1
|
Verdugo RJ, Matamala JM, Inui K, Kakigi R, Valls-Solé J, Hansson P, Bernhard Nilsen K, Lombardi R, Lauria G, Petropoulos IN, Malik RA, Treede RD, Baumgärtner U, Jara PA, Campero M. Review of techniques useful for the assessment of sensory small fiber neuropathies: Report from an IFCN expert group. Clin Neurophysiol 2022; 136:13-38. [DOI: 10.1016/j.clinph.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/09/2023]
|
2
|
Skin-Resident γδ T Cells Exhibit Site-Specific Morphology and Activation States. J Immunol Res 2019; 2019:9020234. [PMID: 30723751 PMCID: PMC6339708 DOI: 10.1155/2019/9020234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/28/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022] Open
Abstract
Skin-resident γδ T cells play an important role in maintaining the immune barrier at the epithelial surface. Their roles in wound healing, regulation of immune response to injury, and reepithelialization have been characterized extensively in the mouse, though their function in human skin remains largely unknown. Human skin-resident γδ T cells sparsely populate the skin and are often small and rounded in appearance. Those in the mouse ear and back, which line the dermal barrier, are highly arborized cells with many processes extending from the cell body. To date, these cells have been studied primarily in the mouse ear and back; however, it is important to further identify and characterize γδ T cells in other body sites to better understand their function and study their contribution to injury and disease. We developed a novel method to visualize these cells in the skin (whole-mount and cryosections) that when combined with flow cytometry allowed us to assess differences in skin-resident γδ T cell numbers, morphology, and activation state in the ear, back, and footpad (chosen for their importance in immunological and pain research). In comparing cell length, number of dendritic processes, and expression of the activation marker CD69, we found that γδ T cell morphology and activation states vary significantly among the three tissue environments. Specifically, γδ T cells in the footpad are smaller, have fewer processes, and show the highest levels of activation compared to back- and ear-resident cells. Our observations suggest that our understanding of skin-resident γδ T cell functionality, drawn from the experiments performed in the ear and back tissue, may not be applicable to all skin environments. The footpad-resident cells also more closely resemble γδ T cells in human skin, suggesting that cells in this tissue environment may serve as a better translational model when studying γδ T cell function/activity.
Collapse
|
3
|
The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity. J Neurosci 2016; 36:4259-75. [PMID: 27076424 DOI: 10.1523/jneurosci.2423-15.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/14/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Growth of intact axons of noninjured neurons, often termed collateral sprouting, contributes to both adaptive and pathological plasticity in the adult nervous system, but the intracellular factors controlling this growth are largely unknown. An automated functional assay of genes regulated in sensory neurons from the rat in vivo spared dermatome model of collateral sprouting identified the adaptor protein CD2-associated protein (CD2AP; human CMS) as a positive regulator of axon growth. In non-neuronal cells, CD2AP, like other adaptor proteins, functions to selectively control the spatial/temporal assembly of multiprotein complexes that transmit intracellular signals. Although CD2AP polymorphisms are associated with increased risk of late-onset Alzheimer's disease, its role in axon growth is unknown. Assessments of neurite arbor structure in vitro revealed CD2AP overexpression, and siRNA-mediated knockdown, modulated (1) neurite length, (2) neurite complexity, and (3) growth cone filopodia number, in accordance with CD2AP expression levels. We show, for the first time, that CD2AP forms a novel multiprotein complex with the NGF receptor TrkA and the PI3K regulatory subunit p85, with the degree of TrkA:p85 association positively regulated by CD2AP levels. CD2AP also regulates NGF signaling through AKT, but not ERK, and regulates long-range signaling though TrkA(+)/RAB5(+) signaling endosomes. CD2AP mRNA and protein levels were increased in neurons during collateral sprouting but decreased following injury, suggesting that, although typically considered together, these two adult axonal growth processes are fundamentally different. These data position CD2AP as a major intracellular signaling molecule coordinating NGF signaling to regulate collateral sprouting and structural plasticity of intact adult axons. SIGNIFICANCE STATEMENT Growth of noninjured axons in the adult nervous system contributes to adaptive and maladaptive plasticity, and dysfunction of this process may contribute to neurologic pathologies. Functional screening of genes regulated during growth of noninjured axons revealed CD2AP as a positive regulator of axon outgrowth. A novel association of CD2AP with TrkA and p85 suggests a distinct intracellular signaling pathway regulating growth of noninjured axons. This may also represent a novel mechanism of generating specificity in multifunctional NGF signaling. Divergent regulation of CD2AP in different axon growth conditions suggests that separate mechanisms exist for different modes of axon growth. CD2AP is the first signaling molecule associated with adult sensory axonal collateral sprouting, and this association may offer new insights for NGF/TrkA-related Alzheimer's disease mechanisms.
Collapse
|
4
|
Duchesne M, Magy L, Richard L, Ingrand P, Neau JP, Mathis S, Vallat JM. Simultaneous Quantification of Unmyelinated Nerve Fibers in Sural Nerve and in Skin. J Neuropathol Exp Neurol 2015; 75:53-60. [DOI: 10.1093/jnen/nlv005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
5
|
Abstract
Both clinical and animal studies suggest that exercise may be an effective way to manage inflammatory and neuropathic pain conditions. However, existing animal studies commonly use forced exercise paradigms that incorporate varying degrees of stress, which itself can elicit analgesia, and thus may complicate the interpretation of the effects of exercise on pain. We investigated the analgesic potential of voluntary wheel running in the formalin model of acute inflammatory pain and the spared nerve injury model of neuropathic pain in mice. In uninjured, adult C57BL/6J mice, 1 to 4 weeks of exercise training did not alter nociceptive thresholds, lumbar dorsal root ganglia neuronal excitability, or hindpaw intraepidermal innervation. Further, exercise training failed to attenuate formalin-induced spontaneous pain. Lastly, 2 weeks of exercise training was ineffective in reversing spared nerve injury-induced mechanical hypersensitivity or in improving muscle wasting or hindpaw denervation. These findings indicate that in contrast to rodent forced exercise paradigms, short durations of voluntary wheel running do not improve pain-like symptoms in mouse models of acute inflammation and peripheral nerve injury.
Collapse
|
6
|
Kambiz S, Duraku LS, Baas M, Nijhuis THJ, Cosgun SG, Hovius SER, Ruigrok TJH, Walbeehm ET. Long-term follow-up of peptidergic and nonpeptidergic reinnervation of the epidermis following sciatic nerve reconstruction in rats. J Neurosurg 2015; 123:254-69. [DOI: 10.3171/2014.12.jns141075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECT
Peripheral nerve injuries are a commonly encountered clinical problem and often result in long-term functional deficits. The current gold standard for transected nerves is an end-to-end reconstruction, which results in the intermittent appearance of neuropathic pain.
METHODS
To improve our understanding of the relation between this type of reconstruction and neuropathic pain, the authors transected and immediately end-to-end reconstructed the sciatic nerve in rats. The effect of this procedure on neuropathic pain, as measured by thermal and mechanical hypersensitivity at 4 different time points (5, 10, 20, and 30 weeks), was related to the density of peptidergic and nonpeptidergic fiber innervation in the glabrous skin of rats' hind paws.
RESULTS
Thermal hypersensitivity occurring 20 weeks after reconstruction was accompanied by a significant increase in peptidergic epidermal fibers. However, the lesion-induced reduction in the density of nonpeptidergic epidermal fibers remained decreased at all experimental time points. Moreover, temporal collateral sprouting by undamaged saphenous nerve was visualized using the recently revised Evans blue extravasation technique. Strikingly, as the sciatic nerve repopulated rats' hind paw, the saphenous nerve withdrew to its original territory.
CONCLUSIONS
The authors conclude that the transient thermal hypersensitivity is related to increased density of epidermal peptidergic fibers, which mainly originate from regenerating fibers. Furthermore, a changed composition in the peptidergic and nonpeptidergic epidermal fibers is demonstrated following end-to-end reconstruction of the sciatic nerve.
