1
|
Shamsnia HS, Peyrovinasab A, Amirlou D, Sirouskabiri S, Rostamian F, Basiri N, Shalmani LM, Hashemi M, Hushmandi K, Abdolghaffari AH. BDNF-TrkB Signaling Pathway in Spinal Cord Injury: Insights and Implications. Mol Neurobiol 2025; 62:1904-1944. [PMID: 39046702 DOI: 10.1007/s12035-024-04381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Spinal cord injury (SCI) is a neurodegenerative disorder that has critical impact on patient's life expectance and life span, and this disorder also leads to negative socioeconomic features. SCI is defined as a firm collision to the spinal cord which leads to the fracture and the dislocation of vertebrae. The current available treatment is surgery. However, it cannot fully treat SCI, and many consequences remain after the surgery. Accordingly, finding new therapeutics is critical. BDNF-TrkB signaling is a vital signaling in neuronal differentiation, survival, overgrowth, synaptic plasticity, etc. Hence, many studies evaluate its impact on various neurodegenerative disorders. There are several studies evaluating this signaling in SCI, and they show promising outcomes. It was shown that various exercises, chemical interventions, etc. had significant positive impact on SCI by affecting BDNF-TrkB signaling pathway. This study aims to accumulate and evaluate these data and inspect whether this signaling is effective or not.
Collapse
Affiliation(s)
- Hedieh Sadat Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirreza Peyrovinasab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Dorsa Amirlou
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shirin Sirouskabiri
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Rostamian
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasim Basiri
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Stepanova OV, Voronova AD, Sosnovtseva AO, Stepanenko AA, Chadin AV, Karsuntseva EK, Fursa GA, Valikhov MP, Semkina AS, Vorobyev PO, Reshetov IV, Chekhonin VP. Study of the Therapeutic Efficiency of Transduced Olfactory Ensheathing Cells in Spinal Cord Cysts. Stem Cells Dev 2021; 31:9-17. [PMID: 34847755 DOI: 10.1089/scd.2021.0265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttraumatic spinal cord cysts are difficult to treat with medication and surgery. Gene-cell therapy is a promising area of treatment for such patients. However, optimal gene-cell construct for this therapy has not been developed. We investigated the therapeutic efficiency of human olfactory ensheathing cells (OECs) transduced by adenoviral vector encoding the mature form of brain-derived neurotrophic factor (mBDNF) in spinal cord cysts. The adenoviral vectors Ad5/35-CAG-mBDNF and Ad5/35-CAG-Fluc were constructed. Spinal cysts were modeled in female Wistar rats. We selected animals at the early and intermediate stages of recovery with scores to 13 according to the Basso, Beattie and Bresnahan (BBB) scale. The efficiency of therapy was evaluated by BBB tests. No cytotoxicity was detected using the Resazurin/AlamarBlue assay for both vectors at multiplicity of infection (MOIs) of 1, 5, and 25. There was an increase in the proliferation of cells treated with Ad5/35-CAG-mBDNF at MOIs of 5 and 25. The hind limb mobility after the transplantation of Ad5/35-CAG-mBDNF- and Ad5/35-CAG-Fluc-transduced human OECs and nontransduced OECs had approximately the same tendency to improve. Cyst reduction was observed with the transplantation of all the samples. Although Ad5/35-CAG-mBDNF-transduced OECs had high BDNF expression levels in vitro, these cells lacked positive effect in vivo because they did not exhibit significant effect concerning functional test when comparing the groups that received the same numbers of OECs. The therapeutic efficiency of transduced OECs appears to be due to the cell component. The autological and tissue-specific human OECs are promising for the personalized cell therapy. It is extremely important to test new gene-cell constructs based on these cells for further clinical use.
Collapse
Affiliation(s)
- Olga V Stepanova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow, Russia
| | - Anastasia D Voronova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Anastasiia O Sosnovtseva
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Aleksei A Stepanenko
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrey V Chadin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | | | - Grigorii A Fursa
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Biology, Moscow State University, Moscow, Russia
| | - Marat P Valikhov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow, Russia
| | - Alevtina S Semkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Pavel O Vorobyev
- Laboratory of Cell Proliferation, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Igor V Reshetov
- Department of Plastic Surgery, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir P Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
4
|
Fu Z, Wang H, Wu Y, Zhu T. Transplantation of neural stem cells encapsulated in hydrogels improve functional recovery in a cauda equina lesion model. Biosci Trends 2020; 14:360-367. [PMID: 33100289 DOI: 10.5582/bst.2020.03321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study explored the therapeutic effects of transplantation of neural stem cells (NSCs) encapsulated in hydrogels in a cauda equina lesion model. NSCs were isolated from neonatal dorsal root ganglion (nDRG) and cultured in three-dimensional porous hydrogel scaffolds. Immunohistochemistry, transmission electron microscopy and TUNEL assay were performed to detect the differentiation capability, ultrastructural and pathological changes, and apoptosis of NSCs. Furthermore, the functional recovery of sensorimotor reflexes was determined using the tail-flick test. NSCs derived from DRG were able to proliferate to form neurospheres and mainly differentiate into oligodendrocytes in the three-dimensional hydrogel culture system. After transplantation of NSCs encapsulated in hydrogels, NSCs differentiated into oligodendrocytes, neurons or astrocytes in vivo. Moreover, NSCs engrafted on the hydrogels decreased apoptosis and alleviated the ultrastructural and pathological changes of injured cauda equina. Behavioral analysis showed that transplanted hydrogel-encapsulated NSCs decreased the tail-flick latency and showed a neuroprotective role on injured cauda equina. Our results indicate transplantation of hydrogel-encapsulated NSCs promotes stem cell differentiation into oligodendrocytes, neurons or astrocytes and contributes to the functional recovery of injured cauda equina, suggesting that NSCs encapsulated in hydrogels may be applied for the treatment of cauda equina injury.
Collapse
Affiliation(s)
- Zhiyi Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huidong Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Zhu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Wang X, Zhou T, Maynard GD, Terse PS, Cafferty WB, Kocsis JD, Strittmatter SM. Nogo receptor decoy promotes recovery and corticospinal growth in non-human primate spinal cord injury. Brain 2020; 143:1697-1713. [PMID: 32375169 PMCID: PMC7850069 DOI: 10.1093/brain/awaa116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/19/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022] Open
Abstract
After CNS trauma such as spinal cord injury, the ability of surviving neural elements to sprout axons, reorganize neural networks and support recovery of function is severely restricted, contributing to chronic neurological deficits. Among limitations on neural recovery are myelin-associated inhibitors functioning as ligands for neuronal Nogo receptor 1 (NgR1). A soluble decoy (NgR1-Fc, AXER-204) blocks these ligands and provides a means to promote recovery of function in multiple preclinical rodent models of spinal cord injury. However, the safety and efficacy of this reagent in non-human primate spinal cord injury and its toxicological profile have not been described. Here, we provide evidence that chronic intrathecal and intravenous administration of NgR1-Fc to cynomolgus monkey and to rat are without evident toxicity at doses of 20 mg and greater every other day (≥2.0 mg/kg/day), and far greater than the projected human dose. Adult female African green monkeys underwent right C5/6 lateral hemisection with evidence of persistent disuse of the right forelimb during feeding and right hindlimb during locomotion. At 1 month post-injury, the animals were randomized to treatment with vehicle (n = 6) or 0.10-0.17 mg/kg/day of NgR1-Fc (n = 8) delivered via intrathecal lumbar catheter and osmotic minipump for 4 months. One animal was removed from the study because of surgical complications of the catheter, but no treatment-related adverse events were noted in either group. Animal behaviour was evaluated at 6-7 months post-injury, i.e. 1-2 months after treatment cessation. The use of the impaired forelimb during spontaneous feeding and the impaired hindlimb during locomotion were both significantly greater in the treatment group. Tissue collected at 7-12 months post-injury showed no significant differences in lesion size, fibrotic scar, gliosis or neuroinflammation between groups. Serotoninergic raphespinal fibres below the lesion showed no deficit, with equal density on the lesioned and intact side below the level of the injury in both groups. Corticospinal axons traced from biotin-dextran-amine injections in the left motor cortex were equally labelled across groups and reduced caudal to the injury. The NgR1-Fc group tissue exhibited a significant 2-3-fold increased corticospinal axon density in the cervical cord below the level of the injury relative to the vehicle group. The data show that NgR1-Fc does not have preclinical toxicological issues in healthy animals or safety concerns in spinal cord injury animals. Thus, it presents as a potential therapeutic for spinal cord injury with evidence for behavioural improvement and growth of injured pathways in non-human primate spinal cord injury.
Collapse
Affiliation(s)
- Xingxing Wang
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Tianna Zhou
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA
| | | | - Pramod S Terse
- National Center for Translational Sciences, NIH, Rockville, MD, USA
| | - William B Cafferty
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Dravid A, Parittotokkaporn S, Aqrawe Z, O’Carroll SJ, Svirskis D. Determining Neurotrophin Gradients in Vitro To Direct Axonal Outgrowth Following Spinal Cord Injury. ACS Chem Neurosci 2020; 11:121-132. [PMID: 31825204 DOI: 10.1021/acschemneuro.9b00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A spinal cord injury can damage neuronal connections required for both motor and sensory function. Barriers to regeneration within the central nervous system, including an absence of neurotrophic stimulation, impair the ability of injured neurons to reestablish their original circuitry. Exogenous neurotrophin administration has been shown to promote axonal regeneration and outgrowth following injury. The neurotrophins possess chemotrophic properties that guide axons toward the region of highest concentration. These growth factors have demonstrated potential to be used as a therapeutic intervention for orienting axonal growth beyond the injury lesion, toward denervated targets. However, the success of this approach is dependent on the appropriate spatiotemporal distribution of these molecules to ensure detection and navigation by the axonal growth cone. A number of in vitro gradient-based assays have been employed to investigate axonal response to neurotrophic gradients. Such platforms have helped elucidate the potential of applying a concentration gradient of neurotrophins to promote directed axonal regeneration toward a functionally significant target. Here, we review these techniques and the principles of gradient detection in axonal guidance, with particular focus on the use of neurotrophins to orient the trajectory of regenerating axons.
