1
|
Porcari CY, Cambiasso MJ, Mecawi AS, Caeiro XE, Antunes-Rodrigues J, Vivas LM, Godino A. Molecular neurobiological markers in the onset of sodium appetite. Sci Rep 2022; 12:14224. [PMID: 35987984 PMCID: PMC9392805 DOI: 10.1038/s41598-022-18220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Sodium appetite is a motivational state involving homeostatic behavior, seeking the ingest of salty substances after sodium loss. There is a temporal dissociation between sodium depletion (SD) and the appearance of sodium appetite. However, the responsible mechanisms for this delay remain poorly elucidated. In the present study, we measured the temporal changes at two and 24 h after SD in the gene expression of key elements within excitatory, inhibitory, and sensory areas implicated in the signaling pathways involved in the onset of sodium appetite. In SD rats, we observed that the expression of critical components within the brain control circuit of sodium appetite, including Angiotensin-type-1 receptor (Agtr1a), Oxytocin-(OXT-NP)-neurophysin-I, and serotonergic-(5HT)-type-2c receptor (Htr2c) were modulated by SD, regardless of time. However, we observed reduced phosphorylation of mitogen-activated protein kinases (MAPK) at the paraventricular nucleus (PVN) and increased oxytocin receptor (Oxtr) mRNA expression at the anteroventral of the third ventricle area (AV3V), at two hours after SD, when sodium appetite is inapparent. At twenty-four hours after SD, when sodium appetite is released, we observed a reduction in the mRNA expression of the transient receptor potential channel 1gene (Trpv1) and Oxtr in the AV3V and the dorsal raphe nucleus, respectively. The results indicate that SD exerts a coordinated timing effect, promoting the appearance of sodium appetite through changes in MAPK activity and lower Trpv1 channel and Oxtr expression that trigger sodium consumption to reestablish the hydroelectrolytic homeostasis.
Collapse
Affiliation(s)
- Cintia Y Porcari
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Barrio Parque Vélez Sarsfield, Casilla de Correo, 389-5000, 5016, Córdoba, Provincia de Córdoba, Argentina
| | - María J Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Barrio Parque Vélez Sarsfield, Casilla de Correo, 389-5000, 5016, Córdoba, Provincia de Córdoba, Argentina
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - André S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Ximena E Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Barrio Parque Vélez Sarsfield, Casilla de Correo, 389-5000, 5016, Córdoba, Provincia de Córdoba, Argentina
| | - José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Laura M Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Barrio Parque Vélez Sarsfield, Casilla de Correo, 389-5000, 5016, Córdoba, Provincia de Córdoba, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Barrio Parque Vélez Sarsfield, Casilla de Correo, 389-5000, 5016, Córdoba, Provincia de Córdoba, Argentina.
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
2
|
Porcari CY, Debarba LK, Amigone JL, Caeiro XE, Reis LC, Cunha TM, Mecawi AS, Elias LL, Antunes-Rodrigues J, Vivas L, Godino A. Brain osmo-sodium sensitive channels and the onset of sodium appetite. Horm Behav 2020; 118:104658. [PMID: 31874139 DOI: 10.1016/j.yhbeh.2019.104658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/14/2019] [Accepted: 12/17/2019] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to determine whether the TRPV1 channel is involved in the onset of sodium appetite. For this purpose, we used TRPV1-knockout mice to investigate sodium depletion-induced drinking at different times (2/24 h) after furosemide administration combined with a low sodium diet (FURO-LSD). In sodium depleted wild type and TRPV1 KO (SD-WT/SD-TPRV1-KO) mice, we also evaluated the participation of other sodium sensors, such as TPRV4, NaX and angiotensin AT1-receptors (by RT-PCR), as well as investigating the pattern of neural activation shown by Fos immunoreactivity, in different nuclei involved in hydromineral regulation. TPRV1 SD-KO mice revealed an increased sodium preference, ingesting a higher hypertonic cocktail in comparison with SD-WT mice. Our results also showed in SD-WT animals that SFO-Trpv4 expression increased 2 h after FURO-LSD, compared to other groups, thus supporting a role of SFO-Trpv4 channels during the hyponatremic state. However, the SD-TPRV1-KO animals did not show this early increase, and maybe as a consequence drank more hypertonic cocktail. Regarding the SFO-NaX channel expression, in both genotypes our findings revealed a reduction 24 h after FURO-LSD. In addition, there was an increase in the OVLT-NaX expression of SD-WT 24 h after FURO-LSD, suggesting the participation of OVLT-NaX channels in the appearance of sodium appetite, possibly as an anticipatory response in order to limit sodium intake and to induce thirst. Our work demonstrates changes in the expression of different osmo‑sodium-sensitive channels at specific nuclei, related to the body sodium status in order to stimulate an adequate drinking.