Collapse
Affiliation(s)
- Shoista Kambiz
- Departments of 1Neuroscience and
- 2Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands; and
| | - Liron S. Duraku
- Departments of 1Neuroscience and
- 2Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands; and
| | - Martijn Baas
- 2Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands; and
| | - Tim H. J. Nijhuis
- 2Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands; and
| | - Saniye G. Cosgun
- 2Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands; and
| | - Steven E. R. Hovius
- 2Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands; and
| | | | - Erik T. Walbeehm
- 2Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands; and
- 3Department of Plastic Surgery, Radboud UMC, Nijmegen, Gelderland, The Netherlands
| |
Collapse
|
7
|
Boric M, Skopljanac I, Ferhatovic L, Jelicic Kadic A, Banozic A, Puljak L. Reduced epidermal thickness, nerve degeneration and increased pain-related behavior in rats with diabetes type 1 and 2. J Chem Neuroanat 2013; 53:33-40. [PMID: 24126225 DOI: 10.1016/j.jchemneu.2013.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
To examine the mechanisms contributing to pain genesis in diabetic neuropathy, we investigated epidermal thickness and number of intraepidermal nerve fibers in rat foot pad of the animal model of diabetes type 1 and type 2 in relation to pain-related behavior. Male Sprague-Dawley rats were used. Diabetes type 1 was induced with intraperitoneal injection of streptozotocin (STZ) and diabetes type 2 was induced with a combination of STZ and high-fat diet. Control group for diabetes type 1 was fed with regular laboratory chow, while control group for diabetes type 2 received high-fat diet. Body weights and blood glucose levels were monitored to confirm induction of diabetes. Pain-related behavior was analyzed using thermal (hot, cold) and mechanical stimuli (von Frey fibers, number of hyperalgesic responses). Two months after induction of diabetes, glabrous skin samples from plantar surface of the both hind paws were collected. Epidermal thickness was evaluated with hematoxylin and eosin staining. Intraepidermal nerve fibers quantification was performed after staining skin with polyclonal antiserum against protein gene product 9.5. We found that induction of diabetes type 1 and type 2 causes significant epidermal thinning and loss of intraepidermal nerve fibers in a rat model, and both changes were more pronounced in diabetes type 1 model. Significant increase of pain-related behavior two months after induction of diabetes was observed only in a model of diabetes type 1. In conclusion, animal models of diabetes type 1 and diabetes type 2 could be used in pharmacological studies, where cutaneous changes could be used as outcome measures for predegenerative markers of neuropathies.
Collapse
Affiliation(s)
- Matija Boric
- Laboratory for Pain Research, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| | | | | | | | | | | |
Collapse
|
8
|
Chen SY, Wang XM, Liu YQ, Gao YR, Liu XP, Li SY, Dong YQ. Dimethyl sulfoxide could be a useful probe to evaluate unusual skin angioneurotic reaction and epidermal permeability. Cutan Ocul Toxicol 2013; 33:63-9. [DOI: 10.3109/15569527.2013.821615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Roberto B, Raffaella L, Carla PS, Giuseppe L. Intra-epidermal nerve fibers density and nociception in EPO-treated type 1 diabetic rats with peripheral neuropathy. Methods Mol Biol 2013; 982:197-211. [PMID: 23456871 DOI: 10.1007/978-1-62703-308-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Small-diameter nerve fibers, which subserve nociception, can be affected early in peripheral neuropathies, although their injury may not be detectable by routine neurophysiologic tests. On the other hand, skin biopsy has proved to be a reliable tool to examine nonmyelinated nerve fibers, as assessed by the quantification of intra-epidermal nerve fiber (IENF) density not only along with the degenerative process but, noteworthy, IENF density could be very helpful in evaluating drug efficacy such as erythropoietin (EPO) treatment.
Collapse
Affiliation(s)
- Bianchi Roberto
- Neuromuscular Diseases Unit, IRCCS Foundation, "Carlo Besta" Neurological Institute, Milan, Italy
| | | | | | | |
Collapse
|
10
|
Roggenkamp D, Köpnick S, Stäb F, Wenck H, Schmelz M, Neufang G. Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model. J Invest Dermatol 2013; 133:1620-8. [PMID: 23283070 DOI: 10.1038/jid.2012.464] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Atopic eczema is a chronic inflammatory skin disease characterized by cutaneous nerve fiber sprouting and epidermal hyperplasia, pointing to an involvement of the peripheral nervous system in cutaneous homeostasis. However, the interaction of sensory neurons and skin cells is poorly understood. Using an innervated skin model, we investigated the influence of sensory neurons on epidermal morphogenesis. Neurons induced the proliferation of keratinocytes, resulting in an increase in the epidermal thickness. Inhibition of calcitonin gene-related peptide (CGRP), but not substance P (SP) signaling, reversed this effect. Human CGRP enhanced keratinocyte proliferation and epidermal thickness in skin models, demonstrating a key role of CGRP in modulating epidermal morphogenesis, whereas SP had only a moderate effect. Innervated skin models composed of atopic skin cells showed increased neurite outgrowth, accompanied by elevated CGRP release. As atopic keratinocytes were sensitized to CGRP owing to higher expression levels of the CGRP receptor components, receptor activity-modifying protein 1 (RAMP1) and receptor component protein (RCP), atopic innervated skin models displayed a thicker epidermis than did healthy controls. We conclude that neural CGRP controls local keratinocyte growth. Our results show that the crosstalk of the cutaneous peripheral nervous system and skin cells significantly influences epidermal morphogenesis and homeostasis in healthy and atopic skin.
Collapse
|
11
|
Lauria G, Lombardi R. Skin biopsy in painful and immune-mediated neuropathies. J Peripher Nerv Syst 2012; 17 Suppl 3:38-45. [DOI: 10.1111/j.1529-8027.2012.00430.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Giuseppe Lauria
- Neuromuscular Diseases Unit; IRRCS Foundation “Carlo Besta” Neurological Institute; Milan; Italy
| | - Raffaella Lombardi
- Neuromuscular Diseases Unit; IRRCS Foundation “Carlo Besta” Neurological Institute; Milan; Italy
| |
Collapse
|
12
|
Hanada K, Kishimoto S, Bellier JP, Kimura H. Peripheral choline acetyltransferase in rat skin demonstrated by immunohistochemistry. Cell Tissue Res 2012; 351:497-510. [PMID: 23250574 DOI: 10.1007/s00441-012-1536-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/22/2012] [Indexed: 12/19/2022]
Abstract
Conventional choline acetyltransferase immunohistochemistry has been used widely for visualizing central cholinergic neurons and fibers but not often for labeling peripheral structures, probably because of their poor staining. The recent identification of the peripheral type of choline acetyltransferase (pChAT) has enabled the clear immunohistochemical detection of many known peripheral cholinergic elements. Here, we report the presence of pChAT-immunoreactive nerve fibers in rat skin. Intensely stained nerve fibers were distributed in association with eccrine sweat glands, blood vessels, hair follicles and portions just beneath the epidermis. These results suggest that pChAT-positive nerves participate in the sympathetic cholinergic innervation of eccrine sweat glands. Moreover, pChAT also appears to play a role in cutaneous sensory nerve endings. These findings are supported by the presence of many pChAT-positive neuronal cells in the sympathetic ganglion and dorsal root ganglion. Thus, pChAT immunohistochemistry should provide a novel and unique tool for studying cholinergic nerves in the skin.
Collapse
Affiliation(s)
- Keiji Hanada
- Department of Dermatology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | | | | | | |
Collapse
|
13
|
Mouraux A, Ragé M, Bragard D, Plaghki L. Estimation of intraepidermal fiber density by the detection rate of nociceptive laser stimuli in normal and pathological conditions. Neurophysiol Clin 2012; 42:281-91. [DOI: 10.1016/j.neucli.2012.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/30/2012] [Accepted: 05/30/2012] [Indexed: 11/29/2022] Open
|
14
|
Duraku LS, Hossaini M, Hoendervangers S, Falke LL, Kambiz S, Mudera VC, Holstege JC, Walbeehm ET, Ruigrok TJH. Spatiotemporal dynamics of re-innervation and hyperinnervation patterns by uninjured CGRP fibers in the rat foot sole epidermis after nerve injury. Mol Pain 2012; 8:61. [PMID: 22935198 PMCID: PMC3492210 DOI: 10.1186/1744-8069-8-61] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 07/26/2012] [Indexed: 11/17/2022] Open
Abstract
The epidermis is innervated by fine nerve endings that are important in mediating nociceptive stimuli. However, their precise role in neuropathic pain is still controversial. Here, we have studied the role of epidermal peptidergic nociceptive fibers that are located adjacent to injured fibers in a rat model of neuropathic pain. Using the Spared Nerve Injury (SNI) model, which involves complete transections of the tibial and common peroneal nerve while sparing the sural and saphenous branches, mechanical hypersensitivity was induced of the uninjured lateral (sural) and medial (saphenous) area of the foot sole. At different time points, a complete foot sole biopsy was taken from the injured paw and processed for Calcitonin Gene-Related Peptide (CGRP) immunohistochemistry. Subsequently, a novel 2D-reconstruction model depicting the density of CGRP fibers was made to evaluate the course of denervation and re-innervation by uninjured CGRP fibers. The results show an increased density of uninjured CGRP-IR epidermal fibers on the lateral and medial side after a SNI procedure at 5 and 10 weeks. Furthermore, although in control animals the density of epidermal CGRP-IR fibers in the footpads was lower compared to the surrounding skin of the foot, 10 weeks after the SNI procedure, the initially denervated footpads displayed a hyper-innervation. These data support the idea that uninjured fibers may play a considerable role in development and maintenance of neuropathic pain and that it is important to take larger biopsies to test the relationship between innervation of injured and uninjured nerve areas.
