaxin 7 and VAMP7, respectively, increased in response to VacA. The down-regulation of VAMP7 using small interfering RNA inhibited VacA-induced vacuolation, and the transient transfection of dominant-negative mutant VAMP7, the N-terminal domain of VAMP7, also inhibited the vacuolation. We therefore conclude that R-SNARE VAMP7 plays an important role in VacA-induced vacuolation as a partner of Q-SNARE syntaxin 7.
Collapse
|
27
|
Abstract
This article reviews the current and most neurologic uses of botulinum neurotoxin type A (BoNT-A), beginning with relevant historical data, neurochemical mechanism at the neuromuscular junction. Current commercial preparations of BoNT-A are reviewed, as are immunologic issues relating to secondary failure of BoNT-A therapy. Clinical uses are summarized with an emphasis on controlled clinical trials (as appropriate), including facial movement disorders, focal neck and limb dystonias, spasticity, hypersecretory syndromes, and pain.
Collapse
Affiliation(s)
- John P Ney
- Madigan Army Medical Center, Neurology Service, Tacoma, WA, USA
| | - Kevin R Joseph
- Madigan Army Medical Center, Neurology Service, Tacoma, WA, USA
| |
Collapse
|
28
|
Okayama M, Arakawa T, Mizoguchi I, Tajima Y, Takuma T. SNAP-23 is not essential for constitutive exocytosis in HeLa cells. FEBS Lett 2007; 581:4583-8. [PMID: 17825825 DOI: 10.1016/j.febslet.2007.08.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/09/2007] [Accepted: 08/21/2007] [Indexed: 01/28/2023]
Abstract
We applied the small interfering RNA (siRNA) technique and over-expression of a dominant-negative mutant to evaluate the role of SNAP-23, a non-neuronal isoform of SNAP-25, in constitutive exocytosis from HeLa cells. Although the protein level of SNAP-23 was reduced to less than 10% of the control value by siRNA directed against SNAP-23, exocytosis of SEAP (secreted alkaline phosphatase) was normal. Double knockdown of SNAP-23 and syntaxin-4 also failed to inhibit the secretion. Furthermore, over-expression of deltaC8-SNAP-23, a dominant-negative mutant of SNAP-23, did not abrogate SEAP secretion. These results suggest that SNAP-23 is not essential for constitutive exocytosis of SEAP.
Collapse
Affiliation(s)
- Miki Okayama
- Department of Orthodontics, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | | | | | | | | |
Collapse
|
29
|
Gissen P, Maher ER. Cargos and genes: insights into vesicular transport from inherited human disease. J Med Genet 2007; 44:545-55. [PMID: 17526798 PMCID: PMC2597945 DOI: 10.1136/jmg.2007.050294] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many cellular functions depend on the correct delivery of proteins to specific intracellular destinations. Mutations that alter protein structure and disrupt trafficking of the protein (the "cargo") occur in many genetic disorders. In addition, an increasing number of disorders have been linked to mutations in the genes encoding components of the vesicular transport machinery responsible for normal protein trafficking. We review the clinical phenotypes and molecular pathology of such inherited "protein-trafficking disorders", which provide seminal insights into the molecular mechanisms of protein trafficking. Further characterisation of this expanding group of disorders will provide a basis for developing new diagnostic techniques and treatment strategies and offer insights into the molecular pathology of common multifactorial diseases that have been linked to disordered trafficking mechanisms.
Collapse
Affiliation(s)
- Paul Gissen
- Department of Medical and Molecular Genetics, University of Birmingham School of Medicine, Institute of Biomedical Research West, Edgbaston, Birmingham, B15 2TT, UK.
| | | |
Collapse
|
30
|
Grybko MJ, Bartnik JP, Wurth GA, Pores-Fernando AT, Zweifach A. Calcineurin activation is only one calcium-dependent step in cytotoxic T lymphocyte granule exocytosis. J Biol Chem 2007; 282:18009-18017. [PMID: 17478429 DOI: 10.1074/jbc.m702222200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have tested the idea that calcineurin, a calcium-dependent phosphatase that is critical for activating cytokine gene expression in helper T cells, plays a role in lytic granule exocytosis in cytotoxic T lymphocytes (CTLs). We used TALL-104 human leukemic CTLs as a model. Our results confirm an earlier report (Dutz, J. P., Fruman, D. A., Burakoff, S. J., and Bierer, B. E. (1993) J. Immunol. 150, 2591-2598) that immunosuppressive drugs inhibit exocytosis in CTLs stimulated either via the T cell receptor (TCR) or via TCR-independent soluble agents. Of the two recently reported alternate targets of immunosuppressive drugs (Matsuda, S., Shibasaki, F., Takehana, K., Mori, H., Nishida, E., and Koyasu, S. (2000) EMBO Rep. 1, 428-434 and Matsuda, S., and Koyasu, S. (2000) Immunopharmacology 47, 119-125), JNK is not required for lytic granule exocytosis, but we were not able to exclude a role for P38. Exocytosis could be inhibited by expressing GFP fused to a C-terminal fragment of CAIN (cabin 1), but not by expressing VIVIT-GFP. Finally, expressing either full-length or truncated constitutively active mutant calcineurin A enhanced lytic granule exocytosis. However, the mutant calcineurin was unable to support exocytosis when cells were stimulated in the absence of Ca2+ influx. Taken together, our results support the idea that activation of calcineurin is required for lytic granule exocytosis but suggest that it is not the sole Ca2+-dependent step.
