1
|
Higashide M, Watanabe M, Sato T, Ogawa T, Umetsu A, Suzuki S, Furuhashi M, Ohguro H, Nishikiori N. Unexpected and Synergistical Effects of All-Trans Retinoic Acid and TGF-β2 on Biological Aspects of 2D and 3D Cultured ARPE19 Cells. Biomedicines 2024; 12:2228. [PMID: 39457541 PMCID: PMC11505250 DOI: 10.3390/biomedicines12102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: To study the effects of all-trans retinoic acid (ATRA) on TGF-β2-induced effects of human retinal pigment epithelium cells under normoxia and hypoxia conditions. Methods: Two-dimensionally (2D) and three-dimensionally (3D) cultured ARPE19 cells were subjected to cellular functional analyses by transepithelial electrical resistance (TEER) and an extracellular flux assay (2D), measurement of levels of reactive oxygen species (ROS), gene expression analyses of COL1, αSMA, Zo-1, HIF1α, and PGC1α (2D), and physical property analyses (3D). Results: Under a normoxia condition, treatment with 100 nM ATRA substantially decreased barrier function regardless of the presence of 5 ng/mL TGF-β2 in 2D ARPE19 monolayer cells. Under a hypoxia condition, treatment with ATRA conversely increased barrier function, but the effect was masked by a marked increase in effects induced by TGF-β2. Although ATRA alone did not affect cellular metabolism and ROS levels in 2D ARPE cells, treatment with ATRA under a hypoxia condition did not affect ROS levels but shifted cellular metabolism from mitochondrial respiration to glycolysis. The changes of cellular metabolism and ROS levels were more pronounced with treatment of both ATRA and TGF-β2 independently of oxygen conditions. Changes in mRNA expressions of some of the above genes suggested the involvement of synergistical regulation of cellular functions by TGF-β2 and hypoxia. In 3D ARPE spheroids, the size was decreased and the stiffness was increased by either treatment with TGF-β2 or ATRA, but these changes were unexpectedly modulated by both ATRA and TGF-β2 treatment regardless of oxygen conditions. Conclusions: The findings reported herein indicate that TGF-β2 and hypoxia synergistically and differentially induce effects in 2D and 3D cultured ARPE19 cells and that their cellular properties are significantly altered by the presence of ATRA.
Collapse
Affiliation(s)
- Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Soma Suzuki
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| |
Collapse
|
2
|
Nishikiori N, Sato T, Ogawa T, Higashide M, Umetsu A, Suzuki S, Furuhashi M, Ohguro H, Watanabe M. TGF-β Isoforms and Local Environments Greatly Modulate Biological Nature of Human Retinal Pigment Epithelium Cells. Bioengineering (Basel) 2024; 11:581. [PMID: 38927817 PMCID: PMC11201039 DOI: 10.3390/bioengineering11060581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
To characterize transforming growth factor-β (TGF-β) isoform (TGF-β1~3)-b's biological effects on the human retinal pigment epithelium (RPE) under normoxia and hypoxia conditions, ARPE19 cells cultured by 2D (two-dimensional) and 3D (three-dimensional) conditions were subjected to various analyses, including (1) an analysis of barrier function by trans-epithelial electrical resistance (TEER) measurements; (2) qPCR analysis of major ECM molecules including collagen 1 (COL1), COL4, and COL6; α-smooth muscle actin (αSMA); hypoxia-inducible factor 1α (HIF1α); and peroxisome proliferator-activated receptor-gamma coactivator (PGC1α), a master regulator for mitochondrial respiration;, tight junction-related molecules, Zonula occludens-1 (ZO1) and E-cadherin; and vascular endothelial growth factor (VEGF); (3) physical property measurements of 3D spheroids; and (4) cellular metabolic analysis. Diverse effects among TGF-β isoforms were observed, and those effects were also different between normoxia and hypoxia conditions: (1) TGF-β1 and TGF-β3 caused a marked increase in TEER values, and TGF-β2 caused a substantial increase in TEER values under normoxia conditions and hypoxia conditions, respectively; (2) the results of qPCR analysis supported data obtained by TEER; (3) 3D spheroid sizes were decreased by TGF-β isoforms, among which TGF-β1 had the most potent effect under both oxygen conditions; (4) 3D spheroid stiffness was increased by TGF-β2 and TGF-β3 or by TGF-β1 and TGF-β3 under normoxia conditions and hypoxia conditions, respectively; and (5) the TGF-β isoform altered mitochondrial and glycolytic functions differently under oxygen conditions and/or culture conditions. These collective findings indicate that the TGF-β-induced biological effects of 2D and 3D cultures of ARPE19 cells were substantially diverse depending on the three TGF-β isoforms and oxygen levels, suggesting that pathological conditions including epithelial-mesenchymal transition (EMT) of the RPE may be exclusively modulated by both factors.
Collapse
Affiliation(s)
- Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Soma Suzuki
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| |
Collapse
|
3
|
Daley R, Maddipatla V, Ghosh S, Chowdhury O, Hose S, Zigler JS, Sinha D, Liu H. Aberrant Akt2 signaling in the RPE may contribute to retinal fibrosis process in diabetic retinopathy. Cell Death Discov 2023; 9:243. [PMID: 37443129 DOI: 10.1038/s41420-023-01545-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetic Retinopathy (DR) is a complication of diabetes that causes blindness in adults. Retinal fibrosis is closely associated with developing proliferative diabetic retinopathy (PDR). Clinical studies have shown that fibrotic membranes exhibit uncontrolled growth in PDR and contribute to retinal detachment from RPE cells, ultimately leading to vision loss. While anti-VEGF agents and invasive laser treatments are the primary treatments for PDR, retinal fibrosis has received minimal attention as a potential target for therapeutic intervention. Therefore, to investigate the potential role of Akt2 in the diabetes-induced retinal fibrosis process, we generated RPE-specific Akt2 conditional knockout (cKO) mice and induced diabetes in these mice and Akt2fl/fl control mice by intraperitoneal injection of streptozotocin. After an 8-month duration of diabetes (10 months of age), the mice were euthanized and expression of tight junction proteins, epithelial-mesenchymal transition (EMT), and fibrosis markers were examined in the RPE. Diabetes induction in the floxed control mice decreased levels of the RPE tight junction protein ZO-1 and adherens junction proteins occludin and E-cadherin; these decreases were rescued in Akt2 cKO diabetic mice. Loss of Akt2 also inhibited diabetes-induced elevation of RNA and protein levels of the EMT markers Snail/Slug and Twist1 in the RPE as compared to Akt2fl/fl diabetic mice. We also found that in Akt2 cKO mice diabetes-induced increase of fibrosis markers, including collagen IV, Connective tissue growth factor (CTGF), fibronectin, and alpha-SMA was attenuated. Furthermore, we observed that high glucose-induced alterations in EMT and fibrosis markers in wild-type (WT) RPE explants were rescued in the presence of PI3K and ERK inhibitors, indicating diabetes-induced retinal fibrosis may be mediated via the PI3K/Akt2/ERK signaling, which could provide a novel target for DR therapy.