Collapse
Affiliation(s)
- Liron S Duraku
- Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Small fiber neuropathy (SFN) is characterized by negative sensory symptoms (thermal and pinprick hypoesthesia) reflecting peripheral deafferentation and positive sensory symptoms and signs (burning pain, allodynia, hyperalgesia), which often dominate the clinical picture. In patients with pure SFN, clinical and neurophysiologic investigation do not show involvement of large myelinated nerve fiber making the diagnosis of SFN challenging in clinical practice. Over the last 15 years, skin biopsy has emerged as a novel tool that readily permits morphometric and qualitative evaluation of somatic and autonomic small nerve fibers. This technique has overcome the limitations of routine neurophysiologic tests to detect the damage of small nerve fibers. The recent availability of normative reference values allowed clinicians to reliably define the diagnosis of SFN in individual patients. This paper reviews usefulness and limitations of skin biopsy and the relationship between degeneration and regeneration of small nerve fibers in patients with diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- Giuseppe Lauria
- Neuromuscular Diseases Unit, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy.
| | | |
Collapse
|
16
|
Cain DM, Vang D, Simone DA, Hebbel RP, Gupta K. Mouse models for studying pain in sickle disease: effects of strain, age, and acuteness. Br J Haematol 2011; 156:535-44. [PMID: 22171826 DOI: 10.1111/j.1365-2141.2011.08977.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The clinical management of severe pain associated with sickle cell disease (SCD) remains challenging. Development of an optimal therapy would be facilitated by use of murine model(s) with varying degrees of sickling and pain tests that are most sensitive to vaso-occlusion. We found that young (≤3 months old) NY1DD and S+S(Antilles) mice (having modest and moderate sickle phenotype, respectively) exhibited evidence of deep tissue/musculoskeletal pain. Deep tissue pain and cold sensitivity in S+S(Antilles) mice increased significantly with both age and incitement of hypoxia/reoxygenation (H/R). C57/BL6 mice (genetic background strain of NY1DD and S+S(Antilles) ) were hypersensitive to mechanical and heat stimuli, even without the sickle transgene. H/R treatment of HbSS-BERK mice with severe sickle phenotype resulted in significantly decreased withdrawal thresholds and enhanced mechanical, thermal and deep tissue hyperalgesia. Deep hyperalgesia incited by H/R in HbSS-BERK was ameliorated by CP 55940, a cannabinoid receptor agonist. Thus, assessment of deep tissue pain appears to be the most sensitive measure for studying pain mechanisms across mouse models of SCD, and HbSS-BERK mice may be the best model for vaso-occlusive and chronic pain of SCD.
Collapse
Affiliation(s)
- David M Cain
- Vascular Biology Center and Division of Hematology-Oncology-Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
17
|
Long-Term Effects of Neonatal Capsaicin Treatment on Intraepidermal Nerve Fibers and Keratinocyte Proliferation in Rat Glabrous Skin. Anat Rec (Hoboken) 2010; 294:173-84. [DOI: 10.1002/ar.21237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 07/06/2010] [Indexed: 12/14/2022]
|
18
|
Mosconi T, Gruber T. Immunohistochemical comparison of whisker pad cutaneous innervation in Swiss Webster and hairless mice. Somatosens Mot Res 2010; 27:149-73. [PMID: 20961209 DOI: 10.3109/08990220.2010.513597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To establish the mouse mutant, hairless (Hr), as a useful model for future analyses of target-ending interactions, we assessed the cutaneous innervation in the whisker pad after loss of primary hair targets. Postnatal (P) development of fur in Hr begins similarly to that of "normal" Swiss Webster (SW) mice. Around P10, hairs are shed and the follicles rendered permanently incompetent. Hair loss progresses rostrocaudally until the entire skin is denuded. Substantial alterations in the distribution and density of sensory and autonomic endings in the mystacial pad vibrissal and intervibrissal fur innervation were discovered. Pilo-neural complexes innervating fur hairs were dismantled in Hr. Epidermal innervation in SW was rich; only a few endings expressed growth-associated protein-43 kdal (GAP), suggesting limited changes in axonal elongation. Innervation in Hr formed a dense layer passing upward through the thickened epidermis, with substantial increases among all types of endings. Vibrissal follicle-sinus complexes were also hyperinnervated. Endings in Hr vibrissae and fur were strongly GAP-positive, suggesting reorganization of innervation. Dermal and vascular autonomic innervation in both strains co-localized tyrosine hydroxylase and neuropeptide Y, but only in Hr did neuropeptide Y co-localize calcitonin gene-related peptide (CGRP) and express GAP immunolabeling. Stereological quantitation of trigeminal ganglia revealed no differences in neuron number between Hr and SW, although there were small increases in cell volume in Hr trigeminal ganglion cells. These results suggested that a form of collateral sprouting was active in Hr mystacial pads, not in response to local injury, but as a result of loss of primary target tissues.
Collapse
Affiliation(s)
- Tony Mosconi
- Department of Physical Therapy Education, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | |
Collapse
|
19
|
Pain-related behaviors and neurochemical alterations in mice expressing sickle hemoglobin: modulation by cannabinoids. Blood 2010; 116:456-65. [PMID: 20304807 DOI: 10.1182/blood-2010-01-260372] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sickle cell disease causes severe pain. We examined pain-related behaviors, correlative neurochemical changes, and analgesic effects of morphine and cannabinoids in transgenic mice expressing human sickle hemoglobin (HbS). Paw withdrawal threshold and withdrawal latency (to mechanical and thermal stimuli, respectively) and grip force were lower in homozygous and hemizygous Berkley mice (BERK and hBERK1, respectively) compared with control mice expressing human hemoglobin A (HbA-BERK), indicating deep/musculoskeletal and cutaneous hyperalgesia. Peripheral nerves and blood vessels were structurally altered in BERK and hBERK1 skin, with decreased expression of mu opioid receptor and increased calcitonin gene-related peptide and substance P immunoreactivity. Activators of neuropathic and inflammatory pain (p38 mitogen-activated protein kinase, STAT3, and mitogen-activated protein kinase/extracellular signal-regulated kinase) showed increased phosphorylation, with accompanying increase in COX-2, interleukin-6, and Toll-like receptor 4 in the spinal cord of hBERK1 compared with HbA-BERK. These neurochemical changes in the periphery and spinal cord may contribute to hyperalgesia in mice expressing HbS. In BERK and hBERK1, hyperalgesia was markedly attenuated by morphine and cannabinoid receptor agonist CP 55940. We show that mice expressing HbS exhibit characteristics of pain observed in sickle cell disease patients, and neurochemical changes suggestive of nociceptor and glial activation. Importantly, cannabinoids attenuate pain in mice expressing HbS.