Collapse
Affiliation(s)
- Michael J Grybko
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06268-3125
| | - Jakub P Bartnik
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06268-3125
| | - Georjeana A Wurth
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06268-3125
| | - Arun T Pores-Fernando
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06268-3125
| | - Adam Zweifach
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06268-3125.
| |
Collapse
|
31
|
Harris F, Biswas S, Singh J, Dennison S, Phoenix DA. Calpains and their multiple roles in diabetes mellitus. Ann N Y Acad Sci 2007; 1084:452-80. [PMID: 17151322 DOI: 10.1196/annals.1372.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) can lead to death without treatment and it has been predicted that the condition will affect 215 million people worldwide by 2010. T2DM is a multifactorial disorder whose precise genetic causes and biochemical defects have not been fully elucidated, but at both levels, calpains appear to play a role. Positional cloning studies mapped T2DM susceptibility to CAPN10, the gene encoding the intracellular cysteine protease, calpain 10. Further studies have shown a number of noncoding polymorphisms in CAPN10 to be functionally associated with T2DM while the identification of coding polymorphisms, suggested that mutant calpain 10 proteins may also contribute to the disease. Here we review recent studies, which in addition to the latter enzyme, have linked calpain 5, calpain 3, and its splice variants, calpain 2 and calpain 1 to T2DM-related metabolic pathways along with T2DM-associated phenotypes, such as obesity and impaired insulin secretion, and T2DM-related complications, such as epithelial dysfunction and diabetic cataract.
Collapse
Affiliation(s)
- Frederick Harris
- Department of Forensic and Investigative Science, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Sami MS, Soparkar CNS, Patrinely JR, Hollier LM, Hollier LH. Efficacy of Botulinum Toxin Type A After Topical Anesthesia. Ophthalmic Plast Reconstr Surg 2006; 22:448-52. [PMID: 17117100 DOI: 10.1097/01.iop.0000248989.33572.3c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine whether the use of topical anesthesia has an impact on botulinum toxin type A (BTX-A) efficacy. METHODS Forty patients (20 receiving BTX-A for facial cosmetic rhytid reduction and 20 for benign essential blepharospasm) were evaluated in a double-blind, randomized, triple-crossover study at 2.5- to 4.5-month intervals. The discomfort and efficacy of BTX-A injections after betacaine application to half the face (random assignment) were compared against the discomfort and efficacy of a placebo ointment on the other half of the face. This was followed by cryoanalgesia to the entire face. RESULTS Patients ranged from 27 to 81 years of age (mean, 53 years), and 34 were female. Of the 120 total injection comparisons, a better BTX-A effect on one side of the face was reliably identified by 80% and 77% of blepharospasm and cosmetic patients, respectively, with the placebo-treated side providing better BTX-A effect approximately 90% of the time (p < 0.001). Patients reported a more painful side during injection in just 18 of the 120 trials, and only 1 of 40 patients believed the administration of analgesia was worth the trouble. CONCLUSIONS Pretreatment with topical betacaine followed by skin cooling seems to have a deleterious impact on BTX-A effect without a significantly beneficial patient-perceived reduction in injection discomfort.
Collapse
Affiliation(s)
- Mirwat S Sami
- Plastic Eye Surgery Associates, PLLC, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Exciting studies involving the molecular regulation of lymphangiogenesis in lymphatic-associated disorders (e.g., wound healing, lymphedema and tumor metastasis) have focused renewed attention on the intrinsic relationship between lymphatic endothelial cells (LECs) and extracellular matrix (ECM) microenvironment. ECM molecules and remodeling events play a key role in regulating lymphangiogenesis, and the "functionality"-relating molecules, especially hyaluronan, integrins, reelin, IL-7, and matrix metalloproteinases, provide the most fundamental and critical prerequisite for LEC growth, migration, tube formation, and survival, although lymphangiogenesis is directly or/and indirectly controlled by VEGF-C/-D/VEGFR- 3- Prox-1-, Syk/SLP76-, podoplanin/Ang-2/Nrp-2-, FOXC2-, and other signaling pathways in embryonic and pathological processes. New knowledge regarding the differentiation of initial lymphatics should enable improvements in understanding of a variety of cytokines, chemokines, and other factors. The lymphatic colocalization with histochemical staining by using the novel molecular markers (e.g., LYVE-1), along with subsequent injection technique with ferritin or some tracer, will reveal functional and structural features of newly formed and preexisting lymphatics. Growing recognition of the multiple functions of ECM and LEC molecules for important physiological and pathological events may be helpful in identifying the crucial changes in tissues subjected to lymph circulation and ultimately in the search for rational therapeutic approaches to prevent lymphatic-associated disorders.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Department of Anatomy, Biology and Medicine, Oita University Faculty of Medicine, Oita, Japan.