Collapse
Affiliation(s)
- Rachel Daley
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vishnu Maddipatla
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Olivia Chowdhury
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Samuel Zigler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Mechanisms of Epithelial-Mesenchymal Transition and Prevention of Dispase-Induced PVR by Delivery of an Antioxidant αB Crystallin Peptide. Antioxidants (Basel) 2022; 11:antiox11102080. [PMID: 36290802 PMCID: PMC9598590 DOI: 10.3390/antiox11102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022] Open
Abstract
Proliferative Vitreoretinopathy (PVR) is a refractory retinal disease whose primary pathogenesis involves the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells. At present, there is no effective treatment other than surgery for PVR. The purpose of this study was to investigate the effect of αB crystallin peptide (αBC-P) on EMT in PVR. We have previously shown that this peptide is antiapoptotic and regulates RPE redox status. Subconfluent primary human RPE (hRPE) cells were stimulated by TGFβ2 (10 ng/mL) with or without αBC-P (50 or 75 μg/mL) for 48 h and expression of EMT/mesenchymal to epithelial transition (MET) markers was determined. Mitochondrial ROS (mtROS) generation in hRPE cells treated with TGFβ2 was analyzed. The effect of TGFβ2 and αBC-P on oxidative phosphorylation (OXPHOS) and glycolysis in hRPE was studied. RPE cell migration was also assessed. A PVR-like phenotype was induced by intravitreal dispase injection in C57BL/6J mice. PVR progression and potential therapeutic efficiency of αBC-Elastin-like polypeptides (ELP) was studied using fundus photography, OCT imaging, ERG, and histologic analysis of the retina. αSMA, E-cadherin, Vimentin, Fibronectin and, RPE65, and CTGF were analyzed on Day 28. Additionally, the amount of VEGF-A in retinal cell lysates was measured. The EMT-associated αSMA, Vimentin, SNAIL and SLUG showed a significant upregulation with TGFβ2, and their expression was significantly suppressed by cotreatment with αBC-P. The MET-associated markers, E-cadherin and Sirt1, were significantly downregulated by TGFβ2 and were restored by αBC-P. Incubation of hRPE with TGFβ2 for 24 h showed a marked increase in mitochondrial ROS which was noticeably inhibited by αBC-ELP. We also showed that after TGFβ2 treatment, SMAD4 translocated to mitochondria which was blocked by αBC-ELP. Mitochondrial oxygen consumption rate increased with TGFβ2 treatment for 48 h, and αBC-P co-treatment caused a further increase in OCR. Glycolytic functions of RPE were significantly suppressed with αBC-P (75 μg/mL). In addition, αBC-P significantly inhibited the migration from TGFβ2 treatment in hRPE cells. The formation of proliferative membranes was suppressed in the αBC-ELP-treated group, as evidenced by fundus, OCT, and H&E staining in dispase-induced PVR in mice. Furthermore, ERG showed an improvement in c-wave amplitude. In addition, immunostaining showed significant suppression of αSMA and RPE65 expression. It was also observed that αBC-ELP significantly reduced the expression level of vimentin, fibronectin, and CTGF. Our findings suggest that the antioxidant αBC-P may have therapeutic potential in preventing PVR by reversing the phenotype of EMT/MET and improving the mitochondrial function in RPE cells.
Collapse
|
5
|
Suzuki S, Sato T, Watanabe M, Higashide M, Tsugeno Y, Umetsu A, Furuhashi M, Ida Y, Hikage F, Ohguro H. Hypoxia Differently Affects TGF-β2-Induced Epithelial Mesenchymal Transitions in the 2D and 3D Culture of the Human Retinal Pigment Epithelium Cells. Int J Mol Sci 2022; 23:ijms23105473. [PMID: 35628282 PMCID: PMC9143417 DOI: 10.3390/ijms23105473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The hypoxia associated with the transforming growth factor-β2 (TGF-β2)-induced epithelial mesenchymal transition (EMT) of human retinal pigment epithelium (HRPE) cells is well recognized as the essential underlying mechanism responsible for the development of proliferative retinal diseases. In vitro, three-dimensional (3D) models associated with spontaneous O2 gradients can be used to recapitulate the pathological levels of hypoxia to study the effect of hypoxia on the TGF-β2-induced EMT of HRPE cells in detail, we used two-dimensional-(2D) and 3D-cultured HRPE cells. TGF-β2 and hypoxia significantly and synergistically increased the barrier function of the 2D HRPE monolayers, as evidenced by TEER measurements, the downsizing and stiffening of the 3D HRPE spheroids and the mRNA expression of most of the ECM proteins. A real-time metabolic analysis indicated that TGF-β2 caused a decrease in the maximal capacity of mitochondrial oxidative phosphorylation in the 2D HRPE cells, whereas, in the case of 3D HRPE spheroids, TGF-β2 increased proton leakage. The findings reported herein indicate that the TGF-β2-induced EMT of both the 2D and 3D cultured HRPE cells were greatly modified by hypoxia, but during these EMT processes, the metabolic plasticity was different between 2D and 3D HRPE cells, suggesting that the mechanisms responsible for the EMT of the HRPE cells may be variable during their spatial spreading.
Collapse
Affiliation(s)
- Soma Suzuki
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (M.F.)
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Watanabe
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Megumi Higashide
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Yuri Tsugeno
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Araya Umetsu
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (M.F.)
| | - Yosuke Ida
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Fumihito Hikage
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Hiroshi Ohguro
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
- Correspondence: ; Tel.: +81-611-2111
| |
Collapse
|
6
|
Hsiao CC, Chang YC, Hsiao YT, Chen PH, Hsieh MC, Wu WC, Kao YH. Triamcinolone acetonide modulates TGF‑β2‑induced angiogenic and tissue‑remodeling effects in cultured human retinal pigment epithelial cells. Mol Med Rep 2021; 24:802. [PMID: 34523693 PMCID: PMC8456346 DOI: 10.3892/mmr.2021.12442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-β2 (TGF-β2) has been implicated in the pathogenesis of proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR), due to its ability to stimulate the overproduction of pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), and remodeling of the extracellular matrix (ECM). Although intravitreal triamcinolone acetonide (TA) is clinically useful in the treatment of PVR and PDR, its molecular mechanism has yet to be fully elucidated. The present study investigated whether TA treatment altered TGF-β2-driven biological effects on the behavior of cultured human retinal pigment epithelial (RPE) cells, in order to determine which signaling pathway may be essential for the pharmacological action of TA. The R-50 human RPE cell line was treated with TA in the presence of TGF-β2, followed by analyses of cell viability and contraction using cell viability and collagen gel contraction assays. VEGF mRNA expression and protein production were measured using reverse transcription-quantitative PCR and ELISA, respectively. The phosphorylation status of signaling mediators and the protein expression of type I collagen (COL1A1), α-smooth muscle actin (α-SMA), and ECM-remodeling enzymes, including MMP-2 and MMP-9, were analyzed using western blotting. The gelatinolytic activity of MMPs was detected using gelatin zymography. TA treatment exhibited no prominent cytotoxicity but markedly antagonized TGF-β2-induced cytostatic effects on RPE cell viability and TGF-β2-enhanced contractility in collagen gels. In the context of TGF-β2-related signaling, TA significantly attenuated TGF-β2-elicited Smad2, extracellular-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation. Moreover, TA markedly mitigated TGF-β2-induced VEGF upregulation through ablation of p38 signaling activity. TA also partially attenuated TGF-β2-elicted expression of COL1A1, α-SMA, MMP-2, and MMP-9, but only suppressed TGF-β2-induced MMP-9 gelatinolytic activity. Mechanistically, the MEK/ERK signaling pathway may have a critical role in the TGF-β2-induced upregulation of COL1A1, α-SMA and MMP-9. In conclusion, TA may be considered a useful therapeutic agent for treating TGF-β2-associated intraocular angiogenesis and tissue remodeling, the underlying mechanism of which may involve the ERK and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Chih-Cheng Hsiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
| | - Yo-Chen Chang
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yu-Ting Hsiao
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, R.O.C
| | - Po-Han Chen
- Department of Medical Research, E‑Da Hospital, Kaohsiung 82445, Taiwan, R.O.C
| | - Ming-Chu Hsieh
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80761, Taiwan, R.O.C
| | - Wen-Chuan Wu
- Department of Ophthalmology, China Medical University Hospital, Taichung 404332, Taiwan, R.O.C
| | - Ying-Hsien Kao
- Department of Medical Research, E‑Da Hospital, Kaohsiung 82445, Taiwan, R.O.C
| |
Collapse
|
7
|
Suppression of PGC-1α Drives Metabolic Dysfunction in TGFβ2-Induced EMT of Retinal Pigment Epithelial Cells. Int J Mol Sci 2021; 22:ijms22094701. [PMID: 33946753 PMCID: PMC8124188 DOI: 10.3390/ijms22094701] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
PGC-1α, a key orchestrator of mitochondrial metabolism, plays a crucial role in governing the energetically demanding needs of retinal pigment epithelial cells (RPE). We previously showed that silencing PGC-1α induced RPE to undergo an epithelial-mesenchymal-transition (EMT). Here, we show that induction of EMT in RPE using transforming growth factor-beta 2 (TGFβ2) suppressed PGC-1α expression. Correspondingly, TGFβ2 induced defects in mitochondrial network integrity with increased sphericity and fragmentation. TGFβ2 reduced expression of genes regulating mitochondrial dynamics, reduced citrate synthase activity and intracellular ATP content. High-resolution respirometry showed that TGFβ2 reduced mitochondrial OXPHOS levels consistent with reduced expression of NDUFB5. The reduced mitochondrial respiration was associated with a compensatory increase in glycolytic reserve, glucose uptake and gene expression of glycolytic enzymes (PFKFB3, PKM2, LDHA). Treatment with ZLN005, a selective small molecule activator of PGC-1α, blocked TGFβ2-induced upregulation of mesenchymal genes (αSMA, Snai1, CTGF, COL1A1) and TGFβ2-induced migration using the scratch wound assay. Our data show that EMT is accompanied by mitochondrial dysfunction and a metabolic shift towards reduced OXPHOS and increased glycolysis that may be driven by PGC-1α suppression. ZLN005 effectively blocks EMT in RPE and thus serves as a novel therapeutic avenue for treatment of subretinal fibrosis.