Collapse
Affiliation(s)
- C Y Porcari
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - L K Debarba
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - J L Amigone
- Sección de Bioquímica Clínica, Hospital Privado, Córdoba, Argentina
| | - X E Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - L C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - T M Cunha
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - A S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - L L Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - L Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - A Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
3
|
Harris C, Weiss GL, Di S, Tasker JG. Cell signaling dependence of rapid glucocorticoid-induced endocannabinoid synthesis in hypothalamic neuroendocrine cells. Neurobiol Stress 2019; 10:100158. [PMID: 31193551 PMCID: PMC6535624 DOI: 10.1016/j.ynstr.2019.100158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/01/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoids induce a rapid synthesis of endocannabinoid in hypothalamic neuroendocrine cells by activation of a putative membrane receptor. Somato-dendritically released endocannabinoid acts as a retrograde messenger to suppress excitatory synaptic inputs to corticotropin-releasing hormone-, oxytocin-, and vasopressin-secreting cells. The non-genomic signaling mechanism responsible for rapid endocannabinoid synthesis by glucocorticoids has yet to be fully characterized. Here we manipulated cell signaling molecules pharmacologically using an intracellular approach to elucidate the signaling pathway activated by the membrane glucocorticoid receptor in hypothalamic neuroendocrine cells. We found that rapid glucocorticoid-induced endocannabinoid synthesis in magnocellular neuroendocrine cells requires the sequential activation of multiple kinases, phospholipase C, and intracellular calcium mobilization. While there remain gaps in our understanding, our findings reveal many of the critical players in the rapid glucocorticoid signaling that culminates in the retrograde endocannabinoid modulation of excitatory synaptic transmission.
Collapse
Affiliation(s)
- Christina Harris
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Grant L Weiss
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Shi Di
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
4
|
Bansal V, Fisher TE. Osmotic activation of a Ca 2+-dependent phospholipase C pathway that regulates ∆N TRPV1-mediated currents in rat supraoptic neurons. Physiol Rep 2018; 5:5/8/e13259. [PMID: 28432255 PMCID: PMC5408288 DOI: 10.14814/phy2.13259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 01/12/2023] Open
Abstract
The magnocellular neurosecretory cells (MNCs) of the hypothalamus regulate body fluid balance by releasing the hormones vasopressin (VP) and oxytocin (OT) in an osmolality‐dependent manner. Elevations of external osmolality increase MNC firing and hormone release. MNC osmosensitivity is largely due to activation of a mechanosensitive non‐selective cation current that responds to osmotically‐evoked changes in MNC volume and is mediated by an N‐terminal variant of the TRPV1 channel (∆N TRPV1). We report a novel mechanism by which increases in osmolality may modulate ∆N TRPV1‐mediated currents and thus influence MNC electrical behaviour. We showed previously that acute elevations of external osmolality activate the enzyme phospholipase C (PLC) in isolated MNCs. We now show that the osmotic activation of PLC has a time course and dose‐dependence that is consistent with a role in MNC osmosensitivity and that it contributes to the osmotically‐evoked increase in non‐selective cation current in MNCs through a protein kinase C‐dependent pathway. We furthermore show that the mechanism of osmotic activation of PLC requires an increase in internal Ca2+ that depends on influx through L‐type Ca2+ channels. Our data therefore suggest that MNCs possess an osmotically‐activated Ca2+‐dependent PLC that contributes to the osmotic activation of ∆N TRPV1 and may therefore be important in MNC osmosensitivity and in central osmoregulation.