Collapse
Affiliation(s)
- Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Zaid Aqrawe
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
7
|
Chou PC, Tsai YC, Chen SJ, Tsai LK, Chien CL. Intracerebral transplantation of erythropoietin-producing fibroblasts facilitates neurogenesis and functional recovery in an ischemic stroke model. Brain Behav 2019; 9:e01274. [PMID: 30920178 PMCID: PMC6520520 DOI: 10.1002/brb3.1274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Erythropoietin (EPO) can enhance neurogenesis and fibroblasts can secrete growth factors; together, they may benefit ischemic stroke. We transplanted EPO-producing fibroblasts into the rodent infarcted brain to test their effect on neurogenesis and functional recovery. METHODS A total of 106 cells of EPO-producing NIH/3T3 fibroblasts (EPO/EGFP/3T3) or enhanced green fluorescence protein (EGFP)-expressing fibroblasts (EGFP/3T3) were stereotaxically injected into the infarcted striatum of adult rats that received transient middle cerebral artery occlusion (MCAO) surgery 1 day poststroke. On day 14 after MCAO, the animals were euthanized for the evaluation of neurogenesis via immunohistochemistry and of the expression of growth factors using enzyme-linked immunosorbent assay. The infarct volume was analyzed using magnetic resonance imaging and the neurological behavior was assessed using the neurological severity scoring performed within 14 days after MCAO. RESULTS The MCAO rats with EPO/EGFP/3T3 treatment showed high EPO expression in the infarcted brain for at least 1 week. The concentration of brain-derived neurotrophic factor was higher in both hemispheres of MCAO rats with either EGFP/3T3 or EPO/EGFP/3T3 treatment at 14 days poststroke compared with untreated MCAO rats. The number of Ki-67-, nestin-, or doublecortin-immunoreactive cells in bilateral subventricular zones was higher in EPO/EGFP/3T3-treated MCAO rats than it was in untreated MCAO control animals, indicating the enhancement of neurogenesis after EPO/EGFP/3T3 treatment. Notably, post-MCAO EPO/EGFP/3T3 treatment significantly reduced infarct size and improved functional recovery. CONCLUSION The intracerebral transplantation of EPO-producing fibroblasts benefited an ischemic stroke model probably via the enhancement of neurogenesis.
Collapse
Affiliation(s)
- Pin-Chun Chou
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chieh Tsai
- Department of Neurology and Stroke Center, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shiu-Jau Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Li-Kai Tsai
- Department of Neurology and Stroke Center, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chung-Liang Chien
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Schaal SM, Kitay BM, Cho KS, Lo TP, Barakat DJ, Marcillo AE, Sanchez AR, Andrade CM, Pearse DD. Schwann Cell Transplantation Improves Reticulospinal Axon Growth and Forelimb Strength after Severe Cervical Spinal Cord Contusion. Cell Transplant 2017; 16:207-28. [PMID: 17503734 DOI: 10.3727/000000007783464768] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Schwann cell (SC) implantation alone has been shown to promote the growth of propriospinal and sensory axons, but not long-tract descending axons, after thoracic spinal cord injury (SCI). In the current study, we examined if an axotomy close to the cell body of origin (so as to enhance the intrinsic growth response) could permit supraspinal axons to grow onto SC grafts. Adult female Fischer rats received a severe (C5) cervical contusion (1.1 mm displacement, 3 KDyn). At 1 week postinjury, 2 million SCs ex vivo transduced with lentiviral vector encoding enhanced green fluorescent protein (EGFP) were implanted within media into the injury epicenter; injury-only animals served as controls. Animals were tested weekly using the BBB score for 7 weeks postimplantation and received at end point tests for upper body strength: self-supported forelimb hanging, forearm grip force, and the incline plane. Following behavioral assessment, animals were anterogradely traced bilaterally from the reticular formation using BDA-Texas Red. Stereological quantification revealed a twofold increase in the numbers of preserved NeuN+ neurons rostral and caudal to the injury/graft site in SC implanted animals, corroborating previous reports of their neuroprotective efficacy. Examination of labeled reticulospinal axon growth revealed that while rarely an axon was present within the lesion site of injury-only controls, numerous reticulospinal axons had penetrated the SC implant/lesion milieu. This has not been observed following implantation of SCs alone into the injured thoracic spinal cord. Significant behavioral improvements over injury-only controls in upper limb strength, including an enhanced grip strength (a 296% increase) and an increased self-supported forelimb hanging, accompanied SC-mediated neuroprotection and reticulospinal axon growth. The current study further supports the neuroprotective efficacy of SC implants after SCI and demonstrates that SCs alone are capable of supporting modest supraspinal axon growth when the site of axon injury is closer to the cell body of the axotomized neuron.
Collapse
Affiliation(s)
- S M Schaal
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury. Int J Mol Sci 2017; 18:ijms18030548. [PMID: 28273811 PMCID: PMC5372564 DOI: 10.3390/ijms18030548] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 01/01/2023] Open
Abstract
Neurotrophins are a family of proteins that regulate neuronal survival, synaptic function, and neurotransmitter release, and elicit the plasticity and growth of axons within the adult central and peripheral nervous system. Since the 1950s, these factors have been extensively studied in traumatic injury models. Here we review several members of the classical family of neurotrophins, the receptors they bind to, and their contribution to axonal regeneration and sprouting of sensory and motor pathways after spinal cord injury (SCI). We focus on nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and their effects on populations of neurons within diverse spinal tracts. Understanding the cellular targets of neurotrophins and the responsiveness of specific neuronal populations will allow for the most efficient treatment strategies in the injured spinal cord.
Collapse
|
10
|
Nothias JM, Mitsui T, Shumsky JS, Fischer I, Antonacci MD, Murray M. Combined Effects of Neurotrophin Secreting Transplants, Exercise, and Serotonergic Drug Challenge Improve Function in Spinal Rats. Neurorehabil Neural Repair 2016; 19:296-312. [PMID: 16263962 DOI: 10.1177/1545968305281209] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives. To determine the effects of neurotrophin-secreting transplants combined with exercise and serotonergic drug challenges on recovery of hindlimb function in rats with midthoracic spinal cord transection injuries. Methods. Spinalized animals received transplants of fibroblasts genetically modified to express brain-derived neurotrophic factor and neurotrophin-3 and daily cycling exercise. Hindlimb movement in an open-field test (BBB) was scored weekly. Serotonin agonists were used monthly to further stimulate motor function. Axonal growth was quantified in the transplant and at L5 using immunocytochemical markers. Weights of hindlimb muscles were used to assess muscle atrophy. Results. Neurotrophin-secreting transplants stimulated axonal growth, and cycling prevented muscle atrophy, but individual treatments did not improve motor scores. Combined treatments resulted in improvements in motor function. Serotonergic agonists further improved function in all groups, and transplant groups with exercise achieved weight-supporting levels following drug treatment. Conclusion. Combined treatments, but not individual treatments, improved hindlimb function.
Collapse
Affiliation(s)
- J-M Nothias
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | |
Collapse
|
11
|
Morris R, Whishaw IQ. A Proposal for a Rat Model of Spinal Cord Injury Featuring the Rubrospinal Tract and its Contributions to Locomotion and Skilled Hand Movement. Front Neurosci 2016; 10:5. [PMID: 26858587 PMCID: PMC4728831 DOI: 10.3389/fnins.2016.00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/07/2016] [Indexed: 11/21/2022] Open
Abstract
Spinal cord injury and repair is a dynamic field of research. The development of reliable animal models of traumatic spinal cord injury has been invaluable in providing a wealth of information regarding the pathological consequences and recovery potential of this condition. A number of injury models have been instrumental in the elaboration and the validation of therapeutic interventions aimed at reversing this once thought permanent condition. In general, the study of spinal cord injury and repair is made difficult by both its anatomical complexity and the complexity of the behavior it mediates. In this perspective paper, we suggest a new model for spinal cord investigation that simplifies problems related to both the functional and anatomical complexity of the spinal cord. We begin by reviewing and contrasting some of the most common animal models used for investigating spinal cord dysfunction. We then consider two widely used models of spinal deficit-recovery, one involving the corticospinal tracts (CTS) and the other the rubrospinal tract (RST). We argue that the simplicity of the function of the RST makes it a useful model for studying the cord and its functional repair. We also reflect on two obstacles that have hindered progress in the pre-clinical field, delaying translation to the clinical setup. The first is recovery of function without reconnection of the transected descending fibers and the second is the use of behavioral paradigms that are not under the control of the descending fiber pathway under scrutiny.
