1
|
Ocular Manifestations in a Chinese Pedigree of Familial Amyloidotic Polyneuropathy Carrying the Transthyretin Mutation c.401A>G (p.Tyr134Cys). Genes (Basel) 2022; 13:genes13050886. [PMID: 35627273 PMCID: PMC9140613 DOI: 10.3390/genes13050886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Familial amyloid polyneuropathy (FAP) caused by a genetic mutation in transthyretin (TTR) is an autosomal dominant hereditary disease. The retrospective, observational case series study presents the ocular clinicopathological findings of five cases carrying the TTR mutation c.401A>G (p.Tyr134Cys). Multimodal retinal imaging and electrophysiological examination, Congo red staining and immunohistochemical analysis of specimens, and genetic analyses were performed. Cases 1 and 2 were symptomatic with vitreous and retinal amyloid deposition and poor visual recovery. Case 3 had a symptomatic vitreous haze in the left eye with good postoperative visual recovery. The right eye of case 3 and the eyes of cases 4 and 5 were asymptomatic. Thicker retinal nerve fiber layer, retinal venous tortuosity with prolonged arteriovenous passage time on fluorescein angiography and retinal dysfunction detected by multifocal electroretinogram occurred even in asymptomatic eyes. Moreover, the internal limiting membrane from patients with FAP was stained positive for Congo red and transforming growth factor-β1. The results highlight the amyloid deposition of mutant TTR in the optic disc and retina, even in the asymptomatic stage. The deposited amyloid leads to increased resistance to venous return and retinal functional abnormalities. Therefore, careful follow-up of structural and functional changes in the retina is needed, even in asymptomatic patients with FAP.
Collapse
|
2
|
Zemany L, Bhanot S, Peroni OD, Murray SF, Moraes-Vieira PM, Castoldi A, Manchem P, Guo S, Monia BP, Kahn BB. Transthyretin Antisense Oligonucleotides Lower Circulating RBP4 Levels and Improve Insulin Sensitivity in Obese Mice. Diabetes 2015; 64:1603-14. [PMID: 25524914 PMCID: PMC4407860 DOI: 10.2337/db14-0970] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/11/2014] [Indexed: 12/27/2022]
Abstract
Circulating transthyretin (TTR) is a critical determinant of plasma retinol-binding protein 4 (RBP4) levels. Elevated RBP4 levels cause insulin resistance, and the lowering of RBP4 levels improves glucose homeostasis. Since lowering TTR levels increases renal clearance of RBP4, we determined whether decreasing TTR levels with antisense oligonucleotides (ASOs) improves glucose metabolism and insulin sensitivity in obesity. TTR-ASO treatment of mice with genetic or diet-induced obesity resulted in an 80-95% decrease in circulating levels of TTR and RBP4. Treatment with TTR-ASOs, but not control ASOs, decreased insulin levels by 30-60% and improved insulin sensitivity in ob/ob mice and high-fat diet-fed mice as early as after 2 weeks of treatment. The reduced insulin levels were sustained for up to 9 weeks of treatment and were associated with reduced adipose tissue inflammation. Body weight was not changed. TTR-ASO treatment decreased LDL cholesterol in high-fat diet-fed mice. The glucose infusion rate during a hyperinsulinemic-euglycemic clamp was increased by 50% in high-fat diet-fed mice treated with TTR-ASOs, demonstrating improved insulin sensitivity. This was also demonstrated by 20% greater inhibition of hepatic glucose production, a 45-60% increase of glucose uptake into skeletal and cardiac muscle, and a twofold increase in insulin signaling in muscle. These data show that decreasing circulating TTR levels or altering TTR-RBP4 binding could be a potential therapeutic approach for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Laura Zemany
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Odile D Peroni
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Pedro M Moraes-Vieira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Angela Castoldi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | | | | | - Barbara B Kahn
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
3
|
