1
|
Thompson D, Odufuwa AE, Brissette CA, Watt JA. Transcriptome and methylome of the supraoptic nucleus provides insights into the age-dependent loss of neuronal plasticity. Front Aging Neurosci 2023; 15:1223273. [PMID: 37711995 PMCID: PMC10498476 DOI: 10.3389/fnagi.2023.1223273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
The age-dependent loss of neuronal plasticity is a well-known phenomenon that is poorly understood. The loss of this capacity for axonal regeneration is emphasized following traumatic brain injury, which is a major cause of disability and death among adults in the US. We have previously shown the intrinsic capacity of magnocellular neurons within the supraoptic nucleus to undergo axonal regeneration following unilateral axotomization in an age-dependent manner. The aim of this research was to determine the age-dependent molecular mechanisms that may underlie this phenomenon. As such, we characterized the transcriptome and DNA methylome of the supraoptic nucleus in uninjured 35-day old rats and 125-day old rats. Our data indicates the downregulation of a large number of axonogenesis related transcripts in 125-day old rats compared to 35-day old rats. Specifically, several semaphorin and ephrin genes were downregulated, as well as growth factors including FGF's, insulin-like growth factors (IGFs), and brain-derived neurotrophic factor (BDNF). Differential methylation analysis indicates enrichment of biological processes involved in axonogenesis and axon guidance. Conversely, we observed a robust and specific upregulation of MHCI related transcripts. This may involve the activator protein 1 (AP-1) transcription factor complex as motif analysis of differentially methylated regions indicate enrichment of AP-1 binding sites in hypomethylated regions. Together, our data suggests a loss of pro-regenerative capabilities with age which would prevent axonal growth and appropriate innervation following injury.
Collapse
Affiliation(s)
| | | | | | - John A. Watt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
2
|
Rani A, Jakhmola S, Karnati S, Parmar HS, Chandra Jha H. Potential entry receptors for human γ-herpesvirus into epithelial cells: A plausible therapeutic target for viral infections. Tumour Virus Res 2021; 12:200227. [PMID: 34800753 PMCID: PMC8628264 DOI: 10.1016/j.tvr.2021.200227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Herpesviruses are ubiquitous viruses, specifically the Epstein Barr virus (EBV). EBV and Kaposi's sarcoma-associated herpesvirus (KSHV) establish their latency for a long period in B-cells and their reactivation instigates dreadful diseases from cancer to neurological modalities. The envelope glycoprotein of these viruses makes an attachment with several host receptors. For instance; glycoprotein 350/220, gp42, gHgL and gB of EBV establish an attachment with CD21, HLA-DR, Ephs, and other receptor molecules to hijack the B- and epithelial cell machinery. Ephs are reported recently as potent receptors for EBV entry into epithelial cells. Eph receptors play a role in the maintenance and control of various cellular processes including morphology, adhesion, proliferation, survival and differentiation. Alterations in the structure and expression of Eph and ephrin (Eph ligands) molecules is entangled with various pathologies including tumours and neurological complications. Along with Eph, integrins, NRP, NMHC are also key players in viral infections as they are possibly involved in viral transmission, replication and persistence. Contrarily, KSHV gH is known to interact with EphA2 and -A4 molecules, whereas in the case of EBV only EphA2 receptors are being reported to date. The ELEFN region of KSHV gH was involved in the interaction with EphA2, however, the interacting region of EBV gH is elusive. Further, the gHgL of KSHV and EBV form a complex with the EphA2 ligand-binding domain (LBD). Primarily by using gL both KSHV and EBV gHgL bind to the peripheral regions of LBD. In addition to γ-herpesviruses, several other viruses like Nipah virus, Cedar virus, Hepatitis C virus and Rhesus macaque rhadinovirus (RRV) also access the host cells via Eph receptors. Therefore, we summarise the possible roles of Eph and ephrins in virus-mediated infection and these molecules could serve as potential therapeutic targets. Crucial understanding of human γ-herpesviruses entry mechanism. Eph receptors relate to changed biomolecular profile upon EBV infection. EBV association with neurological disorders. Eph receptors could be an elegant drug for human γ-herpesviruses.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Srikanth Karnati
- Department of Medical Cell Biology, Julius Maximilians University, Wuerzburg, Germany
| | - Hamendra Singh Parmar
- School of Biotechnology, Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore, 452001, MP, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
3
|
Soliman E, Mills J, Ju J, Kaloss AM, Basso EKG, Groot N, Kelly C, Kowalski EA, Elhassanny M, Chen M, Wang X, Theus MH. Conditional Deletion of EphA4 on Cx3cr1-Expressing Microglia Fails to Influence Histopathological Outcome and Blood Brain Barrier Disruption Following Brain Injury. Front Mol Neurosci 2021; 14:747770. [PMID: 34630039 PMCID: PMC8497746 DOI: 10.3389/fnmol.2021.747770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Erythropoietin-producing human hepatocellular receptors play a major role in central nervous system injury. Preclinical and clinical studies revealed the upregulation of erythropoietin-producing human hepatocellular A4 (EphA4) receptors in the brain after acute traumatic brain injury. We have previously reported that Cx3cr1-expressing cells in the peri-lesion show high levels of EphA4 after the induction of controlled cortical impact (CCI) injury in mice. Cx3cr1 is a fractalkine receptor expressed on both resident microglia and peripheral-derived macrophages. The current study aimed to determine the role of microglial-specific EphA4 in CCI-induced damage. We used Cx3cr1 CreER/+ knock-in/knock-out mice, which express EYFP in Cx3cr1-positive cells to establish microglia, EphA4-deficient mice following 1-month tamoxifen injection. Consistent with our previous findings, induction of CCI in wild-type (WT) Cx3cr1 CreER/+ EphA4 +/+ mice increased EphA4 expression on EYFP-positive cells in the peri-lesion. To distinguish between peripheral-derived macrophages and resident microglia, we exploited GFP bone marrow-chimeric mice and found that CCI injury increased EphA4 expression in microglia (TMEM119+GFP-) using immunohistochemistry. Using Cx3cr1 CreER/+ EphA4 f/f (KO) mice, we observed that the EphA4 mRNA transcript was undetected in microglia but remained present in whole blood when compared to WT. Finally, we found no difference in lesion volume or blood-brain barrier (BBB) disruption between WT and KO mice at 3 dpi. Our data demonstrate a nonessential role of microglial EphA4 in the acute histopathological outcome in response to CCI.
Collapse
Affiliation(s)
- Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Jatia Mills
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Alexandra M Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | | | - Nathalie Groot
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Colin Kelly
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Elizabeth A Kowalski
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Mohamed Elhassanny
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Michael Chen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States.,School of Neuroscience, Virginia Tech, Blacksburg, VA, United States.,Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Unraveling Axon Guidance during Axotomy and Regeneration. Int J Mol Sci 2021; 22:ijms22158344. [PMID: 34361110 PMCID: PMC8347220 DOI: 10.3390/ijms22158344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
During neuronal development and regeneration axons extend a cytoskeletal-rich structure known as the growth cone, which detects and integrates signals to reach its final destination. The guidance cues “signals” bind their receptors, activating signaling cascades that result in the regulation of the growth cone cytoskeleton, defining growth cone advance, pausing, turning, or collapse. Even though much is known about guidance cues and their isolated mechanisms during nervous system development, there is still a gap in the understanding of the crosstalk between them, and about what happens after nervous system injuries. After neuronal injuries in mammals, only axons in the peripheral nervous system are able to regenerate, while the ones from the central nervous system fail to do so. Therefore, untangling the guidance cues mechanisms, as well as their behavior and characterization after axotomy and regeneration, are of special interest for understanding and treating neuronal injuries. In this review, we present findings on growth cone guidance and canonical guidance cues mechanisms, followed by a description and comparison of growth cone pathfinding mechanisms after axotomy, in regenerative and non-regenerative animal models.
Collapse
|
5
|
Roy A, Pathak Z, Kumar H. Strategies to neutralize RhoA/ROCK pathway after spinal cord injury. Exp Neurol 2021; 343:113794. [PMID: 34166685 DOI: 10.1016/j.expneurol.2021.113794] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 01/22/2023]
Abstract
Regeneration is bungled following CNS injuries, including spinal cord injury (SCI). Inherent decay of permissive conditions restricts the regrowth of the mature CNS after an injury. Hypertrophic scarring, insignificant intrinsic axon-growth activity, and axon-growth inhibitory molecules such as myelin inhibitors and scar inhibitors constitute a significant hindrance to spinal cord repair. Besides these molecules, a combined absence of various mechanisms responsible for axonal regeneration is the main reason behind the dereliction of the adult CNS to regenerate. The neutralization of specific inhibitors/proteins by stymieing antibodies or encouraging enzymatic degradation results in improved axon regeneration. Previous efforts to induce regeneration after SCI have stimulated axonal development in or near lesion sites, but not beyond them. Several pathways are responsible for the axonal growth obstruction after a CNS injury, including SCI. Herein, we summarize the axonal, glial, and intrinsic factor which impedes the regeneration. We have also discussed the methods to stabilize microtubules and through this to maintain the proper cytoskeletal dynamics of growth cone as disorganized microtubules lead to the failure of axonal regeneration. Moreover, we primarily focus on diverse inhibitors of axonal growth and molecular approaches to counteract them and their downstream intracellular signaling through the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Zarna Pathak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
6
|
Clark IC, Gutiérrez-Vázquez C, Wheeler MA, Li Z, Rothhammer V, Linnerbauer M, Sanmarco LM, Guo L, Blain M, Zandee SEJ, Chao CC, Batterman KV, Schwabenland M, Lotfy P, Tejeda-Velarde A, Hewson P, Manganeli Polonio C, Shultis MW, Salem Y, Tjon EC, Fonseca-Castro PH, Borucki DM, Alves de Lima K, Plasencia A, Abate AR, Rosene DL, Hodgetts KJ, Prinz M, Antel JP, Prat A, Quintana FJ. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 2021; 372:372/6540/eabf1230. [PMID: 33888612 DOI: 10.1126/science.abf1230] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS). In vivo cell-specific genetic perturbation EAE studies, in vitro systems, and the analysis of MS scRNA-seq datasets and CNS tissue established that Sema4D and Ephrin-B3 expressed in microglia control astrocyte responses via PlexinB2 and EphB3, respectively. Furthermore, a CNS-penetrant EphB3 inhibitor suppressed astrocyte and microglia proinflammatory responses and ameliorated EAE. In summary, RABID-seq identified microglia-astrocyte interactions and candidate therapeutic targets.