Collapse
Affiliation(s)
- Vimal Bansal
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas E Fisher
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Sladek CD, Johnson AK. Integration of thermal and osmotic regulation of water homeostasis: the role of TRPV channels. Am J Physiol Regul Integr Comp Physiol 2013; 305:R669-78. [PMID: 23883678 PMCID: PMC3798796 DOI: 10.1152/ajpregu.00270.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/12/2013] [Indexed: 12/21/2022]
Abstract
Maintenance of body water homeostasis is critical for preventing hyperthermia, because evaporative cooling is the most efficient means of dissipating excess body heat. Water homeostasis is achieved by regulation of water intake and water loss by the kidneys. The former is achieved by sensations of thirst that motivate water acquisition, whereas the latter is regulated by the antidiuretic action of vasopressin. Vasopressin secretion and thirst are stimulated by increases in the osmolality of the extracellular fluid as well as decreases in blood pressure and/or blood volume, signals that are precipitated by water depletion associated with the excess evaporative water loss required to prevent hyperthermia. In addition, they are stimulated by increases in body temperature. The sites and molecular mechanisms involved in integrating thermal and osmotic regulation of thirst and vasopressin secretion are reviewed here with a focus on the role of the thermal and mechanosensitive transient receptor potential-vanilloid (TRPV) family of ion channels.
Collapse
Affiliation(s)
- Celia D Sladek
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; and
| | | |
Collapse
|
6
|
Scroggs R, Wang L, Teruyama R, Armstrong WE. Variation in sodium current amplitude between vasopressin and oxytocin hypothalamic supraoptic neurons. J Neurophysiol 2012; 109:1017-24. [PMID: 23175803 DOI: 10.1152/jn.00812.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biophysical characteristics of tetrodotoxin-sensitive sodium (Na(+)) currents were studied in vasopressin (VP) and oxytocin (OT) supraoptic neurons acutely isolated from rat hypothalamus. Na(+) current density (pA/pF) was significantly greater in VP neurons than in OT neurons. No significant difference between VP and OT neurons was detected regarding the voltage dependence of activation and steady-state inactivation, or rate of recovery from inactivation of Na(+) currents. In both VP and OT neurons, the macroscopic inactivation of the Na(+) currents was best fitted with a double-exponential expression suggesting two rates of inactivation. Also in both types, the time course of recovery from inactivation proceeded with fast and slow time constants averaging around 8 and 350 ms, respectively, suggesting the presence of multiple pathways of recovery from inactivation. The slower time constant of recovery of inactivation may be involved in the decrease in action potential (AP) amplitude that occurs after the first spike during burst firing in both neuronal types. The larger amplitude of Na(+) currents in VP vs. OT neurons may explain the previous observations that VP neurons exhibit a lower AP threshold and greater AP amplitude than OT neurons, and may serve to differently tune the firing properties and responses to neuromodulators of the respective neuronal types.
Collapse
Affiliation(s)
- Reese Scroggs
- Dept. of Anatomy and Neurobiology, Univ. of Tennessee Health Science Center, 855 Monroe Ave., Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
7
|
Nedungadi TP, Dutta M, Bathina CS, Caterina MJ, Cunningham JT. Expression and distribution of TRPV2 in rat brain. Exp Neurol 2012; 237:223-37. [PMID: 22750329 DOI: 10.1016/j.expneurol.2012.06.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/23/2012] [Accepted: 06/20/2012] [Indexed: 02/07/2023]
Abstract
Transient receptor potential (TRP) proteins are non-selective cation channels that mediate sensory transduction. The neuroanatomical localization and the physiological roles of isoform TRPV2 in the rodent brain are largely unknown. We report here the neuroanatomical distribution of TRPV2 in the adult male rat brain focusing on the hypothalamus and hindbrain regions involved in osmoregulation, autonomic function and energy metabolism. For this we utilized immunohistochemistry combined with brightfield microscopy. In the forebrain, the densest immunostaining was seen in both the supraoptic nucleus (SON) and the magnocellular division of the paraventricular nucleus (PVN) of the hypothalamus. TRPV2 immunoreactivity was also seen in the organum vasculosum of the lamina terminalis, the median preoptic nucleus and the subfornical organ, in addition to the arcuate nucleus of the hypothalamus (ARH), the medial forebrain bundle, the cingulate cortex and the globus pallidus to name a few. In the hindbrain, intense staining was seen in the nucleus of the solitary tract, hypoglossal nucleus, nucleus ambiguous, and the rostral division of the ventrolateral medulla (RVLM) and some mild staining in the area prostrema. To ascertain the specificity of the TRPV2 antibody used in this paper, we compared the TRPV2 immunoreactivity of wildtype (WT) and knockout (KO) mouse brain tissue. Double immunostaining with arginine vasopressin (AVP) using confocal microscopy showed a high degree of colocalization of TRPV2 in the magnocellular SON and PVN. Using laser capture microdissection (LCM) we also show that AVP neurons in the SON contain TRPV2 mRNA. TRPV2 was also co-localized with dopamine beta hydroxylase (DBH) in the NTS and the RVLM of the hindbrain. Based on our results, TRPV2 may play an important role in several CNS networks that regulate body fluid homeostasis, autonomic function, and metabolism.
