1
|
Trainito A, Gugliandolo A, Chiricosta L, Salamone S, Pollastro F, Mazzon E, Lui M. Cannabinol Regulates the Expression of Cell Cycle-Associated Genes in Motor Neuron-like NSC-34: A Transcriptomic Analysis. Biomedicines 2024; 12:1340. [PMID: 38927547 PMCID: PMC11201772 DOI: 10.3390/biomedicines12061340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids are reported to have neuroprotective properties and play a role in neurogenesis and neuroplasticity in in vitro and in vivo models. Cannabinol (CBN) is a minor cannabinoid produced by the degradation of Δ9-tetrahydrocannabinol in Cannabis sativa L. and exhibits anti-oxidant, analgesic, anti-bacterial, and anti-inflammatory effects. In this study, we explored the biological effects of 20 µM CBN (6.20 µg/mL) on differentiated NSC-34 cells by MTT assay and next-generation sequencing analysis on the transcriptome. KEGG and Gene Ontology enrichment analyses have been performed to evaluate potential CBN-associated processes. Our results highlighted the absence of any cytotoxic effect of CBN. The comparative transcriptomic analysis pointed out the downregulation of Cdkn2a, Cdkn2c and Cdkn2d genes, which are known to suppress the cell cycle. Ccne2, Cdk2, Cdk7, Anapc11, Anapc10, Cdc23, Cdc16, Anapc4, Cdc27, Stag1, Smc3, Smc1a, Nipbl, Pds5a, Pds5b, and Wapl genes, renowned for their role as cell cycle progression activators, were instead upregulated. Our work suggests that CBN regulates the expression of many genes related to the cell cycle, which are required for axonal maturation, migration, and synaptic plasticity, while not affecting the expression of genes involved in cell death or tumorigenesis.
Collapse
Affiliation(s)
- Alessandra Trainito
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; (S.S.); (F.P.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy; (S.S.); (F.P.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| | - Maria Lui
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.T.); (A.G.); (M.L.)
| |
Collapse
|
2
|
González-Cota AL, Martínez-Flores D, Rosendo-Pineda MJ, Vaca L. NMDA receptor-mediated Ca 2+ signaling: Impact on cell cycle regulation and the development of neurodegenerative diseases and cancer. Cell Calcium 2024; 119:102856. [PMID: 38408411 DOI: 10.1016/j.ceca.2024.102856] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
NMDA receptors are Ca2+-permeable ligand-gated ion channels that mediate fast excitatory transmission in the central nervous system. NMDA receptors regulate the proliferation and differentiation of neural progenitor cells and also play critical roles in neural plasticity, memory, and learning. In addition to their physiological role, NMDA receptors are also involved in glutamate-mediated excitotoxicity, which results from excessive glutamate stimulation, leading to Ca2+ overload, and ultimately to neuronal death. Thus, NMDA receptor-mediated excitotoxicity has been linked to several neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, dementia, and stroke. Interestingly, in addition to its effects on cell death, aberrant expression or activation of NMDA receptors is also involved in pathological cellular proliferation, and is implicated in the invasion and proliferation of various types of cancer. These disorders are thought to be related to the contribution of NMDA receptors to cell proliferation and cell death through cell cycle modulation. This review aims to discuss the evidence implicating NMDA receptor activity in cell cycle regulation and the link between aberrant NMDA receptor activity and the development of neurodegenerative diseases and cancer due to cell cycle dysregulation. The information presented here will provide insights into the signaling pathways and the contribution of NMDA receptors to these diseases, and suggests that NMDA receptors are promising targets for the prevention and treatment of these diseases, which are leading causes of death and disability worldwide.