Collapse
|
20
|
Kojundzic SL, Dujmovic I, Grkovic I, Sapunar D. Regional Differences in Epidermal Thickness and Behavioral Response Following Partial Denervation of the Rat Paw. Int J Neurosci 2009; 118:1748-62. [DOI: 10.1080/00207450802174506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Alexeeva NV, Arnold MA. Near-infrared microspectroscopic analysis of rat skin tissue heterogeneity in relation to noninvasive glucose sensing. J Diabetes Sci Technol 2009; 3:219-32. [PMID: 20144353 PMCID: PMC2771518 DOI: 10.1177/193229680900300202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Noninvasive glucose measurements are possible by analysis of transmitted near-infrared light over the 4000- to 5000-cm(-1) spectral range. Such measurements are highly sensitive to the exact position of the fiber-optic interface on the surface of the skin sample. A critical question is the degree of heterogeneity of the major chemical components of the skin matrix in relation to the size of the fiber-optic probed used to collect noninvasive spectra. Microscopic spectral mapping is used to map the chemical distribution for a set of excised sections of rat skin. METHOD A Fourier transform near-infrared microspectrometer was used to collect transmission spectra from 16 tissue samples harvested from a set of four healthy Harlan-Sprague male rats. A reference point in the center of the tissue sample was probed regularly to track dehydration, changes in tissue composition, and changes in instrument performance. Amounts of the major skin constituents were determined by fitting microspectra to a set of six pure component absorbance spectra corresponding to water, type I collagen protein, keratin protein, fat, an offset term, and a slope term. RESULTS Microspectroscopy provides spectra with root mean square noise levels on 100% lines between 418 and 1475 microabsorbance units, which is sufficient for measuring the main chemical components of skin. The estimated spatial resolution of the microscope is 220 microm. The amounts of each tissue matrix component were determined for each 480 x 360-microm(2) location of a 4.8 x 3.6-mm(2) rectangular block of skin tissue. These spectra were used to generate two-dimensional distribution maps for each of the principal skin components. CONCLUSIONS Distribution of the chemical components of rat skin is significant relative to the dimensions of noninvasive glucose sensing. Chemical distribution maps reveal that variations in the chemical composition of the skin samples are on the same length scale as the fiber-optic probe used to collect noninvasive near-infrared spectra. Analysis of variance between tissue slices collected for one animal and analysis of variations between animals indicate that animal-to-animal variation for all four chemical components is significantly higher than variations between samples for a given animal. These findings justify the collection and interpretation of near-infrared microspectroscopic maps of human skin to establish chemical heterogeneity and its impact on noninvasive glucose sensing for the management of diabetes.
Collapse
Affiliation(s)
- Natalia V Alexeeva
- Department of Chemistry and Optical Science & Technology Center, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
22
|
Lauria G, Lombardi R, Camozzi F, Devigili G. Skin biopsy for the diagnosis of peripheral neuropathy. Histopathology 2008; 54:273-85. [PMID: 18637969 DOI: 10.1111/j.1365-2559.2008.03096.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin biopsy has become an accepted tool for investigating small nerve fibres, which are invisible to conventional neurophysiological tests even though they are affected early on in peripheral neuropathies of varying aetiology. Morphometric analysis of epidermal and dermal nerves has proved to be reliable, reproducible and unaffected by the severity of neuropathy, making skin biopsy useful for diagnosing small fibre neuropathy (SFN) in clinical practice. The possibility of obtaining skin biopsy specimens from different sites of the body, to repeat them within the area of the same sensory nerve, to distinguish between somatic and autonomic nerves and to investigate the expression of nerve-related proteins has widened the potential applications of this technique to clinical research. Skin biopsy performed using a minimally invasive disposable punch is a safe and painless procedure. Using specific antibodies with bright-field immunohistochemistry or immunofluorescence technique, it is possible to investigate unmyelinated fibres innervating the epidermis of hairy and glabrous skin, large myelinated fibres supplying specialized corpuscles in glabrous skin, and autonomic fibres innervating sweat glands, blood vessels and arrector pilorum muscles. This review discusses the features of skin innervation in hairy and glabrous skin, the functional properties of skin nerve fibres and their changes in peripheral neuropathies.
Collapse
Affiliation(s)
- G Lauria
- Neuromuscular Diseases Unit, National Neurological Institute Carlo Besta, Milan, Italy.
| | | | | | | |
Collapse
|
23
|
Hendrix S, Picker B, Liezmann C, Peters EMJ. Skin and hair follicle innervation in experimental models: a guide for the exact and reproducible evaluation of neuronal plasticity. Exp Dermatol 2008; 17:214-27. [PMID: 18261087 DOI: 10.1111/j.1600-0625.2007.00653.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The remodelling of skin innervation is an instructive example of neuronal plasticity in the peripheral nervous system. Cutaneous innervation displays dramatic plasticity during morphogenesis, adult remodelling, skin diseases and after skin nerve lesions. To recognize even subtle changes or abnormalities of cutaneous innervation under different experimental conditions, it is critically important to use a quantitative approach. Here, we introduce a simple, fast and reproducible quantitative method based on immunofluorescence histochemistry for the exact quantification of peripheral nerve fibres. Computer-generated schematic representations of cutaneous innervation in defined skin compartments are presented with the aim of standardizing reports on gene and protein expression patterns. This guide should become a useful tool when screening new mouse mutants, disease models affecting innervation or mice treated with pharmaceuticals for discrete morphologic abnormalities of skin innervation in a highly reproducible and quantifiable manner. Moreover, this method can be easily transferred to other densely innervated peripheral organs.
Collapse
Affiliation(s)
- Sven Hendrix
- Institute for Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin, Berlin, Germany
| | | | | | | |
Collapse
|
24
|
Recent developments in the management of peripheral neuropathy using skin biopsy. Rev Neurol (Paris) 2007; 163:1266-70. [DOI: 10.1016/s0035-3787(07)78418-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Shigemitsu T, Tobe M, Mizutani K, Murakami K, Ishikawa Y, Sato F. Innervation of the triangular fibrocartilage complex of the human wrist: Quantitative immunohistochemical study. Anat Sci Int 2007; 82:127-32. [PMID: 17867338 DOI: 10.1111/j.1447-073x.2007.00173.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The distribution of neural elements in the triangular fibrocartilage complex (TFCC) of the human wrists was studied via immunohistochemical staining of protein gene product (PGP) 9.5 and calcitonin gene-related peptide (CGRP). Articular branches projecting to the TFCC arose from the dorsal branch of the ulnar nerve in all wrists examined. The TFCC is subdivided into the following six regions: the articular disc proper (ADP), meniscus homolog (MH), radio-ulnar ligament (RUL), loose part of ulnar collateral ligament (lUCL), dense part of ulnar collateral ligament (dUCL), and internal portion (IP). The IP consists of a mixture of dense and loose connective tissues enclosed by the ADP, MH, RUL, and UCL, and resides deep in the prestyloid recess, which is a pit in the MH. The densities of PGP 9.5-positive neural elements, including free nerve endings, single nerve fibers, nerve fascicles, and perivascular neural nets, were significantly higher in the IP than in other regions. Some of the neural elements except for the perivascular neural nets were positive for CGRP. The high density of neural elements in the IP suggests that sensory nerves projecting to the TFCC enter into the IP and from there distribute to adjacent regions such as the MH and RUL. Free nerve endings are responsible for pain transmission. The high density of free nerve endings in the IP suggests that the IP is a source of ulnar side wrist pain.
Collapse
Affiliation(s)
- Toshio Shigemitsu
- Department of Second Orthopedic Surgery, Toho University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Use of the novel Contact Heat Evoked Potential Stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts. BMC Neurol 2007; 7:21. [PMID: 17683543 PMCID: PMC1959239 DOI: 10.1186/1471-2377-7-21] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 08/03/2007] [Indexed: 11/10/2022] Open
Abstract
Background The Contact Heat Evoked Potential Stimulator (CHEPS) rapidly stimulates cutaneous small nerve fibres, and resulting evoked potentials can be recorded from the scalp. We have studied patients with symptoms of sensory neuropathy and controls using CHEPS, and validated the findings using other objective measures of small nerve fibres i.e. the histamine-induced skin flare response and intra-epidermal fibres (IEF), and also quantitative sensory testing (QST), a subjective measure. Methods In patients with symptoms of sensory neuropathy (n = 41) and healthy controls (n = 9) we performed clinical examination, QST (monofilament, vibration and thermal perception thresholds), nerve conduction studies, histamine-induced skin flares and CHEPS. Skin punch biopsies were immunostained using standard ABC immunoperoxidase for the nerve marker PGP 9.5 or the heat and capsaicin receptor TRPV1. Immunoreactive IEF were counted per length of tissue section and epidermal thickness recorded. Results Amplitudes of Aδ evoked potentials (μV) following face, arm or leg stimulation were reduced in patients (e.g. for the leg: mean ± SEM – controls 11.7 ± 1.95, patients 3.63 ± 0.85, p = 0.0032). Patients showed reduced leg skin flare responses, which correlated with Aδ amplitudes (rs = 0.40, p = 0.010). In patient leg skin biopsies, PGP 9.5- and TRPV1-immunoreactive IEF were reduced and correlated with Aδ amplitudes (PGP 9.5, rs = 0.51, p = 0.0006; TRPV1, rs = 0.48, p = 0.0012). Conclusion CHEPS appears a sensitive measure, with abnormalities observed in some symptomatic patients who did not have significant IEF loss and/or QST abnormalities. Some of the latter patients may have early small fibre dysfunction or ion channelopathy. CHEPS provides a clinically practical, non-invasive and objective measure, and can be a useful additional tool for the assessment of sensory small fibre neuropathy. Although further evaluation is required, the technique shows potential clinical utility to differentiate neuropathy from other chronic pain states, and provide a biomarker for analgesic development.