Collapse
Affiliation(s)
- Thekkethil Prashant Nedungadi
- Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
The magnocellular neurones in the supraoptic nucleus project to the neural lobe and release vasopressin and oxytocin into the peripheral circulation, where they act on the kidney to promote fluid retention or stimulate smooth muscles in the vasculature, uterus and mammary glands to support blood pressure, promote parturition or induce milk let-down, respectively. Hormone release is regulated by complex afferent pathways carrying information about plasma osmolality, blood pressure and volume, cervical stretch, and suckling. These afferent pathways utilise a broad array of neurotransmitters and peptides that activate both ligand-gated ion channels and G-protein coupled receptors (GPCRs). The ligand-gated ion channels induce rapid changes in membrane potential resulting in the generation of action potentials, initiation of exocytosis and the release of hormone into the periphery. By contrast, the GPCRs activate a host of diverse signalling cascades that modulate action potential firing and regulate other cellular functions required to support hormone release (e.g. hormone synthesis, processing, packaging and trafficking). The diversity of these actions is critical for integration of the distinct regulatory signals into a response appropriate for maintaining homeostasis. This review describes several diverse roles of GPCRs in magnocellular neurones, focusing primarily on adrenergic, purinergic and peptidergic (neurokinin and angiotensin) receptors.
Collapse
Affiliation(s)
- C D Sladek
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA.
| | | |
Collapse
|
9
|
Macchione A, Caeiro X, Godino A, Amigone J, Antunes-Rodrigues J, Vivas L. Availability of a rich source of sodium during the perinatal period programs the fluid balance restoration pattern in adult offspring. Physiol Behav 2012; 105:1035-44. [DOI: 10.1016/j.physbeh.2011.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022]
|
10
|
Cholecystokinin facilitates glutamate release by increasing the number of readily releasable vesicles and releasing probability. J Neurosci 2010; 30:5136-48. [PMID: 20392936 DOI: 10.1523/jneurosci.5711-09.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholecystokinin (CCK), a neuropeptide originally discovered in the gastrointestinal tract, is abundantly distributed in the mammalian brains including the hippocampus. Whereas CCK has been shown to increase glutamate concentration in the perfusate of hippocampal slices and in purified rat hippocampal synaptosomes, the cellular and molecular mechanisms whereby CCK modulates glutamatergic function remain unexplored. Here, we examined the effects of CCK on glutamatergic transmission in the hippocampus using whole-cell recordings from hippocampal slices. Application of CCK increased AMPA receptor-mediated EPSCs at perforant path-dentate gyrus granule cell, CA3-CA3 and Schaffer collateral-CA1 synapses without effects at mossy fiber-CA3 synapses. CCK-induced increases in AMPA EPSCs were mediated by CCK-2 receptors and were not modulated developmentally and transcriptionally. CCK reduced the coefficient of variation and paired-pulse ratio of AMPA EPSCs suggesting that CCK facilitates presynaptic glutamate release. CCK increased the release probability and the number of readily releasable vesicles with no effects on the rate of recovery from vesicle depletion. CCK-mediated increases in glutamate release required the functions of phospholipase C, intracellular Ca(2+) release and protein kinase Cgamma. CCK released endogenously from hippocampal interneurons facilitated glutamatergic transmission. Our results provide a cellular and molecular mechanism to explain the roles of CCK in the brain.