Collapse
|
8
|
Shukal D, Bhadresha K, Shastri B, Mehta D, Vasavada A, Johar K. Dichloroacetate prevents TGFβ-induced epithelial-mesenchymal transition of retinal pigment epithelial cells. Exp Eye Res 2020; 197:108072. [PMID: 32473169 DOI: 10.1016/j.exer.2020.108072] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Proliferative retinopathies are associated with formation of fibrous epiretinal membranes. At present, there is no pharmacological intervention for the treatment of retinopathies. Cytokines such as TGFβ are elevated in the vitreous humor of the patients with proliferative vitro-retinopathy, diabetic retinopathy and age-related macular degeneration. TGFβ isoforms lead to epithelial-mesenchymal transition (EMT) or trans-differentiation of the retinal pigment epithelial (RPE) cells. PI3K/Akt and MAPK/Erk pathways play important roles in the EMT of RPE cells. Therefore, inhibition of EMT by pharmacological agents is an important therapeutic strategy in retinopathy. Dichloroacetate (DCA) is shown to prevent proliferation and EMT of cancer cell lines but its effects are not explored on the prevention of EMT of RPE cells. In the present study, we have investigated the role of DCA in preventing TGFβ2 induced EMT of RPE cell line, ARPE-19. A wound-healing assay was utilized to detect the anti-EMT effect of DCA. The expressions of EMT and cell adhesion markers were carried out by immunofluorescence, western blotting, and quantitative real-time PCR. The expression of MAPK/Erk and PI3K/Akt pathway members was carried out using western blotting. We found that TGFβ2 exposure leads to an increase in the wound healing response, expression of EMT markers (Fibronectin, Collagen I, N-cadherin, MMP9, S100A4, α-SMA, Snai1, Slug) and a decrease in the expression of cell adhesion/epithelial markers (ZO-1, Connexin 43, E-cadherin). These changes were accompanied by the activation of PI3K/Akt and MAPK/Erk pathways. Simultaneous exposure of DCA along with TGFβ2 significantly inhibited wound healing response, expression of EMT markers and cell adhesion/epithelial markers. Furthermore, DCA and TGFβ2 effectively attenuated the activation of MAPK/Erk/JNK and PI3K/Akt/GSK3β pathways. Our results demonstrate that DCA has a strong anti-EMT effect on the ARPE-19 cells and hence can be utilized as a therapeutic agent in the prevention of proliferative retinopathies.
Collapse
Affiliation(s)
- Dhaval Shukal
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India; Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Kinjal Bhadresha
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India.
| | - Bhoomi Shastri
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India.
| | - Deval Mehta
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India.
| | - Abhay Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India.
| | - Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat, India.
| |
Collapse
|
9
|
Du Y, Yang X, Gong Q, Xu Z, Cheng Y, Su G. Inhibitor of growth 4 affects hypoxia-induced migration and angiogenesis regulation in retinal pigment epithelial cells. J Cell Physiol 2019; 234:15243-15256. [PMID: 30667053 DOI: 10.1002/jcp.28170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Inhibitor of growth 4 (ING4), a potential tumor suppressor, is implicated in cell migration and angiogenesis. However, its effects on diabetic retinopathy (DR) have not been elucidated. In this study, we aimed to evaluate ING4 expression in normal and diabetic rats and clarify its effects on hypoxia-induced dysfunction in human retinal pigment epithelial (ARPE-19) cells. A Type 1 diabetic model was generated by injecting rats intraperitoneally with streptozotocin and then killed them 4, 8, or 12 weeks later. ING4 expression in retinal tissue was detected using western blot analysis, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), and immunohistochemistry assays. After transfection with an ING4 overexpression lentiviral vector or small interfering RNA (siRNA), ARPE-19 migration under hypoxia was tested using wound healing and transwell assays. The angiogenic effect of conditioned medium (CM) from ARPE-19 cells was examined by assessing human retinal endothelial cell (HREC) capillary tube formation. Additionally, western blot analysis and RT-qPCR were performed to investigate the signaling pathways in which ING4, specificity protein 1 (Sp1), matrix metalloproteinase 2 (MMP-2), MMP-9, and vascular endothelial growth factor A (VEGF-A) were involved. Here, we found that ING4 expression was significantly reduced in the diabetic rats' retinal tissue. Silencing ING4 aggravated hypoxia-induced ARPE-19 cell migration. CM collected from ING4 siRNA-transfected ARPE-19 cells under hypoxia promoted HREC angiogenesis. These effects were reversed by ING4 overexpression. Furthermore, ING4 suppressed MMP-2, MMP-9, and VEGF-A expression in an Sp1-dependent manner in hypoxia-conditioned ARPE-19 cells. Overall, our results provide valuable mechanistic insights into the protective effects of ING4 on hypoxia-induced migration and angiogenesis regulation in ARPE-19 cells. Restoring ING4 may be a novel strategy for treating DR.