| |
Collapse
|
34
|
Liu HT, Tsai SK, Kao MC, Hu JS. Botulinum toxin A relieved neuropathic pain in a case of post-herpetic neuralgia. PAIN MEDICINE 2006; 7:89-91. [PMID: 16533208 DOI: 10.1111/j.1526-4637.2006.00100.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Botulinum toxin type A (BTX-A) has been widely used in many clinical disorders including migraine, cervical dystonia, etc. The use of BTX-A in neuropathic pain, however, is uncommon, and the application of the anti-nociceptive effect of botulinum toxin is emerging. Here we report a case of an 80-year-old man who suffered from severe pain of post-herpetic neuralgia which was refractory to the usual therapies. However, this neuropathic pain was dramatically relieved by multiple BTX-A injection and the pain relief lasted 52 days.
Collapse
Affiliation(s)
- Hsu-Tang Liu
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
35
|
Siddiqi SA, Siddiqi S, Mahan J, Peggs K, Gorelick FS, Mansbach CM. The identification of a novel endoplasmic reticulum to Golgi SNARE complex used by the prechylomicron transport vesicle. J Biol Chem 2006; 281:20974-20982. [PMID: 16735505 PMCID: PMC2833420 DOI: 10.1074/jbc.m601401200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dietary long chain fatty acids are absorbed in the intestine, esterified to triacylglycerol, and packaged in the unique lipoprotein of the intestine, the chylomicron. The rate-limiting step in the transit of chylomicrons through the enterocyte is the exit of chylomicrons from the endoplasmic reticulum in prechylomicron transport vesicles (PCTV) that transport chylomicrons to the cis-Golgi. Because chylomicrons are 250 nm in average diameter and lipid absorption is intermittent, we postulated that a unique SNARE pairing would be utilized to fuse PCTV with their target membrane, cis-Golgi. PCTV loaded with [(3)H]triacylglycerol were incubated with cis-Golgi and were separated from the Golgi by a sucrose step gradient. PCTV-chylomicrons acquire apolipoprotein-AI (apoAI) only after fusion with the Golgi. PCTV became isodense with Golgi upon incubation and were considered fused when their cargo chylomicrons acquired apoAI but docked when they did not. PCTV, docked with cis-Golgi, were solubilized in 2% Triton X-100, and proteins were immunoprecipitated using VAMP7 or rBet1 antibodies. In both cases, a 112-kDa complex was identified in nonboiled samples that dissociated upon boiling. The constituents of the complex were VAMP7, syntaxin 5, vti1a, and rBet1. Antibodies to each SNARE component significantly inhibited fusion of PCTV with cis-Golgi. Membrin, Sec22b, and Ykt6 were not found in the 112-kDa complex. We conclude that the PCTV-cis-Golgi SNARE complex is composed of VAMP7, syntaxin 5, Bet1, and vti1a.
Collapse
Affiliation(s)
- Shadab A Siddiqi
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Shahzad Siddiqi
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - James Mahan
- Veterans Affairs Medical Center, Memphis, Tennessee 38104
| | - Kiffany Peggs
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Fred S Gorelick
- Department of Medicine, Veterans Affairs Healthcare, New Haven, Connecticut 06516; Yale University School of Medicine, New Haven, Connecticut 06516
| | - Charles M Mansbach
- Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee 38163; Veterans Affairs Medical Center, Memphis, Tennessee 38104.