Collapse
|
11
|
Song Z, Gomes DA, Stevens W. Role of purinergic P2Y1 receptors in regulation of vasopressin and oxytocin secretion. Am J Physiol Regul Integr Comp Physiol 2009; 297:R478-84. [PMID: 19515986 DOI: 10.1152/ajpregu.00163.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pharmacological studies demonstrated that ATP elevates intracellular calcium ([Ca(2+)](i)) in supraoptic nucleus (SON) neurons primarily by activation of P2X2 and P2Y1 purinergic receptors [P2Y1R]. The current studies provide evidence for the presence of P2Y1R protein in SON neurons, evidence that activation of these P2Y1Rs induces an increase in [Ca(2+)](i) from both intracellular stores and Ca(2+) influx, and functional evidence that activation of P2Y1Rs induces vasopressin (VP) and oxytocin (OT) hormone release. Pretreatment of Fura-2 AM-loaded explants of the hypothalamo-neurohypophyseal system (HNS) with thapsigargin (TG) significantly (approximately 80%) reduced the increase in [Ca(2+)](i) induced by the P2Y1R-specific agonist, 2-methylthio-ADP (2-MeSADP). In contrast, the increase in [Ca(2+)](i) was slightly (approximately 20%) decreased in calcium-free medium. The calcium response to 2-MeSADP was completely blocked by the P2Y1R-specific antagonist, MRS2179 or by a combination of TG pretreatment and calcium-free medium. It was absent in P2Y1R knockout mice (P2Y1R(-/-)). 2-MeSADP significantly increased VP and OT release from perifused rat and wild-type mouse HNS explants compared with control. MRS2179 prevented this response in wild-type mouse, but it did not prevent ATP-induced hormone release from rat explants. 2-MeSADP did not induce hormone release from P2Y1R(-/-) explants. These findings support a potential role for P2Y1Rs in regulation of VP and OT release. The finding that P2Y1R activation induces a small Ca(2+) influx suggests that P2Y1Rs may regulate VP release by modifying ion channels such as stretch-inactivated cation channels.
Collapse
Affiliation(s)
- Zhilin Song
- Dept. of Physiology and Biophysics, School of Medicine, Univ. of Colorado Denver, Denver, CO, USA.
| | | | | |
Collapse
|
12
|
Meis S, Munsch T, Sosulina L, Pape HC. Postsynaptic mechanisms underlying responsiveness of amygdaloid neurons to cholecystokinin are mediated by a transient receptor potential-like current. Mol Cell Neurosci 2007; 35:356-67. [PMID: 17482476 DOI: 10.1016/j.mcn.2007.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 03/16/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022] Open
Abstract
Projection neurons of mouse basolateral amygdala responded to CCK with an inward current at a holding potential of -70 mV. This response was mediated by CCK2 receptors as indicated by agonist and antagonist effectiveness, and conveyed via G-proteins of the G(q/11) family as it was abolished in gene knockout mice. Maximal current amplitude was insensitive to extracellular potassium, cesium, and calcium ions, respectively, whereas amplitude and reversal potential critically depended upon extracellular sodium concentration. The current reversed near -20 mV consistent with activation of a mixed cationic channel reminiscent of transient receptor potential (TRP) channels. Extracellular application of the non-selective TRP channel blockers 2-APB, flufenamic acid, Gd3+, and ruthenium red, respectively, inhibited CCK induced inward currents. Single cell PCR confirmed the expression of TRPC1,4,5 and coexpression of TRPC1 with TRPC4 or TRPC5 in some cells. CCK responses were associated with depolarization leading to an increase in cell excitability.