Collapse
Affiliation(s)
- Renée Morris
- Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales Australia Sydney, NSW, Australia
| | - Ian Q Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge Lethbridge, AB, Canada
| |
Collapse
|
12
|
Khaing ZZ, Agrawal NK, Park JH, Xin S, Plumton GC, Lee KH, Huang YJ, Niemerski AL, Schmidt CE, Grau JW. Localized and sustained release of brain-derived neurotrophic factor from injectable hydrogel/microparticle composites fosters spinal learning after spinal cord injury. J Mater Chem B 2016; 4:7560-7571. [DOI: 10.1039/c6tb01602b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Injectable hydrogel allows for sustained delivery of growth factor resulting in spinal mediated learning after injury.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
| | - Nikunj K. Agrawal
- Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
| | - James H. Park
- College of Medicine
- University of Florida
- Gainesville
- USA
| | - Shangjing Xin
- Department of Materials Science and Engineering
- University of Florida
- Gainesville
- USA
| | | | - Kuan H. Lee
- Department of Neurobiology
- University of Pittsburgh School of Medicine
- Pittsburgh
- USA
| | - Yung-Jen Huang
- Department of Psychology
- Texas A&M University
- College Station
- USA
| | | | | | - James W. Grau
- Department of Psychology
- Texas A&M University
- College Station
- USA
| |
Collapse
|
13
|
Siebert JR, Eade AM, Osterhout DJ. Biomaterial Approaches to Enhancing Neurorestoration after Spinal Cord Injury: Strategies for Overcoming Inherent Biological Obstacles. BIOMED RESEARCH INTERNATIONAL 2015; 2015:752572. [PMID: 26491685 PMCID: PMC4600545 DOI: 10.1155/2015/752572] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/22/2015] [Indexed: 01/14/2023]
Abstract
While advances in technology and medicine have improved both longevity and quality of life in patients living with a spinal cord injury, restoration of full motor function is not often achieved. This is due to the failure of repair and regeneration of neuronal connections in the spinal cord after injury. In this review, the complicated nature of spinal cord injury is described, noting the numerous cellular and molecular events that occur in the central nervous system following a traumatic lesion. In short, postinjury tissue changes create a complex and dynamic environment that is highly inhibitory to the process of neural regeneration. Strategies for repair are outlined with a particular focus on the important role of biomaterials in designing a therapeutic treatment that can overcome this inhibitory environment. The importance of considering the inherent biological response of the central nervous system to both injury and subsequent therapeutic interventions is highlighted as a key consideration for all attempts at improving functional recovery.
Collapse
Affiliation(s)
- Justin R. Siebert
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| | - Amber M. Eade
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| | - Donna J. Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
14
|
Yılmaz T, Kaptanoğlu E. Current and future medical therapeutic strategies for the functional repair of spinal cord injury. World J Orthop 2015; 6:42-55. [PMID: 25621210 PMCID: PMC4303789 DOI: 10.5312/wjo.v6.i1.42] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) leads to social and psychological problems in patients and requires costly treatment and care. In recent years, various pharmacological agents have been tested for acute SCI. Large scale, prospective, randomized, controlled clinical trials have failed to demonstrate marked neurological benefit in contrast to their success in the laboratory. Today, the most important problem is ineffectiveness of nonsurgical treatment choices in human SCI that showed neuroprotective effects in animal studies. Recently, attempted cellular therapy and transplantations are promising. A better understanding of the pathophysiology of SCI started in the early 1980s. Research had been looking at neuroprotection in the 1980s and the first half of 1990s and regeneration studies started in the second half of the 1990s. A number of studies on surgical timing suggest that early surgical intervention is safe and feasible, can improve clinical and neurological outcomes and reduce health care costs, and minimize the secondary damage caused by compression of the spinal cord after trauma. This article reviews current evidence for early surgical decompression and nonsurgical treatment options, including pharmacological and cellular therapy, as the treatment choices for SCI.
Collapse
|
15
|
Ren J, Zhou X, Wang J, Zhao J, Zhang P. Poxue Huayu and Tianjing Busui Decoction for cerebral hemorrhage (Upregulation of neurotrophic factor expression): Upregulation of neurotrophic factor expression. Neural Regen Res 2014; 8:2039-49. [PMID: 25206512 PMCID: PMC4146063 DOI: 10.3969/j.issn.1673-5374.2013.22.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022] Open
Abstract
This study established a rat model of cerebral hemorrhage by injecting autologous anticoagulated blood. Rat models were intragastrically administered 5, 10, 20 g/kg Poxue Huayu and Tianjing Busui Decoction, supplemented with Hirudo, raw rhubarb, raw Pollen Typhae, gadfly, Fructrs Trichosanthis, Radix Notoginseng, Rhizoma Acori Talarinowii, and glue of tortoise plastron, once a day, for 14 consecutive days. Results demonstrated that brain water content significantly reduced in rats with cerebral hemorrhage, and intracerebral hematoma volume markedly reduced after treatment. Immunohistochemical staining revealed that brain-derived neurotrophic factor, tyrosine kinase B and vascular endothelial growth factor expression noticeably increased around the surrounding hematoma. Reverse transcription-PCR revealed that brain-derived neurotrophic factor and tyrosine kinase B mRNA expression significantly increased around the surrounding hematoma. Neurologic impairment obviously reduced. These results indicated that Poxue Huayu and Tianjing Busui Decoction exert therapeutic effects on cerebral hemorrhage by upregulating the expression of brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Jixiang Ren
- Department of Encephalopathy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Xiangyu Zhou
- Grade 2010 Clinical Medicine Major, School of Clinical Medicine, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jian Wang
- Department of Encephalopathy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Jianjun Zhao
- Department of Encephalopathy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Pengguo Zhang
- Department of Imaging, School of Second Clinical Medicine, Jilin University, Changchun 130041, Jilin Province, China
| |
Collapse
|
16
|
Cannabinoid CB2 receptor (CB2R) stimulation delays rubrospinal mitochondrial-dependent degeneration and improves functional recovery after spinal cord hemisection by ERK1/2 inactivation. Cell Death Dis 2014; 5:e1404. [PMID: 25188514 PMCID: PMC4540196 DOI: 10.1038/cddis.2014.364] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/11/2014] [Accepted: 07/22/2014] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition of CNS that often results in severe functional impairments for which there are no restorative therapies. As in other CNS injuries, in addition to the effects that are related to the primary site of damage, these impairments are caused by degeneration of distal regions that are connected functionally to the primary lesion site. Modulation of the endocannabinoid system (ECS) counteracts this neurodegeneration, and pharmacological modulation of type-2 cannabinoid receptor (CB2R) is a promising therapeutic target for several CNS pathologies, including SCI. This study examined the effects of CB2R modulation on the fate of axotomized rubrospinal neurons (RSNs) and functional recovery in a model of spinal cord dorsal hemisection (SCH) at the cervical level in rats. SCH induced CB2R expression, severe atrophy, and cell death in contralateral RSNs. Furthermore, SCH affected molecular changes in the apoptotic cascade in RSNs – increased cytochrome c release, apoptosome formation, and caspase-3 activity. CB2R stimulation by its selective agonist JWH-015 significantly increased the bcl-2/bax ratio, reduced cytochrome c release, delayed atrophy and degeneration, and improved spontaneous functional recovery through ERK1/2 inactivation. These findings implicate the ECS, particularly CB2R, as part of the endogenous neuroprotective response that is triggered after SCI. Thus, CB2R modulation might represent a promising therapeutic target that lacks psychotropic effects and can be used to exploit ECS-based approaches to counteract neuronal degeneration.
Collapse
|
17
|
Behavioral improvement and regulation of molecules related to neuroplasticity in ischemic rat spinal cord treated with PEDF. Neural Plast 2014; 2014:451639. [PMID: 25110592 PMCID: PMC4106224 DOI: 10.1155/2014/451639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/28/2022] Open
Abstract
Pigment epithelium derived factor (PEDF) exerts trophic actions to motoneurons and modulates nonneuronal restorative events, but its effects on neuroplasticity responses after spinal cord (SC) injury are unknown. Rats received a low thoracic SC photothrombotic ischemia and local injection of PEDF and were evaluated behaviorally six weeks later. PEDF actions were detailed in SC ventral horn (motor) in the levels of the lumbar central pattern generator (CPG), far from the injury site. Molecules related to neuroplasticity (MAP-2), those that are able to modulate such event, for instance, neurotrophic factors (NT-3, GDNF, BDNF, and FGF-2), chondroitin sulfate proteoglycans (CSPG), and those associated with angiogenesis and antiapoptosis (laminin and Bcl-2) and Eph (receptor)/ephrin system were evaluated at cellular or molecular levels. PEDF injection improved motor behavioral performance and increased MAP-2 levels and dendritic processes in the region of lumbar CPG. Treatment also elevated GDNF and decreased NT-3, laminin, and CSPG. Injury elevated EphA4 and ephrin-B1 levels, and PEDF treatment increased ephrin A2 and ephrins B1, B2, and B3. Eph receptors and ephrins were found in specific populations of neurons and astrocytes. PEDF treatment to SC injury triggered neuroplasticity in lumbar CPG and regulation of neurotrophic factors, extracellular matrix molecules, and ephrins.
Collapse
|
18
|
Viscomi MT, Molinari M. Remote neurodegeneration: multiple actors for one play. Mol Neurobiol 2014; 50:368-89. [PMID: 24442481 DOI: 10.1007/s12035-013-8629-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
Remote neurodegeneration significantly influences the clinical outcome in many central nervous system (CNS) pathologies, such as stroke, multiple sclerosis, and traumatic brain and spinal cord injuries. Because these processes develop days or months after injury, they are accompanied by a therapeutic window of opportunity. The complexity and clinical significance of remote damage is prompting many groups to examine the factors of remote degeneration. This research is providing insights into key unanswered questions, opening new avenues for innovative neuroprotective therapies. In this review, we evaluate data from various remote degeneration models to describe the complexity of the systems that are involved and the importance of their interactions in reducing damage and promoting recovery after brain lesions. Specifically, we recapitulate the current data on remote neuronal degeneration, focusing on molecular and cellular events, as studied in stroke and brain and spinal cord injury models. Remote damage is a multifactorial phenomenon in which many components become active in specific time frames. Days, weeks, or months after injury onset, the interplay between key effectors differentially affects neuronal survival and functional outcomes. In particular, we discuss apoptosis, inflammation, oxidative damage, and autophagy-all of which mediate remote degeneration at specific times. We also review current findings on the pharmacological manipulation of remote degeneration mechanisms in reducing damage and sustaining outcomes. These novel treatments differ from those that have been proposed to limit primary lesion site damage, representing new perspectives on neuroprotection.