Collapse
Affiliation(s)
- Yang Du
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyue Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiaoyun Gong
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhixiang Xu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Garczorz W, Gallego-Colon E, Kosowska A, Siemianowicz K, Kłych-Ratuszny A, Woźniak M, Aghdam MRF, Francuz T, Dorecka M. Exenatide modulates expression of metalloproteinases and their tissue inhibitors in TNF-α stimulated human retinal pigment epithelial cells. Pharmacol Rep 2018; 71:175-182. [PMID: 30554037 DOI: 10.1016/j.pharep.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/17/2018] [Accepted: 10/02/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Diabetic retinopathy (DR) is one of the most common complications of diabetes and the leading cause of acquired blindness in adults. In diabetic patients hyperglycemia induces complex metabolic abnormalities affecting retinal homeostasis, and promotes retinal inflammation and angiogenesis. Incretin mimetic drugs such exenatide, are a relatively new group of drugs used in the treatment of diabetes. We investigated the potential direct effects of exenatide on human retinal pigment epithelium (HRPE). METHODS cAMP production was measured after stimulation of HRPE cells with GLP-1 and exenatide. Intracellular signaling pathways were also examined. HRPE cells were stimulated with TNF-α and subsequently incubated with exenatide. The concentration of metalloproteinases, MMP-1, MMP-2 and MMP-9, and tissue inhibitors of metalloproteinases, TIMP-1, TIMP-2, and TIMP-3 were evaluated. Viability, cytotoxicity and caspase 3/7 activation were determined. Activity of dipeptidyl peptidase-4 (DPP-4), an enzyme involved in GLP-1 inactivation, was also determined. RESULTS Both GLP-1 and exenatide stimulation in HRPE cells caused no effect in cAMP levels suggesting alternative signaling pathways. Signaling pathway analysis showed that exenatide reduced phosphorylation of Akt-Ser473, PRAS40, SAPK/JNK, Bad, and S6 proteins but not Akt-Thr308. Exenatide also decreased MMP-1, MMP-9, and TIMP-2 protein levels whereas MMP-2 level in HRPE cells was increased. Finally, we show that exenatide decreased the activity of DPP-4 in TNF-α stimulated HRPE cells. CONCLUSIONS These findings indicate that exenatide modulates regulation of extracellular matrix components involved in retinal remodeling.
Collapse
Affiliation(s)
- Wojciech Garczorz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Enrique Gallego-Colon
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kosowska
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Krzysztof Siemianowicz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kłych-Ratuszny
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Michał Woźniak
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Mohammad Reza F Aghdam
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz Francuz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Mariola Dorecka
- Department of Ophthalmology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
11
|
Qin D, Zhang L, Jin X, Zhao Z, Jiang Y, Meng Z. Effect of Endothelin-1 on proliferation, migration and fibrogenic gene expression in human RPE cells. Peptides 2017. [PMID: 28634054 DOI: 10.1016/j.peptides.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The pathology of the fibrotic proliferative vitreoretinopathy (PVR) membrane represents an excessive wound healing response characterised by cells' proliferation, migration and secretion of extracellular matrix molecules (ECMs). Retinal pigment epithelial (RPE) cells are a major cellular component of the fibrotic membrane. Endothelin-1 (ET-1) has been reported to be involved in the development of PVR in vivo research. However, little is known about the role of ET-1 in RPE cells in vitro. In the present study, we investigated the role of ET-1 in the proliferation, migration and secretion of ECMs (such as type I collagen and fibronectin) in RPE cells in vitro. Our results illustrated that ET-1 promoted the proliferation, migration and secretion of ECMs through the protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) signaling pathways in RPE cells in vitro. These findings strongly suggested that ET-1 may play a vital role in the development of PVR.
Collapse
Affiliation(s)
- Dong Qin
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Li Zhang
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Xuemin Jin
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Zhaoxia Zhao
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Yanrong Jiang
- Department of Ophthalmology, People's Hospital, Peking University, Beijing, China.
| | - Zijun Meng
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China.
| |
Collapse
|
12
|
RETRACTED ARTICLE: Casticin inhibits epithelial-mesenchymal transition of EBV-infected human retina pigmental epithelial cells through the modulation of intracellular lipogenesis. Graefes Arch Clin Exp Ophthalmol 2016; 255:557. [PMID: 27838737 DOI: 10.1007/s00417-016-3551-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/30/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022] Open
|
13
|
Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, Feng J, Hong H, Qi W, Ma C, Wu Q, Yang X, Gao G. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med 2016; 38:1815-1822. [DOI: 10.3892/ijmm.2016.2768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/29/2016] [Indexed: 11/06/2022] Open
|
14
|
Qin D, Zhang GM, Xu X, Wang LY. The PI3K/Akt signaling pathway mediates the high glucose-induced expression of extracellular matrix molecules in human retinal pigment epithelial cells. J Diabetes Res 2015; 2015:920280. [PMID: 25695094 PMCID: PMC4324947 DOI: 10.1155/2015/920280] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/12/2015] [Indexed: 01/27/2023] Open
Abstract
Prolonged hyperglycemia is an important risk factor of the pathogenesis of diabetic retinopathy (DR). Extracellular matrix molecules, such as fibronectin, collagen IV, and laminin, are associated with fibrotic membranes. In this study, we investigated the expression of fibronectin, collagen IV, and laminin in RPE cells under high glucose conditions. Furthermore, we also detected the phosphorylation of protein kinase B (Akt) under high glucose conditions in RPE cells. Our results showed that high glucose upregulated fibronectin, collagen IV, and laminin expression, and activated Akt in RPE cells. We also found that pretreatment with LY294002 (an inhibitor of phosphatidylinositol 3-kinase) abolished high glucose-induced expression of fibronectin, collagen IV, and laminin in RPE cells. Thus, high glucose induced the expression of fibronectin, collagen IV, and laminin through PI3K/Akt signaling pathway in RPE cells, and the PI3K/Akt signaling pathway may contribute to the formation of fibrotic membrane during the development of DR.
Collapse
Affiliation(s)
- Dong Qin
- Henan Eye Institute, Henan Provincial Eye Hospital, Zhengzhou, Henan 450003, China
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital and Jinan University, Shenzhen 518040, China
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Guo-ming Zhang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital and Jinan University, Shenzhen 518040, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Li-ya Wang
- Henan Eye Institute, Henan Provincial Eye Hospital, Zhengzhou, Henan 450003, China
- *Li-ya Wang:
| |
Collapse
|
15
|
Su CC, Chan CM, Chen HM, Wu CC, Hsiao CY, Lee PL, Lin VCH, Hung CF. Lutein inhibits the migration of retinal pigment epithelial cells via cytosolic and mitochondrial Akt pathways (lutein inhibits RPE cells migration). Int J Mol Sci 2014; 15:13755-67. [PMID: 25110866 PMCID: PMC4159823 DOI: 10.3390/ijms150813755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/16/2014] [Accepted: 07/25/2014] [Indexed: 11/17/2022] Open
Abstract
During the course of proliferative vitreoretinopathy (PVR), the retinal pigment epithelium (RPE) cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF) can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation.
Collapse
Affiliation(s)
- Ching-Chieh Su
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University,New Taipei City 24205, Taiwan.
| | - Chi-Ming Chan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Han-Min Chen
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University,New Taipei City 24205, Taiwan.
| | - Chia-Chun Wu
- Department of Life Sciences, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Science, Chang Guang University of Science and Technology,Taoyuan 33303, Taiwan.
| | - Pei-Lan Lee
- Slone Epidemiology Center, Boston University, Boston, Massachusetts, United States of America,Boston, MA 02215, USA.
| | - Victor Chia-Hsiang Lin
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University,New Taipei City 24205, Taiwan.
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| |
Collapse
|
16
|
Blockage of Notch signaling inhibits the migration and proliferation of retinal pigment epithelial cells. ScientificWorldJournal 2013; 2013:178708. [PMID: 24453806 PMCID: PMC3885266 DOI: 10.1155/2013/178708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/12/2013] [Indexed: 12/03/2022] Open
Abstract
The Notch signaling is an evolutionarily conserved cell-cell communication pathway that plays critical roles in the proliferation, survival, apoptosis, and fate determination of mammalian cells. Retinal pigment epithelial (RPE) cells are responsible for supporting the function of the neural retina and maintaining vision. This study investigated the function of Notch signaling in RPE cells. We found that the members of the Notch signaling pathway components were differentially expressed in RPE cells. Furthermore, blockage of Notch signaling inhibited the migration and proliferation of RPE cells and reduced the expression levels of certain Notch signaling target genes, including HES1, MYC, HEY2, and SOX9. Our data reveal a critical role of Notch signaling in RPE cells, suggesting that targeting Notch signaling may provide a novel approach for the treatment of ophthalmic diseases related to RPE cells.