Collapse
|
27
|
Schmelz M, Paus R. Opioids and the Skin: “Itchy” Perspectives beyond Analgesia and Abuse. J Invest Dermatol 2007; 127:1287-9. [PMID: 17502859 DOI: 10.1038/sj.jid.5700634] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Opioids are intimately linked to central pain inhibition and their abuse potential. Thus, peripheral opioid receptors in the skin have been studied initially with a focus on their peripheral analgesic properties. Recent results, however, clearly indicate that opioids play a specific role in skin homeostasis by modulating keratinocyte differentiation, wound healing, and inflammatory responses.
Collapse
Affiliation(s)
- Martin Schmelz
- Department of Anesthesiology-Mannheim, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
28
|
Lauria G, Lombardi R, Borgna M, Penza P, Bianchi R, Savino C, Canta A, Nicolini G, Marmiroli P, Cavaletti G. Intraepidermal nerve fiber density in rat foot pad: neuropathologic-neurophysiologic correlation. J Peripher Nerv Syst 2005; 10:202-8. [PMID: 15958131 DOI: 10.1111/j.1085-9489.2005.0010210.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantification of cutaneous innervation in rat footpad is a useful tool to investigate sensory small-diameter nerve fibers, which are affected early in peripheral neuropathies. The aim of this work was to provide normative reference data on the density of intraepidermal nerve fibers (IENFs) and Langerhans cells in the hindpaw footpad of Sprague-Dawley and Wistar rats. We also evaluated the sensibility of IENF density by comparing neuropathologic findings with neurophysiologic examination and the presence of peripheral neuropathy in two well-characterized animal models of neuropathy. IENF density was quantified in 22 Sprague-Dawley rats and 13 Wistar rats and compared with 19 age-matched Sprague-Dawley rats with streptozotocin-induced diabetic neuropathy and 30 age-matched Wistar rats with cisplatin- or paclitaxel-induced neuropathy. Antidromic tail sensory nerve conduction velocity (SNCV) was assessed in all animals. IENF and Langerhans cell densities were constant in healthy Sprague-Dawley rats at any age, and they were similar to those observed in healthy Wistar rats. In neuropathic rats, both SNCV and IENF density were significantly reduced with respect to controls. Quantification of IENF density was significantly correlated with changes in conduction velocity. Diabetic neuropathy rats alone showed a significantly higher density of Langerhans cells compared with controls. Our study demonstrated that IENF density quantification correlates with SNCV changes and suggests that this might represent a useful outcome measurement in experimental neuropathies.
Collapse
Affiliation(s)
- Giuseppe Lauria
- Immunology and Muscular Pathology Unit, National Neurological Institute Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Lauria G, Borgna M, Morbin M, Lombardi R, Mazzoleni G, Sghirlanzoni A, Pareyson D. Tubule and neurofilament immunoreactivity in human hairy skin: Markers for intraepidermal nerve fibers. Muscle Nerve 2004; 30:310-6. [PMID: 15318342 DOI: 10.1002/mus.20098] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cytoplasmic protein gene product 9.5 (PGP 9.5) is considered a reliable marker for intraepidermal nerve fibers (IENFs). However, PGP 9.5 expression has never been compared with antibodies against the main components of the cytoskeleton. We compared the density of PGP 9.5-positive IENF at the leg with that obtained using a panel of antibodies specific for certain cytoskeletal components, namely, anti-unique beta-tubulin (TuJ1), anti-nonphosphorylated microtubule-associated protein-1B (MAP1B), anti-70 and 200 KDa neurofilament (NF), and antiphosphorylated neurofilament (SMI 312), in 15 healthy subjects and in 10 patients with painful neuropathy. We also performed colocalization studies and investigated the relationship between IENFs and Schwann cells. In both controls and neuropathies, the density of IENF labeled by PGP 9.5, TuJ1, and MAP1B did not differ, whereas that of NF and SMI 312 was significantly lower. Double-staining studies confirmed that antibodies against cytoskeletal markers can be used to reliably stain skin nerve fibers, suggesting that they might provide insight into specific axonal impairment in peripheral neuropathies.
Collapse
Affiliation(s)
- Giuseppe Lauria
- Department of Clinical Neurosciences, Division of Neuromuscular Diseases, National Neurological Institute "Carlo Besta," via Celoria 11, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Suuronen EJ, Nakamura M, Watsky MA, Stys PK, Müller LJ, Munger R, Shinozaki N, Griffith M. Innervated human corneal equivalents as in vitro models for nerve‐target cell interactions. FASEB J 2003; 18:170-2. [PMID: 14597567 DOI: 10.1096/fj.03-0043fje] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A sensory nerve supply is crucial for optimal tissue function. However, the mechanisms for successful innervation and the signaling pathways between nerves and their target tissue are not fully understood. Engineered tissue substitutes can provide controllable environments in which to study tissue innervation. We have therefore engineered human corneal substitutes that promote nerve in-growth in a pattern similar to in vivo re-innervation. We demonstrate that these nerves (a) are morphologically equivalent to natural corneal nerves; (b) make appropriate contact with target cells; (c) can generate action potentials; (d) respond to chemical and physical stimuli; and (e) play an important role in the overall functioning of the bioengineered tissue. This model can be used for studying the more general topics of nerve ingrowth or regeneration and the interaction between nerves and their target cells and, more specifically, the role of nerves in corneal function. This model could also be used as an in vitro alternative to animals for safety and efficacy testing of chemicals and drugs.
Collapse
Affiliation(s)
- Erik J Suuronen
- University of Ottawa Eye Institute, Ottawa Health Research Institute-Vision Centre, and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Li L, Xian CJ, Zhong JH, Zhou XF. Lumbar 5 ventral root transection-induced upregulation of nerve growth factor in sensory neurons and their target tissues: a mechanism in neuropathic pain. Mol Cell Neurosci 2003; 23:232-50. [PMID: 12812756 DOI: 10.1016/s1044-7431(03)00062-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have previously demonstrated that profound and persistent neuropathic pain as displayed by mechanical and cold allodynia and thermal hyperalgesia can be produced by a lumbar 5 ventral root transection (L5 VRT) model in adult rats in which only the motor nerve fibers were injured without axotomy of sensory neurons. However, the underlying mechanisms remain to be determined. In this study, by examining its changes in expression and by inhibiting its functions using a neutralizing antibody, we have investigated whether nerve growth factor (NGF), a neurotrophic factor known to have a function in regulating nerve injury-induced pain, is involved in the development of neuropathic pain induced by L5 VRT. Motor nerve injury by L5 VRT resulted in a de novo expression of NGF mRNA in a subpopulation of small sensory neurons and pericellular satellite cells in ipsilateral L5 dorsal root ganglion. NGF protein expression was also increased by sensory neurons with various sizes and by keratinocytes in the target tissue ipsilateral skin. Systemic administration of NGF antiserum twice within 17 days markedly attenuated L5 VRT-induced mechanical allodynia but not the cold allodynia and thermal hyperalgesia. These findings suggest that NGF is an important pain mediator in the generation of mechanical sensitivity induced by L5 VRT.