Alshehri B, D'Souza DG, Lee JY, Petratos S, Richardson SJ. The diversity of mechanisms influenced by transthyretin in neurobiology: development, disease and endocrine disruption. J Neuroendocrinol 2015; 27:303-23. [PMID: 25737004 DOI: 10.1111/jne.12271] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
Transthyretin (TTR) is a protein that binds and distributes thyroid hormones (THs). TTR synthesised in the liver is secreted into the bloodstream and distributes THs around the body, whereas TTR synthesised in the choroid plexus is involved in movement of thyroxine from the blood into the cerebrospinal fluid and the distribution of THs in the brain. This is important because an adequate amount of TH is required for normal development of the brain. Nevertheless, there has been heated debate on the role of TTR synthesised by the choroid plexus during the past 20 years. We present both sides of the debate and how they can be reconciled by the discovery of TH transporters. New roles for TTR have been suggested, including the promotion of neuroregeneration, protection against neurodegeneration, and involvement in schizophrenia, behaviour, memory and learning. Recently, TTR synthesis was revealed in neurones and peripheral Schwann cells. Thus, the synthesis of TTR in the central nervous system (CNS) is more extensive than previously considered and bolsters the hypothesis that TTR may play wide roles in neurobiological function. Given the high conservation of TTR structure, function and tissue specificity and timing of gene expression, this implies that TTR has a fundamental role, during development and in the adult, across vertebrates. An alarming number of 'unnatural' chemicals can bind to TTR, thus potentially interfering with its functions in the brain. One role of TTR is delivery of THs throughout the CNS. Reduced TH availability during brain development results in a reduced IQ. The combination of the newly discovered sites of TTR synthesis in the CNS, the increasing number of neurological diseases being associated with TTR, the newly discovered functions of TTR and the awareness of the chemicals that can interfere with TTR biology render this a timely review on TTR in neurobiology.
Collapse
Affiliation(s)
- B Alshehri
- School of Medical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | | | | | | |
Collapse
|
4
|
Buxbaum JN, Roberts AJ, Adame A, Masliah E. Silencing of murine transthyretin and retinol binding protein genes has distinct and shared behavioral and neuropathologic effects. Neuroscience 2014; 275:352-64. [PMID: 24956283 DOI: 10.1016/j.neuroscience.2014.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 01/03/2023]
Abstract
The murine genes encoding transthyretin (TTR) and retinol binding protein (RBP) were independently silenced by targeted disruption more than 10 years ago. Studies of both strains showed surprisingly little impact on either thyroid function or retinoid metabolism. Silencing TTR led to a relatively mild behavioral phenotype. In order to gain insight into the behavioral effect and determine if it was related to TTR's function as the carrier of RBP we carried out simultaneous studies with homozygous Rbp4(-/-) and Ttr(-/-) animals 4-7 months of age. Both strains showed behavioral differences relative to Ttr and Rbp4 wild-type animals and each other. The patterns were discrete for each knockout although there was some overlap. Neuropathologic examination of the cortex and hippocampus revealed cortical and hippocampal (CA3) neuronal loss in both and some degree of gliosis, more pronounced in the Rbp4(-/-) mice. There also appeared to be a major reduction in proliferating neuroblasts in the subventricular zone in both strains, which was also more severe in the Rbp4(-/-) mice. This is the first description of behavioral abnormalities in Rbp4(-/-)mice. The data also indicate that it is unlikely that the behaviors seen in Ttr(-/-) mice are related to its function as an RBP carrier.
Collapse
Affiliation(s)
- J N Buxbaum
- The Scripps Research Institute, 10550 North Torrey Pines Road, MEM 230, La Jolla, CA 92037, USA.
| | - A J Roberts
- The Scripps Research Institute, 10550 North Torrey Pines Road, MEM 230, La Jolla, CA 92037, USA.