Collapse
Affiliation(s)
- Iain C Clark
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Bioengineering, University of California, Berkeley, California Institute for Quantitative Biosciences, Berkeley, CA 94720, USA
| | - Cristina Gutiérrez-Vázquez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mathias Linnerbauer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Liliana M Sanmarco
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia Guo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Manon Blain
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stephanie E J Zandee
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katelyn V Batterman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marius Schwabenland
- Institute of Neuropathology, University of Freiburg, D-79106 Freiburg, Germany
| | - Peter Lotfy
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amalia Tejeda-Velarde
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Hewson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carolina Manganeli Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael W Shultis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yasmin Salem
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emily C Tjon
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro H Fonseca-Castro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Davis M Borucki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kalil Alves de Lima
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Agustin Plasencia
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kevin J Hodgetts
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, D-79106 Freiburg, Germany.,Signaling Research Centres BIOSS and CIBSS, University of Freiburg, D-79106 Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
7
|
Griffin JM, Bradke F. Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem. EMBO Mol Med 2020; 12:e11505. [PMID: 32090481 PMCID: PMC7059014 DOI: 10.15252/emmm.201911505] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/07/2020] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
The recent years saw the advent of promising preclinical strategies that combat the devastating effects of a spinal cord injury (SCI) that are progressing towards clinical trials. However, individually, these treatments produce only modest levels of recovery in animal models of SCI that could hamper their implementation into therapeutic strategies in spinal cord injured humans. Combinational strategies have demonstrated greater beneficial outcomes than their individual components alone by addressing multiple aspects of SCI pathology. Clinical trial designs in the future will eventually also need to align with this notion. The scenario will become increasingly complex as this happens and conversations between basic researchers and clinicians are required to ensure accurate study designs and functional readouts.
Collapse
Affiliation(s)
- Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
8
|
Peripheral loss of EphA4 ameliorates TBI-induced neuroinflammation and tissue damage. J Neuroinflammation 2019; 16:210. [PMID: 31711546 PMCID: PMC6844068 DOI: 10.1186/s12974-019-1605-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The continuum of pro- and anti-inflammatory response elicited by traumatic brain injury (TBI) is suggested to play a key role in the outcome of TBI; however, the underlying mechanisms remain ill -defined. METHODS Here, we demonstrate that using bone marrow chimeric mice and systemic inhibition of EphA4 receptor shifts the pro-inflammatory milieu to pro-resolving following acute TBI. RESULTS EphA4 expression is increased in the injured cortex as early as 2 h post-TBI and on CX3CR1gfp-positive cells in the peri-lesion. Systemic inhibition or genetic deletion of EphA4 significantly reduced cortical lesion volume and shifted the inflammatory profile of peripheral-derived immune cells to pro-resolving in the damaged cortex. These findings were consistent with in vitro studies showing EphA4 inhibition or deletion altered the inflammatory state of LPS-stimulated monocyte/macrophages towards anti-inflammatory. Phosphoarray analysis revealed that EphA4 may regulate pro-inflammatory gene expression by suppressing the mTOR, Akt, and NF-κB pathways. Our human metadata analysis further demonstrates increased EPHA4 and pro-inflammatory gene expression, which correlates with reduced AKT concurrent with increased brain injury severity in patients. CONCLUSIONS Overall, these findings implicate EphA4 as a novel mediator of cortical tissue damage and neuroinflammation following TBI.
Collapse
|
9
|
|
10
|
Yang JS, Wei HX, Chen PP, Wu G. Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery. Exp Ther Med 2018. [PMID: 29456630 DOI: 10.3892/etm.2018.5702.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Multiple cellular components are involved in the complex pathological process following central nervous system (CNS) injury, including neurons, glial cells and endothelial cells. Previous studies and neurotherapeutic clinical trials have assessed the molecular mechanisms that underlie neuronal cell death following CNS injury. However, this approach has largely failed to reduce CNS damage or improve the functional recovery of patients. Erythropoietin-producing human hepatocellular (Eph) receptors and ephrin ligands have attracted considerable attention since their discovery, due to their extensive distribution and unique bidirectional signaling between astrocytes and neurons. Previous studies have investigated the roles of Eph/ephrin bidirectional signaling in the developing central nervous system. It was determined that Eph/ephrin bidirectional signaling is expressed in various CNS regions and cell types, and that it serves diverse roles in the adult CNS. In the present review, the roles of Eph/ephrin bidirectional signaling in CNS injuries are assessed.
Collapse
Affiliation(s)
- Jin-Shan Yang
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Hui-Xing Wei
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Ping-Ping Chen
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Gang Wu
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
11
|
Yang JS, Wei HX, Chen PP, Wu G. Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery. Exp Ther Med 2018; 15:2219-2227. [PMID: 29456630 PMCID: PMC5795627 DOI: 10.3892/etm.2018.5702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Multiple cellular components are involved in the complex pathological process following central nervous system (CNS) injury, including neurons, glial cells and endothelial cells. Previous studies and neurotherapeutic clinical trials have assessed the molecular mechanisms that underlie neuronal cell death following CNS injury. However, this approach has largely failed to reduce CNS damage or improve the functional recovery of patients. Erythropoietin-producing human hepatocellular (Eph) receptors and ephrin ligands have attracted considerable attention since their discovery, due to their extensive distribution and unique bidirectional signaling between astrocytes and neurons. Previous studies have investigated the roles of Eph/ephrin bidirectional signaling in the developing central nervous system. It was determined that Eph/ephrin bidirectional signaling is expressed in various CNS regions and cell types, and that it serves diverse roles in the adult CNS. In the present review, the roles of Eph/ephrin bidirectional signaling in CNS injuries are assessed.
Collapse
Affiliation(s)
- Jin-Shan Yang
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Hui-Xing Wei
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Ping-Ping Chen
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Gang Wu
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
12
|
Wan Y, Yang JS, Xu LC, Huang XJ, Wang W, Xie MJ. Roles of Eph/ephrin bidirectional signaling during injury and recovery of the central nervous system. Neural Regen Res 2018; 13:1313-1321. [PMID: 30106032 PMCID: PMC6108204 DOI: 10.4103/1673-5374.235217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple cellular components, including neuronal, glial and endothelial cells, are involved in the sophisticated pathological processes following central nervous system injury. The pathological process cannot reduce damage or improve functional recovery by merely targeting the molecular mechanisms of neuronal cell death after central nerve system injuries. Eph receptors and ephrin ligands have drawn wide attention since the discovery of their extensive distribution and unique bidirectional signaling between astrocytes and neurons. The roles of Eph/ephrin bidirectional signaling in the developmental processes have been reported in previous research. Recent observations suggest that Eph/ephrin bidirectional signaling continues to be expressed in most regions and cell types in the adult central nervous system, playing diverse roles. The Eph/ephrin complex mediates neurogenesis and angiogenesis, promotes glial scar formation, regulates endocrine levels, inhibits myelin formation and aggravates inflammation and nerve pain caused by injury. The interaction between Eph and ephrin is also considered to be the key to angiogenesis. This review focuses on the roles of Eph/ephrin bidirectional signaling in the repair of central nervous system injuries.
Collapse
Affiliation(s)
- Yue Wan
- Department of Neurology, The Third People's Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Jin-Shan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province; Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Li-Cai Xu
- Department of Neurological Rehabilitation Center, The Third People's Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Xiao-Jiang Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Min-Jie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
13
|
Pegg CL, Cooper LT, Zhao J, Gerometta M, Smith FM, Yeh M, Bartlett PF, Gorman JJ, Boyd AW. Glycoengineering of EphA4 Fc leads to a unique, long-acting and broad spectrum, Eph receptor therapeutic antagonist. Sci Rep 2017; 7:6519. [PMID: 28747680 PMCID: PMC5529513 DOI: 10.1038/s41598-017-06685-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/15/2017] [Indexed: 11/09/2022] Open
Abstract
Eph receptors have emerged as targets for therapy in both neoplastic and non-neoplastic disease, however, particularly in non-neoplastic diseases, redundancy of function limits the effectiveness of targeting individual Eph proteins. We have shown previously that a soluble fusion protein, where the EphA4 ectodomain was fused to IgG Fc (EphA4 Fc), was an effective therapy in acute injuries and demonstrated that EphA4 Fc was a broad spectrum Eph/ephrin antagonist. However, a very short in vivo half-life effectively limited its therapeutic development. We report a unique glycoengineering approach to enhance the half-life of EphA4 Fc. Progressive deletion of three demonstrated N-linked sites in EphA4 progressively increased in vivo half-life such that the triple mutant protein showed dramatically improved pharmacokinetic characteristics. Importantly, protein stability, affinity for ephrin ligands and antagonism of cell expressed EphA4 was fully preserved, enabling it to be developed as a broad spectrum Eph/ephrin antagonist for use in both acute and chronic diseases.
Collapse
Affiliation(s)
- Cassandra L Pegg
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia.