Collapse
Affiliation(s)
- Li Li
- Department of Human Physiology and Center for Neuroscience, Flinders University of South Australia, GPO Box 2100, Adelaide 5001, Australia.
| | | | | | | |
Collapse
|
33
|
Glial cell line-derived neurotrophic factor alters axon schwann cell units and promotes myelination in unmyelinated nerve fibers. J Neurosci 2003. [PMID: 12533616 DOI: 10.1523/jneurosci.23-02-00561.2003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) plays an important role in the development and maintenance of a subset of dorsal root ganglion sensory neurons. We administered high-dose exogenous recombinant human GDNF (rhGDNF) daily to adult rats to examine its effect on unmyelinated axon-Schwann cell units in intact peripheral nerves. In rhGDNF-treated animals, there was a dramatic proliferation in the Schwann cells of unmyelinated fibers, which resulted in the segregation of many unmyelinated axons into a 1:1 relationship with Schwann cells and myelination of normally unmyelinated small axons. This study demonstrates that the administration of high doses of a growth factor to adult rats can change the phenotype of nerve fibers from unmyelinated to myelinated.
Collapse
|
34
|
Li L, Xian CJ, Zhong JH, Zhou XF. Effect of lumbar 5 ventral root transection on pain behaviors: a novel rat model for neuropathic pain without axotomy of primary sensory neurons. Exp Neurol 2002; 175:23-34. [PMID: 12009757 DOI: 10.1006/exnr.2002.7897] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A peripheral nerve injury often causes neuropathic pain but the underlying mechanisms remain obscure. Several established animal models of peripheral neuropathic pain have greatly advanced our understanding of the diverse mechanisms of neuropathic pain. A common feature of these models is primary sensory neuron injury and the commingle of intact axons with degenerating axons in the sciatic nerve. Here we investigated whether neuropathic pain could be induced without sensory neuron injury following exposure of their peripheral axons to the milieu of Wallerian degeneration. We developed a unilateral lumbar 5 ventral root transection (L5 VRT) model in adult rats, in which L5 ventral root fibers entering the sciatic nerve were sectioned in the spinal canal. This model differs from previous ones in that DRG neurons and their afferents are kept uninjured and intact afferents expose to products of degenerating efferent ventral root fibers in the sciatic nerve and the denervated muscles. We found that the L5 VRT produced rapid (24 h after transection), robust and prolonged (56 days) bilateral mechanical allodynia, to a similar extent to that in rats with L5 spinal nerve transection (L5 SNT), cold allodynia and short-term thermal hyperalgesia (14 days). Furthermore, L5 VRT led to significant inflammation as demonstrated by infiltration of ED-1-positive monocytes/macrophages in the DRG, sciatic nerve and muscle fibers. These findings demonstrated that L5 VRT produced behavioral signs of neuropathic pain with high mechanical sensitivity and thermal responsiveness, and suggested that neuropathic pain can be induced without damage to sensory neurons. We propose that neuropathic pain in this model may be mediated by primed intact sensory neurons, which run through the milieu of Wallerian degeneration and inflammation after nerve injury. The L5 VRT model manifests the complex regional pain syndrome in some human patients, and it may provide an additional dimension to dissect out the mechanisms underlying neuropathic pain.
Collapse
Affiliation(s)
- Li Li
- Department of Human Physiology and Center for Neuroscience, Flinders University of South Australia, Adelaide, 5001, Australia
| | | | | | | |
Collapse
|
35
|
Sheth RN, Dorsi MJ, Li Y, Murinson BB, Belzberg AJ, Griffin JW, Meyer RA. Mechanical hyperalgesia after an L5 ventral rhizotomy or an L5 ganglionectomy in the rat. Pain 2002; 96:63-72. [PMID: 11932062 DOI: 10.1016/s0304-3959(01)00429-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An L5 spinal nerve ligation (SNL) in the rat leads to behavioral signs of mechanical hyperalgesia. Our recent finding that an L5 dorsal root rhizotomy did not alter the mechanical hyperalgesia following an L5 SNL suggests that signals originating from the proximal stump of the injured nerve are not essential. We postulate that Wallerian degeneration of L5 nerve fibers leads to altered properties of adjacent intact nociceptive afferents. To investigate the role of degeneration in sensory versus motor fibers, five injury models were examined concurrently in a blinded fashion. An L5 ganglionectomy produced a selective lesion of sensory fibers. An L5 ventral root rhizotomy produced a selective lesion of motor fibers. The three control lesions included: (1) SNL with L5 dorsal root rhizotomy; (2) L5 dorsal root rhizotomy; and (3) exposure of the L5 roots without transection (sham). Paw withdrawal thresholds to mechanical stimuli were measured at three sites in the rat hindpaw corresponding to the L3, L4, and L5 dermatomes. Both the ganglionectomy and the ventral rhizotomy produced a significant, lasting (>or=20 d) decrease of mechanical withdrawal thresholds that was comparable to that produced by the SNL lesion. The L5 dorsal rhizotomy, by itself, produced a short lasting (<or=6 d) decrease in thresholds, whereas the sham procedure did not produce a significant change. We propose that interactions between degenerating motor and sensory fibers of the injured nerve and intact afferent fibers of neighboring nerves play a critical role for both initiation and maintenance of mechanical hyperalgesia in neuropathic pain.
Collapse
Affiliation(s)
- Rishi N Sheth
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Flores CM, Leong AS, Dussor GO, Harding-Rose C, Hargreaves KM, Kilo S. Capsaicin-evoked CGRP release from rat buccal mucosa: development of a model system for studying trigeminal mechanisms of neurogenic inflammation. Eur J Neurosci 2001; 14:1113-20. [PMID: 11683903 PMCID: PMC2814599 DOI: 10.1046/j.0953-816x.2001.01736.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin-sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene-related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague-Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10-300 microm), to the superfusion buffer resulted in a significant, concentration-dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 mm) or by the calcium ionophore A23187 (1 microm). The specific, capsaicin receptor antagonist, capsazepine (300 microm), completely abolished the capsaicin-evoked release of iCGRP while having no effect whatsoever on the potassium-evoked release. Moreover, capsaicin-evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor-mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation.
Collapse
Affiliation(s)
- C M Flores
- Department of Endodontics, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Peters EM, Botchkarev VA, Botchkareva NV, Tobin DJ, Paus R. Hair-cycle-associated remodeling of the peptidergic innervation of murine skin, and hair growth modulation by neuropeptides. J Invest Dermatol 2001; 116:236-45. [PMID: 11179999 DOI: 10.1046/j.1523-1747.2001.01232.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the neuropeptide substance P can manipulate murine hair growth in vivo, we here further studied the role of sensory neuropeptides in hair follicle biology by determining the distribution and hair-cycle-dependent remodeling of the sensory innervation in C57BL/6 mouse back skin. Calcitonin-gene-related peptide, substance P, and peptide histidine methionine (employed as vasoactive intestinal peptide marker) were identified by immunohistochemistry. All of these markers immunolocalized to bundles of nerve fibers and to single nerve fibers, with distinct distribution patterns and major hair-cycle-associated changes. In the epidermis and around the distal hair follicle and the arrector pili muscle, only calcitonin-gene-related peptide immunoreactive nerve fibers were visualized, whereas substance P and peptide histidine methionine immunoreactive nerve fibers were largely restricted to the dermis and subcutis. Compared to telogen skin, the number of calcitonin-gene-related peptide, substance P, and peptide histidine methionine immunoreactive single nerve fibers increased significantly (p < 0.01) during anagen, including around the bulge region (the seat of epithelial stem cells). Substance P significantly accelerated anagen progression in murine skin organ culture, whereas calcitonin-gene-related peptide and a substance-P-inhibitory peptide inhibited anagen (p < 0.05). The inhibitory effect of calcitonin-gene-related peptide could be antagonized by coadministrating substance P. In contrast to substance P, calcitonin-gene-related peptide failed to induce anagen when released from subcutaneous implants. This might reflect a differential functional assignment of the neuropeptides calcitonin-gene-related peptide and substance P in hair growth control, and invites the use of neuropeptide receptor agonists and antagonists as novel pharmacologic tools for therapeutic hair growth manipulation.