| |
Collapse
|
36
|
Aikawa Y, Lynch KL, Boswell KL, Martin TFJ. A second SNARE role for exocytic SNAP25 in endosome fusion. Mol Biol Cell 2006; 17:2113-24. [PMID: 16481393 PMCID: PMC1446080 DOI: 10.1091/mbc.e06-01-0074] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 02/07/2006] [Accepted: 02/08/2006] [Indexed: 01/20/2023] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play key roles in membrane fusion, but their sorting to specific membranes is poorly understood. Moreover, individual SNARE proteins can function in multiple membrane fusion events dependent upon their trafficking itinerary. Synaptosome-associated protein of 25 kDa (SNAP25) is a plasma membrane Q (containing glutamate)-SNARE essential for Ca2+-dependent secretory vesicle-plasma membrane fusion in neuroendocrine cells. However, a substantial intracellular pool of SNAP25 is maintained by endocytosis. To assess the role of endosomal SNAP25, we expressed botulinum neurotoxin E (BoNT E) light chain in PC12 cells, which specifically cleaves SNAP25. BoNT E expression altered the intracellular distribution of SNAP25, shifting it from a perinuclear recycling endosome to sorting endosomes, which indicates that SNAP25 is required for its own endocytic trafficking. The trafficking of syntaxin 13 and endocytosed cargo was similarly disrupted by BoNT E expression as was an endosomal SNARE complex comprised of SNAP25/syntaxin 13/vesicle-associated membrane protein 2. The small-interfering RNA-mediated down-regulation of SNAP25 exerted effects similar to those of BoNT E expression. Our results indicate that SNAP25 has a second function as an endosomal Q-SNARE in trafficking from the sorting endosome to the recycling endosome and that BoNT E has effects linked to disruption of the endosome recycling pathway.
Collapse
Affiliation(s)
- Yoshikatsu Aikawa
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
37
|
Tsukamoto H, Yoshitake H, Mori M, Yanagida M, Takamori K, Ogawa H, Takizawa T, Araki Y. Testicular proteins associated with the germ cell-marker, TEX101: involvement of cellubrevin in TEX101-trafficking to the cell surface during spermatogenesis. Biochem Biophys Res Commun 2006; 345:229-38. [PMID: 16678124 DOI: 10.1016/j.bbrc.2006.04.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 04/14/2006] [Indexed: 11/23/2022]
Abstract
Recently, we identified a cell-surface marker protein, TEX101, that is unique to male and female germ cells. On/off switching of TEX101 expression in germ cells is closely linked to the kinetics of gametogenesis. In the present study, we isolated testicular proteins by immunoprecipitation with anti-TEX101 antibody and identified the proteins using liquid chromatography/tandem mass spectrometry. Of three proteins identified (annexin 2, ly6k, and cellubrevin), a biochemical association between TEX101 and cellubrevin was confirmed by immunoprecipitation-Western blotting experiments. Immunohistochemistry using a cellubrevin-specific antibody indicated that the molecule is abundant on spermatocytes and early-stage spermatids, whereas negligible amounts are found in Sertoli cells, spermatogonia, spermatozoa, and late-stage spermatids. Most of the intracellular cellubrevin appeared to be juxtaposed with intracellular TEX101, and membrane-associated cellubrevin was docked near TEX101-positive plasma membranes on the cytoplasmic side. This close association was never observed on the outer surface of the plasma membrane. From these results we concluded that cellubrevin-dependent membrane trafficking is involved in TEX101-transport to the surface of male germ cells.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu-City 279-0021, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lauer JM, Dalal S, Marz KE, Nonet ML, Hanson PI. SNARE complex zero layer residues are not critical for N-ethylmaleimide-sensitive factor-mediated disassembly. J Biol Chem 2006; 281:14823-32. [PMID: 16522630 DOI: 10.1074/jbc.m512706200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane-anchored SNAREs assemble into SNARE complexes that bring membranes together to promote fusion. SNARE complexes are parallel four-helix bundles stabilized in part by hydrophobic interactions within their core. At the center of SNARE complexes is a distinctive zero layer that consists of one arginine and three glutamines. This zero layer is thought to play a special role in the biology of the SNARE complex. One proposal is that the polar residues of the zero layer enable N-ethylmaleimide-sensitive factor (NSF)-mediated SNARE complex disassembly. Here, we studied the effects of manipulating the zero layer of the well studied synaptic SNARE complex in vitro and in vivo. Using a fluorescence-based assay to follow SNARE complex disassembly in real time, we found that the maximal rate at which NSF disassembles complexes was unaffected by mutations in the zero layer, including single replacement of the syntaxin glutamine with arginine as well as multiple replacement of all four layer residues with non-polar amino acids. To determine whether syntaxin with arginine instead of glutamine in its zero layer can support SNARE function in vivo, we introduced it as a transgene into a Caenorhabditis elegans syntaxin-null strain. Mutant syntaxin rescued viability and locomotory defects similarly to wild-type syntaxin, demonstrating that SNARE complexes with two glutamines and two arginines in the zero layer can support neurotransmission. These findings show that residues of the zero layer do not play an essential role in NSF-mediated disassembly.