Collapse
Affiliation(s)
- Ana L González-Cota
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Daniel Martínez-Flores
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Margarita Jacaranda Rosendo-Pineda
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Luis Vaca
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| |
Collapse
|
3
|
Jia X, Chen Q, Yao C, Asakawa T, Zhang Y. α-synuclein regulates Cyclin D1 to promote abnormal initiation of the cell cycle and induce apoptosis in dopamine neurons. Biomed Pharmacother 2024; 173:116444. [PMID: 38503238 DOI: 10.1016/j.biopha.2024.116444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The etiology of Parkinson's disease (PD) is characterized by the death of dopamine neurons in the substantia nigra pars compacta, while misfolding and abnormal aggregation of α-synuclein (α-syn) are core pathological features. Previous studies have suggested that damage to dopamine neurons may be related to cell cycle dysregulation, but the specific mechanisms remain unclear. In this study, a PD mouse model was induced by stereotactic injection of α-syn into the nucleus, and treated with the cell cycle inhibitor, roscovitine (Rosc). The results demonstrated that Rosc improved behavioral disorders caused by α-syn, increased TH protein expression, inhibited α-syn and p-α-syn protein expression, and reduced the expression levels of G1/S phase cell cycle genes Cyclin D1, Cyclin E, CDK2, CDK4, E2F and pRB. Additionally, Rosc decreased Bax and Caspase-3 expression caused by α-syn, while increasing Bcl-2 protein expression. Meanwhile, we observed that α-syn can influence neuronal cell autophagy by decreasing the expression level of Beclin 1 and increasing the expression level of P62. However, Rosc can improve this phenomenon. In a cell model induced by α-syn in dopamine neuron injury cells, knockdown of Cyclin D1 led to similar results as those observed in animal experiments: Knocking down Cyclin D1 improved the abnormal initiation of the cell cycle caused by α-syn and regulated cellular autophagy, resulting in a reduction of apoptosis in dopamine neurons. In summary, exogenous α-syn can lead to the accumulation of α-syn and phosphorylated α-syn in dopamine neurons, increase key factors of the G1/S phase cell cycle such as Cyclin D1, and regulate downstream related indicators, causing the cell cycle to restart and leading to apoptosis of dopamine neurons. This exacerbates PD symptoms. However, knockdown of Cyclin D1 inhibits the progression of the cell cycle and can reverse this situation. These findings suggest that a Cyclin D inhibitor may be a novel therapeutic target for treating PD.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ciyu Yao
- Department of Dermatology, Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, FuZhou, Fujian 350000, China
| | - Tetsuya Asakawa
- Institute of Neurology, the Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, China.
| | - Yuanyuan Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 518112, China.
| |
Collapse
|
4
|
Abstract
Background: Cell cycle is critical for a wide range of cellular processes such as proliferation, differentiation and apoptosis in dividing cells. Neurons are postmitotic cells which have withdrawn from the cell division cycle. Recent data show us that inappropriate activation of cell cycle regulators including cyclins, cyclin dependent kinases (CDKs) and endogenous cyclin dependent kinase inhibitors (CDKIs) may take part in the aetiology of neurodegenerative diseases. However, the mechanisms for cell cycle reentry in neurodegenerative disease remain unclear.Methods: Electronic databases such as Pubmed, Science Direct, Directory of Open Access Journals, PLOS were searched for relevant articles.Conclusion: The present work reviews basic aspects of cell cycle mechanism, as well as the evidence showing the expression of cell cycle proteins in neurodegenerative disease. We provide a brief summary of these findings and hope to highlight the interaction between the cell cycle reentry and neurodegenerative diseases. Moreover, we outline the possible signaling pathways. However more understanding of the mechanism of cell cycle is of great importance. Because these represents an alternative target for therapeutic interventions, leading to novel treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuxin Song
- School of Integrated Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenpeng Peng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Marlier Q, D'aes T, Verteneuil S, Vandenbosch R, Malgrange B. Core cell cycle machinery is crucially involved in both life and death of post-mitotic neurons. Cell Mol Life Sci 2020; 77:4553-4571. [PMID: 32476056 PMCID: PMC11105064 DOI: 10.1007/s00018-020-03548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
A persistent dogma in neuroscience supported the idea that terminally differentiated neurons permanently withdraw from the cell cycle. However, since the late 1990s, several studies have shown that cell cycle proteins are expressed in post-mitotic neurons under physiological conditions, indicating that the cell cycle machinery is not restricted to proliferating cells. Moreover, many studies have highlighted a clear link between cell cycle-related proteins and neurological disorders, particularly relating to apoptosis-induced neuronal death. Indeed, cell cycle-related proteins can be upregulated or overactivated in post-mitotic neurons in case of acute or degenerative central nervous system disease. Given the considerable lack of effective treatments for age-related neurological disorders, new therapeutic approaches targeting the cell cycle machinery might thus be considered. This review aims at summarizing current knowledge about the role of the cell cycle machinery in post-mitotic neurons in healthy and pathological conditions.