| | - A Adame
- University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - E Masliah
- University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Lv W, Chen J, Chen W, Hou P, Pang CP, Chen H. Multimodal retinal imaging in a Chinese kindred with familial amyloid polyneuropathy secondary to transthyretin Ile107Met mutation. Eye (Lond) 2014; 28:452-8. [PMID: 24480837 DOI: 10.1038/eye.2014.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 12/10/2013] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To investigate the ocular phenotype and gene mutation of a Chinese pedigree with familial amyloid polyneuropathy (FAP) and vitreous amyloidosis. METHODS A Chinese pedigree with familial amyloid polyneuropathy and vitreous amyloidosis was recruited. Combined phacoemulsification, vitrectomy and intraocular lens implantation were performed on the right eye of the index patient. Ophthalmic investigations were performed before and after surgery. The DNA from the pedigree was sequenced for the transthyretin (TTR) gene. RESULTS After vitrectomy, the best-corrected visual acuity of the patient improved from counting finger to 20/20. Red-free confocal ophthalmoscopy demonstrated perifoveal ring and several perivessel white sheaths. Optical coherence tomography (OCT) revealed cotton wool like reflections on the vitreoretinal interface. Electroretinogram and autofluorescence was normal. Amyloid was present in the vitreous specimen. A substitution of T to G at nucleotide 381 in exon 4 of TTR DNA (Ile107Met) was found. This mutation co-segregated with phenotype in the pedigree and was not detected in 200 controls. CONCLUSIONS TTR Ile107Met mutation is associated with vitreous amyloidosis and FAP. OCT and red-free imaging are helpful in identifying amyloid deposits in the retina.
Collapse
Affiliation(s)
- W Lv
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - J Chen
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - W Chen
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - P Hou
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - C P Pang
- 1] Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China [2] Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - H Chen
- 1] Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China [2] Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Transthyretin: More than meets the eye. Prog Neurobiol 2009; 89:266-76. [DOI: 10.1016/j.pneurobio.2009.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/24/2009] [Accepted: 07/31/2009] [Indexed: 11/20/2022]
|
7
|
Gunnersen JM, Kuek A, Phipps JA, Hammond VE, Puthussery T, Fletcher EL, Tan SS. Seizure-related gene 6 (Sez-6) in amacrine cells of the rodent retina and the consequence of gene deletion. PLoS One 2009; 4:e6546. [PMID: 19662096 PMCID: PMC2718829 DOI: 10.1371/journal.pone.0006546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/25/2009] [Indexed: 11/18/2022] Open
Abstract
Background Seizure-related gene 6 (Sez-6) is expressed in neurons of the mouse brain, retina and spinal cord. In the cortex, Sez-6 plays a role in specifying dendritic branching patterns and excitatory synapse numbers during development. Methodology/Principal Findings The distribution pattern of Sez-6 in the retina was studied using a polyclonal antibody that detects the multiple isoforms of Sez-6. Prominent immunostaining was detected in GABAergic, but not in AII glycinergic, amacrine cell subpopulations of the rat and mouse retina. Amacrine cell somata displayed a distinct staining pattern with the Sez-6 antibody: a discrete, often roughly triangular-shaped bright spot positioned between the nucleus and the apical dendrite superimposed over weaker general cytoplasmic staining. Displaced amacrines in the ganglion cell layer were also positive for Sez-6 and weaker staining was occasionally observed in neurons with the morphology of alpha ganglion cells. Two distinct Sez-6 positive strata were present in the inner plexiform layer in addition to generalized punctate staining. Certain inner nuclear layer cells, including bipolar cells, stained more weakly and diffusely than amacrine cells, although some bipolar cells exhibited a perinuclear “bright spot” similar to amacrine cells. In order to assess the role of Sez-6 in the retina, we analyzed the morphology of the Sez-6 knockout mouse retina with immunohistochemical markers and compared ganglion cell dendritic arbor patterning in Sez-6 null retinae with controls. The functional importance of Sez-6 was assessed by dark-adapted paired-flash electroretinography (ERG). Conclusions In summary, we have reported the detailed expression pattern of a novel retinal marker with broad cell specificity, useful for retinal characterization in rodent experimental models. Retinal morphology, ganglion cell dendritic branching and ERG waveforms appeared normal in the Sez-6 knockout mouse suggesting that, in spite of widespread expression of Sez-6, retinal function in the absence of Sez-6 is not affected.