Collapse
Affiliation(s)
- Joshua M Lauer
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
39
|
Reales E, Mora-López F, Rivas V, García-Poley A, Brieva JA, Campos-Caro A. Identification of soluble N-ethylmaleimide-sensitive factor attachment protein receptor exocytotic machinery in human plasma cells: SNAP-23 is essential for antibody secretion. THE JOURNAL OF IMMUNOLOGY 2006; 175:6686-93. [PMID: 16272324 DOI: 10.4049/jimmunol.175.10.6686] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasma cells (PC) are B-lymphocytes terminally differentiated in a postmitotic state, with the unique purpose of manufacturing and exporting Igs. Despite the importance of this process in the survival of vertebrates, no studies have been made to understand the molecular events that regulate Ig exocytosis by PC. The present study explores the possible presence of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) system in human PC, and examines its functional role in Ig secretion. Syntaxin-2, Syntaxin-3, Syntaxin-4, vesicle-associated membrane protein (VAMP)-2, VAMP-3, and synaptosome-associated protein (SNAP)-23 could be readily detected in normal human PC obtained from intestinal lamina propria and blood, as well as in human PC lines. Because SNAP-23 plays a central role in SNAREs complex formation, it was chosen to examine possible functional implications of the SNARE system in PC Ig secretion. When recombinant SNAP-23 fusion protein was introduced into the cells, a complete abolishment of Ig production was observed in the culture supernatants of PC lines, as well as in those of normal PC. These results provide insights, for the first time, into the molecular machinery of constitutive vesicular trafficking in human PC Ig secretion and present evidence indicating that at least SNAP-23 is essential for Ab production.
Collapse
Affiliation(s)
- Elena Reales
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Calpain-10 (CAPN10) is the first diabetes gene to be identified through a genome scan. Many investigators, but not all, have subsequently found associations between CAPN10 polymorphism and type 2 diabetes (T2D) as well as insulin action, insulin secretion, aspects of adipocyte biology and microvascular function. However, this has not always been with the same single nucleotide polymorphism (SNP) or haplotype or the same phenotype, suggesting that there might be more than one disease-associated CAPN10 variant and that these might vary between ethnic groups and the phenotype under study. Our understanding of calpain-10 physiological action has also been greatly augmented by our knowledge of the calpain family domain structure and function, and the relationship between calpain-10 and other calpains is discussed here. Both genetic and functional data indicates that calpain-10 has an important role in insulin resistance and intermediate phenotypes, including those associated with the adipocyte. In this regard, emerging evidence would suggest that calpain-10 facilitates GLUT4 translocation and acts in reorganization of the cytoskeleton. Calpain-10 is also an important molecule in the beta-cell. It is likely to be a determinant of fuel sensing and insulin exocytosis, with actions at the mitochondria and plasma membrane respectively. We postulate that the multiple actions of calpain-10 may relate to its different protein isoforms. In conclusion, the discovery of calpain-10 by a genetic approach has identified it as a molecule of importance to insulin signaling and secretion that may have relevance to the future development of novel therapeutic targets for the treatment of T2D.
Collapse
Affiliation(s)
- Mark D Turner
- Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Barts and The London Queen Mary's School of Medicine and Dentistry, University of London, London, E1 2AT United Kingdom.
| | | | | |
Collapse
|
41
|
Gonon EM, Skalski M, Kean M, Coppolino MG. SNARE-mediated membrane traffic modulates RhoA-regulated focal adhesion formation. FEBS Lett 2005; 579:6169-78. [PMID: 16243314 DOI: 10.1016/j.febslet.2005.09.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/28/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
In the present study, we examined the role of soluble NSF attachment protein receptor (SNARE)-mediated membrane traffic in the formation of focal adhesions during cell spreading. CHO-K1 cells expressing a dominant-negative form of N-ethylmaleimide-sensitive factor (E329Q-NSF) were unable to spread as well as control cells and they formed focal adhesions (FAs) that were larger than those in control cells. FA formation was impaired in cells transfected with a dominant-negative form of RhoA, but, significantly, not in cells simultaneously expressing dominant-negative NSF. Treatment of E329Q-NSF-expressing cells with the ROCK inhibitor Y-27632 did inhibit FA formation. The results are consistent with a model of cell adhesion in which SNARE-mediated membrane traffic is required for both the elaboration of lamellipodia and the modulation of biochemical signals that control RhoA-mediated FA assembly.