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, 4072, Australia.
| | - Leanne T Cooper
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia
| | - Jing Zhao
- Queensland Brain Institute, University of Queensland, Queensland, 4072, Australia
| | - Michael Gerometta
- Queensland Brain Institute, University of Queensland, Queensland, 4072, Australia
| | - Fiona M Smith
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia
| | - Michael Yeh
- The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Queensland, 4006, Australia
| | - Perry F Bartlett
- Queensland Brain Institute, University of Queensland, Queensland, 4072, Australia
| | - Jeffrey J Gorman
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, 4072, Australia
| | - Andrew W Boyd
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Queensland, 4006, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, Queensland, 4006, Australia
| |
Collapse
|
14
|
Willson CA, Irizarry-Ramírez M, Gaskins HE, Cruz-Orengo L, Figueroa JD, Whittemore SR, Miranda JD. Upregulation of EphA Receptor Expression in the Injured Adult Rat Spinal Cord. Cell Transplant 2017. [DOI: 10.3727/096020198389997] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
After spinal cord injury (SCI), the inability of supraspinal neurons to regenerate or reform functional connections is likely due to proteins in the surrounding microenvironment restricting regeneration. EphAs are a family of receptor tyrosine kinases that are involved in axonal guidance during development. These receptors and their ligands, the Ephrins, act via repulsive mechanisms to guide growing axons towards their appropriate targets and allow for the correct developmental connections to be made. In the present study, we investigated whether EphA receptor expression changed after a thoracic contusion SCI. Our results indicate that several EphA molecules are upregulated after SCI. Using semiquantitative RT-PCR to investigate mRNA expression after SCI, we found that EphA3, A4, and A7 mRNAs were upregulated. EphA3, A4, A6, and A8 receptor immunoreactivity increased in the ventrolateral white matter (VWM) at the injury epicenter. EphA7 had the highest level of immunoreactivity in both control and injured rat spinal cord. EphA receptor expression in the white matter originated from glial cells as coexpression in both astrocytes and oligodendrocytes was observed. In contrast, gray matter expression was localized to neurons of the ventral gray matter (motor neurons) and dorsal horn. After SCI, specific EphA receptor subtypes are upregulated and these increases may create an environment that is unfavorable for neurite outgrowth and functional regeneration.
Collapse
Affiliation(s)
- Christopher A. Willson
- Kentucky Spinal Cord Injury Research Center and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
- Departments of Neurological Surgery and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | | | - Hope E. Gaskins
- Kentucky Spinal Cord Injury Research Center and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
- Departments of Neurological Surgery and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Lillian Cruz-Orengo
- Departments of Physiology, University of Puerto Rico Medical Science Campus, San Juan, PR 00936
| | - Johnny D. Figueroa
- Departments of Physiology, University of Puerto Rico Medical Science Campus, San Juan, PR 00936
| | - Scott R. Whittemore
- Kentucky Spinal Cord Injury Research Center and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
- Departments of Neurological Surgery and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Jorge D. Miranda
- Departments of Physiology, University of Puerto Rico Medical Science Campus, San Juan, PR 00936
| |
Collapse
|
15
|
Tsenkina Y, Ricard J, Runko E, Quiala- Acosta MM, Mier J, Liebl DJ. EphB3 receptors function as dependence receptors to mediate oligodendrocyte cell death following contusive spinal cord injury. Cell Death Dis 2015; 6:e1922. [PMID: 26469970 PMCID: PMC4632292 DOI: 10.1038/cddis.2015.262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 11/29/2022]
Abstract
We demonstrate that EphB3 receptors mediate oligodendrocyte (OL) cell death in the injured spinal cord through dependence receptor mechanism. OLs in the adult spinal cord express EphB3 as well as other members of the Eph receptor family. Spinal cord injury (SCI) is associated with tissue damage, cellular loss and disturbances in EphB3-ephrinB3 protein balance acutely (days) after the initial impact creating an environment for a dependence receptor-mediated cell death to occur. Genetic ablation of EphB3 promotes OL survival associated with increased expression of myelin basic protein and improved locomotor function in mice after SCI. Moreover, administration of its ephrinB3 ligand to the spinal cord after injury also promotes OL survival. Our in vivo findings are supported by in vitro studies showing that ephrinB3 administration promotes the survival of both oligodendroglial progenitor cells and mature OLs cultured under pro-apoptotic conditions. In conclusion, the present study demonstrates a novel dependence receptor role of EphB3 in OL cell death after SCI, and supports further development of ephrinB3-based therapies to promote recovery.
Collapse
Affiliation(s)
- Y Tsenkina
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - J Ricard
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - E Runko
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - M M Quiala- Acosta
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - J Mier
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - D J Liebl
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| |
Collapse
|
16
|
Rosas OR, Torrado AI, Santiago JM, Rodriguez AE, Salgado IK, Miranda JD. Long-term treatment with PP2 after spinal cord injury resulted in functional locomotor recovery and increased spared tissue. Neural Regen Res 2015; 9:2164-73. [PMID: 25657738 PMCID: PMC4316450 DOI: 10.4103/1673-5374.147949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2014] [Indexed: 02/06/2023] Open
Abstract
The spinal cord has the ability to regenerate but the microenvironment generated after trauma reduces that capacity. An increase in Src family kinase (SFK) activity has been implicated in neuropathological conditions associated with central nervous system trauma. Therefore, we hypothesized that a decrease in SFK activation by a long-term treatment with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine (PP2), a selective SFK inhibitor, after spinal cord contusion with the New York University (NYU) impactor device would generate a permissive environment that improves axonal sprouting and/or behavioral activity. Results demonstrated that long-term blockade of SFK activation with PP2 increases locomotor activity at 7, 14, 21 and 28 days post-injury in the Basso, Beattie, and Bresnahan open field test, round and square beam crossing tests. In addition, an increase in white matter spared tissue and serotonin fiber density was observed in animals treated with PP2. However, blockade of SFK activity did not change the astrocytic response or infiltration of cells from the immune system at 28 days post-injury. Moreover, a reduced SFK activity with PP2 diminished Ephexin (a guanine nucleotide exchange factor) phosphorylation in the acute phase (4 days post-injury) after trauma. Together, these findings suggest a potential role of SFK in the regulation of spared tissue and/or axonal outgrowth that may result in functional locomotor recovery during the pathophysiology generated after spinal cord injury. Our study also points out that ephexin1 phosphorylation (activation) by SFK action may be involved in the repulsive microenvironment generated after spinal cord injury.
Collapse
Affiliation(s)
- Odrick R Rosas
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Aranza I Torrado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Jose M Santiago
- Department of Natural Sciences, University of Puerto Rico Carolina Campus, Carolina, PR, USA
| | - Ana E Rodriguez
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Iris K Salgado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Jorge D Miranda
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|
17
|
Corticospinal sprouting differs according to spinal injury location and cortical origin in macaque monkeys. J Neurosci 2015; 34:12267-79. [PMID: 25209269 DOI: 10.1523/jneurosci.1593-14.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The primate corticospinal tract (CST), the major descending pathway mediating voluntary hand movements, comprises nine or more functional subdivisions. The role of subcomponents other than that from primary motor cortex, however, is not well understood. We have previously shown that following a cervical dorsal rhizotomy (Darian-Smith et al., 2013), CST projections originating from primary somatosensory (S1) and motor (M1) cortex responded quite differently to injury. Terminal projections from the S1 (areas 3b/1/2) shrank to <60% of the contralateral side, while M1 CST projections remained robust or expanded (>110%). Here, we asked what happens when a central lesion is added to the equation, to better simulate clinical injury. Monkeys (n = 6) received either a unilateral (1) dorsal root lesion (DRL), (2) or a combined DRL/dorsal column lesion (DRL/DCL), or (3) a DRL/DCL where the DCL was made 4 months following the initial DRL. Electrophysiological recordings were made in S1 4 months postlesion in the first two groups, and 6 weeks after the DCL in the third lesion group, to identify the reorganized region of D1-D3 (thumb, index finger, and middle finger) representation. Anterograde tracers were then injected bilaterally to assess spinal terminal labeling. Remarkably, in all DRL/DCL animals, terminal projections from the S1 and M1 extended bilaterally and caudally well beyond terminal territories in normal animals or following a DRL. These data were highly significant. Extensive sprouting from the S1 CST has not been reported previously, and these data raise important questions about S1 CST involvement in recovery following spinal injury.
Collapse
|
18
|
Theus MH, Ricard J, Glass SJ, Travieso LG, Liebl DJ. EphrinB3 blocks EphB3 dependence receptor functions to prevent cell death following traumatic brain injury. Cell Death Dis 2014; 5:e1207. [PMID: 24810043 PMCID: PMC4047907 DOI: 10.1038/cddis.2014.165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/28/2014] [Accepted: 03/17/2014] [Indexed: 01/22/2023]
Abstract
Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have a variety of roles in the developing and adult central nervous system that require direct cell-cell interactions; including regulating axon path finding, cell proliferation, migration and synaptic plasticity. Recently, we identified a novel pro-survival role for ephrins in the adult subventricular zone, where ephrinB3 blocks Eph-mediated cell death during adult neurogenesis. Here, we examined whether EphB3 mediates cell death in the adult forebrain following traumatic brain injury and whether ephrinB3 infusion could limit this effect. We show that EphB3 co-labels with microtubule-associated protein 2-positive neurons in the adult cortex and is closely associated with ephrinB3 ligand, which is reduced following controlled cortical impact (CCI) injury. In the complete absence of EphB3 (EphB3(-/-)), we observed reduced terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL), and functional improvements in motor deficits after CCI injury as compared with wild-type and ephrinB3(-/-) mice. We also demonstrated that EphB3 exhibits dependence receptor characteristics as it is cleaved by caspases and induces cell death, which is not observed in the presence of ephrinB3. Following trauma, infusion of pre-clustered ephrinB3-Fc molecules (eB3-Fc) into the contralateral ventricle reduced cortical infarct volume and TUNEL staining in the cortex, dentate gyrus and CA3 hippocampus of wild-type and ephrinB3(-/-) mice, but not EphB3(-/-) mice. Similarly, application of eB3-Fc improved motor functions after CCI injury. We conclude that EphB3 mediates cell death in the adult cortex through a novel dependence receptor-mediated cell death mechanism in the injured adult cortex and is attenuated following ephrinB3 stimulation.