Collapse
|
17
|
Grigsby J, Betts B, Vidro-Kotchan E, Culbert R, Tsin A. A possible role of acrolein in diabetic retinopathy: involvement of a VEGF/TGFβ signaling pathway of the retinal pigment epithelium in hyperglycemia. Curr Eye Res 2012; 37:1045-53. [PMID: 22906079 DOI: 10.3109/02713683.2012.713152] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Acrolein has been implicated in retinal pigment epithelium (RPE) cell death, and has been associated with diabetic retinopathy. Our purpose was to investigate the potential effect of high glucose in influencing acrolein-mediated RPE cytokine production and cell death. We investigated the influence of the acrolein effect on ARPE-19 cells in high glucose conditions and quantified the release of transforming growth factor β (TGFβ1 and 2) and vascular endothelial growth factor (VEGF). We assessed the ability of N-benzylhydroxylamine(NBHA) as well as TGFβ pathway inhibitors SIS3 and SB431542 to prevent this effect of acrolein on ARPE-19 cells. MATERIALS AND METHODS Confluent ARPE-19 cells were treated with acrolein and/or NBHA in both 5.5 and 18.8 mM glucose conditions. Cells were also pretreated with SIS3, a specific inhibitor of the SMAD3 pathway, and SB431542, a specific inhibitor of TGFβ signaling pathway, before treating them with acrolein. Viable cells were counted and ELISAs were performed to measure the cytokines TGFβ1 and 2, and VEGF released into the conditioned media. RESULTS In ARPE-19 cells exposed to acrolein and hyperglycemia there was reduced cell viability and an increase in the cell media of VEGF, TGFβ1, and TGFβ2, which was reversed by NBHA. Acrolein/hyperglycemia-induced cell viability reduction and cytokine overproduction was also reduced by TGFβ pathway blockade. CONCLUSIONS We conclude that the effect of acrolein on the reduction of viability and VEGF increase by ARPE-19 cells in hyperglycemic media is conducted through the TGFβ signaling pathway. Our results suggest that benefits of sequestering acrolein by NBHA and the blockage of the TGFβ pathway by SB431542 and SIS3 offer suggestions as to potential useful pharmacological drug candidates for the prevention of diabetes-induced complications in the eye.
Collapse
Affiliation(s)
- Jeffery Grigsby
- University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
18
|
Vascular complications and diabetes: current therapies and future challenges. J Ophthalmol 2012; 2012:209538. [PMID: 22272370 PMCID: PMC3261480 DOI: 10.1155/2012/209538] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/02/2011] [Indexed: 12/30/2022] Open
Abstract
Diabetic retinal complications, including macular edema (DME) and proliferative diabetic retinopathy (PDR), are the leading cause of new cases of blindness among adults aged 20–74. Chronic hyperglycemia, considered the underlying cause of diabetic retinopathy, is thought to act first through violation of the pericyte-endothelial coupling. Disruption of microvascular integrity leads to pathologic consequences including hypoxia-induced imbalance in vascular endothelial growth factor (VEGF) signaling. Several anti-VEGF medications are in clinical trials for use in arresting retinal angiogenesis arising from DME and PDR. Although a review of current clinical trials shows promising results, the lack of large prospective studies, head-to-head therapeutic comparisons, and potential long-term and systemic adverse events give cause for optimistic caution. Alternative therapies including targeting pathogenic specific angiogenesis and mural-cell-based therapeutics may offer innovative solutions for currently intractable clinical problems. This paper describes the mechanisms behind diabetic retinal complications, current research supporting anti-VEGF medications, and future therapeutic directions.
Collapse
|
19
|
Tran AT, Bula DV, Kovacs KD, Savageau J, Arroyo JG. Apoptosis in diabetic fibrovascular membranes after panretinal photocoagulation. ACTA ACUST UNITED AC 2010; 41 Online. [PMID: 20806742 DOI: 10.3928/15428877-20100625-06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 03/19/2010] [Indexed: 11/20/2022]
Abstract
A more complete understanding of the role of apoptosis in the regression of diabetic neovasculature following laser panretinal photocoagulation (PRP) will both elucidate the treatment's therapeutic mechanism and potentially lead to novel treatments for neovascularization associated with proliferative diabetic retinopathy that target apoptotic pathways. Pars plana vitrectomy with fibrovascular membrane delamination was performed on five patients with proliferative diabetic retinopathy, with four having received previous PRP treatment and one no previous laser treatment. Using in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, propidium iodide and hematoxylin-eosin staining, apoptotic cells were identified in the excised membranes. The authors found evidence of cells undergoing apoptosis in all of the excised membranes, with increasing amounts of preoperative PRP associated with an increased number of apoptotic cells per millimeter of membrane. The preliminary data suggest that the decrease in ambient mitogen, initiated by PRP treatment, activates apoptosis in diabetic fibrovascular membranes.
Collapse
Affiliation(s)
- Anh T Tran
- University of Massachusetts Medical School, Department of Ophthalmology, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
20
|
Han JH, Ha SW, Lee IK, Kim BW, Kim JG. High glucose-induced apoptosis in bovine retinal pericytes is associated with transforming growth factor beta and betaIG-H3: betaIG-H3 induces apoptosis in retinal pericytes by releasing Arg-Gly-Asp peptides. Clin Exp Ophthalmol 2010; 38:620-8. [PMID: 20584023 DOI: 10.1111/j.1442-9071.2010.02276.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Transforming growth factor beta (TGF-beta) plays an important role in diabetic retinopathy. betaIG-H3 is a downstream target molecule of TGF-beta that may participate in the pathogenesis of diabetic retinopathy and in particular in the loss of pericytes during early pathological changes. METHODS We observed bovine retinal pericytes apoptosis and the increased expression of TGF-beta and betaIG-H3 induced by high concentrations of glucose in the cell culture media. An anti-TGF-beta antibody was used to block glucose-induced retinal pericytes apoptosis. Retinal pericytes were also transfected with cDNA encodings either wild-type or mutant betaIG-H3 lacking Arg-Gly-Asp (RGD) sequences in order to validate the effects of betaIG-H3 and RGD signalling on retinal pericytes apoptosis. RESULTS A cell death-detecting enzyme-linked immunosorbent assay revealed that 25 mM glucose significantly increased cell death compared with 5.5 mM glucose after 5 or 7 days of exposure (P < 0.01). High glucose significantly increased the TGF-beta levels as compared with 5.5 mM glucose after 5 days, and betaIG-H3 levels after 3, 5 and 7 days of exposure (P < 0.01). TGF-beta increased cell death and betaIG-H3 levels in a dose-dependent manner, with a maximal effect observed at 1 ng/mL. An anti-TGF-beta antibody nearly completely blocked high glucose-induced cell death. Wild-type betaIG-H3-transfected cells showed a significant increase in cell death as compared with mutant betaIG-H3-transfected (Mycb-c) cells, untransfected or mock-transfected cells. CONCLUSION These results suggest that hyperglycaemia-induced expression of TGF-beta and betaIG-H3 contributes to accelerated retinal pericytes apoptosis. betaIG-H3 induces pericytes apoptosis through its RGD motif, which may constitute an important pathogenic mechanism leading to pericytes loss in diabetic retinopathy.