Collapse
Affiliation(s)
- Susanne Meis
- Institut für Physiologie, Medizinische Fakultät, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | |
Collapse
|
13
|
Deng PY, Lei S. Bidirectional modulation of GABAergic transmission by cholecystokinin in hippocampal dentate gyrus granule cells of juvenile rats. J Physiol 2006; 572:425-42. [PMID: 16455686 PMCID: PMC1779673 DOI: 10.1113/jphysiol.2005.104463] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cholecystokinin (CCK) interacts with two types of G protein-coupled receptors in the brain: CCK-A and CCK-B receptors. Both CCK and CCK-B receptors are widely distributed in the hippocampal formation, but the functions of CCK there have been poorly understood. In the present study, we initially examined the effects of CCK on GABA(A) receptor-mediated synaptic transmission in the hippocampal formation and then explored the underlying cellular mechanisms by focusing on the dentate gyrus region, where the highest levels of CCK-binding sites have been detected. Our results indicate that activation of CCK-B receptors initially and transiently increased spontaneous IPSC (sIPSC) frequency, followed by a persistent reduction. The effects of CCK were more evident in juvenile rats, suggesting that they are developmentally regulated. Cholecystokinin failed to modulate the miniature IPSCs recorded in the presence of TTX and the amplitude of the evoked IPSCs, but produced a transient increase followed by a reduction in action potential firing frequency recorded from GABAergic interneurons, suggesting that CCK acts by modulating the excitability of the interneurons to regulate GABA release. Cholecystokinin reduced the amplitude of the after-hyperpolarization of the action potentials, and application of paxilline or charybdotoxin considerably reduced CCK-mediated modulation of sIPSC frequency, suggesting that the effects of CCK are related to the inhibition of Ca(2+)-activated K(+) currents (I(K(Ca))). The effects of CCK were independent of the functions of phospholipase C, intracellular Ca(2+) release, protein kinase C or phospholipase A(2), suggesting a direct coupling between the G proteins of CCK-B receptors and I(K(Ca)). Our results provide a novel mechanism underlying CCK-mediated modulation of GABA release.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, 58203, USA
| | | |
Collapse
|
14
|
Rose RA, Anand-Srivastava MB, Giles WR, Bains JS. C-type natriuretic peptide inhibits L-type Ca2+ current in rat magnocellular neurosecretory cells by activating the NPR-C receptor. J Neurophysiol 2005; 94:612-21. [PMID: 15772242 DOI: 10.1152/jn.00057.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnocellular neurosecretory cells (MNCs), of the paraventricular and supraoptic nuclei of the hypothalamus, secrete the hormones vasopressin and oxytocin. As a result, they have an essential role in fundamental physiological responses including regulation of blood volume and fluid homeostasis. C-type natriuretic peptide (CNP) is present at high levels in the hypothalamus. Although CNP is known to decrease hormone secretion from MNCs, no studies have examined the role of the natriuretic peptide C receptor (NPR-C) in these neurons. In this study, whole cell recordings from acutely isolated MNCs, and MNCs in a coronal slice preparation, show that CNP (2 x 10(-8) M) and the selective NPR-C agonist, cANF (2 x 10(-8) M), significantly inhibit L-type Ca2+ current (I(Ca(L))) by approximately 50%. This effect on I(Ca(L)) is mimicked by dialyzing a G(i)-activator peptide (10(-7) M) into these cells, implicating a role for the inhibitory G protein, G(i). These NPR-C-mediated effects were specific to I(Ca(L)). T-type Ca2+ channels were unaffected by CNP. Current-clamp experiments revealed the ability of CNP, acting via the NPR-C receptor, to decrease (approximately 25%) the number of action potentials elicited during a 500 ms depolarizing stimulus. Analysis of action potential duration revealed that CNP and cANF significantly decreased 50% repolarization time (APD50) in MNCs. In summary, our findings show that CNP has a potent and selective inhibitory effect on I(Ca(L)) and on excitability in MNCs that is mediated by the NPR-C receptor. These data represent the first electrophysiological evidence of a functional role for the NPR-C receptor in the mammalian hypothalamus.