Collapse
Affiliation(s)
- Eva M Gonon
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | | | | | |
Collapse
|
42
|
Oishi Y, Arakawa T, Tanimura A, Itakura M, Takahashi M, Tajima Y, Mizoguchi I, Takuma T. Role of VAMP-2, VAMP-7, and VAMP-8 in constitutive exocytosis from HSY cells. Histochem Cell Biol 2005; 125:273-81. [PMID: 16195891 DOI: 10.1007/s00418-005-0068-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2005] [Indexed: 11/25/2022]
Abstract
We evaluated the role of VAMP-2/synaptobrevin, VAMP-7/TI-VAMP, and VAMP-8/endobrevin in exocytic pathways of HSY cells, a human parotid epithelial cell line, by coexpressing these VAMP proteins tagged with green fluorescent protein (GFP) and human growth hormone (hGH) as a secretory cargo. Exocytosis of hGH was constitutive and the fluorescent signal of hGH-GFP was observed in the Golgi area and small vesicles quickly moving throughout the cytoplasm. The cytoplasmic vesicles containing hGH overlapped well with VAMP-7-GFP, but did so scarcely with VAMP-2-GFP or VAMP-8-GFP. However, when the vesicle transport from the trans-Golgi network to the plasma membrane was arrested by incubation at 20 degrees C for 2 h and then released by warming up to 37 degrees C; VAMP-2-GFP and hGH were clearly colocalized together in small cytoplasmic vesicles. Neither VAMP-7-GFP nor hGH-GFP was colocalized with LAMP-1, a marker for lysosomes and late endosomes. These results suggest that (1) VAMP-2 can be one of the v-SNAREs for constitutive exocytosis; (2) VAMP-7 is involved in the constitutive exocytosis as a slow, minor v-SNARE, but not in the lysosomal transport; and (3) VAMP-8 is unlikely to be a v-SNARE for constitutive exocytosis in HSY cells.
Collapse
Affiliation(s)
- Yohei Oishi
- Department of Oral Biochemistry, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido, 061-0293 Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gamboa S, Ramalho-Santos J. SNARE proteins and caveolin-1 in stallion spermatozoa: possible implications for fertility. Theriogenology 2005; 64:275-91. [PMID: 15955353 DOI: 10.1016/j.theriogenology.2004.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 11/25/2004] [Accepted: 11/30/2004] [Indexed: 10/25/2022]
Abstract
Proteins implicated in the "SNARE hypothesis" for membrane fusion have been characterized in the acrosome of several mammalian species, and a functional role for these proteins during the acrosome reaction has been proposed. We have investigated the presence of SNAREs in equine sperm, using semen samples obtained from stallions with varying fertility. Immunocytochemical analysis revealed that members of different SNARE families can be detected on the acrosome of equine sperm, notably in the acrosomal cap and equatorial segment. These proteins include the t-SNARE syntaxin, the v-SNARE synaptobrevin/VAMP, the calcium sensor synaptotagmin, and the ATPase NSF. Also present is caveolin-1, a component of lipid rafts. Stallions with fertility problems presented the worst quality of sperm and acrosomal membrane, and had less sperm cells stained positively for SNAREs and caveolin-1, than sperm from fertile donors (p < 0.001). Ubiquitin surface staining was also performed and it seemed to inversely correlate with stallion fertility, supporting data obtained with the negative staining technique. A male-related problem was confirmed when mares that had failed to impregnate with samples from an infertile stallion were successfully inseminated with sperm from a fertile donor. Furthermore NSF, synaptotagmin and caveolin-1 staining seemed to be useful in predicting stallion fertility, i.e. significantly more sperm cells stained positively for these proteins in samples from fertile males. Although these results need to be expanded on a larger scale, they suggest that acrosomal and surface staining of equine sperm with novel probes may constitute useful tools in predicting stallion fertility.
Collapse
Affiliation(s)
- Sandra Gamboa
- Department of Zootechnic Sciences, Agricultural School, Polytechnic Institute of Coimbra, Bencanta, 3040-316 Coimbra, Portugal
| | | |
Collapse
|
44
|
Tomás M, Marín P, Megías L, Egea G, Renau-Piqueras J. Ethanol perturbs the secretory pathway in astrocytes. Neurobiol Dis 2005; 20:773-84. [PMID: 15953732 DOI: 10.1016/j.nbd.2005.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 05/04/2005] [Accepted: 05/10/2005] [Indexed: 10/25/2022] Open
Abstract
Ethanol exposure induces retention of glycoproteins in growing astrocytes. We examined the intracellular sites at which this retention occurs and investigated whether this effect is accompanied by alterations in the Golgi complex and microtubular system. We studied the effects of ethanol on the Golgi complex structure, as well as on the secretory pathway functionality by monitoring both the transport of the VSV-G protein and the protein levels of several molecules involved in the regulation of this pathway. Ethanol was found to delay VSV-G transport, modify Golgi complex morphology, and reduce the number of secretory vesicles. Moreover, ethanol affected the levels of mannosidase II, p58, betaCOP, rbet1, and several Rab GTPases. It also affected microtubule organization and polymerization and the levels of the motor proteins kinesin and dynein. Most of these effects were dose-dependent. These alterations, together with those previously reported concerning biosynthesis of glycoconjugates, provide novel insights into how ethanol impairs brain development.