Collapse
Affiliation(s)
- Jenny M Gunnersen
- Brain Development, Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Sousa JC, Marques F, Dias-Ferreira E, Cerqueira JJ, Sousa N, Palha JA. Transthyretin influences spatial reference memory. Neurobiol Learn Mem 2007; 88:381-5. [PMID: 17698379 DOI: 10.1016/j.nlm.2007.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 07/01/2007] [Accepted: 07/04/2007] [Indexed: 11/19/2022]
Abstract
Transthyretin (TTR) is a plasma and cerebrospinal fluid carrier for thyroxine and retinol, described also to sequester the amyloid beta peptide. TTR levels have been described as decreased in the cerebrospinal fluid of patients with Alzheimer's disease. In order to investigate the role of TTR in learning and memory, we studied young adult and old TTR-null 129/Sv mice for cognitive performance. In the absence of TTR, 5-month-old mice display spatial reference memory impairment when compared to age-matched wild-type mice. Interestingly, while aging in wild-type mice is associated with a worsening reference memory performance, TTR-null mice show no further impairment with increasing age. As a result, no significant differences were found in this spatial reference task in old mice. Our data show that the absence of TTR seems to accelerate the poorer cognitive performance normally associated with aging.
Collapse
Affiliation(s)
- João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | |
Collapse
|
9
|
Brouillette J, Quirion R. Transthyretin: a key gene involved in the maintenance of memory capacities during aging. Neurobiol Aging 2007; 29:1721-32. [PMID: 17512093 DOI: 10.1016/j.neurobiolaging.2007.04.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/13/2007] [Accepted: 04/14/2007] [Indexed: 11/26/2022]
Abstract
Aging is often associated with decline of memory function. Aged animals, like humans, can naturally develop memory impairments and thus represent a useful model to investigate genes involved in long-term memory formation that are differentially expressed between aged memory-impaired (AI) and aged memory-unimpaired (AU) animals following stimulation in a spatial memory task. We found that alterations in hippocampal gene expression of transthyretin (TTR), calcineurin, and NAD(P)H dehydrogenase quinone 2 (NQO2) were associated with memory deficits in aged animals. Decreased TTR gene expression could be attributed at least partially to diminish activity of C/EBP immediate-early gene cascade initiated by CREB since protein levels of C/EBP, a transcription factor regulating both TTR and NQO2 expression, was decreased in AI animals. Memory deficits were also found during aging in mice lacking TTR, a retinol transporter known to prevent amyloid-beta aggregation and plaque formation as seen in Alzheimer's disease. Treatment with retinoic acid reversed cognitive deficits in these knock-out mice as well as in aged rats. Our study provides genetic, behavioural and molecular evidence that TTR is involved in the maintenance of normal cognitive processes during aging by acting on the retinoid signalling pathway.
Collapse
Affiliation(s)
- Jonathan Brouillette
- Department of Neurology & Neurosurgery, Douglas Hospital Research Centre, McGill University, Montréal, Québec, Canada H4H 1R3
| | | |
Collapse
|
10
|
Richardson SJ. Cell and Molecular Biology of Transthyretin and Thyroid Hormones. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:137-93. [PMID: 17338921 DOI: 10.1016/s0074-7696(07)58003-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Advances in four areas of transthyretin (TTR) research result in this being a timely review. Developmental studies have revealed that TTR is synthesized in all classes of vertebrates during development. This leads to a new hypothesis on selection pressure for hepatic TTR synthesis during development only, changing the previous hypotheses from "onset" of hepatic TTR synthesis in adulthood to "maintaining" hepatic TTR synthesis into adulthood. Evolutionary studies have revealed the existence of TTR-like proteins (TLPs) in nonvertebrate species and elucidated some of their functions. Consequently, TTR is an excellent model for the study of the evolution of protein structure, function, and localization. Studies of human diseases have demonstrated that TTR in the cerebrospinal fluid can form amyloid, but more recently there has been recognition of the roles of TTR in depression and Alzheimer's disease. Furthermore, amyloid mutations in human TTR that are the normal residues in other species result in cardiac deposition of TTR amyloid in humans. Finally, a revised model for TTR-thyroxine entry into the cerebrospinal fluid via the choroid plexus, based on data from studies in TTR null mice, is presented. This review concentrates on TTR and its thyroid hormone binding, in development and during evolution, and summarizes what is currently known about TLPs and the role of TTR in diseases affecting the brain.