Collapse
Affiliation(s)
- Jeung H Han
- Department of Internal Medicine, Kyungpook National University Medical School, Daegu, Korea
| | | | | | | | | |
Collapse
|
21
|
Li R, Maminishkis A, Zahn G, Vossmeyer D, Miller SS. Integrin alpha5beta1 mediates attachment, migration, and proliferation in human retinal pigment epithelium: relevance for proliferative retinal disease. Invest Ophthalmol Vis Sci 2009; 50:5988-96. [PMID: 19608542 PMCID: PMC2788681 DOI: 10.1167/iovs.09-3591] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of this study was to determine the expression and localization of integrin alpha5beta1 in human retinal pigment epithelium (RPE) and its ability to modulate RPE cell attachment, proliferation, migration, and F-actin cytoskeleton distribution. METHODS Expression and localization of alpha5beta1 were analyzed on human RPE by immunoblot/immunofluorescence. Polarized secretion of fibronectin was measured. RPE attachments to different substrates were determined using cell attachment screening kits. BrdU incorporation and wound-healing assays were used to test hfRPE proliferation and migration. F-actin cytoskeleton was visualized with phalloidin. RESULTS Integrin alpha5beta1 was detected in native adult and fetal human RPE. The alpha5-subunit is predominantly localized at the apical membrane of hfRPE, whereas the beta1-subunit is uniformly detected at the apical/basolateral membranes. The authors also found that hfRPE cultures secrete significant amounts of fibronectin to the apical bath. JSM6427, a specific integrin alpha5beta1 antagonist, significantly inhibited hfRPE cell attachment to fibronectin, but not laminin, or collagen I or IV. JSM6427 also showed a strong inhibitory effect on bFGF, PDGF-BB, and serum-induced cell migration and proliferation. Furthermore, JSM6427 induced significant disruption of the F-actin cytoskeleton of dividing RPE cells but had no effect on quiescent cells. CONCLUSIONS The apical localization of alpha5beta1 and the secretion of fibronectin to the apical bath suggest the presence of an autocrine loop that can guide the migration of RPE. The strong inhibitory effects of JSM6427 on human RPE cell attachment, proliferation, and migration is probably mediated by F-actin cytoskeletal disruption in proliferating cells and suggests a potential clinical use of this compound in proliferative retinopathies.
Collapse
Affiliation(s)
- Rong Li
- National Institutes of Health, National Eye Institute, Bethesda, MD
| | | | | | | | | |
Collapse
|
22
|
Ejaz S, Chekarova I, Ejaz A, Sohail A, Lim CW. Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes Metab 2008; 10:53-63. [PMID: 17941874 DOI: 10.1111/j.1463-1326.2007.00795.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pericytes are distinctive regulators of angiogenesis and are adumbrated to provide vessel stability and control of endothelial proliferation. The present article spotlights the persona of pericytes in physiological angiogenesis, recruitment of pericytes and different mechanisms of pericyte depletion. Developing retina appears particularly dependent on pericytes, and pericyte loss is considered as hallmark of early diabetic retinopathies. Several factors are contemplated to be engaged in pericyte conscription including angiopoietin-1 and its receptor tyrosine kinase Tie-2, vascular endothelial growth factor-A and its receptor flk-1 and the platelet-derived growth factor PDGF-B/PDGF-beta system. At present, the mechanisms by which diabetes persuade apoptosis in the retinal microvasculature remain indecisive, albeit oxidative stress, formation of advanced glycation end products , upregulation of protein kinase C, increased polyol pathway flux and focal leukostasis may be important. In this context, accelerated microvascular cell death may become a constructive surrogate end-point in pharmacological studies of experimental diabetic.
Collapse
Affiliation(s)
- Sohail Ejaz
- Faculty of Medicine, Johan Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Zhang X, Barile G, Chang S, Hays A, Pachydaki S, Schiff W, Sparrow J. Apoptosis and cell proliferation in proliferative retinal disorders: PCNA, Ki-67, caspase-3, and PARP expression. Curr Eye Res 2005; 30:395-403. [PMID: 16020270 DOI: 10.1080/02713680590956306] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To assess the incidence of cell proliferation and apoptosis in epiretinal membranes from eyes with proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy (PDR), and macular pucker (MP) and to further investigate the potential involvement of key executors of apoptosis. METHODS Epiretinal membranes were obtained from the eyes of 23 patients who underwent vitrectomy surgery for recurrent retinal detachment due to PVR (n = 16), traction retinal detachment due to PDR (n = 5), and macular pucker (n = 2). Cell proliferation was evaluated by Ki-67 and PCNA (proliferation cell nuclear antigen) immunostaining. Apoptosis was assessed by TUNEL (terminal deoxynucleotidyl transfrase-dUTP-nick end labeling). The expression of caspase-3 and PARP (poly-ADP-ribose-polymerase) was detected using antibodies against activated caspase-3 and p85 fragment of PARP. Cytokeratin and activated caspase-3/PARP, GFAP (glial fibrillary acidic protein) and activated caspase-3/PARP double staining were used to identify cell types in the membranes. RESULTS There was no statistically significant difference in the cell proliferative index between PVR (70.1 +/- 4.2%), PDR (82.1 +/- 7.0%), and macular pucker (72.9 +/- 22.8%) by multivariate analysis (p = 0.39, ANOVA) and univariate analysis. Apoptotic nuclei were seen more frequently in chronic retinal detachments of greater than 2 months duration, but the difference, compared to shorter term retinal detachments was not statistically significant (p = 0.19). The apoptosis indices determined for PVR (2.3 +/- 0.7%), PDR (3.4 +/- 1.5%) and macular pucker (5.5 +/- 3.2%) were not significantly different (ANOVA, p = 0.41). Apoptotic nuclei were correlated, increased with expression of caspase-3 and PARP. Many apoptotic cells appeared to derive from retinal pigment epithelium cells. CONCLUSIONS Cell proliferation and apoptosis appear to be key mechanisms regulating certain cell populations in epiretinal membranes of PVR, PDR, and macular pucker. Inhibition of proliferative regulators such as PCNA and/or activation of apoptotic executors such as caspase-3 may serve as therapeutic targets to halt progression of proliferative retinal disorders.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Undevia NS, Dorscheid DR, Marroquin BA, Gugliotta WL, Tse R, White SR. Smad and p38-MAPK signaling mediates apoptotic effects of transforming growth factor-beta1 in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 287:L515-24. [PMID: 15132952 DOI: 10.1152/ajplung.00044.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) belongs to a family of multifunctional cytokines that regulate a variety of biological processes, including cell differentiation, proliferation, and apoptosis. The effects of TGF-beta1 are cell context and cell cycle specific and may be signaled through several pathways. We examined the effect of TGF-beta1 on apoptosis of primary human central airway epithelial cells and cell lines. TGF-beta1 protected human airway epithelial cells from apoptosis induced by either activation of the Fas death receptor (CD95) or by corticosteroids. This protective effect was blocked by inhibition of the Smad pathway via overexpression of inhibitory Smad7. The protective effect is associated with an increase in the cyclin-dependent kinase inhibitor p21 and was blocked by the overexpression of key gatekeeper cyclins for the G1/S interface, cyclins D1 and E. Blockade of the Smad pathway by overexpression of the inhibitory Smad7 permitted demonstration of a TGF-beta-mediated proapoptotic pathway. This proapoptotic effect was blocked by inhibition of the p38 MAPK kinase signaling with the inhibitor SB-203580 and was associated with an increase in p38 activity as measured by a kinase assay. Here we demonstrate dual signaling pathways involving TGF-beta1, an antiapoptotic pathway mediated by the Smad pathway involving p21, and an apoptosis-permissive pathway mediated in part by p38 MAPK.