Collapse
Affiliation(s)
- Maria Teresa Viscomi
- Experimental Neurorehabilitation Laboratory, Santa Lucia Foundation I.R.C.C.S., Via del Fosso di Fiorano 65, 00143, Rome, Italy,
| | | |
Collapse
|
19
|
Sontag CJ, Nguyen HX, Kamei N, Uchida N, Anderson AJ, Cummings BJ. Immunosuppressants affect human neural stem cells in vitro but not in an in vivo model of spinal cord injury. Stem Cells Transl Med 2013; 2:731-44. [PMID: 23981724 DOI: 10.5966/sctm.2012-0175] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Clinical immunosuppression protocols use calcineurin inhibitors, such as cyclosporine A (CsA) or tacrolimus (FK506), or mammalian target of rapamycin (mTOR) inhibitors, such as sirolimus (rapamycin). These compounds alter immunophilin ligand signaling pathways, which are known to interact downstream with mediators for human neural stem cell (hNSC) differentiation and proliferation, suggesting that immunosuppressants may directly alter hNSC properties. We investigated whether immunosuppressants can exert direct effects on the differentiation, proliferation, survival, and migration of human central nervous system-derived stem cells propagated as neurospheres (hCNS-SCns) in vitro and in an in vivo model of spinal cord injury. We identified unique, immunosuppressant-dependent effects on hCNS-SCns differentiation and proliferation in vitro. All immunosuppressants tested increased neuronal differentiation, and CsA and rapamycin inhibited proliferation in vitro. No immunosuppressant-mediated effects on hCNS-SCns survival or migration in vitro were detected. These data suggested that immunosuppressant administration could alter hCNS-SCns properties in vivo. We tested this hypothesis by administering immunosuppressants to constitutively immunodeficient spinal cord injured mice and assessed survival, proliferation, differentiation, and migration of hCNS-SCns after 14 weeks. In parallel, we administered immunosuppressants to immunocompetent spinal cord injury (SCI) mice and also evaluated hCNS-SCns engraftment and fate. We identified no effect of immunosuppressants on the overall hCNS-SCns fate profile in either xenotransplantation model. Despite a lower level of human cell engraftment in immunocompetent SCI mice, functional locomotor recovery was observed in animals receiving hCNS-SCns transplantation with no evidence of allodynia. These data suggest that local cues in the microenvironment could exert a stronger influence on hCNS-SCns than circulating levels of immunosuppressants; however, differences between human and rodent metabolism/pharmokinetics and xenograft versus allograft paradigms could be determining factors.
Collapse
|
20
|
Grous LC, Vernengo J, Jin Y, Himes BT, Shumsky JS, Fischer I, Lowman A. Implications of poly(N-isopropylacrylamide)-g-poly(ethylene glycol) with codissolved brain-derived neurotrophic factor injectable scaffold on motor function recovery rate following cervical dorsolateral funiculotomy in the rat. J Neurosurg Spine 2013; 18:641-52. [PMID: 23581453 DOI: 10.3171/2013.3.spine12874] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT In a follow-up study to their prior work, the authors evaluated a novel delivery system for a previously established treatment for spinal cord injury (SCI), based on a poly(N-isopropylacrylamide) (PNIPAAm), lightly cross-linked with a polyethylene glycol (PEG) injectable scaffold. The primary aim of this work was to assess the recovery of both spontaneous and skilled forelimb function following a cervical dorsolateral funiculotomy in the rat. This injury ablates the rubrospinal tract (RST) but spares the dorsal and ventral corticospinal tract and can severely impair reaching and grasping abilities. METHODS Animals received an implant of either PNIPAAm-g-PEG or PNIPAAm-g-PEG + brain-derived neurotrophic factor (BDNF). The single-pellet reach-to-grasp task and the staircase-reaching task were used to assess skilled motor function associated with reaching and grasping abilities, and the cylinder task was used to assess spontaneous motor function, both before and after injury. RESULTS Because BDNF can stimulate regenerating RST axons, the authors showed that animals receiving an implant of PNIPAAm-g-PEG with codissolved BDNF had an increased recovery rate of fine motor function when compared with a control group (PNIPAAm-g-PEG only) on both a staircase-reaching task at 4 and 8 weeks post-SCI and on a single-pellet reach-to-grasp task at 5 weeks post-SCI. In addition, spontaneous motor function, as measured in the cylinder test, recovered to preinjury values in animals receiving PNIPAAm-g-PEG + BDNF. Fluorescence immunochemistry indicated the presence of both regenerating axons and BDA-labeled fibers growing up to or within the host-graft interface in animals receiving PNIPAAm-g-PEG + BDNF. CONCLUSIONS Based on their results, the authors suggest that BDNF delivered by the scaffold promoted the growth of RST axons into the lesion, which may have contributed in part to the increased recovery rate.
Collapse
Affiliation(s)
- Lauren Conova Grous
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Falavigna A, da Costa JC. Mesenchymal autologous stem cells. World Neurosurg 2013; 83:236-50. [PMID: 23402865 DOI: 10.1016/j.wneu.2013.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 01/24/2013] [Accepted: 02/05/2013] [Indexed: 02/07/2023]
Abstract
The use of cell-based therapies for spinal cord injuries has recently gained prominence as a potential therapy or component of a combination strategy. Experimental and clinical studies have been performed using mesenchymal stem cell therapy to treat spinal cord injuries with encouraging results. However, there have been reports on the adverse effects of these stem cell-based therapies, especially in the context of tumor modulation. This article surveys the literature relevant to the potential of mesenchymal autologous stem cells for spinal cord injuries and their clinical implications.
Collapse
Affiliation(s)
- Asdrubal Falavigna
- Department of Neurosurgery, Medical School of the University of Caxias do Sul, Caxias do Sul, Brazil.
| | - Jaderson Costa da Costa
- Neurology Service and Instituto do Cérebro, Pontifical Catholic University of Rio Grande do Sul, Brazil
| |
Collapse
|
22
|
Tan J, Shi J, Shi G, Liu Y, Liu X, Wang C, Chen D, Xing S, Shen L, Jia L, Ye X, He H, Li J. Changes in compressed neurons from dogs with acute and severe cauda equina constrictions following intrathecal injection of brain-derived neurotrophic factor-conjugated polymer nanoparticles. Neural Regen Res 2013; 8:233-243. [PMID: 25206593 PMCID: PMC4107517 DOI: 10.3969/j.issn.1673-5374.2013.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 10/10/2012] [Indexed: 01/03/2023] Open
Abstract
This study established a dog model of acute multiple cauda equina constriction by experimental constriction injury (48 hours) of the lumbosacral central processes in dorsal root ganglia neurons. The repair effect of intrathecal injection of brain-derived neurotrophic factor with 15 mg encapsulated biodegradable poly(lactide-co-glycolide) nanoparticles on this injury was then analyzed. Dorsal root ganglion cells (L7) of all experimental dogs were analyzed using hematoxylin-eosin staining and immunohistochemistry at 1, 2 and 4 weeks following model induction. Intrathecal injection of brain-derived neurotrophic factor can relieve degeneration and inflammation, and elevate the expression of brain-derived neurotrophic factor in sensory neurons of compressed dorsal root ganglion. Simultaneously, intrathecal injection of brain-derived neurotrophic factor obviously improved neurological function in the dog model of acute multiple cauda equina constriction. Results verified that sustained intraspinal delivery of brain-derived neurotrophic factor encapsulated in biodegradable nanoparticles promoted the repair of histomorphology and function of neurons within the dorsal root ganglia in dogs with acute and severe cauda equina syndrome.