Collapse
Affiliation(s)
- Samantha J Richardson
- UMR CNRS 5166, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, 75231 Paris, France
| |
Collapse
|
11
|
Quadro L, Hamberger L, Colantuoni V, Gottesman ME, Blaner WS. Understanding the physiological role of retinol-binding protein in vitamin A metabolism using transgenic and knockout mouse models. Mol Aspects Med 2004; 24:421-30. [PMID: 14585313 DOI: 10.1016/s0098-2997(03)00038-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Retinoids (vitamin A and its derivatives) play an essential role in many biological functions. However mammals are incapable of de novo synthesis of vitamin A and must acquire it from the diet. In the intestine, dietary retinoids are incorporated in chylomicrons as retinyl esters, along with other dietary lipids. The majority of dietary retinoid is cleared by and stored within the liver. To meet vitamin A requirements of tissues, the liver secretes retinol (vitamin A alcohol) into the circulation bound to its sole specific carrier protein, retinol-binding protein (RBP). The single known function of this protein is to transport retinol from the hepatic stores to target tissues. Over the last few years, the generation of knockout and transgenic mouse models has significantly contributed to our understanding of RBP function in the metabolism of vitamin A. We discuss below the role of RBP in maintaining normal vision and a steady flux of retinol throughout the body in times of need.
Collapse
Affiliation(s)
- Loredana Quadro
- Institute of Cancer Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
12
|
Kuksa V, Imanishi Y, Batten M, Palczewski K, Moise AR. Retinoid cycle in the vertebrate retina: experimental approaches and mechanisms of isomerization. Vision Res 2003; 43:2959-81. [PMID: 14611933 DOI: 10.1016/s0042-6989(03)00482-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Retinoid cycle describes a set of chemical transformations that occur in the photoreceptor and retinal pigment epithelial cells. The hydrophobic and labile nature of the retinoid substrates and the two-cell chromophore utilization-regeneration system imposes significant constraints on the experimental biochemical approaches employed to understand this process. A brief description of the recent developments in the investigation of the retinoid cycle is the current topic, which includes a review of novel results and techniques pertaining to the retinoid cycle. The chemistry of the all-trans-retinol to 11-cis-retinol isomerization is also discussed.
Collapse
Affiliation(s)
- Vladimir Kuksa
- Department of Ophthalmology, University of Washington, Box 356485, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
The mouse has become a key animal model for ocular research. This situation reflects the fact that genes implicated in human retinal disorders or in mammalian retinal function may be readily manipulated in the mouse. Visual electrophysiology provides a means to examine retinal function in mutant mice, and stimulation and recording protocols have been developed that allow the activity of many classes of retinal neurons to be examined and which take into account unique features of the mouse retina. Here, we review the mouse visual electrophysiology literature, covering techniques used to record the mouse electroretinogram and visual evoked potential, and how these have been applied to characterize the functional implications of gene mutation or manipulation in the mouse retina.
Collapse
Affiliation(s)
- Neal S Peachey
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
14
|
Abstract
Choroid plexus has the highest concentration of transthyretin (TTR) mRNA in the body, 4.4 microg TTR mRNA/g wet weight tissue, compared with 0.39 microg in the liver. The proportion of TTR to total protein synthesis in choroid plexus is 12%. All newly synthesized TTR is secreted towards the ventricles. Net transfer of T4 occurs only towards the ventricle and depends on ongoing protein synthesis. Thyroxine-binding globulin (TBG), TTR and albumin form a "buffering" system for plasma [T4] because of their overlapping affinities and on/off rates for L-thyroxine (T4)-binding. The individual components of this network determining T4 distribution are functionally highly redundant. Absence of TBG (humans), or TTR (mice), or albumin (humans, rats) is not associated with hypothyroidism. Natural selection is based on small, inheritable alterations improving function. The study of these alterations can identify function. TTR genes were cloned and sequenced for a large number of vertebrate species. Systematic, stepwise changes during evolution occurred only in the N-terminal region, which became shorter and more hydrophilic. Simultaneously, a change in function occurred: TTR affinities for T4 are higher in mammals than in reptiles and birds. L-triiodothyronine (T3) affinities show the opposite trend. This favors site-specific regulation of thyroid hormones by tissue-specific deiodinases in the brain.
Collapse
Affiliation(s)
- Gerhard Schreiber
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|