Collapse
Affiliation(s)
- M H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, 215 Duck Pond Drive, Blacksburg, VA 24061, USA
| | - J Ricard
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL 33136, USA
| | - S J Glass
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL 33136, USA
| | - L G Travieso
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL 33136, USA
| | - D J Liebl
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL 33136, USA
| |
Collapse
|
19
|
Warren PM, Alilain WJ. The challenges of respiratory motor system recovery following cervical spinal cord injury. PROGRESS IN BRAIN RESEARCH 2014; 212:173-220. [DOI: 10.1016/b978-0-444-63488-7.00010-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Ren Z, Chen X, Yang J, Kress BT, Tong J, Liu H, Takano T, Zhao Y, Nedergaard M. Improved axonal regeneration after spinal cord injury in mice with conditional deletion of ephrin B2 under the GFAP promoter. Neuroscience 2013; 241:89-99. [PMID: 23518227 DOI: 10.1016/j.neuroscience.2013.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/03/2013] [Accepted: 03/12/2013] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) initiates a cascade of processes that ultimately form a nonpermissive environment for axonal regeneration. Emerging evidence suggests that regenerative failure may be due in part to inhibitory factors expressed by reactive spinal cord glial cells and meningeal fibroblasts, such as the Eph receptor protein-tyrosine kinases and their corresponding ligands (ephrins). Here we sought to assess the role of ephrin B2, an inhibitory axonal guidance molecule, as an inhibitor of the recovery process following SCI. To determine the extent of ephrin B2 involvement in axonal regenerative failure, a SCI model was performed on a conditional ephrin B2 knockout mouse strain (ephrin B2(-/-)), in which the ephrin B2 gene was deleted under the GFAP promoter . The expression of ephrin B2 was significantly decreased in astrocytes of injured and uninjured ephrin B2(-/-) mice compared to wild-type mice. Notably, in the ephrin B2(-/-) mice, the deletion of ephrin B2 reduced astrogliosis, and accelerated motor function recovery after SCI. Anterograde axonal tracing on a hemisection model of SCI further showed that ephrin B2(-/-) mice exhibited increased regeneration of injured corticospinal axons and a reduced glial scar, when compared to littermate controls exposed to similar injury. These results were confirmed by an in vitro neurite outgrowth assay and ephrin B2 functional blockage, which showed that ephrin B2 expressed on astrocytes inhibited axonal growth. Combined these findings suggest that ephrin B2 ligands expressed by reactive astrocytes impede the recovery process following SCI.
Collapse
Affiliation(s)
- Z Ren
- Department of Neurosurgery, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nakamura PA, Cramer KS. EphB2 signaling regulates lesion-induced axon sprouting but not critical period length in the postnatal auditory brainstem. Neural Dev 2013; 8:2. [PMID: 23379484 PMCID: PMC3575227 DOI: 10.1186/1749-8104-8-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/14/2013] [Indexed: 11/25/2022] Open
Abstract
Background Studies of developmental plasticity may provide insight into plasticity during adulthood, when neural circuitry is less responsive to losses or changes in input. In the mammalian auditory brainstem, globular bushy cell axons of the ventral cochlear nucleus (VCN) innervate the contralateral medial nucleus of the trapezoid body (MNTB) principal neurons. VCN axonal terminations in MNTB, known as calyces of Held, are very large and specialized for high-fidelity transmission of auditory information. Following unilateral deafferentation during postnatal development, VCN axons from the intact side form connections with novel targets, including the ipsilateral MNTB. EphB signaling has been shown to play a role in this process during the first postnatal week, but mechanisms involved in this reorganization during later developmental periods remain unknown. Results We found that EphB2 signaling reduces the number of induced ipsilateral projections to the MNTB after unilateral VCN removal at postnatal day seven (P7), but not after removal of the VCN on one side at P10, after the closure of the critical period for lesion-induced innervation of the ipsilateral MNTB. Conclusions Results from this study indicate that molecular mechanisms involved in the development of circuitry may also play a part in rewiring after deafferentation during development, but do not appear to regulate the length of critical periods for plasticity.
Collapse
Affiliation(s)
- Paul A Nakamura
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
22
|
Hånell A, Clausen F, Djupsjö A, Vallstedt A, Patra K, Israelsson C, Larhammar M, Björk M, Paixão S, Kullander K, Marklund N. Functional and Histological Outcome after Focal Traumatic Brain Injury Is Not Improved in Conditional EphA4 Knockout Mice. J Neurotrauma 2012; 29:2660-71. [DOI: 10.1089/neu.2012.2376] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Anders Hånell
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Fredrik Clausen
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anders Djupsjö
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anna Vallstedt
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Kalicharan Patra
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Charlotte Israelsson
- Section for Developmental Neuroscience, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Martin Larhammar
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maria Björk
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sónia Paixão
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Martinsried, Germany
| | - Klas Kullander
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, Lackmann M, Boyd AW. Eph/Ephrin signaling in injury and inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1493-503. [PMID: 23021982 DOI: 10.1016/j.ajpath.2012.06.043] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/28/2012] [Indexed: 12/20/2022]
Abstract
The Eph/ephrin receptor-ligand system plays an important role in embryogenesis and adult life, principally by influencing cell behavior through signaling pathways, resulting in modification of the cell cytoskeleton and cell adhesion. There are 10 EphA receptors, and six EphB receptors, distinguished on sequence difference and binding preferences, that interact with the six glycosylphosphatidylinositol-linked ephrin-A ligands and the three transmembrane ephrin-B ligands, respectively. The Eph/ephrin proteins, originally described as developmental regulators that are expressed at low levels postembryonically, are re-expressed after injury to the optic nerve, spinal cord, and brain in fish, amphibians, rodents, and humans. In rodent spinal cord injury, the up-regulation of EphA4 prevents recovery by inhibiting axons from crossing the injury site. Eph/ephrin proteins may be partly responsible for the phenotypic changes to the vascular endothelium in inflammation, which allows fluid and inflammatory cells to pass from the vascular space into the interstitial tissues. Specifically, EphA2/ephrin-A1 signaling in the lung may be responsible for pulmonary inflammation in acute lung injury. A role in T-cell maturation and chronic inflammation (heart failure, inflammatory bowel disease, and rheumatoid arthritis) is also reported. Although there remains much to learn about Eph/ephrin signaling in human disease, and specifically in injury and inflammation, this area of research raises the exciting prospect that novel therapies will be developed that precisely target these pathways.
Collapse
Affiliation(s)
- Mark G Coulthard
- Academic Discipline of Paediatrics and Child Health, University of Queensland, Royal Children's Hospital, Herston, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Santiago JM, Torrado AI, Arocho LC, Rosas OR, Rodríguez AE, Toro FK, Salgado IK, Torres YA, Silva WI, Miranda JD. Expression profile of flotillin-2 and its pathophysiological role after spinal cord injury. J Mol Neurosci 2012; 49:347-59. [PMID: 22878913 DOI: 10.1007/s12031-012-9873-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/01/2012] [Indexed: 11/26/2022]
Abstract
Some receptors that block axonal regeneration or promote cell death after spinal cord injury (SCI) are localized in membrane rafts. Flotillin-2 (Flot-2) is an essential protein associated with the formation of these domains and the clustering of membranal proteins, which may have signaling activities. Our hypothesis is that trauma will change Flot-2 expression and interference of this lipid raft marker will promote functional locomotor recovery after SCI. Analyses were conducted to determine the spatiotemporal profile of Flot-2 expression in adult rats after SCI, using the MASCIS impactor device. Immunoblots showed that SCI produced a significant decrease in the level of Flot-2 at 2 days post-injury (DPI) that increased until 28 DPI. Confocal microscopy revealed Flot-2 expression in neurons, reactive astrocytes and oligodendrocytes specifically associated to myelin structures near or close to the axons of the cord. In the open field test and grid walking assays, to monitor locomotor recovery of injured rats infused intrathecally with Flot-2 antisense oligonucleotides for 28 days showed significant behavioral improvement at 14, 21 and 28 DPI. These findings suggest that Flot-2 has a role in the nonpermissive environment that blocks locomotor recovery after SCI by clustering unfavorable proteins in membrane rafts.
Collapse
Affiliation(s)
- José M Santiago
- Department of Natural Sciences, University of Puerto Rico Carolina Campus, Carolina, 00984, Puerto Rico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Karimi-Abdolrezaee S, Billakanti R. Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol 2012; 46:251-64. [PMID: 22684804 DOI: 10.1007/s12035-012-8287-4] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/29/2012] [Indexed: 11/29/2022]
Abstract
Reactive astrogliosis is a pathologic hallmark of spinal cord injury (SCI). It is characterised by profound morphological, molecular, and functional changes in astrocytes that occur within hours of SCI and evolves as time elapses after injury. Astrogliosis is a defense mechanism to minimize and repair the initial damage but eventually leads to some detrimental effects. Reactive astrocytes secrete a plethora of both growth promoting and inhibitory factors after SCI. However, the production of inhibitory components surpasses the growth stimulating factors, thus, causing inhibitory effects. In severe cases of injury, astrogliosis results in the formation of irreversible glial scarring that acts as regeneration barrier due to the expression of inhibitory components such as chondroitin sulfate proteoglycans. Scar formation was therefore recognized from a negative perspective for many years. Accumulating evidence from pharmacological and genetic studies now signifies the importance of astrogliosis and its timing for spinal cord repair. These studies have advanced our knowledge regarding signaling pathways and molecular mediators, which trigger and modulate reactive astrocytes and scar formation. In this review, we discuss the recent advances in this field. We also review therapeutic strategies that have been developed to target astrocytes reactivity and glial scaring in the environment of SCI. Astrocytes play pivotal roles in governing SCI mechanisms, and it is therefore crucial to understand how their activities can be targeted efficiently to harness their potential for repair and regeneration after SCI.