Collapse
Affiliation(s)
- Quentin Marlier
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Tine D'aes
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Sébastien Verteneuil
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Renaud Vandenbosch
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium.
| |
Collapse
|
6
|
Meng L, He M, Xiong M, Zhang X, Nie S, Xiong J, Hu D, Zhang Z, Mao L, Zhang Z. 2',3'-Dideoxycytidine, a DNA Polymerase-β Inhibitor, Reverses Memory Deficits in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 67:515-525. [PMID: 30584144 DOI: 10.3233/jad-180798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The etiology and pathogenesis of Alzheimer's disease (AD) are not fully understood. Thus, there are no drugs available that can provide a cure for it. We and others found that DNA polymerase-β (DNA pol-β) is required for neuronal death in several neurodegenerative models. In the present study, we tested the effect of a DNA pol-β inhibitor 2',3'- Dideoxycytidine (DDC) in AD models both in vitro and in vivo. DDC protected primary neurons from amyloid-β (Aβ)-induced toxicity by inhibiting aberrant DNA replication mediated by DNA pol- β. Chronic oral administration of DDC alleviated Aβ deposition and memory deficits in the Tg2576 mouse model of AD. Moreover, DDC reversed synaptic loss in Tg2576 mice. These results suggest that DDC represents a novel therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingyang He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan Hu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Fahn S, Sulzer D, Kang UJ, Bressman S. In memoriam: Robert E. Burke, MD, 1949–2018. Mov Disord 2019. [DOI: 10.1002/mds.27612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Stanley Fahn
- Division of Movement Disorders, Department of Neurology Columbia University Irving Medical Center New York New York USA
| | - David Sulzer
- Division of Movement Disorders, Department of Neurology Columbia University Irving Medical Center New York New York USA
- Departments of Psychiatry, Neurology and Pharmacology Columbia University Irving Medical Center New York New York USA
| | - Un Jung Kang
- Division of Movement Disorders, Department of Neurology Columbia University Irving Medical Center New York New York USA
| | - Susan Bressman
- Department of Neurology, Beth Israel Campus Mount Sinai Medical Center New York New York USA
| |
Collapse
|
8
|
Oshikawa M, Okada K, Tabata H, Nagata KI, Ajioka I. Dnmt1-dependent Chk1 pathway suppression is protective against neuron division. Development 2017; 144:3303-3314. [PMID: 28928282 DOI: 10.1242/dev.154013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022]
Abstract
Neuronal differentiation and cell-cycle exit are tightly coordinated, even in pathological situations. When pathological neurons re-enter the cell cycle and progress through the S phase, they undergo cell death instead of division. However, the mechanisms underlying mitotic resistance are mostly unknown. Here, we have found that acute inactivation of retinoblastoma (Rb) family proteins (Rb, p107 and p130) in mouse postmitotic neurons leads to cell death after S-phase progression. Checkpoint kinase 1 (Chk1) pathway activation during the S phase prevented the cell death, and allowed the division of cortical neurons that had undergone acute Rb family inactivation, oxygen-glucose deprivation (OGD) or in vivo hypoxia-ischemia. During neurogenesis, cortical neurons became protected from S-phase Chk1 pathway activation by the DNA methyltransferase Dnmt1, and underwent cell death after S-phase progression. Our results indicate that Chk1 pathway activation overrides mitotic safeguards and uncouples neuronal differentiation from mitotic resistance.