Collapse
Affiliation(s)
- Junming Tan
- Center of Trauma Repair and Reconstruction of Chinese PLA and Department of Orthopedics of the 98 Hospital of Chinese PLA, Huzhou 313000, Zhejiang Province, China
| | - Jiangang Shi
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guodong Shi
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yanling Liu
- Department of Pathologic Laboratory of Chest Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiaohong Liu
- Department of Pathologic Laboratory of Chest Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chaoyang Wang
- Center of Trauma Repair and Reconstruction of Chinese PLA and Department of Orthopedics of the 98 Hospital of Chinese PLA, Huzhou 313000, Zhejiang Province, China
| | - Dechun Chen
- Center of Trauma Repair and Reconstruction of Chinese PLA and Department of Orthopedics of the 98 Hospital of Chinese PLA, Huzhou 313000, Zhejiang Province, China
| | - Shunming Xing
- Center of Trauma Repair and Reconstruction of Chinese PLA and Department of Orthopedics of the 98 Hospital of Chinese PLA, Huzhou 313000, Zhejiang Province, China
| | - Lianbing Shen
- Center of Trauma Repair and Reconstruction of Chinese PLA and Department of Orthopedics of the 98 Hospital of Chinese PLA, Huzhou 313000, Zhejiang Province, China
| | - Lianshun Jia
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiaojian Ye
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Hailong He
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiashun Li
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
23
|
Fan C, Zheng Y, Cheng X, Qi X, Bu P, Luo X, Kim DH, Cao Q. Transplantation of D15A-expressing glial-restricted-precursor-derived astrocytes improves anatomical and locomotor recovery after spinal cord injury. Int J Biol Sci 2012; 9:78-93. [PMID: 23289019 PMCID: PMC3535536 DOI: 10.7150/ijbs.5626] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/19/2012] [Indexed: 12/23/2022] Open
Abstract
The transplantation of neural stem/progenitor cells is a promising therapeutic strategy for spinal cord injury (SCI). In this study, we tested whether combination of neurotrophic factors and transplantation of glial-restricted precursor (GRPs)-derived astrocytes (GDAs) could decrease the injury and promote functional recovery after SCI. We developed a protocol to quickly produce a sufficiently large, homogenous population of young astrocytes from GRPs, the earliest arising progenitor cell population restricted to the generation of glia. GDAs expressed the axonal regeneration promoting substrates, laminin and fibronectin, but not the inhibitory chondroitin sulfate proteoglycans (CSPGs). Importantly, GDAs or its conditioned medium promoted the neurite outgrowth of dorsal root ganglion neurons in vitro. GDAs were infected with retroviruses expressing EGFP or multi-neurotrophin D15A and transplanted into the contused adult thoracic spinal cord at 8 days post-injury. Eight weeks after transplantation, the grafted GDAs survived and integrated into the injured spinal cord. Grafted GDAs expressed GFAP, suggesting they remained astrocyte lineage in the injured spinal cord. But it did not express CSPG. Robust axonal regeneration along the grafted GDAs was observed. Furthermore, transplantation of D15A-GDAs significantly increased the spared white matter and decreased the injury size compared to other control groups. More importantly, transplantation of D15A-GDAs significantly improved the locomotion function recovery shown by BBB locomotion scores and Tredscan footprint analyses. However, this combinatorial strategy did not enhance the aberrant synaptic connectivity of pain afferents, nor did it exacerbate posttraumatic neuropathic pain. These results demonstrate that transplantation of D15A-expressing GDAs promotes anatomical and locomotion recovery after SCI, suggesting it may be an effective therapeutic approach for SCI.
Collapse
Affiliation(s)
- Chunling Fan
- Department of Anatomy and Neurobiology, Central South University Xianya Medical School, Changsha, Hunan 410011, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Choi JS, Leem JW, Lee KH, Kim SS, Suh-Kim H, Jung SJ, Kim UJ, Lee BH. Effects of human mesenchymal stem cell transplantation combined with polymer on functional recovery following spinal cord hemisection in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:405-11. [PMID: 23269903 PMCID: PMC3526745 DOI: 10.4196/kjpp.2012.16.6.405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/12/2012] [Accepted: 10/22/2012] [Indexed: 12/23/2022]
Abstract
The spontaneous axon regeneration of damaged neurons is limited after spinal cord injury (SCI). Recently, mesenchymal stem cell (MSC) transplantation was proposed as a potential approach for enhancing nerve regeneration that avoids the ethical issues associated with embryonic stem cell transplantation. As SCI is a complex pathological entity, the treatment of SCI requires a multipronged approach. The purpose of the present study was to investigate the functional recovery and therapeutic potential of human MSCs (hMSCs) and polymer in a spinal cord hemisection injury model. Rats were subjected to hemisection injuries and then divided into three groups. Two groups of rats underwent partial thoracic hemisection injury followed by implantation of either polymer only or polymer with hMSCs. Another hemisection-only group was used as a control. Behavioral, electrophysiological and immunohistochemical studies were performed on all rats. The functional recovery was significantly improved in the polymer with hMSC-transplanted group as compared with control at five weeks after transplantation. The results of electrophysiologic study demonstrated that the latency of somatosensory-evoked potentials (SSEPs) in the polymer with hMSC-transplanted group was significantly shorter than in the hemisection-only control group. In the results of immunohistochemical study, β-gal-positive cells were observed in the injured and adjacent sites after hMSC transplantation. Surviving hMSCs differentiated into various cell types such as neurons, astrocytes and oligodendrocytes. These data suggest that hMSC transplantation with polymer may play an important role in functional recovery and axonal regeneration after SCI, and may be a potential therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Ji Soo Choi
- Department of Physiology, Brain Korea 21 Project for Medical Science, and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Brain-Derived Neurotrophic Factor-Transfected and Nontransfected 3T3 Fibroblasts Enhance Migratory Neuroblasts and Functional Restoration in Mice With Intracerebral Hemorrhage. J Neuropathol Exp Neurol 2012; 71:1123-36. [DOI: 10.1097/nen.0b013e3182779e96] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Exogenous BDNF enhances the integration of chronically injured axons that regenerate through a peripheral nerve grafted into a chondroitinase-treated spinal cord injury site. Exp Neurol 2012; 239:91-100. [PMID: 23022460 DOI: 10.1016/j.expneurol.2012.09.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 08/03/2012] [Accepted: 09/20/2012] [Indexed: 12/20/2022]
Abstract
Although axons lose some of their intrinsic capacity for growth after their developmental period, some axons retain the potential for regrowth after injury. When provided with a growth-promoting substrate such as a peripheral nerve graft (PNG), severed axons regenerate into and through the graft; however, they stop when they reach the glial scar at the distal graft-host interface that is rich with inhibitory chondroitin sulfate proteoglycans. We previously showed that treatment of a spinal cord injury site with chondroitinase (ChABC) allows axons within the graft to traverse the scar and reinnervate spinal cord, where they form functional synapses. While this improvement in outgrowth was significant, it still represented only a small percentage (<20%) of axons compared to the total number of axons that regenerated into the PNG. Here we tested whether providing exogenous brain-derived neurotrophic factor (BDNF) via lentivirus in tissue distal to the PNG would augment regeneration beyond a ChABC-treated glial interface. We found that ChABC treatment alone promoted axonal regeneration but combining ChABC with BDNF-lentivirus did not increase the number of axons that regenerated back into spinal cord. Combining BDNF with ChABC did increase the number of spinal cord neurons that were trans-synaptically activated during electrical stimulation of the graft, as indicated by c-Fos expression, suggesting that BDNF overexpression improved the functional significance of axons that did reinnervate distal spinal cord tissue.
Collapse
|
27
|
Weishaupt N, Blesch A, Fouad K. BDNF: the career of a multifaceted neurotrophin in spinal cord injury. Exp Neurol 2012; 238:254-64. [PMID: 22982152 DOI: 10.1016/j.expneurol.2012.09.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/30/2012] [Accepted: 09/02/2012] [Indexed: 12/19/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has been identified as a potent promoter of neurite growth, a finding that has led to an ongoing exploration of this neurotrophin as a potential treatment for spinal cord injury. BDNF's many effects in the nervous system make it an excellent candidate for neuroprotective strategies as well as for promoting axonal regeneration, plasticity and re-myelination. In addition, neuronal activity and physical exercise can modulate the expression of BDNF, suggesting that non-invasive means to increase BDNF levels might exist. Nonetheless, depending on the location, amount and duration of BDNF delivery, this potent neurotrophin can also have adverse effects, such as modulation of nociceptive pathways or contribution to spasticity. Taken together, the benefits and possible risks require careful assessment when considering this multifaceted neurotrophin as a treatment option for spinal cord injury.
Collapse
Affiliation(s)
- N Weishaupt
- Centre for Neuroscience, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
28
|
Spatial characterization of the motor neuron columns supplying the rat forelimb. Neuroscience 2012; 200:19-30. [DOI: 10.1016/j.neuroscience.2011.10.054] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/27/2011] [Accepted: 10/27/2011] [Indexed: 12/29/2022]
|
29
|
Abstract
AbstractCentral nervous system (CNS) injuries affect all levels of society indiscriminately, resulting in functional and behavioral deficits with devastating impacts on life expectancies, physical and emotional wellbeing. Considerable literature exists describing the pathophysiology of CNS injuries as well as the cellular and molecular factors that inhibit regrowth and regeneration of damaged connections. Based on these data, numerous therapeutic strategies targeting the various factors of repair inhibition have been proposed and on-going assessment has demonstrated some promising results in the laboratory environ. However, several of these treatment strategies have subsequently been taken into clinical trials but demonstrated little to no improvement in patient outcomes. As a result, options for clinical interventions following CNS injuries remain limited and effective restorative treatment strategies do not as yet exist. This review discusses some of the current animal models, with focus on nonhuman primates, which are currently being modeled in the laboratory for the study of CNS injuries. Last, we review the current understanding of the mechanisms underlying repair/regrowth inhibition and the current trends in experimental treatment strategies that are being assessed for potential translation to clinical applications.
Collapse
|
30
|
Hollis ER, Tuszynski MH. Neurotrophins: potential therapeutic tools for the treatment of spinal cord injury. Neurotherapeutics 2011; 8:694-703. [PMID: 21904786 PMCID: PMC3250295 DOI: 10.1007/s13311-011-0074-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinal cord injury permanently disrupts neuroanatomical circuitry and can result in severe functional deficits. These functional deficits, however, are not immutable and spontaneous recovery occurs in some patients. It is highly likely that this recovery is dependent upon spared tissue and the endogenous plasticity of the central nervous system. Neurotrophic factors are mediators of neuronal plasticity throughout development and into adulthood, affecting proliferation of neuronal precursors, neuronal survival, axonal growth, dendritic arborization and synapse formation. Neurotrophic factors are therefore excellent candidates for enhancing axonal plasticity and regeneration after spinal cord injury. Understanding growth factor effects on axonal growth and utilizing them to alter the intrinsic limitations on regenerative growth will provide potent tools for the development of translational therapeutic interventions for spinal cord injury.