Collapse
Affiliation(s)
- Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Departments of Physiology and Biochemistry and Medical Genetics, the Spinal Cord Research Center, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | | |
Collapse
|
26
|
Lee JW, Jergova S, Furmanski O, Gajavelli S, Sagen J. Predifferentiated GABAergic neural precursor transplants for alleviation of dysesthetic central pain following excitotoxic spinal cord injury. Front Physiol 2012; 3:167. [PMID: 22754531 PMCID: PMC3385582 DOI: 10.3389/fphys.2012.00167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/08/2012] [Indexed: 12/26/2022] Open
Abstract
Intraspinal quisqualic acid (QUIS) injury induce (i) mechanical and thermal hyperalgesia, (ii) progressive self-injurious overgrooming of the affected dermatome. The latter is thought to resemble painful dysesthesia observed in spinal cord injury (SCI) patients. We have reported previously loss of endogenous GABA immunoreactive (IR) cells in the superficial dorsal horn of QUIS rats 2 weeks post injury. Further histological evaluation showed that GABA-, glycine-, and synaptic vesicular transporter VIAAT-IR persisted but were substantially decreased in the injured spinal cord. In this study, partially differentiated GABA-IR embryonic neural precursor cells (NPCs) were transplanted into the spinal cord of QUIS rats to reverse overgrooming by replenishing lost inhibitory circuitry. Rat E14 NPCs were predifferentiated in 0.1 ng/ml FGF-2 for 4 h prior to transplantation. In vitro immunocytochemistry of transplant cohort showed large population of GABA-IR NPCs that double labeled with nestin but few colocalized with NeuN, indicating partial maturation. Two weeks following QUIS lesion at T12-L1, and following the onset of overgrooming, NPCs were transplanted into the QUIS lesion sites; bovine adrenal fibroblast cells were used as control. Overgrooming was reduced in >55.5% of NPC grafted animals, with inverse relationship between the number of surviving GABA-IR cells and the size of overgrooming. Fibroblast-control animals showed a progressive worsening of overgrooming. At 3 weeks post-transplantation, numerous GABA-, nestin-, and GFAP-IR cells were present in the lesion site. Surviving grafted GABA-IR NPCs were NeuN+ and GFAP−. These results indicate that partially differentiated NPCs survive and differentiate in vivo into neuronal cells following transplantation into an injured spinal cord. GABA-IR NPC transplants can restore lost dorsal horn inhibitory signaling and are useful in alleviating central pain following SCI.
Collapse
Affiliation(s)
- Jeung Woon Lee
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami Miami, FL, USA
| | | | | | | | | |
Collapse
|
27
|
Myelin-derived ephrinB3 restricts axonal regeneration and recovery after adult CNS injury. Proc Natl Acad Sci U S A 2012; 109:5063-8. [PMID: 22411787 DOI: 10.1073/pnas.1113953109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recovery of neurological function after traumatic injury of the adult mammalian central nervous system is limited by lack of axonal growth. Myelin-derived inhibitors contribute to axonal growth restriction, with ephrinB3 being a developmentally important axonal guidance cue whose expression in mature oligodendrocytes suggests a role in regeneration. Here we explored the in vivo regeneration role of ephrinB3 using mice lacking a functional ephrinB3 gene. We confirm that ephrinB3 accounts for a substantial portion of detergent-resistant myelin-derived inhibition in vitro. To assess in vivo regeneration, we crushed the optic nerve and examined retinal ganglion fibers extending past the crush site. Significantly increased axonal regeneration is detected in ephrinB3(-/-) mice. Studies of spinal cord injury in ephrinB3(-/-) mice must take into account altered spinal cord development and an abnormal hopping gait before injury. In a near-total thoracic transection model, ephrinB3(-/-) mice show greater spasticity than wild-type mice for 2 mo, with slightly greater hindlimb function at later time points, but no evidence for axonal regeneration. After a dorsal hemisection injury, increased corticospinal and raphespinal growth in the caudal spinal cord are detected by 6 wk. This increased axonal growth is accompanied by improved locomotor performance measured in the open field and by kinematic analysis. Thus, ephrinB3 contributes to myelin-derived axonal growth inhibition and limits recovery from adult CNS trauma.
Collapse
|
28
|
Chiu H, Alqadah A, Chuang CF, Chang C. C. elegans as a genetic model to identify novel cellular and molecular mechanisms underlying nervous system regeneration. Cell Adh Migr 2012; 5:387-94. [PMID: 21975547 DOI: 10.4161/cam.5.5.17985] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Research into conditions that improve axon regeneration has the potential to open a new door for treatment of brain injury caused by stroke and neurodegenerative diseases of aging, such as Alzheimer, by harnessing intrinsic neuronal ability to reorganize itself. Elucidating the molecular mechanisms of axon regeneration should shed light on how this process becomes restricted in the postnatal stage and in CNS and therefore could provide therapeutic targets for developing strategy to improve axon regeneration in adult CNS. In this review, we first discuss the general view about nerve regeneration and the advantages of using C. elegans as a model system to study axon regeneration. We then compare the conserved regeneration patterns and molecular mechanisms between C. elegans and vertebrates. Lastly, we discuss the power of femtosecond laser technology and its application in axon regeneration research.
Collapse
Affiliation(s)
- Hui Chiu
- Division of Developmental Biology; Cincinnati Children's Hospital Research Foundation; Cincinnati, OH, USA
| | | | | | | |
Collapse
|
29
|
Babenko O, Golubov A, Ilnytskyy Y, Kovalchuk I, Metz GA. Genomic and epigenomic responses to chronic stress involve miRNA-mediated programming. PLoS One 2012; 7:e29441. [PMID: 22291890 PMCID: PMC3265462 DOI: 10.1371/journal.pone.0029441] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/28/2011] [Indexed: 11/30/2022] Open
Abstract
Stress represents a critical influence on motor system function and has been shown to impair movement performance. We hypothesized that stress-induced motor impairments are due to brain-specific changes in miRNA and protein-encoding gene expression. Here we show a causal link between stress-induced motor impairment and associated genetic and epigenetic responses in relevant central motor areas in a rat model. Exposure to two weeks of mild restraint stress altered the expression of 39 genes and nine miRNAs in the cerebellum. In line with persistent behavioural impairments, some changes in gene and miRNA expression were resistant to recovery from stress. Interestingly, stress up-regulated the expression of Adipoq and prolactin receptor mRNAs in the cerebellum. Stress also altered the expression of Prlr, miR-186, and miR-709 in hippocampus and prefrontal cortex. In addition, our findings demonstrate that miR-186 targets the gene Eps15. Furthermore, we found an age-dependent increase in EphrinB3 and GabaA4 receptors. These data show that even mild stress results in substantial genomic and epigenomic changes involving miRNA expression and associated gene targets in the motor system. These findings suggest a central role of miRNA-regulated gene expression in the stress response and in associated neurological function.
Collapse
Affiliation(s)
- Olena Babenko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Andrey Golubov
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gerlinde A. Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
|
31
|
Rosas OR, Figueroa JD, Torrado AI, Rivera M, Santiago JM, Konig-Toro F, Miranda JD. Expression and activation of ephexin is altered after spinal cord injury. Dev Neurobiol 2011; 71:595-607. [PMID: 20949525 DOI: 10.1002/dneu.20848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Failure of axon regeneration after traumatic spinal cord injury (SCI) is attributable in part to the presence of inhibitory molecular interactions. Recent evidence demonstrates that activation of Eph signaling pathways leads to modulation of growth cone dynamics and repulsion through the activation of ephexin, a novel guanine nucleotide exchange factor (GEF). However, little is known about the expression and modulation of Eph molecular targets in the injured spinal cord. In this study, we determined the expression profile of ephexin after a moderate spinal cord contusion at thoracic level (T10) in young adult rats. Western-blot studies showed increased protein expression in injured rats at 4 and 7 days postinjury (DPI) when compared with control animals. The protein levels returned to normal at 14 DPI and remained steady until 28 DPI. However, immunoprecipitation studies of the phosphorylated ephexin demonstrated that this protein is activated by day 2 until 14 DPI. Expression of ephexin was noticeable in neurons, axons, microglia/macrophages, and reactive astrocytes, and co-localized with EphA3, A4, and A7. These results demonstrate the presence of ephexin in the adult spinal cord and its activation after SCI. Therefore, we show, for the first time, the spatiotemporal pattern of ephexin expression and activation after contusive SCI. Collectively, our data support our previous findings on the putative nonpermissive roles of Eph receptors after SCI and the possible involvement of ephexin in the intracellular cascade of events.
Collapse
Affiliation(s)
- Odrick R Rosas
- Department of Physiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00936
| | | | | | | | | | | | | |
Collapse
|
32
|
EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLoS One 2011; 6:e24636. [PMID: 21931787 PMCID: PMC3172248 DOI: 10.1371/journal.pone.0024636] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023] Open
Abstract
Upregulation and activation of developmental axon guidance molecules, such as semaphorins and members of the Eph receptor tyrosine kinase family and their ligands, the ephrins, play a role in the inhibition of axonal regeneration following injury to the central nervous system. Previously we have demonstrated in a knockout model that axonal regeneration following spinal cord injury is promoted in the absence of the axon guidance protein EphA4. Antagonism of EphA4 was therefore proposed as a potential therapy to promote recovery from spinal cord injury. To further assess this potential, two soluble recombinant blockers of EphA4, unclustered ephrin-A5-Fc and EphA4-Fc, were examined for their ability to promote axonal regeneration and to improve functional outcome following spinal cord hemisection in wildtype mice. A 2-week administration of either of these blockers following spinal cord injury was sufficient to promote substantial axonal regeneration and functional recovery by 5 weeks following injury. Both inhibitors produced a moderate reduction in astrocytic gliosis, indicating that much of the effect of the blockers may be due to promotion of axon growth. These studies provide definitive evidence that soluble inhibitors of EphA4 function offer considerable therapeutic potential for the treatment of spinal cord injury and may have broader potential for the treatment of other central nervous system injuries.