Collapse
Affiliation(s)
- E M Peters
- Department of Dermatology, University Hospital Eppendorf, University of Hamburg, Martinstr. 52, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Li Y, Dorsi MJ, Meyer RA, Belzberg AJ. Mechanical hyperalgesia after an L5 spinal nerve lesion in the rat is not dependent on input from injured nerve fibers. Pain 2000; 85:493-502. [PMID: 10781924 DOI: 10.1016/s0304-3959(00)00250-5] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An injury to a peripheral nerve in animals often leads to signs of neuropathic pain including hyperalgesia to heat, cold and mechanical stimuli. The role of injured and intact nerve fibers in mechanical hyperalgesia was evaluated in rats subjected to an L5 spinal nerve ligation-and-cut ('modified SNL lesion'). To assess the contribution of injured afferents, an L5 dorsal rhizotomy was performed immediately before, or 7 days after the modified SNL lesion. To study the role of adjacent intact spinal nerves, an L4 dorsal rhizotomy was performed 7 days after the modified SNL lesion. The up-down method of Dixon (Dixon WJ, Annu Rev Pharmacol Toxicol 1980;20:441-462) was used to measure the paw withdrawal threshold to mechanical stimuli at three sites on the rat hindpaw corresponding to the L3, L4, and L5 dermatomes. We found that the modified SNL lesion produced a significant, lasting (20 days) decrease of the mechanical withdrawal threshold. The severity and duration of mechanical hyperalgesia varied across testing sites. The L5 and L4 dermatome test sites developed the most severe and lasting mechanical hyperalgesia. In contrast, the L3 testing site developed significantly less severe and shorter lasting mechanical hyperalgesia. L5 dorsal rhizotomy, by itself, produced a transient decrease in mechanical withdrawal thresholds. L5 dorsal rhizotomy performed before, or 7 days after, the modified SNL lesion did not prevent or resolve the observed decrease in mechanical withdrawal thresholds. L4 dorsal rhizotomy performed 7 days after the modified SNL lesion resulted in an immediate reversal of mechanical withdrawal thresholds back to baseline values. These results suggest that, after L5 spinal nerve ligation-and-cut, mechanical hyperalgesia develops and persists independent of input from injured afferents. We propose that the Wallerian degeneration that develops after a nerve injury leads to interactions between the degenerating fibers of the injured spinal nerve and the intact fibers of adjacent spinal nerves. This leads to changes in the intact fibers that play a critical role for both initiation and maintenance of mechanical hyperalgesia.
Collapse
Affiliation(s)
- Yongbo Li
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, 5-109 Meyer Building, Baltimore, MD 21287, USA Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | | | | | | |
Collapse
|
39
|
Chen YG, McClinton MA, DaSilva MF, Shaw Wilgis EF. Innervation of the metacarpophalangeal and interphalangeal joints: a microanatomic and histologic study of the nerve endings. J Hand Surg Am 2000; 25:128-33. [PMID: 10642482 DOI: 10.1053/jhsu.2000.jhsu025a0128] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Six pairs of fresh human cadaver hands were dissected under the surgical microscope at x28 to x32 and selectively silver stained. In addition, 18 proximal interphalangeal and metacarpophalangeal joints of fresh cadaver hands were processed with protein gene product 9.5 for measurement and analysis of nerve endings in those joints. The results demonstrated that the proximal interphalangeal joints are innervated by 2 palmar articular nerves (mean diameter, 0.21-0.53 mm). Each metacarpophalangeal joint of the second through fifth fingers is predominantly supplied by 1 palmar articular nerve (mean diameter, 0.41-0.59 mm), which comes from the deep branches of the ulnar nerve, as well as by 2 dorsal articular nerves (mean diameter, 0.11-0.24 mm). The metacarpophalangeal joint of the thumb also had 2 dorsal articular nerves (mean diameter, 0.18-0.24 mm) and 2 palmar joint nerves (mean diameter, 0.29-0.31 mm). The mean densities of the type IV free nerve endings and the mean numbers of the encapsulated endings in the palmar capsules were consistently much greater than in the dorsal or lateral capsules. The majority of encapsulated endings were pacinian corpuscles. The anatomic and histologic information may help the surgeon avoid damaging these small joint nerves during operative procedures and to reconstruct or de-innervate them if necessary. (J Hand Surg 2000; 25A:128-133.
Collapse
Affiliation(s)
- Y G Chen
- Raymond M. Curtis Hand Center, The Union Memorial Hospital, Baltimore, MD, USA
| | | | | | | |
Collapse
|
40
|
Hirai A, Yasuda H, Joko M, Maeda T, Kikkawa R. Evaluation of diabetic neuropathy through the quantitation of cutaneous nerves. J Neurol Sci 2000; 172:55-62. [PMID: 10620661 DOI: 10.1016/s0022-510x(99)00290-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The significance and usefulness of immunohistochemically quantitated cutaneous nerves in the evaluation of diabetic neuropathy was examined in biopsied skins of the calf from healthy subjects (n=12) and non-insulin dependent diabetic patients (n=32) with diabetic sensory neuropathy. Skin samples were immunostained with antibodies against protein gene product (PGP) 9.5, a pan-axonal marker. A quantitative analysis to determine nerve fiber (NF) number and nerve lengths (NLs) was performed on nerve fibers of the epidermis and the dermis and on nerves surrounding sweat glands. Nerve function tests were performed on the biopsied sites and erythrocyte aldose reductase level was determined by enzyme-linked immunosorbent assay. Numbers of epidermal NFs, NLs of epidermis and dermis and NL around sweat glands were significantly decreased in diabetic patients compared with control subjects (P<0.001, P<0.001, P<0.01, P<0.01, respectively). NL of epidermis showed a significant correlation with NL of dermis (P<0.01). Sural nerve conduction velocity was significantly correlated with NL of dermis (P10.8 (average in 555 diabetic patients) ng/mgHb) possessed a shorter NL of dermis NFs than those with lower AR level (<10.8) (P<0.05). These findings suggest that the quantitation of cutaneous nerves in biopsied skin samples provides important information about diabetic neuropathy and may improve the understanding of the pathophysiology of sensory nerve terminals in diabetic neuropathy.
Collapse
Affiliation(s)
- A Hirai
- Third Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Huang IT, Lin WM, Shun CT, Hsieh ST. Influence of cutaneous nerves on keratinocyte proliferation and epidermal thickness in mice. Neuroscience 1999; 94:965-73. [PMID: 10579589 DOI: 10.1016/s0306-4522(99)00210-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We evaluated the influence of skin innervation on the epidermis in mice. The rich innervation of skin was demonstrated by immunocytochemistry with protein gene product 9.5, a ubiquitin carboxy hydrolase. Protein gene product-immunoreactive nerve fibers were in the epidermis, subepidermal plexus, dermal nerve trunks, and nerve terminals around sweat glands. Effects of denervation on the plantar surface of the hind foot was assessed by comparing the thickness of the epidermis, which was innervated by the sciatic nerve. Within 48 h after sectioning of the sciatic nerve, protein gene product (+)-nerves in the territory of the sciatic nerve were completely degenerated. There was a significant thinning of the denervated epidermis 72 h post-transection (30.5+/-1.1 vs 41.4+/-2.9 microm, 74+/-4% of the control side). The reduction in epidermal thickness persisted when skin remained denervated (69-75% of the control side). Incorporation of bromodeoxyuridine was reduced 24 h after denervation (71+/-6% of the control side). Reduction in bromodeoxyuridine-incorporation was most pronounced within 48 h after denervation (19+/-6% of the control side). Therefore, the reduction in bromodeoxyuridine-labeling followed a similar temporal course as the thinning of the epidermis (25-50%). Both epidermal thinning and reduced bromodeoxyuridine-labeling were reversed by epidermal reinnervation three months after denervation. Patterns of keratinocyte differentiation and programmed cell death were unaffected by skin denervation. These findings are consistent with the notion that skin innervation exerts influence on the proliferation of keratinocytes and the thickness of the epidermis, and offers a new look at the interaction between nociceptive nerves and their innervated targets.