Collapse
Affiliation(s)
- Edmund R. Hollis
- Neurobiology Section, Biological Sciences Division, University of California-San Diego, La Jolla, CA 92093-0366 USA
| | - Mark H. Tuszynski
- Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093-0626 USA
- VA Medical Center, La Jolla, CA 92161 USA
| |
Collapse
|
31
|
Novikova LN, Brohlin M, Kingham PJ, Novikov LN, Wiberg M. Neuroprotective and growth-promoting effects of bone marrow stromal cells after cervical spinal cord injury in adult rats. Cytotherapy 2011; 13:873-87. [DOI: 10.3109/14653249.2011.574116] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Azari MF, Mathias L, Ozturk E, Cram DS, Boyd RL, Petratos S. Mesenchymal stem cells for treatment of CNS injury. Curr Neuropharmacol 2011; 8:316-23. [PMID: 21629440 PMCID: PMC3080589 DOI: 10.2174/157015910793358204] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 05/15/2010] [Accepted: 05/25/2010] [Indexed: 02/06/2023] Open
Abstract
Brain and spinal cord injuries present significant therapeutic challenges. The treatments available for these conditions are largely ineffective, partly due to limitations in directly targeting the therapeutic agents to sites of pathology within the central nervous system (CNS). The use of stem cells to treat these conditions presents a novel therapeutic strategy. A variety of stem cell treatments have been examined in animal models of CNS trauma. Many of these studies have used stem cells as a cell-replacement strategy. These investigations have also highlighted the significant limitations of this approach. Another potential strategy for stem cell therapy utilises stem cells as a delivery mechanism for therapeutic molecules. This review surveys the literature relevant to the potential of mesenchymal stem cells for delivery of therapeutic agents in CNS trauma in humans.
Collapse
Affiliation(s)
- Michael F Azari
- Monash Immunology and Stem Cell Laboratories, School of Biomedical Sciences, Faculty of Medicine, Monash University, Clayton, Vic. Australia
| | | | | | | | | | | |
Collapse
|
33
|
Francis NL, Shanbhag MS, Fischer I, Wheatley MA. Influence of alginate cross-linking method on neurite response to microencapsulated neurotrophin-producing fibroblasts. J Microencapsul 2011; 28:353-62. [DOI: 10.3109/02652048.2011.569765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Bradbury EJ, Carter LM. Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull 2011; 84:306-16. [PMID: 20620201 DOI: 10.1016/j.brainresbull.2010.06.015] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 06/25/2010] [Accepted: 06/30/2010] [Indexed: 12/30/2022]
Abstract
Chondroitin sulphate proteoglycans (CSPGs) are potent inhibitors of growth in the adult CNS. Use of the enzyme chondroitinase ABC (ChABC) as a strategy to reduce CSPG inhibition in experimental models of spinal cord injury has led to observations of a remarkable capacity for repair. Here we review the evidence that treatment with ChABC, either as an individual therapy or in combination with other strategies, can have multiple beneficial effects on promoting repair following spinal cord injury. These include promoting regeneration of injured axons, plasticity of uninjured pathways and neuroprotection of injured projection neurons. More importantly, ChABC therapy has been demonstrated to promote significant recovery of function to spinal injured animals. Thus, there is robust pre-clinical evidence demonstrating beneficial effects of ChABC treatment following spinal cord injury. Furthermore, these effects have been replicated in a number of different injury models, with independent confirmation by different laboratories, providing an important validation of ChABC as a promising therapeutic strategy. We discuss putative mechanisms underlying ChABC-mediated repair as well as potential issues and considerations in translating ChABC treatment into a clinical therapy for spinal cord injury.
Collapse
Affiliation(s)
- Elizabeth J Bradbury
- King's College London, Neurorestoration Group, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, United Kingdom.
| | | |
Collapse
|
35
|
Carter LM, McMahon SB, Bradbury EJ. Delayed treatment with chondroitinase ABC reverses chronic atrophy of rubrospinal neurons following spinal cord injury. Exp Neurol 2011; 228:149-56. [PMID: 21215745 DOI: 10.1016/j.expneurol.2010.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/04/2010] [Accepted: 12/24/2010] [Indexed: 01/05/2023]
Abstract
Degradation of extracellular matrix chondroitin sulphate proteoglycans (CSPGs) using Chondroitinase ABC (ChABC) is a promising strategy for the treatment of spinal cord injury, with potent effects on promoting functional recovery and anatomical repair in spinal injured animals. We have previously demonstrated that ChABC treatment prevents atrophy of corticospinal projection neurons following spinal injury in adult YFP-H mice. Here, we investigate whether ChABC-mediated repair of the cell body extends to rubrospinal projection neurons (RSNs), whether neuroprotective effects can be sustained long-term and importantly, whether delayed treatment with ChABC can reverse chronic atrophy. Adult YFP-H mice underwent unilateral rubrospinal tract transection and were treated with ChABC or a control enzyme, delivered either acutely post-injury or after a one month delay. Eight weeks following injury and control treatment, RSNs in the injured red nucleus, identified by YFP label and NeuN immunoreactivity, showed severe atrophy, with ~40% loss of mean cell area compared to uninjured neurons in the contralateral red nucleus. Both acute and delayed treatment with ChABC promoted a significant rescue of injured RSNs, restoring cell area to ~80% and ~70%, respectively, of that in uninjured neurons. Thus, we demonstrate for the first time that CSPG degradation in the injured spinal cord not only promotes sustained rescue of cell atrophy when delivered acutely but can also reverse chronic atrophy in descending projection neurons. Thus, modulation of the extracellular matrix can mediate neuroprotective effects both early and late after spinal cord injury.
Collapse
Affiliation(s)
- Lucy M Carter
- King's College London, Neurorestoration Group, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy's Campus, London Bridge, London SE1 1UL, UK.
| | | | | |
Collapse
|
36
|
Fas and FasL Expression in the Spinal Cord Following Cord Hemisection in the Monkey. Neurochem Res 2010; 36:419-25. [DOI: 10.1007/s11064-010-0357-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2010] [Indexed: 12/13/2022]
|
37
|
Salazar DL, Uchida N, Hamers FPT, Cummings BJ, Anderson AJ. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS One 2010; 5:e12272. [PMID: 20806064 PMCID: PMC2923623 DOI: 10.1371/journal.pone.0012272] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/28/2010] [Indexed: 12/20/2022] Open
Abstract
Background Traumatic spinal cord injury (SCI) results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns) were prospectively isolated based on fluorescence-activated cell sorting for a CD133+ and CD24−/lo population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery. Methods and Findings hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein. Conclusions The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the “window of opportunity” for intervention.
Collapse
Affiliation(s)
- Desirée L. Salazar
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America
- Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
| | - Nobuko Uchida
- StemCells, Inc., Palo Alto, California, United States of America
| | | | - Brian J. Cummings
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America
- Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
- Department of Physical Medicine and Rehabilitation, University of California Irvine, Irvine, California United States of America
| | - Aileen J. Anderson
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America
- Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
- Department of Physical Medicine and Rehabilitation, University of California Irvine, Irvine, California United States of America
- * E-mail:
| |
Collapse
|
38
|
Viscomi M, Oddi S, Latini L, Bisicchia E, Maccarrone M, Molinari M. The endocannabinoid system: A new entry in remote cell death mechanisms. Exp Neurol 2010; 224:56-65. [DOI: 10.1016/j.expneurol.2010.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
39
|
Sandner G, Angst MJ, Guiberteau T, Guignard B, Brasse D. MRI and X-ray scanning images of the brain of 3-, 6- and 9-month-old rats with bilateral neonatal ventral hippocampus lesions. Neuroimage 2010; 53:44-50. [PMID: 20547225 DOI: 10.1016/j.neuroimage.2010.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 05/31/2010] [Accepted: 06/03/2010] [Indexed: 01/26/2023] Open
Abstract
Rats with bilateral neonatal ventral hippocampus lesions (NVHL) are commonly used for modeling developmental aspects of the pathophysiology of schizophrenia. Given that functional changes become significant only after puberty, NVHL as well as sham-operated rats were analyzed at the ages of 21, 42 and 63days (i.e. as pups, adolescents and adults), using MRI to examine the damage caused by surgery over time. Morphometric evaluations were considered and lesions were classified as small, medium and large. The volume of lesions increased regularly with age, to a greater extent than increases in overall brain size. This was relatively linear, corresponding to a gradually shrinking forebrain, and these observations held true for each class of lesions considered. Following the observation that the lesion procedure elicited calcifications in the brain, the same rats were subjected to 3D X-ray scanning the day after each MRI session, allowing precise measurements of skull size to be carried out. The NVHL rats had smaller skulls; however, the dimensions of the calcifications did not grow more than the skull size over time. The mechanisms underlying the progressive anatomical changes following surgery are discussed, and we propose this in vivo follow-up method to investigate therapeutic strategies aimed at countering or limiting the post-lesion consequences of a neonatal brain damage.