Collapse
Affiliation(s)
- Mónica Tomás
- Sección de Biología y Patología Celular, Centro de Investigación, Hospital Universitario La Fe, Av. Campanar 21, E-46009 Valencia, Spain
| | | | | | | | | |
Collapse
|
45
|
Nakamura N, Fukuda H, Kato A, Hirose S. MARCH-II is a syntaxin-6-binding protein involved in endosomal trafficking. Mol Biol Cell 2005; 16:1696-710. [PMID: 15689499 PMCID: PMC1073653 DOI: 10.1091/mbc.e04-03-0216] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 01/06/2005] [Accepted: 01/21/2005] [Indexed: 02/07/2023] Open
Abstract
Membrane-associated RING-CH (MARCH) is a recently identified member of the mammalian E3 ubiquitin ligase family, some members of which down-regulate the expression of immune recognition molecules. Here, we have identified MARCH-II, which is ubiquitously expressed and localized to endosomal vesicles and the plasma membrane. Immunoprecipitation and in vitro binding studies established that MARCH-II directly associates with syntaxin 6. Overexpression of MARCH-II resulted in redistribution of syntaxin 6 as well as some syntaxin-6-interacting soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) into the MARCH-II-positive vesicles. In addition, the retrograde transport of TGN38 and a chimeric version of furin to trans-Golgi network (TGN) was perturbed--without affecting the endocytic degradative and biosynthetic secretory pathways--similar to effects caused by a syntaxin 6 mutant lacking the transmembrane domain. MARCH-II overexpression markedly reduced the cell surface expression of transferrin (Tf) receptor and Tf uptake and interfered with delivery of internalized Tf to perinuclear recycling endosomes. Depletion of MARCH-II by small interfering RNA perturbed the TGN localization of syntaxin 6 and TGN38/46. MARCH-II is thus likely a regulator of trafficking between the TGN and endosomes, which is a novel function for the MARCH family.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
46
|
Gissen P, Johnson CA, Gentle D, Hurst LD, Doherty AJ, O'Kane CJ, Kelly DA, Maher ER. Comparative evolutionary analysis of VPS33 homologues: genetic and functional insights. Hum Mol Genet 2005; 14:1261-70. [PMID: 15790593 DOI: 10.1093/hmg/ddi137] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VPS33B protein is a homologue of the yeast class C vacuolar protein sorting protein Vps33p that is involved in the biogenesis and function of vacuoles. Vps33p homologues contain a Sec1 domain and belong to the family of Sec1/Munc18 (SM) proteins that regulate fusion of membrane-bound organelles and interact with other vps proteins and also SNARE proteins that execute membrane fusion in all cells. We demonstrated recently that mutations in VPS33B cause ARC syndrome (MIM 208085), a lethal multisystem disease. In contrast, mutations in other Vps33p homologues result in different phenotypes, e.g. a mutation in Drosophila melanogaster car gene causes the carnation eye colour mutant and inactivation of mouse Vps33a causes buff hypopigmentation phenotype. In mammals two Vps33p homologues (e.g. VPS33A and VPS33B in humans) have been identified. As comparative genome analysis can provide novel insights into gene evolution and function, we performed nucleotide and protein sequence comparisons of Vps33 homologues in different species to define their inter-relationships and evolution. In silico analysis (a) identified two homologues of yeast Vps33p in the worm, fly, zebrafish, rodent and human genomes, (b) suggested that Carnation is an orthologue of VPS33A rather than VPS33B and (c) identified conserved candidate functional domains within VPS33B. We have shown previously that wild-type VPS33B induced perinuclear clustering of late endosomes and lysosomes in human renal cells. Consistent with the predictions of comparative analysis: (a) VPS33B induced significantly more clustering than VPS33A in a renal cell line, (b) a putative fly VPS33B homologue but not Carnation protein also induced clustering and (c) the ability to induce clustering in renal cells was linked to two evolutionary conserved domains within VPS33B. One domain was present in VPS33B but not VPS33A homologues and the other was one of three regions predicted to form a t-SNARE binding site in VPS33B. In contrast, VPS33A induced significantly more clustering of melanosomes in melanoma cells than VPS33B. These investigations are consistent with the hypothesis that there are two functional classes of Vps33p homologues in all multicellular organisms and that the two classes reflect the evolution of organelle/tissue-specific functions.
Collapse
Affiliation(s)
- Paul Gissen
- Section of Medical and Molecular Genetic, University of Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Honda A, Al-Awar OS, Hay JC, Donaldson JG. Targeting of Arf-1 to the early Golgi by membrin, an ER-Golgi SNARE. ACTA ACUST UNITED AC 2005; 168:1039-51. [PMID: 15781476 PMCID: PMC2171843 DOI: 10.1083/jcb.200409138] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Arf and Rab family GTPases regulate membrane traffic in cells, yet little is known about how they are targeted to distinct organelles. To identify sequences in Arf-1 necessary for Golgi targeting, we examined the localization of chimeras between Arf-1 and Arf-6. Here, we identify a 16–amino acid sequence in Arf-1 that specifies Golgi targeting and contains a motif (MXXE) that is important for Arf-1 binding to membrin, an ER-Golgi SNARE protein. The MXXE motif is conserved in all Arfs known to localize to the Golgi and enables Arf-1 to localize to the early Golgi. Arf-1 lacking these 16 aa can still localize to the late Golgi where it displays a more rapid Golgi-cytosol cycle than wild-type Arf-1. These studies suggest that membrin recruits Arf-1 to the early Golgi and reveal distinct kinetic cycles for Arf-1 at early and late Golgi determined by different sets of Arf regulators and effectors.