Collapse
Affiliation(s)
- I T Huang
- Department of Anatomy, National Taiwan University College of Medicine, Taipei
| | | | | | | |
Collapse
|
43
|
Abstract
Several lines of evidence suggest that sensory nerves ending at the skin have profound influences on their target, the epidermis. To test the hypothesis, we examined the consequences of denervation on the paw skin of rats by eliminating its innervation. We investigated temporal changes of nerve degeneration, keratinocyte proliferation and differentiation, gene expression, and epidermal thickness. Nerve terminals in the epidermis began to degenerate within 24 h after denervation. All epidermal nerves were completely degenerated by 2 d. During the interval of nerve degeneration, there was a significant reduction of bromodeoxyuridine incorporation from 24 h of nerve injury (39 +/- 7% of the control side, p 0.01). By 2 d, there was a further reduction of bromodeoxyuridine labeling (11 +/- 8%, p < 0. 0001). The incorporation of bromodeoxyuridine remained depressed when the skin was denervated (35 +/- 11%, p < 0.01). Four days after eliminating skin innervation, the denervated epidermis became thinner than the control epidermis (70 +/- 8% of the control, p < 0. 01). Epidermal thinning was associated with a significant decrease in expression of glyceraldehyde-3-phosphate dehydrogenase and beta-actin transcripts (33 +/- 8% of the control epidermis from postoperative day 4, p < 0.001). Other aspects of keratinocyte differentiation, including the patterns of keratin expression, and programmed cell death, were unaltered by skin denervation. These data indicate that skin denervation is sufficient to influence keratinocyte proliferation and therefore epidermal thickness.
Collapse
Affiliation(s)
- S T Hsieh
- Department of Anatomy and Neurology, National Taiwan University, Taipei.
| | | |
Collapse
|
44
|
Lauria G, Holland N, Hauer P, Cornblath DR, Griffin JW, McArthur JC. Epidermal innervation: changes with aging, topographic location, and in sensory neuropathy. J Neurol Sci 1999; 164:172-8. [PMID: 10402030 DOI: 10.1016/s0022-510x(99)00063-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In previous work we demonstrated little effect of aging on the density and spatial pattern of epidermal innervation, however, this was restricted to two sites proximal and distal in the leg. To expand on these observations, we used punch skin biopsy in ten healthy controls to examine the variation in intra-epidermal nerve fiber (IENF) density at multiple specific sites in the leg. There was a consistent gradient in IENF from proximal to distal sites in all subjects, but minimal effect of age was noted. In the older age group (> or =70 years), the IENF densities ranged from 28.6+/-1.9 IENF/mm at the trunk to 15.5+/-1.5 at the distal leg. In a group of six patients with painful sensory neuropathy, we confirmed a length-dependent reduction in IENF. We observed what may be a predegenerative change, namely increased branching of epidermal nerve fibers at clinically unaffected sites. These data suggest little age-related change in IENF, at least up to age 75 years, in healthy normals. The increased branching complexity noted in unaffected sites in patients with sensory neuropathies implies that this may be a predegenerative change, preceding the actual loss of nerve fibers. Skin biopsy may be a useful tool for assessing the topographic extent and degree of nerve fiber damage in sensory neuropathies and its quantitative interpretation should be little affected by aging changes.
Collapse
Affiliation(s)
- G Lauria
- Department of Neurology, Johns Hopkins University, Meyer 6-109, Baltimore, MD 21287-7609, USA
| | | | | | | | | | | |
Collapse
|
45
|
Chen WP, Chang YC, Hsieh ST. Trophic interactions between sensory nerves and their targets. J Biomed Sci 1999; 6:79-85. [PMID: 10087438 DOI: 10.1007/bf02256438] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Neurotrophins are target-derived trophic factors essential for the survival and maintenance of neurons. Among these, nerve growth factor (NGF) and neurotrophin-3 (NT-3) are particularly important for sensory neurons. The actions of neurotrophins are through the p75 low-affinity receptor and the high-affinity receptor tyrosine kinase (trk). Each neurotrophin has its preferred receptor, i.e. trkA for NGF, and trkC for NT-3. The primary sensory neurons in the dorsal root ganglion are classified into two categories, namely, the large and small sensory neurons based on their size. The large sensory neurons with the expression of trkC depend on NT-3 for development and subserve the function of position sensations. Some of the small sensory neurons express trkA and are NGF-dependent. They are responsible for nociceptive sensation, the detection of painful and thermal stimuli. A more intriguing observation is the bidirectional interactions between nociceptive nerves and their target, the skin. The peripheral processes of small sensory neurons innervate the epidermis of the skin as 'free nerve endings'. In denervated skin, there is a drastic reduction in the epidermal thickness, a finding corroborated by the phenomenon of trophic change, the shining and thinning of the skin, in the disorders of peripheral nerves. The performance of animals with peripheral nerve disorders improved after administration of neurotrophic factors. Based on these results, the therapeutic potentials of neurotrophic factors in human are under investigation.
Collapse
Affiliation(s)
- W P Chen
- Department of Anatomy, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | |
Collapse
|
46
|
Lauria G, McArthur JC, Hauer PE, Griffin JW, Cornblath DR. Neuropathological alterations in diabetic truncal neuropathy: evaluation by skin biopsy. J Neurol Neurosurg Psychiatry 1998; 65:762-6. [PMID: 9810952 PMCID: PMC2170354 DOI: 10.1136/jnnp.65.5.762] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To describe the neuropathological features in skin biopsies from patients with diabetic truncal neuropathy. METHODS Three patients with diabetic truncal neuropathy underwent skin biopsies from both symptomatic and asymptomatic regions of the chest and trunk. After local anaesthesia, biopsies were performed using a 3 mm diameter punch device (Acupunch). Intraepidermal nerve fibres (IENFs), the most distal processes of small myelinated and unmyelinated nerve fibres, were identified after staining with PGP 9.5 as previously described. RESULTS Diabetes was diagnosed at the time of the neurological presentation in two, and one was a known diabetic patient. All three had associated sensory-motor polyneuropathy. In all, skin biopsies showed a marked reduction of both epidermal and dermal nerve fibres in the symptomatic dermatomes, compared with skin from asymptomatic truncal areas. In one patient, a follow up skin biopsy when symptoms had improved showed a return of IENFs. CONCLUSIONS In diabetic truncal neuropathy, skin biopsies from symptomatic regions show a loss of IENFs. After clinical recovery, there is a return of the IENF population, suggesting that improvement occurs by nerve regeneration. These findings suggest that sensory nerve fibre injury in diabetic truncal neuropathy is distal to or within the sensory ganglia. Skin biopsy provides a possible tool for understanding the pathophysiology of the disease.
Collapse
Affiliation(s)
- G Lauria
- Institute of Neurology, University of Ferrara, Italy
| | | | | | | | | |
Collapse
|
47
|
Chiang HY, Huang IT, Chen WP, Chien HF, Shun CT, Chang YC, Hsieh ST. Regional difference in epidermal thinning after skin denervation. Exp Neurol 1998; 154:137-45. [PMID: 9875275 DOI: 10.1006/exnr.1998.6896] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Denervation of skin has a profound influence on epidermis; epidermal thinning was a consistent finding in rats. However, it is not clear whether the degree of epidermal thinning was similar in the region receiving the same innervation. In mice, how early epidermal nerves were degenerated after nerve injury remained unknown. To address these issues, we transected the sciatic nerve in mice and compared the changes of epidermal thickness in different areas of the hind foot skin. Epidermal nerves degenerated within 48 h after nerve transection, similar to what was observed in rats. Seven days after nerve transection, there was differential thinning of epidermis. The interpad area, in the center of the sciatic nerve-innervated region, exhibited the most profound degree of epidermal thinning (34.6 +/- 3.1 vs 47.8 +/- 2.4 microns, P < 0.01). The heel area, in the periphery of the sciatic nerve-innervated zone, did not show significant thinning of epidermis after denervation (37.3 +/- 4.8 vs 41.5 +/- 5.1 microns, P > 0.05). The degree of epidermal thinning after denervation in the pad area was the intermediate one: with 98.8 +/- 4.8 vs 120.1 +/- 7.3 microns, P < 0.02, in the rete pegs, and 51.1 +/- 4.1 vs 62.1 +/- 6.0 microns, P < 0.02, in the dermal papilla. The differential thinning was obvious when the thickness of the denervated epidermis was normalized to that of the control epidermis with the ratios of 0.73 +/- 0.03 in the interpad area, 0.83 +/- 0.04 in the rete peg, 0.85 +/- 0.05 in the dermal papilla, and 0.92 +/- 0.05 in the heel. Epidermal thinning was reversed by reinnervation of the epidermis after sciatic nerve crush (41.5 +/- 1.5 vs 45.0 +/- 2.0 microns in the interpad area, P > 0.05). These findings suggest that sensory nerves exhibit trophic influences on the epidermis presumably through the effects of diffusible factors.
Collapse
Affiliation(s)
- H Y Chiang
- Department of Anatomy, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|