Collapse
|
33
|
Blockade of P2 nucleotide receptors after spinal cord injury reduced the gliotic response and spared tissue. J Mol Neurosci 2011; 46:167-76. [PMID: 21647706 DOI: 10.1007/s12031-011-9567-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/23/2011] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) triggers a sequel of events commonly associated with cell death and dysfunction of glias and neurons surrounding the lesion. Although astrogliosis and glial scar formation have been involved in both damage and repair processes after SCI, their role remains controversial. Our goal was to investigate the effects of the P2 receptors antagonists, PPADS and suramin, in the establishment of the reactive gliosis and the formation of the glial scar. Molecular biology, immunohistochemistry, spared tissue, and locomotor behavioral studies were used to evaluate astrogliosis, in adult female Sprague-Dawley rats treated with P2 antagonists after moderate injury with the NYU impactor device. Semi-quantitative RT-PCR confirmed the presence of P2Y(1,) P2Y(2,) P2Y(4,) P2Y(6,) P2Y(12), and P2X(2) receptors in the adult spinal cord. Immunohistochemistry studies confirmed a significant decrease in GFAP-labeled cells at the injury epicenter as well as a decrease in spared tissue after treatment with the antagonists. Functional open field testing revealed no significant locomotor score differences between treated and control animals. Our work is consistent with studies suggesting that astrogliosis is an important event after SCI that limits tissue damage and lesion spreading.
Collapse
|
34
|
Arocho LC, Figueroa JD, Torrado AI, Santiago JM, Vera AE, Miranda JD. Expression profile and role of EphrinA1 ligand after spinal cord injury. Cell Mol Neurobiol 2011; 31:1057-69. [PMID: 21603973 DOI: 10.1007/s10571-011-9705-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/30/2011] [Indexed: 10/18/2022]
Abstract
Spinal cord injury (SCI) triggers the re-expression of inhibitory molecules present in early stages of development, contributing to prevention of axonal regeneration. Upregulation of EphA receptor tyrosine kinases after injury suggest their involvement in the nervous system's response to damage. However, the expression profile of their ephrinA ligands after SCI is unclear. In this study, we determined the expression of ephrinA ligands after contusive SCI. Adult Sprague-Dawley female rats were injured using the MASCIS impactor device at the T10 vertebrae, and levels of ephrinA mRNA and protein determined at different time points. Identification of the cell phenotype expressing the ephrin ligand and colocalization with Eph receptors was performed with immunohistochemistry and confocal microscopy. Behavioral studies were made, after blocking ephrinA1 expression with antisense (AS) oligonucleotides, to assess hindlimb locomotor activity. Real-time PCR demonstrated basal mRNA levels of ephrin (A1, A2, A3, and A5) in the adult spinal cord. Interestingly, ephrinA1 was the only ligand whose mRNA levels were significantly altered after SCI. Although ephrinA1 mRNA levels increased after 2 weeks and remain elevated, we did not observe this pattern at the protein level as revealed by western blot analysis. Immunohistochemical studies showed ephrinA1 expression in reactive astrocytes, axons, and neurons and also their colocalization with EphA4 and A7 receptors. Behavioral studies revealed worsening of locomotor activity when ephrinA1 expression was reduced. This study suggests that ephrinA1 ligands play a role in the pathophysiology of SCI.
Collapse
Affiliation(s)
- Luz C Arocho
- Physiology Department, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, PR 00936-5067, USA
| | | | | | | | | | | |
Collapse
|
35
|
Goldshmit Y, Bourne J. Upregulation of EphA4 on astrocytes potentially mediates astrocytic gliosis after cortical lesion in the marmoset monkey. J Neurotrauma 2011; 27:1321-32. [PMID: 20486805 DOI: 10.1089/neu.2010.1294] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glial scar formation occurs in response to brain injury in mammalian models and inhibits axonal growth. Identification of molecules that may mediate reactivity of astrocytes has become a leading therapeutic goal in the field of neurotrauma. In adult rodent brain and spinal cord, many of the Eph receptors and their ephrin ligands have been demonstrated to be upregulated on reactive astrocytes at the injury site; however, little is known about the expression of these molecules in nonhuman primate injury models. This study examines the role of the tyrosine kinase EphA4 receptor, which predominantly binds most ephrin ligands, after injury in marmoset monkey brain. Following lesioning of the primary visual cortex (V1) in the adult marmoset, EphA4 is strongly upregulated on reactive astrocytes around the lesion site, which secrete extracellular matrix molecules such as chondroitin sulfate proteoglycans, which are known for their inhibitory effect on axonal growth and regeneration. This astrocyte reactivity was also associated with neuronal death in the area adjacent to the lesion site. EphA4 activation induced by clustered ephrin A5-Fc-mediated astrocyte proliferation and glial fibrillary acidic protein expression in vitro, as demonstrated by closure of scratched wound and MTT assays, occurs via two potential signaling pathways, the mitogen-activated protein kinase and Rho pathways. These results in a nonhuman primate model highlight the importance of developing pharmacotherapeutic approaches to block these molecules following brain injury.
Collapse
Affiliation(s)
- Yona Goldshmit
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
36
|
Rodríguez-Zayas AE, Torrado AI, Miranda JD. P2Y2 receptor expression is altered in rats after spinal cord injury. Int J Dev Neurosci 2010; 28:413-21. [PMID: 20619335 PMCID: PMC3225399 DOI: 10.1016/j.ijdevneu.2010.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/22/2010] [Accepted: 07/01/2010] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury increases inhibitory factors that may restrict neurite outgrowth after trauma. The expression of repulsive molecules in reactive astrocytes and the formation of the glial scar at the injury site produce the non-permissive environment for axonal regeneration. However, the mechanism that triggers this astrogliotic response is unknown. The release of nucleotides has been linked to this hypertrophic state. Our goal is to investigate the temporal profile of P2Y(2) nucleotide receptor after spinal cord injury in adult female Sprague-Dawley rats. Molecular biology, immunofluorescence studies, and Western Blots were used to evaluate the temporal profile (2, 4, 7, 14, and 28 days post-injury) of this receptor in rats injured at the T-10 level using the NYU impactor device. Real time RT-PCR showed a significant increase of P2Y(2) mRNA after 2 days post-injury that continues throughout 28 days post-injury. Double labeling studies localized P2Y(2) immunoreactivity in neuronal cell bodies, axons, macrophages, oligodendrocytes and reactive astrocytes. Immunofluorescence studies also demonstrated a low level of P2Y(2) receptor in sham samples, which increased after injury in glial fibrillary acidic protein positive cells. Western Blot performed with contused spinal cord protein samples revealed an upregulation in the P2Y(2) 42 kDa protein band expression after 4 days post-injury that continues until 28 days post-injury. However, a downregulation of the 62 kDa receptor protein band after 2 days post-injury that continues up to 28 days post-injury was observed. Therefore, the spatio-temporal pattern of P2Y(2) gene expression after spinal cord injury suggests a role in the pathophysiology response generated after trauma.
Collapse
Affiliation(s)
- Ana E. Rodríguez-Zayas
- Department of Physiology, University of Puerto Rico, Medical Science Campus, San Juan, PR 00936-5067, Puerto Rico
| | - Aranza I. Torrado
- Department of Physiology, University of Puerto Rico, Medical Science Campus, San Juan, PR 00936-5067, Puerto Rico
| | - Jorge D. Miranda
- Department of Physiology, University of Puerto Rico, Medical Science Campus, San Juan, PR 00936-5067, Puerto Rico
| |
Collapse
|
37
|
Herrmann JE, Shah RR, Chan AF, Zheng B. EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury. Exp Neurol 2010; 223:582-98. [PMID: 20170651 PMCID: PMC2864333 DOI: 10.1016/j.expneurol.2010.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/04/2010] [Accepted: 02/09/2010] [Indexed: 11/21/2022]
Abstract
One important aspect of recovery and repair after spinal cord injury (SCI) lies in the complex cellular interactions at the injury site that leads to the formation of a lesion scar. EphA4, a promiscuous member of the EphA family of repulsive axon guidance receptors, is expressed by multiple cell types in the injured spinal cord, including astrocytes and neurons. We hypothesized that EphA4 contributes to aspects of cell-cell interactions at the injury site after SCI, thus modulating the formation of the astroglial-fibrotic scar. To test this hypothesis, we studied tissue responses to a thoracic dorsal hemisection SCI in an EphA4 mutant mouse line. We found that EphA4 expression, as assessed by beta-galactosidase reporter gene activity, is associated primarily with astrocytes in the spinal cord, neurons in the cerebral cortex and, to a lesser extent, spinal neurons, before and after SCI. However, we did not observe any overt reduction of glial fibrillary acidic protein (GFAP) expression in the injured area of EphA4 mutants in comparison with controls following SCI. Furthermore, there was no evident disruption of the fibrotic scar, and the boundary between reactive astrocytes and meningeal fibroblasts appeared unaltered in the mutants, as were lesion size, neuronal survival and inflammation marker expression. Thus, genetic deletion of EphA4 does not significantly alter the astroglial response or the formation of the astroglial-fibrotic scar following a dorsal hemisection SCI in mice. In contrast to what has been proposed, these data do not support a major role for EphA4 in reactive astrogliosis following SCI.