Collapse
Affiliation(s)
- Robert A Rose
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
15
|
Abstract
Osmotic and hemodynamic stress are the two primary regulators of vasopressin (VP) release from the posterior pituitary. The pathways providing information about plasma osmolality and blood pressure or blood volume are distinct and utilize different chemical neurotransmitters. Osmotic regulation of VP release is dependent upon afferents from the lamina terminalis region. Glutamate is an important transmitter in this system and angiotensinergic afferents from this region to the VP neurons modulate responses to osmotic challenges. Hemodynamic information is transmitted to the VP neurons via multisynaptic pathways from the brainstem with the A1 catecholamine neurons of the ventrolateral medulla providing the final link for information about decreases in blood pressure and volume. Several neurotransmitters and neuropeptides are expressed in the A1 neurons including norepinephrine (NE), ATP, neuropeptide Y, and substance P. The impact of co-release of these agents on VP release is reviewed and the potential physiological significance is discussed.
Collapse
Affiliation(s)
- Celia D Sladek
- Department of Physiology and Biophysics, University of Colorado Health Science Center, Denver 80262, USA.
| |
Collapse
|
16
|
Bourque CW, Voisin DL, Chakfe Y. Stretch-inactivated cation channels: cellular targets for modulation of osmosensitivity in supraoptic neurons. PROGRESS IN BRAIN RESEARCH 2002; 139:85-94. [PMID: 12436928 DOI: 10.1016/s0079-6123(02)39009-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rat magnocellular neurosecretory cells (MNCs) show an intrinsic sensitivity to acute changes in fluid osmolality. Experiments in acutely isolated supraoptic MNCs have shown that these responses are due to in part to the cell volume-dependent modulation of gadolinium-sensitive 33 pS stretch-inactivated cation (SIC) channels. Previous studies in vivo have shown that the slope (i.e. gain) of the 'osmosensory' relation between VP release and plasma osmolality can be increased or decreased under various physiological and pathological conditions. Here, we review recent work that shows how changes in external [Na] and excitatory neuropeptides such as angiotensin II (Ang II), cholecystokinin (CCK) and neurotensin (NT), may influence osmosensory gain in acutely isolated MNCs. Whole-cell and single-channel recording experiments have revealed that changes in external Na cause proportional changes in osmosensory gain as a result of modified SIC channel permeability and not by affecting mechanotransduction. In contrast, Ang II, CCK, or NT appear to convergently, and directly, stimulate the osmosensory cation conductance in MNCs. Preliminary analysis in current clamp further suggests that osmosensory gain may be increased upon exposure to these excitatory peptides. Whether such mechanisms contribute to the modulation of osmosensory gain in vivo remains to be established.
Collapse
Affiliation(s)
- Charles W Bourque
- Centre for Research in Neuroscience, Montreal General Hospital, McGill University, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada.
| | | | | |
Collapse
|
17
|
Sladek CD, Kapoor JR. Neurotransmitter/neuropeptide interactions in the regulation of neurohypophyseal hormone release. Exp Neurol 2001; 171:200-9. [PMID: 11573972 DOI: 10.1006/exnr.2001.7779] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of neurohypophyseal hormone release reflects the convergence of a large number of afferent pathways on the vasopressin (VP)- and oxytocin-producing neurons. These pathways utilize a broad range of neurotransmitters and neuropeptides. In this review, the mechanisms by which this information is coordinated into appropriate physiological responses is discussed with a focus on the responses to agents that are coreleased from A1 catecholamine nerve terminals in the supraoptic nucleus. The A1 pathway transmits hemodynamic information to the vasopressin neurons by releasing several neuroactive agents including ATP, norepinephrine, neuropeptide Y, and substance P. These substances stimulate VP release from explants of the hypothalamo-neurohypophyseal system and certain combinations of these agents elicit potent but selective synergism. Evaluation of the signal cascades elicited by these agents provides insights into mechanisms underlying these synergistic interactions and suggests mechanisms responsible for coordinated responses of the VP neurons to activation of a range of ion-gated ion channel and G-protein-coupled receptors.
Collapse
Affiliation(s)
- C D Sladek
- Department of Physiology and Biophysics, Finch University of Health Sciences/The Chicago Medical School, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | |
Collapse
|