Collapse
Affiliation(s)
- Nidhi S Undevia
- Univ. of Chicago, Sect. of Pulmonary and Critical Care Medicine, 5841 S. Maryland Ave., MC 6076, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
26
|
Yoshida A, Elner SG, Bian ZM, Kindezelskii AL, Petty HR, Elner VM. Activated monocytes induce human retinal pigment epithelial cell apoptosis through caspase-3 activation. J Transl Med 2003; 83:1117-29. [PMID: 12920241 DOI: 10.1097/01.lab.0000082393.02727.b5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysfunction and loss of human retinal pigment epithelial (HRPE) cells is a significant component of many ocular diseases, in which mononuclear phagocyte infiltration at the HRPE-related interface is also observed. In this study, we investigated whether HRPE cell apoptosis may be induced by overlay of IFN-gamma-activated monocytes. Human monocytes primed with IFN-gamma overlaid directly onto HRPE cells elicited significant increases in terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive HRPE cells (p < 0.0001) and decreases of proliferating cell nuclear antigen-positive (p < 0.0001) HRPE cells. The activated monocytes also induced HRPE cell caspase-3 activation, which was inhibited by the caspase-3 inhibitor, Z-DEVD-fmk. However, co-incubations in which activated monocytes were prevented from direct contact with HRPE cells or in which the monocytes were separated from the HRPE cells after 30 minutes of direct contact, did not induce significant HRPE cell apoptosis. Function-blocking anti-CD18 and anti-intercellular adhesion molecule-1 (ICAM-1) antibodies significantly reduced activated monocyte-induced TUNEL-positive HRPE cells by 48% (p = 0.0051) and 38% (p = 0.046), respectively. Anti-CD18 and anti-ICAM-1 antibodies significantly inhibited caspase-3 activity by 56% (p < 0.0001) and 45% (p < 0.0001), respectively. However, antibodies to vascular cell adhesion molecule-1, TNF-alpha, IL-1beta, or TNF-related apoptosis-inducing ligand did not inhibit apoptosis or caspase-3 activation. Direct overlay of monocytes also induced reactive oxygen metabolites (ROM) within HRPE cells. The intracellular HRPE cell ROM production was inhibited by the anti-CD18 and anti-ICAM-1 antibodies, but not by superoxide dismutase, presumably due to its failure to penetrate into HRPE cells. Accordingly, neither superoxide dismutase nor N(G)-monomethyl-L-arginine had significant effects on HRPE cell apoptosis or caspase-3 activation. Our results suggest that activated monocytes may induce ROM in HRPE cells through cell-to-cell contact, in part via CD18 and ICAM-1, and promote HRPE cell apoptosis. These mechanisms may compromise HRPE cell function and survival in a variety of retinal diseases.
Collapse
Affiliation(s)
- Ayako Yoshida
- Department of Ophthalmology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | |
Collapse
|
27
|
Miwa K, Nakamura J, Hamada Y, Naruse K, Nakashima E, Kato K, Kasuya Y, Yasuda Y, Kamiya H, Hotta N. The role of polyol pathway in glucose-induced apoptosis of cultured retinal pericytes. Diabetes Res Clin Pract 2003; 60:1-9. [PMID: 12639759 DOI: 10.1016/s0168-8227(02)00248-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The pathogenesis of pericyte loss, an initial deficit in the early stage of diabetic retinopathy, remains unclear. Recent studies have suggested that polyol pathway hyperactivity and apoptosis may be involved in pericyte loss. The mechanisms of the glucose-induced apoptosis in retinal pericytes were investigated to evaluate the pathogenesis of diabetic retinopathy. Under the 20 mM glucose condition, intracellular calcium concentrations and caspase-3 activities were significantly increased, and reduced glutathione (GSH) contents were significantly decreased compared with those under the 5.5 mM glucose condition. These abnormalities were all significantly prevented by an aldose reductase inhibitor, SNK-860. Glucose-induced apoptosis was partially but significantly prevented by SNK-860, an inhibitor of calcium-dependent cysteine protease, calpain, or GSH supplementation, and completely normalized by a caspase-3 inhibitor. These observations suggest that glucose-induced apoptosis in retinal pericytes, as one of the pathogenic factors of diabetic retinopathy, would be mediated through an aldose reductase-sensitive pathway including calcium-calpain cascade and increased oxidative stress, and that caspase-3 would be located furthest downstream of these apoptotic signals.
Collapse
Affiliation(s)
- Kazuma Miwa
- The Third Department of Internal Medicine, Nagoya University School of Medicine, 65 Tsuruma-cho, Showa-ku, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Oshima Y, Sakamoto T, Hisatomi T, Tsutsumi C, Ueno H, Ishibashi T. Gene transfer of soluble TGF-beta type II receptor inhibits experimental proliferative vitreoretinopathy. Gene Ther 2002; 9:1214-20. [PMID: 12215888 DOI: 10.1038/sj.gt.3301789] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2001] [Accepted: 04/19/2002] [Indexed: 11/09/2022]
Abstract
This study was conducted to investigate a method of gene therapy for proliferative vitreoretinopathy (PVR) by inhibiting type beta transforming growth factor (TGF-beta). PVR was induced in pigmented rabbits by intravitreal injection of 50 000 rabbit conjunctival fibroblasts after vitrectomy. Subsequently, the eyes received an intravitreal application of adenovirus vector encoding a soluble type II TGF-beta receptor (AdTbeta-ExR, n = 10) or adenoviral vector expressing beta-galactosidase (AdLacZ) (n = 10) or balanced salt solution (BSS) (n = 6). The eyes were examined ophthalmoscopically for 28 days after surgery, and the clinical stage of PVR was evaluated on a scale of zero to five. Histological examinations were performed on the treated eyes on day 28. All control eyes injected with AdLacZ or BSS developed PVR, characterized by retinal detachment and the formation of intravitreal membranes within 7 days. The eyes injected with AdTbeta-ExR also developed features of PVR, but the average severity from day 5 to day 28 was significant lower than in the control eyes (P < 0.05). TGF-beta plays an important role in PVR progression in a PVR model, and prevention of TGF-beta signaling could be therapeutically useful.
Collapse
Affiliation(s)
- Y Oshima
- Department of Ophthalmology, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Uveal melanoma is the most common primary ocular cancer among adults and patients with distant metastases seldom survive longer than a year. Melanomas of the eye have the advantage of growing in the special environment of an immune privileged site and it has long been shown, that the special immunosuppressive properties of the intraocular microenvironment are strongly mediated by cytokines, especially transforming growth factor-beta (TGF-beta). Here, we sought to investigate the presence of TGF-beta in surgically removed uveal melanoma specimens using immunohistochemical methods to verify possible autocrine mechanisms. Immunocytochemistry for pan-TGF-beta and TGF-beta(2) was performed on 13 melanoma specimens using an alkaline phosphatase labeling procedure. Melanocytic origin of the tumors was confirmed by HMB-45 staining. All tissue samples exhibited positive staining using either pan-TGF-beta or TGF-beta(2) antibody regardless of cell-type, size of the tumor, or tumor location. The intensity of staining did not vary significantly within a given tumor. All tumors stained positive against the HMB-45 antibody. Many cytokines have been found to act on melanoma tumors. The presence of the TGF-beta(2) isoform in all specimens points to progressive tumor-growth as has been shown for melanomas of the skin. Based on our immunohistochemical findings and the immunosuppressive properties of TGF-beta, we suppose that ocular melanomas should be able to create their own immunosuppressive environment even in the uvea, which might be a non-privileged site.