Collapse
Affiliation(s)
- Julia E. Herrmann
- Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, California 92093, USA
| | - Ravi R. Shah
- Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, California 92093, USA
| | - Andrea F. Chan
- Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, California 92093, USA
| | - Binhai Zheng
- Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, California 92093, USA
| |
Collapse
|
38
|
Usher LC, Johnstone A, Ertürk A, Hu Y, Strikis D, Wanner IB, Moorman S, Lee JW, Min J, Ha HH, Duan Y, Hoffman S, Goldberg JL, Bradke F, Chang YT, Lemmon VP, Bixby JL. A chemical screen identifies novel compounds that overcome glial-mediated inhibition of neuronal regeneration. J Neurosci 2010; 30:4693-706. [PMID: 20357120 PMCID: PMC2855497 DOI: 10.1523/jneurosci.0302-10.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/16/2010] [Indexed: 11/21/2022] Open
Abstract
A major barrier to regeneration of CNS axons is the presence of growth-inhibitory proteins associated with myelin and the glial scar. To identify chemical compounds with the ability to overcome the inhibition of regeneration, we screened a novel triazine library, based on the ability of compounds to increase neurite outgrowth from cerebellar neurons on inhibitory myelin substrates. The screen produced four "hit compounds," which act with nanomolar potency on several different neuronal types and on several distinct substrates relevant to glial inhibition. Moreover, the compounds selectively overcome inhibition rather than promote growth in general. The compounds do not affect neuronal cAMP levels, PKC activity, or EGFR (epidermal growth factor receptor) activation. Interestingly, one of the compounds alters microtubule dynamics and increases microtubule density in both fibroblasts and neurons. This same compound promotes regeneration of dorsal column axons after acute lesions and potentiates regeneration of optic nerve axons after nerve crush in vivo. These compounds should provide insight into the mechanisms through which glial-derived inhibitors of regeneration act, and could lead to the development of novel therapies for CNS injury.
Collapse
Affiliation(s)
| | - Andrea Johnstone
- Miami Project to Cure Paralysis
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Ali Ertürk
- Laboratory of Axon Growth and Regeneration, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | | | | | - Ina B. Wanner
- Miami Project to Cure Paralysis
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Sanne Moorman
- Program in Neuroscience and Cognition, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jae-Wook Lee
- Department of Chemistry, National University of Singapore, Singapore 117543, and
| | - Jaeki Min
- Department of Chemistry, National University of Singapore, Singapore 117543, and
| | - Hyung-Ho Ha
- Department of Chemistry, National University of Singapore, Singapore 117543, and
| | | | - Stanley Hoffman
- Department of Rheumatology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeffrey L. Goldberg
- Ophthalmology, and
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Frank Bradke
- Laboratory of Axon Growth and Regeneration, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Young-Tae Chang
- Department of Chemistry, National University of Singapore, Singapore 117543, and
| | - Vance P. Lemmon
- Neurological Surgery, and
- Miami Project to Cure Paralysis
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - John L. Bixby
- Departments of Pharmacology
- Neurological Surgery, and
- Miami Project to Cure Paralysis
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| |
Collapse
|
39
|
Extrinsic and intrinsic factors controlling axonal regeneration after spinal cord injury. Expert Rev Mol Med 2009; 11:e37. [PMID: 19968910 DOI: 10.1017/s1462399409001288] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spinal cord injury is one of the most devastating conditions that affects the central nervous system. It can lead to permanent disability and there are around two million people affected worldwide. After injury, accumulation of myelin debris and formation of an inhibitory glial scar at the site of injury leads to a physical and chemical barrier that blocks axonal growth and regeneration. The mammalian central nervous system thus has a limited intrinsic ability to repair itself after injury. To improve axonal outgrowth and promote functional recovery, it is essential to identify the various intrinsic and extrinsic factors controlling regeneration and navigation of axons within the inhibitory environment of the central nervous system. Recent advances in spinal cord research have opened new avenues for the exploration of potential targets for repairing the cord and improving functional recovery after trauma. Here, we discuss some of the important key molecules that could be harnessed for repairing spinal cord injury.
Collapse
|
40
|
Santiago JM, Rosas O, Torrado AI, González MM, Kalyan-Masih PO, Miranda JD. Molecular, anatomical, physiological, and behavioral studies of rats treated with buprenorphine after spinal cord injury. J Neurotrauma 2009; 26:1783-93. [PMID: 19653810 PMCID: PMC2864459 DOI: 10.1089/neu.2007.0502] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute pain is a common symptom experienced after spinal cord injury (SCI). The presence of this pain calls for treatment with analgesics, such as buprenorphine. However, there are concerns that the drug may exert other effects besides alleviation of pain. Among those reported are in vitro changes in gene expression, apoptosis, and necrosis. In this investigation, the effect of buprenorphine was assessed at the molecular, behavioral, electrophysiological, and histological levels after SCI. Rats were injured at the T10 thoracic level using the NYU impactor device. Half of the animals received buprenorphine (0.05 mg/kg) for 3 consecutive days immediately after SCI, and the other half were untreated. Microarray analysis (n = 5) was performed and analyzed using the Array Assist software. The genes under study were grouped in four categories according to function: regeneration, apoptosis, second messengers, and nociceptive related genes. Microarray analysis demonstrated no significant difference in gene expression between rats treated with buprenorphine and the control group at 2 and 4 days post-injury (DPI). Experiments performed to determine the effect of buprenorphine at the electrophysiological (tcMMEP), behavioral (BBB, grid walking and beam crossing), and histological (luxol staining) levels revealed no significant difference at 7 and 14 DPI in the return of nerve conduction, functional recovery, or white matter sparing between control and experimental groups (p > 0.05, n = 6). These results show that buprenorphine (0.05 mg/kg) can be used as part of the postoperative care to reduce pain after SCI without affecting behavioral, physiological, or anatomical parameters.
Collapse
MESH Headings
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Buprenorphine/adverse effects
- Buprenorphine/pharmacology
- Disease Models, Animal
- Evoked Potentials, Motor/drug effects
- Evoked Potentials, Motor/physiology
- Female
- Gait Disorders, Neurologic/chemically induced
- Gait Disorders, Neurologic/physiopathology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Locomotion/drug effects
- Locomotion/physiology
- Nerve Regeneration/drug effects
- Nerve Regeneration/genetics
- Nerve Tissue Proteins/genetics
- Neural Conduction/drug effects
- Neural Conduction/physiology
- Nociceptors/drug effects
- Nociceptors/metabolism
- Oligonucleotide Array Sequence Analysis
- Pain, Intractable/drug therapy
- Pain, Intractable/etiology
- Pain, Intractable/metabolism
- Rats
- Rats, Sprague-Dawley
- Recovery of Function/drug effects
- Recovery of Function/physiology
- Second Messenger Systems/drug effects
- Second Messenger Systems/genetics
- Spinal Cord Injuries/complications
- Spinal Cord Injuries/metabolism
- Spinal Cord Injuries/physiopathology
- Treatment Outcome
Collapse
Affiliation(s)
- José M Santiago
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | | | | | | | | | | |
Collapse
|
41
|
Qiao L, Choi S, Case A, Gainer TG, Seyb K, Glicksman MA, Lo DC, Stein RL, Cuny GD. Structure-activity relationship study of EphB3 receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett 2009; 19:6122-6. [PMID: 19783434 DOI: 10.1016/j.bmcl.2009.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 12/21/2022]
Abstract
A structure-activity relationship study for a 2-chloroanilide derivative of pyrazolo[1,5-a]pyridine revealed that increased EphB3 kinase inhibitory activity could be accomplished by retaining the 2-chloroanilide and introducing a phenyl or small electron donating substituents to the 5-position of the pyrazolo[1,5-a]pyridine. In addition, replacement of the pyrazolo[1,5-a]pyridine with imidazo[1,2-a]pyridine was well tolerated and resulted in enhanced mouse liver microsome stability. The structure-activity relationship for EphB3 inhibition of both heterocyclic series was similar. Kinase inhibitory activity was also demonstrated for representative analogs in cell culture. An analog (32, LDN-211904) was also profiled for inhibitory activity against a panel of 288 kinases and found to be quite selective for tyrosine kinases. Overall, these studies provide useful molecular probes for examining the in vitro, cellular and potentially in vivo kinase-dependent function of EphB3 receptor.
Collapse
Affiliation(s)
- Lixin Qiao
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Horch HW, McCarthy SS, Johansen SL, Harris JM. Differential gene expression during compensatory sprouting of dendrites in the auditory system of the cricket Gryllus bimaculatus. INSECT MOLECULAR BIOLOGY 2009; 18:483-96. [PMID: 19453768 PMCID: PMC3551613 DOI: 10.1111/j.1365-2583.2009.00891.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Neurones that lose their presynaptic partners because of injury usually retract or die. However, when the auditory interneurones of the cricket Gryllus bimaculatus are denervated, dendrites respond by growing across the midline and forming novel synapses with the opposite auditory afferents. Suppression subtractive hybridization was used to detect transcriptional changes 3 days after denervation. This is a stage at which we demonstrate robust compensatory dendritic sprouting. Whereas 49 unique candidates were down-regulated, no sufficiently up-regulated candidates were identified at this time point. Several candidates identified in this study are known to influence the translation and degradation of proteins in other systems. The potential role of these factors in the compensatory sprouting of cricket auditory interneurones in response to denervation is discussed.
Collapse
Affiliation(s)
- H W Horch
- Bowdoin College, Department of Biology and Neuroscience, Brunswick, ME 04011, USA.
| | | | | | | |
Collapse
|
43
|
Mueller BK, Mueller R, Schoemaker H. Stimulating neuroregeneration as a therapeutic drug approach for traumatic brain injury. Br J Pharmacol 2009; 157:675-85. [PMID: 19422372 DOI: 10.1111/j.1476-5381.2009.00220.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Traumatic brain injury, a silent epidemic of modern societies, is a largely neglected area in drug development and no drug is currently available for the treatment of patients suffering from brain trauma. Despite this grim situation, much progress has been made over the last two decades in closely related medical indications, such as spinal cord injury, giving rise to a more optimistic approach to drug development in brain trauma. Fundamental insights have been gained with animal models of central nervous system (CNS) trauma and spinal cord injury. Neuroregenerative drug candidates have been identified and two of these have progressed to clinical development for spinal cord injury patients. If successful, these drug candidates may be used to treat brain trauma patients. Significant progress has also been made in understanding the fundamental molecular mechanism underlying irreversible axonal growth arrest in the injured CNS of higher mammals. From these studies, we have learned that the axonal retraction bulb, previously regarded as a marker for failure of regenerative growth, is not static but dynamic and, therefore, amenable to pharmacotherapeutic approaches. With the development of modified magnetic resonance imaging methods, fibre tracts can be visualised in the living human brain and such imaging methods will soon be used to evaluate the neuroregenerative potential of drug candidates. These significant advances are expected to fundamentally change the often hopeless situation of brain trauma patients and will be the first step towards overcoming the silent epidemic of brain injury.