Collapse
Affiliation(s)
- Guy Sandner
- U666 INSERM, Faculté de Médecine, Université de Strasbourg (UDS), France.
| | | | | | | | | |
Collapse
|
40
|
Abstract
The regenerative capacity of injured adult mammalian central nervous system (CNS) tissue is very limited. Disease or injury that causes destruction or damage to neuronal networks typically results in permanent neurological deficits. Injury to the spinal cord, for example, interrupts vital ascending and descending fiber tracts of spinally projecting neurons. Because neuronal structures located proximal or distal to the injury site remain largely intact, a major goal of spinal cord injury research is to develop strategies to reestablish innervation lost as a consequence of injury. The growth inhibitory nature of injured adult CNS tissue is a major barrier to regenerative axonal growth and sprouting. An increasing complexity of molecular players is being recognized. CNS inhibitors fall into three general classes: members of canonical axon guidance molecules (e.g., semaphorins, ephrins, netrins), prototypic myelin inhibitors (Nogo, MAG, and OMgp) and chondroitin sulfate proteoglycans (lecticans, NG2). On the other end of the spectrum are molecules that promote neuronal growth and sprouting. These include growth promoting extracellular matrix molecules, cell adhesion molecules, and neurotrophic factors. In addition to environmental (extrinsic) growth regulatory cues, cell intrinsic regulatory mechanisms exist that greatly influence injury-induced neuronal growth. Various degrees of growth and sprouting of injured CNS neurons have been achieved by lowering extrinsic inhibitory cues, increasing extrinsic growth promoting cues, or by activation of cell intrinsic growth programs. More recently, combination therapies that activate growth promoting programs and at the same time attenuate growth inhibitory pathways have met with some success. In experimental animal models of spinal cord injury (SCI), mono and combination therapies have been shown to promote neuronal growth and sprouting. Anatomical growth often correlates with improved behavioral outcomes. Challenges ahead include testing whether some of the most promising treatment strategies in animal models are also beneficial for human patients suffering from SCI.
Collapse
|
41
|
Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord. J Neurosci 2010; 29:14881-90. [PMID: 19940184 DOI: 10.1523/jneurosci.3641-09.2009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Because there currently is no treatment for spinal cord injury, most patients are living with long-standing injuries. Therefore, strategies aimed at promoting restoration of function to the chronically injured spinal cord have high therapeutic value. For successful regeneration, long-injured axons must overcome their poor intrinsic growth potential as well as the inhibitory environment of the glial scar established around the lesion site. Acutely injured axons that regenerate into growth-permissive peripheral nerve grafts (PNGs) reenter host tissue to mediate functional recovery if the distal graft-host interface is treated with chondroitinase ABC (ChABC) to cleave inhibitory chondroitin sulfate proteoglycans in the scar matrix. To determine whether a similar strategy is effective for a chronic injury, we combined grafting of a peripheral nerve into a highly relevant, chronic, cervical contusion site with ChABC treatment of the glial scar and glial cell line-derived neurotrophic factor (GDNF) stimulation of long-injured axons. We tested this combination in two grafting paradigms: (1) a peripheral nerve that was grafted to span a chronic injury site or (2) a PNG that bridged a chronic contusion site with a second, more distal injury site. Unlike GDNF-PBS treatment, GDNF-ChABC treatment facilitated axons to exit the PNG into host tissue and promoted some functional recovery. Electrical stimulation of axons in the peripheral nerve bridge induced c-Fos expression in host neurons, indicative of synaptic contact by regenerating fibers. Thus, our data demonstrate, for the first time, that administering ChABC to a distal graft interface allows for functional axonal regeneration by chronically injured neurons.
Collapse
|
42
|
Hooshmand MJ, Sontag CJ, Uchida N, Tamaki S, Anderson AJ, Cummings BJ. Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery. PLoS One 2009; 4:e5871. [PMID: 19517014 PMCID: PMC2690693 DOI: 10.1371/journal.pone.0005871] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 04/22/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human central nervous system-stem cells grown as neurospheres (hCNS-SCns) self-renew, are multipotent, and have potential therapeutic applications following trauma to the spinal cord. We have previously shown locomotor recovery in immunodeficient mice that received a moderate contusion spinal cord injury (SCI) and hCNS-SCns transplantation 9 days post-injury (dpi). Engrafted hCNS-SCns exhibited terminal differentiation to myelinating oligodendrocytes and synapse-forming neurons. Further, selective ablation of human cells using Diphtheria toxin (DT) abolished locomotor recovery in this paradigm, suggesting integration of human cells within the mouse host as a possible mechanism for the locomotor improvement. However, the hypothesis that hCNS-SCns could alter the host microenvironment as an additional or alternative mechanism of recovery remained unexplored; we tested that hypothesis in the present study. METHODS AND FINDINGS Stereological quantification of human cells using a human-specific cytoplasmic marker demonstrated successful cell engraftment, survival, migration and limited proliferation in all hCNS-SCns transplanted animals. DT administration at 16 weeks post-transplant ablated 80.5% of hCNS-SCns. Stereological quantification for lesion volume, tissue sparing, descending serotonergic host fiber sprouting, chondroitin sulfate proteoglycan deposition, glial scarring, and angiogenesis demonstrated no evidence of host modification within the mouse spinal cord as a result of hCNS-SCns transplantation. Biochemical analyses supplemented stereological data supporting the absence of neural stem-cell mediated host repair. However, linear regression analysis of the number of engrafted hCNS-SCns vs. the number of errors on a horizontal ladder beam task revealed a strong correlation between these variables (r = -0.78, p<0.05), suggesting that survival and engraftment were directly related to a quantitative measure of recovery. CONCLUSIONS Altogether, the data suggest that the locomotor improvements associated with hCNS-SCns transplantation were not due to modifications within the host microenvironment, supporting the hypothesis that human cell integration within the host circuitry mediates functional recovery following a 9 day delayed transplant.
Collapse
Affiliation(s)
- Mitra J. Hooshmand
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - Christopher J. Sontag
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - Nobuko Uchida
- StemCells, Inc., Palo Alto, California, United States of America
| | - Stan Tamaki
- StemCells, Inc., Palo Alto, California, United States of America
| | - Aileen J. Anderson
- Department of Physical Medicine and Rehabilitation, Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
| | - Brian J. Cummings
- Department of Physical Medicine and Rehabilitation, Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Rahim AA, Wong AMS, Howe SJ, Buckley SMK, Acosta-Saltos AD, Elston KE, Ward NJ, Philpott NJ, Cooper JD, Anderson PN, Waddington SN, Thrasher AJ, Raivich G. Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors. Gene Ther 2009; 16:509-20. [PMID: 19158847 DOI: 10.1038/gt.2008.186] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Non-integrating lentiviral vectors show considerable promise for gene therapy applications as they persist as long-term episomes in non-dividing cells and diminish risks of insertional mutagenesis. In this study, non-integrating lentiviral vectors were evaluated for their use in the adult and fetal central nervous system of rodents. Vectors differentially pseudotyped with vesicular stomatitis virus, rabies and baculoviral envelope proteins allowed targeting of varied cell populations. Efficient gene delivery to discrete areas of the brain and spinal cord was observed following stereotactic administration. Furthermore, after direct in utero administration (E14), sustained and strong expression was observed 4 months into adulthood. Quantification of transduction and viral copy number was comparable when using non-integrating lentivirus and conventional integrating vector. These data support the use of non-integrating lentiviral vectors as an effective alternative to their integrating counterparts in gene therapy applications, and highlight their potential for treatment of inherited and acquired neurological disorders.
Collapse
Affiliation(s)
- A A Rahim
- Perinatal Brain Protection and Repair Group, Department of Obstetrics and Gynaecology, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cafferty WBJ, Bradbury EJ, Lidierth M, Jones M, Duffy PJ, Pezet S, McMahon SB. Chondroitinase ABC-mediated plasticity of spinal sensory function. J Neurosci 2008; 28:11998-2009. [PMID: 19005065 PMCID: PMC3844838 DOI: 10.1523/jneurosci.3877-08.2008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/09/2008] [Indexed: 01/15/2023] Open
Abstract
Experimental therapeutics designed to enhance recovery from spinal cord injury (SCI) primarily focus on augmenting the growth of damaged axons by elevating their intrinsic growth potential and/or by nullifying the influence of inhibitory proteins present in the mature CNS. However, these strategies may also influence the wiring of intact pathways. The direct contribution of such effects to functional restoration after injury has been mooted, but as yet not been described. Here, we provide evidence to support the hypothesis that reorganization of intact spinal circuitry enhances function after SCI. Adult rats that underwent unilateral cervical spared-root lesion (rhizotomy of C5, C6, C8, and T1, sparing C7) exhibited profound sensory deficits for 4 weeks after injury. Delivery of a focal intraspinal injection of the chondroitin sulfate proteoglycan-degrading enzyme chondroitinase ABC (ChABC) was sufficient to restore sensory function after lesion. In vivo electrophysiological recordings confirm that behavioral recovery observed in ChABC-treated rats was consequent on reorganization of intact C7 primary afferent terminals and not regeneration of rhizotomized afferents back into the spinal cord within adjacent segments. These data confirm that intact spinal circuits have a profound influence on functional restoration after SCI. Furthermore, comprehensive understanding of these targets may lead to therapeutic interventions that can be spatially tailored to specific circuitry, thereby reducing unwanted maladaptive axon growth of distal pathways.