Collapse
Affiliation(s)
- P Esser
- University Eye Clinic Köln (Cologne), D-50931 Köln, Germany.
| | | | | |
Collapse
|
30
|
Naruse K, Nakamura J, Hamada Y, Nakayama M, Chaya S, Komori T, Kato K, Kasuya Y, Miwa K, Hotta N. Aldose reductase inhibition prevents glucose-induced apoptosis in cultured bovine retinal microvascular pericytes. Exp Eye Res 2000; 71:309-15. [PMID: 10973739 DOI: 10.1006/exer.2000.0882] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathogenesis of pericyte loss, an initial deficit in the early stage of diabetic retinopathy, remains unclear. Polyol pathway hyperactivity has been implicated in the pathogenesis of diabetic retinopathy, and recent studies have suggested that apoptosis may be involved in pericyte loss. The present study was conducted to investigate whether high glucose induces apoptosis in cultured bovine retinal pericytes. The effect of an aldose reductase inhibitor, SNK-860, was also examined. After a 5 day incubation with various concentrations of glucose (5.5-40 m M) in the presence or absence of SNK-860, the cell viability and the percentages of dead cells were measured, and staining with the TUNEL method and Hoechst 33342, and DNA electrophoresis were performed. High glucose reduced the viability and increased the percentages of dead cells. TUNEL-positive cells were observed in pericytes under high glucose, but not in those under 5.5 m M glucose. In the staining of nuclei with Hoechst 33342, the percentage of apoptotic cells in total cells counted under high glucose was higher than that under 5.5 m M glucose. DNA electrophoresis of pericytes cultured with high glucose demonstrated a 'ladder pattern'. Hyperosmolarity also induced apoptosis in pericytes, but less than that by high glucose. SNK-860 inhibited the glucose-induced apoptosis in pericytes. These observations suggest that the pericyte loss in diabetic retinopathy involves an apoptotic process, and that the polyol pathway hyperactivity plays an important role in inducing apoptosis in pericytes by high glucose.
Collapse
Affiliation(s)
- K Naruse
- The Third Department of Internal Medicine, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Uebersax ED, Grindstaff RD, Defoe DM. Survival of the retinal pigment epithelium in vitro: comparison of freshly isolated and subcultured cells. Exp Eye Res 2000; 70:381-90. [PMID: 10712824 DOI: 10.1006/exer.1999.0802] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells of the retinal pigment epithelium (RPE) are generated prenatally and generally survive the lifetime of the individual without undergoing proliferation or replacement. Therefore, the mechanisms promoting individual RPE cell survival and longevity in vivo may be distinct from, or a limited subset of, the mechanisms known to promote survival in proliferative cells in culture. To identify specific factors that sustain cell viability independent of effects on cell division, we studied RPE cells in low-density suspension culture, in which cell proliferation is inhibited. Single cells from Xenopus laevis eyes were plated onto a non-adhesive surface in protein-free medium, then assayed for survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cell viability in these cultures was essentially undiminished over the initial 2 days. However, by approximately 1 week in culture, only an average of 53% of the cells remained alive. Plating cells on a fibronectin-coated substratum significantly enhanced survival, such that the number of cells alive at 1 week was 80-90% of the initial level. Essentially identical results were obtained with laminin- or collagen IV-coated substrata, or with insulin (5 microg ml(-1)) in the medium. The absence of cell division in these cultures was confirmed by cell counting and BrdU incorporation experiments. Interestingly, in suspension cultures derived from monolayers previously established on microporous membrane filters, cells lost viability much faster (average of 80% dead at 3 days), and showed a relatively greater response to extracellular matrix proteins (five-fold increase in cell survival at 3 days). Enhanced RPE survival in response to fibronectin required spreading of the cell on a substratum, rather than mere adherence, as there was a high correlation between the percentage of spread cells and the percentage that were MTT-positive (r=0.940). Cell spreading apparently enhanced survival by preventing the initiation of programmed cell death: unattached non-viable cells in culture exhibited morphological features expected of apoptosis, as well as positive staining by the TUNEL reaction. These studies demonstrate that, of several factors shown to maintain or increase cell number in proliferating cultures, some have their effect, at least in part, by promoting the survival of individual cells. The increased susceptibility of subcultured RPE to cell death has implications for clinical transplantation applications that may require manipulation of RPE in vitro.
Collapse
|
32
|
Mietz H, Severin M, Seifert P, Esser P, Krieglstein GK. Acute corneal necrosis after excimer laser keratectomy for hyperopia. Ophthalmology 1999; 106:490-6. [PMID: 10080204 DOI: 10.1016/s0161-6420(99)90106-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE To describe a new, rare clinical complication after routine excimer laser photorefractive keratectomy to correct hyperopia. DESIGN Case report with clinicopathologic correlation. MAIN OUTCOME MEASURES Four weeks after treatment with excimer laser, a perforating keratoplasty was performed for persistent corneal opacities. The corneal button was examined using light and electron microscopy. Special immunohistochemical stains were used to detect apoptosis. RESULTS The patient developed corneal opacities, endothelial precipitates, and a fibrinous exudate in the anterior chamber after the laser treatment. The changes did not respond to therapy directed against bacteria, fungi, and Acanthamoeba. All examinations and special stains were negative for micro-organisms. By light microscopy, an anterior zone of corneal necrosis was present with a moderate amount of acute inflammatory cells. At the interface between necrotic and viable corneal stroma, keratocytes with typical features of apoptosis were detected by immunohistochemistry and electron microscopy. CONCLUSION This is the first full histopathologic report of a case of acute corneal necrosis with signs of apoptosis after excimer laser therapy of the cornea. Surgeons should be aware of this rare but potentially severe complication.
Collapse
Affiliation(s)
- H Mietz
- Department of Ophthalmology, University of Cologne, Koeln, Germany
| | | | | | | | | |
Collapse
|
33
|
Rojas E, Lopez MC, Valverde M. Single cell gel electrophoresis assay: methodology and applications. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1999; 722:225-54. [PMID: 10068143 DOI: 10.1016/s0378-4347(98)00313-2] [Citation(s) in RCA: 324] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The single cell gel electrophoresis or Comet assay is a sensitive, reliable, and rapid method for DNA double- and single-strand breaks, alkali-labile sites and delayed repair site detection, in eukaryotic individual cells. Given its overall characteristics, this method has been widely used over the past few years in several different areas. In this paper we review the studies published to date about the principles, the basic methodology with currently used variations. We also explore the applications of this assay in: genotoxicology, clinical area, DNA repair studies, environmental biomonitoring and human monitoring.
Collapse
Affiliation(s)
- E Rojas
- Departamento de Genética y Toxicología Ambiental, Instituto de Investigaciones Biomedicas, UNAM, Mexico DF, Mexico
| | | | | |
Collapse
|
34
|
Hueber A, Esser P, Heimann K, Kociok N, Winter S, Weller M. The topoisomerase I inhibitors, camptothecin and beta-lapachone, induce apoptosis of human retinal pigment epithelial cells. Exp Eye Res 1998; 67:525-30. [PMID: 9878214 DOI: 10.1006/exer.1998.0544] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the study was to determine whether the topoisomerase I inhibitors, camptothecin and beta-lapachone, are suitable agents for the adjuvant pharmacotherapy of proliferative vitreoretinopathy (PVR). The effects of the drugs on cultured human retinal pigment epithelial (RPE) cells were examined using growth assays, cytotoxicity assays, single cell agarose gel electrophoresis, in situ DNA end labeling and immunoblot analysis for apoptosis-regulatory proteins. Both agents killed RPE cells in a concentration-and time-dependent manner. Cell death was apoptotic as assessed by single cell agarose gel electrophoresis and in situ DNA end labeling. Camptothecin, but not beta-lapachone, induced accumulation of p53 and the major growth arrest-associated p53 response protein, p21. Both drugs enhanced expression of the proapoptotic BAX protein. Camptothecin, but not beta-lapachone, synergistically enhanced RPE cell apoptosis induced by the cytotoxic cytokine, CD95 ligand (CD95L). This effect was linked to camptothecin-induced inhibition of RNA synthesis. Atypical topoisomerase I inhibitors may be promising agents for the adjuvant pharmacotherapy of PVR. Experimental studies to assess possible ocular toxicity upon local administration and to confirm its therapeutic efficacy in an animal model of PVR are required.
Collapse
Affiliation(s)
- A Hueber
- Department of Vitreoretinal Surgery, University Eye Hospital, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Yan Q, Sage EH. Transforming growth factor-β1 induces apoptotic cell death in cultured retinal endothelial cells but not pericytes: Association with decreased expression of p21waf1/cip1. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980701)70:1<70::aid-jcb8>3.0.co;2-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|