Collapse
Affiliation(s)
- Akira Honda
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
48
|
Hasegawa H, Yang Z, Oltedal L, Davanger S, Hay JC. Intramolecular protein-protein and protein-lipid interactions control the conformation and subcellular targeting of neuronal Ykt6. J Cell Sci 2005; 117:4495-508. [PMID: 15331663 DOI: 10.1242/jcs.01314] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although the membrane-trafficking functions of most SNAREs are conserved from yeast to humans, some mammalian SNAREs have evolved specialized functions unique to multicellular life. The mammalian homolog of the prenylated yeast SNARE Ykt6p might be one such example, because rat Ykt6 is highly expressed only in brain neurons. Furthermore, neuronal Ykt6 displayed a remarkably specialized, punctate localization that did not overlap appreciably with conventional compartments of the endomembrane system, suggesting that Ykt6 might be involved in a pathway unique to or specifically modified for neuronal function. Targeting of Ykt6 to its unique subcellular location was directed by its profilin-like longin domain. We have taken advantage of high-resolution structural data available for the yeast Ykt6p longin domain to examine mechanisms by which the mammalian longin domain controls Ykt6 conformation and subcellular targeting. We found that the overall tertiary structure of the longin domain, not sequence-specific surface features, drives direct targeting to the Ykt6 punctate structures. However, several sequence-specific surface features of the longin domain indirectly regulate Ykt6 localization through intramolecular interactions that mask otherwise-dominant targeting signals on the SNARE motif and lipid groups. Specifically, two hydrophobic binding pockets, one on each face of the longin domain, and one mixed hydrophobic/charged surface, participate in protein-protein interactions with the SNARE motif and protein-lipid interactions with the lipid group(s) at the molecule's C-terminus. One of the hydrophobic pockets suppresses protein-palmitoylation-dependent mislocalization of Ykt6 to the plasma membrane. The Ykt6 intramolecular interactions would be predicted to create a compact, closed conformation of the SNARE that prevents promiscuous targeting interactions and premature insertion into membranes. Interestingly, both protein-protein and protein-lipid interactions are required for a tightly closed conformation and normal targeting.
Collapse
Affiliation(s)
- Haruki Hasegawa
- University of Michigan, Department of Molecular, Cellular and Developmental Biology, Ann Arbor, MI 48109-1048, USA
| | | | | | | | | |
Collapse
|
49
|
Rosado JA, Redondo PC, Sage SO, Pariente JA, Salido GM. Store-operated Ca2+ entry: Vesicle fusion or reversible trafficking and de novo conformational coupling? J Cell Physiol 2005; 205:262-9. [PMID: 15880447 DOI: 10.1002/jcp.20399] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Store-operated Ca2+ entry (SOCE), a mechanism regulated by the filling state of the intracellular Ca2+ stores, is a major pathway for Ca2+ influx. Hypotheses to explain the communication between the Ca2+ stores and plasma membrane (PM) have considered both the existence of small messenger molecules, such as a Ca2+-influx factor (CIF), and both stable and de novo conformational coupling between proteins in the Ca2+ store and PM. Alternatively, a secretion-like coupling model based on vesicle fusion and channel insertion in the PM has been proposed, which shares some properties with the de novo conformational coupling model, such as the role of the actin cytoskeleton and soluble N-ethylmaleimide (NEM)-sensitive-factor attachment proteins receptor (SNARE) proteins. Here we review recent progress made in the characterization of the de novo conformational coupling and the secretion-like coupling models for SOCE. We pay particular attention into the involvement of SNARE proteins and the actin cytoskeleton in both SOCE models. SNAREs are recognized as proteins involved in exocytosis, participating in vesicle transport, membrane docking, and fusion. As with secretion, a role for the cortical actin network in Ca2+ entry has been demonstrated in a number of cell types. In resting cells, the cytoskeleton may prevent the interaction between the Ca2+ stores and the PM, or preventing fusion of vesicles containing Ca2+ channels with the PM. These are processes in which SNARE proteins might play a crucial role upon cell activation by directing a precise interaction between the membrane of the transported organelle and the PM.
Collapse
Affiliation(s)
- Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain.
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Emily J Rubenstein
- Division of Neurology, Scripps Clinic, 10666 North Torrey Pines Road (MS 313), La Jolla, CA 92037, USA
| |
Collapse
|