Collapse
Affiliation(s)
- William B. J. Cafferty
- Neurorestoration Group, The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Elizabeth J. Bradbury
- Neurorestoration Group, The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Malcolm Lidierth
- Neurorestoration Group, The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Martyn Jones
- Neurorestoration Group, The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Philip J. Duffy
- Neurorestoration Group, The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Sophie Pezet
- Neurorestoration Group, The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Stephen B. McMahon
- Neurorestoration Group, The Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
45
|
Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2008; 17:1256-69. [PMID: 18677518 DOI: 10.1007/s00586-008-0729-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
Abstract
Structural discontinuity in the spinal cord after injury results in a disruption in the impulse conduction resulting in loss of various bodily functions depending upon the level of injury. This article presents a summary of the scientific research employing electrical stimulation as a means for anatomical or functional recovery for patients suffering from spinal cord injury. Electrical stimulation in the form of functional electrical stimulation (FES) can help facilitate and improve upper/lower limb mobility along with other body functions lost due to injury e.g. respiratory, sexual, bladder or bowel functions by applying a controlled electrical stimulus to generate contractions and functional movement in the paralysed muscles. The available rehabilitative techniques based on FES technology and various Food and Drug Administration, USA approved neuroprosthetic devices that are in use are discussed. The second part of the article summarises the experimental work done in the past 2 decades to study the effects of weakly applied direct current fields in promoting regeneration of neurites towards the cathode and the new emerging technique of oscillating field stimulation which has shown to promote bidirectional regeneration in the injured nerve fibres. The present article is not intended to be an exhaustive review but rather a summary aiming to highlight these two applications of electrical stimulation and the degree of anatomical/functional recovery associated with these in the field of spinal cord injury research.
Collapse
|
46
|
Giszter S, Davies MR, Ramakrishnan A, Udoekwere UI, Kargo WJ. Trunk sensorimotor cortex is essential for autonomous weight-supported locomotion in adult rats spinalized as P1/P2 neonates. J Neurophysiol 2008; 100:839-51. [PMID: 18509082 PMCID: PMC2525706 DOI: 10.1152/jn.00866.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 05/28/2008] [Indexed: 11/22/2022] Open
Abstract
Unlike adult spinalized rats, approximately 20% of rats spinalized as postnatal day 1 or 2 (P1/P2) neonates achieve autonomous hindlimb weight support. Cortical representations of mid/low trunk occur only in such rats with high weight support. However, the importance of hindlimb/trunk motor cortex in function of spinalized rats remains unclear. We tested the importance of trunk sensorimotor cortex in their locomotion using lesions guided by cortical microstimulation in P1/P2 weight-supporting neonatal spinalized rats and controls. In four intact control rats, lesions of hindlimb/trunk cortex caused no treadmill deficits. All spinalized rats lesioned in trunk cortex (n = 16: 4 transplant, 6 transect, 6 transect + fibrin glue) lost an average of about 40% of their weight support. Intact trunk cortex was essential to their level of function. Lesion of trunk cortex substantially increased roll of the hindquarters, which correlated to diminished weight support, but other kinematic stepping parameters showed little change. Embryonic day 14 (E14) transplants support development of the trunk motor representations in their normal location. We tested the role of novel relay circuits arising from the grafts in such cortical representations in E14 transplants using the rats that received (noncellular) fibrin glue grafting at P1/P2 (8 allografts and 32 xenografts). Fibrin-repaired rats with autonomous weight support also had trunk cortical representations similar to those of E14 transplant rats. Thus acellular repair and intrinsic plasticity were sufficient to support the observed features. Our data show that effective cortical mechanisms for trunk control are essential for autonomous weight support in P1/P2 spinalized rats and these can be achieved by intrinsic plasticity.
Collapse
Affiliation(s)
- Simon Giszter
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | | | | | | | |
Collapse
|
47
|
Chen A, Wang H, Zhang J, Wu X, Liao J, Li H, Cai W, Luo X, Ju G. BYHWD rescues axotomized neurons and promotes functional recovery after spinal cord injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2008; 117:451-456. [PMID: 18400429 DOI: 10.1016/j.jep.2008.02.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 02/13/2008] [Accepted: 02/19/2008] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BYHWD), a Chinese prescription that has been used for hundreds of years to treat paralysis, has gained attention recently due to its significant neuroprotective properties. AIM OF THE STUDY This study was to investigate whether BYHWD treatment protected axotomized rubrospinal neurons (RN) following spinal cord injury (SCI) in rats. MATERIALS AND METHODS Adult rats received a right lateral funiculus transection at the level between C3 and C4, and were either treated with BYHWD or with distilled water (DW) via gastrogavage. Effects on RN viability and atrophy were determined by Nissl staining, axon regeneration was examined by biotinylated dextran amine (BDA) tracing techniques and functional recovery was studied by a test of forelimb usage during spontaneous vertical exploration. RESULTS RN cell number and mean somal size were 20% and 29% higher, respectively, in BYHWD-treated rats relative to DW-treated rats. There were a small number of BDA-labeled axons in the caudal of injury site in BYHWD-treated rats, whereas no caudal axonal regeneration was detected in DW-treated rats. BYHWD-treated rats used the injured forelimb more often than rats treated with DW. CONCLUSIONS These results indicate that administration of BYHWD following SCI protects injured neurons, promotes regeneration, and enhances functional recovery.
Collapse
Affiliation(s)
- An Chen
- Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Al-Izki S, Kirkwood PA, Lemon RN, Enríquez Denton M. Electrophysiological actions of the rubrospinal tract in the anaesthetised rat. Exp Neurol 2008; 212:118-31. [PMID: 18501352 DOI: 10.1016/j.expneurol.2008.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/06/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
The rubrospinal tract (RST) of the rat is widely used in studies of regeneration and plasticity, but the electrophysiology of its spinal actions has not been described. In anaesthetised rats with neuromuscular blockade, a tungsten microelectrode was located in the region of the red nucleus (RN) by combining stereotaxis with recording of antidromic potentials evoked from the contralateral spinal cord. Single stimuli through this electrode typically elicited two descending volleys in the contralateral dorsolateral funiculus (DLF) separated by about 1 ms, and one volley recorded from the ipsilateral DLF. Latencies of the ipsilateral and the early contralateral volley were similar. The activation of these volleys depended on the location of the stimulation site in or near the RN. Evidence is adduced to show that: (a) the late contralateral volley is carried by fibres of RST neurones, synaptically activated; (b) the early contralateral volley is mostly carried by RST fibres stimulated directly; (c) the ipsilateral volley is sometimes carried by RST fibres from the RN on the side contralateral to the stimulus; (d) otherwise, either early volley may derive from fibres in other tracts. Synaptic potentials related to the volleys were recorded within the cervical enlargement and their distribution plotted on cross-sections of the spinal cord. These measurements suggest that the great majority of RST terminations are on interneurones in the intermediate region contralateral to the RN. Direct synaptic actions on motoneurones are likely to be weak. Stimulation parameters appropriate for specific activation of the RST in future studies are suggested.
Collapse
Affiliation(s)
- Sarah Al-Izki
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | | | | | | |
Collapse
|
49
|
Abstract
In this review, we describe the current therapeutic strategies to find a cure for paralysis. We use the example of DHEA, a neurosteroid normally produced in the developing neural tube, to raise the hypothesis that such a class of molecules, capable of modulating proliferation of committed neural precursors, could serve as an environmental cue in the adult injured spinal cord to promote re-population of CNS lesion with endogenous dormant precursor cells. Such mechanism may be a part of the natural response to heal the injured CNS and promote recovery of function, suggesting that neurosteroid-treatment could be a promising and novel therapeutic avenue for SCI. We will review pertinent biological activities of DHEA supporting this hypothesis, demonstrate that such activities, dependent on an intact sonic-hedgehog pathway, are responsible for the motor and bladder functional recovery observed after DHEA-treatment in the adult injured spinal cord. We will also raise the current limitations to further development of DHEA- or other neurosteroid-treatments as drug candidates, including the urgent need to further document DHEA long-term safety in CNS indications.
Collapse
Affiliation(s)
- Nathalie A Compagnone
- University of California San Francisco, Laboratory for Spinal Cord Development and Regeneration, Department of Neurological Surgery, CA, USA.
| |
Collapse
|
50
|
Chiaretti A, Ausili E, Di Rocco C, Antonelli A, Tabacco F, Focarelli B, Rendeli C. Neurotrophic factor expression in newborns with myelomeningocele: preliminary data. Eur J Paediatr Neurol 2008; 12:113-8. [PMID: 17881265 DOI: 10.1016/j.ejpn.2007.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 07/12/2007] [Accepted: 07/12/2007] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neurotrophic factors play a crucial role in the stimulation of sprouting, synaptic plasticity and reorganization after spinal cord damage. The aim of this study was to investigate the expression of some neurotrophic factors [brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), and nerve growth factor (NGF)] in the cerebrospinal fluid (CSF) of newborns with myelomeningocele (MMC) and to determine their correlations with this malformation. METHODS To measure the expression of BDNF, GDNF, and NGF, we collected CSF samples of six newborns during the neurosurgical operation to correct the open MMC and of 10 matched controls. Endogenous neurotrophic factor levels were quantified using a two-site immuno-enzymatic assay. The statistical analysis was performed using the Mann-Whitney two-tailed two-sample test. FINDINGS In the CSF of patients analysis of neurotrophic factor expression showed a significant increase of BDNF, GDNF, and NGF compared to the mean level of the control group (445.8+/-82.3, 86.5+/-2.6, and 59.9+/-6.2 pg/mL, respectively, respect to 10.2+/-5.9, 19.9+/-11.3, and 15.3+/-2.6 pg/mL) (p<0.001). INTERPRETATION Our study shows an over-expression of neurotrophic factors in the CSF of newborns with MMC. This neurotrophin up-regulation may stimulate axonal sprouting and synaptic reorganization of the damaged neural cells at the site of spinal cord lesion. The neurotrophic factor up-regulation may represent a particularly important biochemical markers of spinal cord damage and might be associated with the severity of spine injury in MMC patients.
Collapse
Affiliation(s)
- A Chiaretti
- Department of Paediatric Science, Catholic University Medical School, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|