Collapse
Affiliation(s)
- Bernhard K Mueller
- Neuroscience Research, Abbott GmbH and Company KG, Ludwigshafen, Germany.
| | | | | |
Collapse
|
44
|
Abstract
Cell contact-dependent signaling is a major regulatory mechanism in the organization of developing tissues and in the reorganization (post-injury responses) of specialized tissues in multicellular organisms. In this review we contribute to the further understanding of post-injury recovery processes in adult nervous tissue. We emphasize evidence that supports the involvement of cell contact-inhibition signaling in the cell proliferation, growth and differentiation that occurs during healing and neural reorganization after brain damage.
Collapse
|
45
|
Gianola S, de Castro F, Rossi F. Anosmin-1 stimulates outgrowth and branching of developing Purkinje axons. Neuroscience 2008; 158:570-84. [PMID: 19013504 DOI: 10.1016/j.neuroscience.2008.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 10/12/2008] [Accepted: 10/15/2008] [Indexed: 11/19/2022]
Abstract
During development, Purkinje axons elongate along precise trajectories and acquire stereotypic branching patterns to innervate targets in the deep nuclei and cerebellar cortex. These processes are accomplished through cell-intrinsic mechanisms, whose operation is regulated by environmental signaling cues. Here, we show that Anosmin-1, the protein defective in the X-linked form of Kallmann syndrome, is one among such cues. Anosmin-1, that stimulates axon elongation and branching in the olfactory system, is expressed by Purkinje cells and deep nuclear neurons of the rat cerebellum during the ontogenetic period when Purkinje axons acquire their mature pattern. These neurons also express the putative Anosmin-1 receptor, fibroblast growth factor receptor 1. Application of Anosmin-1 to dissociated cultures of embryonic (embryonic day 17, E17) or postnatal (postnatal day 0, P0) rat cerebellar cells enhances neuritic elongation and exerts a strong promoting action on the budding of collateral branches and on the extension of terminal arbors. Opposite effects are observed when neutralizing anti-Anosmin-1 antibodies are applied to the same cultures. Comparable results are obtained by administering the protein or the blocking antibodies to organotypic cultures of postnatal (P0) rat cerebellum. In P10 cerebellar slices, Anosmin-1 does not enhance the spontaneous regenerative capabilities of severed Purkinje axons, but promotes the terminal outgrowth of injured neurites into embryonic neocortical explants apposed to the axotomy site. Although Anosmin-1 is unable to change the overall intrinsic growth competence of Purkinje cells, it exerts a powerful stimulatory action on the budding and extension of collateral branches and terminal plexus, contributing to the patterning of Purkinje axons.
Collapse
Affiliation(s)
- S Gianola
- Department of Neuroscience and "Rita Levi Montalcini Centre for Brain Repair," Section of Physiology, National Institute of Neuroscience, University of Turin, Corso Raffaello, 30, I-10125 Turin, Italy
| | | | | |
Collapse
|
46
|
Upregulation of Ryk expression in rat dorsal root ganglia after peripheral nerve injury. Brain Res Bull 2008; 77:178-84. [DOI: 10.1016/j.brainresbull.2008.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 04/04/2008] [Accepted: 05/09/2008] [Indexed: 11/18/2022]
|
47
|
Abstract
The normal spinal cord coordinates movement and sensation in the body. It is a complex organ containing nerve cells, supporting cells, and nerve fibers to and from the brain. The spinal cord is arranged in segments, with higher segments controlling movement and sensation in the upper parts of the body and lower segments controlling the lower parts of the body. Recent notable discoveries in the fields of neuroscience and cell biology have ensured that many more people survive injuries to the brain and spinal cord. The consequences of injury reflect this organization. Although these developments have been mirrored by significant strides in our understanding of the evolution and pathology of spinal injuries, complete repair of structure and hence function remain elusive. Most spinal cord injuries still cause lifelong disability, and continued research is critically needed. Here we review the molecular and cellular processes that occur during the evolution of an injury to the central nervous system. Throughout, we highlight several promising therapies aimed to restore the disrupted connections in the brain and spinal cord. These, used in combination with supportive care and rehabilitation strategies, may help patients to achieve significant long-term recovery.
Collapse
Affiliation(s)
- Poonam Verma
- Cambridge University Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, United Kingdom.
| | | | | |
Collapse
|
48
|
Liu Y, Wang X, Lu CC, Sherman-Kermen R, Steward O, Xu XM, Zou Y. Repulsive Wnt signaling inhibits axon regeneration after CNS injury. J Neurosci 2008; 28:8376-82. [PMID: 18701700 PMCID: PMC3385642 DOI: 10.1523/jneurosci.1939-08.2008] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 06/19/2008] [Accepted: 06/21/2008] [Indexed: 11/21/2022] Open
Abstract
Failure of axon regeneration in the mammalian CNS is attributable in part to the presence of various inhibitory molecules, including myelin-associated proteins and proteoglycans enriched in glial scars. Here, we evaluate whether axon guidance molecules also regulate regenerative growth after injury in adulthood. Wnts are a large family of axon guidance molecules that can attract ascending axons and repel descending axons along the length of the developing spinal cord. Their expression (all 19 Wnts) is not detectable in normal adult spinal cord by in situ hybridization. However, three of them are clearly reinduced after spinal cord injury. Wnt1 and Wnt5a, encoding potent repellents of the descending corticospinal tract (CST) axons, were robustly and acutely induced broadly in the spinal cord gray matter after unilateral hemisection. Ryk, the conserved repulsive Wnt receptor, was also induced in the lesion area, and Ryk immunoreactivity was found on the lesioned CST axons. Wnt4, which attracts ascending sensory axons in development, was acutely induced in areas closer to the lesion than Wnt1 and Wnt5a. Injection of function-blocking Ryk antibodies into the dorsal bilateral hemisectioned spinal cord either prevented the retraction of CST axons or promoted their regrowth but clearly enhanced the sprouting of CST collateral branches around and beyond the injury site. Therefore, repulsive Wnt signaling may be a cause of cortical spinal tract axon retraction and inhibits axon sprouting after injury.
Collapse
Affiliation(s)
- Yaobo Liu
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, California 92093
| | - Xiaofei Wang
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky 40292, and
| | - Chin-Chun Lu
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, California 92093
| | - Rachel Sherman-Kermen
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, California 92093
| | - Oswald Steward
- Reeve-Irvine Center for Neural Regeneration Research, University of California, Irvine, Irvine, California 92697
| | - Xiao-Ming Xu
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky 40292, and
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
49
|
Slack S, Battaglia A, Cibert-Goton V, Gavazzi I. EphrinB2 induces tyrosine phosphorylation of NR2B via Src-family kinases during inflammatory hyperalgesia. Neuroscience 2008; 156:175-83. [PMID: 18694808 PMCID: PMC2568875 DOI: 10.1016/j.neuroscience.2008.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 10/25/2022]
Abstract
In recent years a role for EphB receptor tyrosine kinases and their ephrinB ligands in activity-dependent synaptic plasticity in the CNS has been identified. The aim of the present study was to test the hypothesis that EphB receptor activation in the adult rat spinal cord is involved in synaptic plasticity and processing of nociceptive inputs, through modulation of the function of the glutamate ionotropic receptor NMDA (N-methyl-D-aspartate). In particular, EphB receptor activation would induce phosphorylation of the NR2B subunit of the NMDA receptor by a Src family non-receptor tyrosine kinase. Intrathecal administration of ephrinB2-Fc in adult rats, which can bind to and activate EphB receptors and induce behavioral thermal hyperalgesia, led to NR2B tyrosine phosphorylation, which could be blocked by the Src family kinase inhibitor PP2. Furthermore animals pre-treated with PP2 did not develop behavioral thermal hyperalgesia following EphrinB2-Fc administration, suggesting that this pathway is functionally significant. Indeed, EphB1-Fc administration, which competes with the endogenous receptor for ephrinB2 binding and prevents behavioral allodynia and hyperalgesia in the carrageenan model of inflammation, also inhibited NR2B phosphorylation in this model. Taken together these findings support the hypothesis that EphB-ephrinB interactions play an important role in NMDA-dependent, activity-dependent synaptic plasticity in the adult spinal cord, inducing the phosphorylation of the NR2B subunit of the receptor via Src family kinases, thus contributing to chronic pain states.
Collapse
Affiliation(s)
- S Slack
- Wolfson Centre for Age Related Diseases, Hodgkin Building, Wolfson Wing, King's College London, London SE1 1UL, UK
| | | | | | | |
Collapse
|
50
|
Abstract
The subject of central nervous system damage includes a wide variety of problems, from the slow selective 'picking off' of characteristic sub-populations of neurons typical of neurodegenerative diseases, to the wholesale destruction of areas of brain and spinal cord seen in traumatic injury and stroke. Experimental repair strategies are diverse and the type of pathology dictates which approach will be appropriate. Damage may be to grey matter (loss of neurons), white matter (cutting of axons, leaving neurons otherwise intact, at least initially) or both. This review will consider four possible forms of treatment for repair of the human central nervous system.
Collapse
Affiliation(s)
- J Fitzgerald
- Cambridge University Centre for Brain Repair, Cambridge CB2 2PY, UK.
| | | |
Collapse
|