Collapse
Affiliation(s)
- Mio Oshikawa
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Kei Okada
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai Aichi 480-0392, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai Aichi 480-0392, Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan .,The Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Abstract
DNA polymerase-β (DNA pol-β) plays a crucial role in the pathogenesis of Parkinson's disease (PD). The aim of this study was to investigate the neuroprotective effects of a DNA polymerase-β inhibitor 2',3'-dideoxycytidine (DDC) in PD models. In the in vitro studies, primary cultured neurons were challenged with 1-methyl-4-phenylpyridinium ion (MPP+). The expression of DNA pol-β was assessed using western blot. The neuroprotective effect of DNA pol-β knockdown and DNA pol-β inhibitor DDC was determined using cell viability assay and caspase-3 activity assay. We found that MPP+ induced neuronal death and the activation of caspase-3 in a dose-dependent manner. The expression of DNA pol-β increased after the neurons were exposed to MPP+. DNA pol-β siRNA or DNA pol-β inhibitor DDC attenuated neuronal death induced by MPP+. In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, MPTP treatment triggered behavioral deficits and nigrostriatal lesions. Pretreatment with DDC attenuated MPTP-induced behavioral deficits, dopaminergic neuronal death and striatal dopamine depletion in the MPTP mouse model. These results indicate that DNA pol-β inhibitors may present a novel promising therapeutic option for the neuroprotective treatment of PD.
Collapse
|
10
|
Ajioka I. Biomaterial-engineering and neurobiological approaches for regenerating the injured cerebral cortex. Regen Ther 2016; 3:63-67. [PMID: 31245474 PMCID: PMC6581816 DOI: 10.1016/j.reth.2016.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/08/2016] [Accepted: 02/12/2016] [Indexed: 01/07/2023] Open
Abstract
The cerebral cortex is responsible for higher functions of the central nervous system (CNS), such as movement, sensation, and cognition. When the cerebral cortex is severely injured, these functions are irreversibly impaired. Although recent neurobiological studies reveal that the cortex has the potential for regeneration, therapies for functional recovery face some technological obstacles. Biomaterials have been used to evoke regenerative potential and promote regeneration in several tissues, including the CNS. This review presents a brief overview of new therapeutic strategies for cortical regeneration from the perspectives of neurobiology and biomaterial engineering, and discusses a promising technology for evoking the regenerative potential of the cerebral cortex.
Collapse
Affiliation(s)
- Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan,The Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan,Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo 113-8510, Japan. Fax: +81 3 5803 4716.
| |
Collapse
|
11
|
Abstract
Neurons are usually regarded as postmitotic cells that undergo apoptosis in response to cell cycle reactivation. Nevertheless, recent evidence indicates the existence of a defined developmental program that induces DNA replication in specific populations of neurons, which remain in a tetraploid state for the rest of their adult life. Similarly, de novo neuronal tetraploidization has also been described in the adult brain as an early hallmark of neurodegeneration. The aim of this review is to integrate these recent developments in the context of cell cycle regulation and apoptotic cell death in neurons. We conclude that a variety of mechanisms exists in neuronal cells for G1/S and G2/M checkpoint regulation. These mechanisms, which are connected with the apoptotic machinery, can be modulated by environmental signals and the neuronal phenotype itself, thus resulting in a variety of outcomes ranging from cell death at the G1/S checkpoint to full proliferation of differentiated neurons.
Collapse
Key Words
- AD, Alzheimer disease
- BDNF, brain-derived neurotrophic factor
- BrdU, 5-bromo-2′-deoxyuridine
- CKI, Cdk-inhibitor
- CNS, central nervous system
- Cdk, cyclin-dependent kinase
- Cip/Kip, cyclin inhibitor protein/kinase inhibitor protein
- G0, quiescent state
- G1, growth phase 1
- G2, growth phase 2
- Ink, inhibitor of kinase
- Mcm2, minichromosome maintenance 2
- PCNA, proliferating cell nuclear antigen
- PD, Parkinson disease
- RGCs, retinal ganglion cells
- Rb, Retinoblastoma
- S-phase
- S-phase, synthesis phase.
- apoptosis
- cell cycle re-entry
- mitosis
- neuron
- p38MAPK, p38 mitogen-activated protein kinase
- p75NTR, neurotrophin receptor p75
- tetraploid
Collapse
Affiliation(s)
- José M Frade
- a Department of Molecular, Cellular and Developmental Neurobiology; Instituto Cajal; Consejo Superior de Investigaciones Científicas (IC-CSIC) ; Madrid , Spain
| | | |
Collapse
|
12
|
The Contribution of Cdc2 in Rotenone-Induced G2/M Arrest and Caspase-3-Dependent Apoptosis. J Mol Neurosci 2013; 53:31-40. [DOI: 10.1007/s12031-013-0185-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/24/2022]
|
13
|
|
14
|
Cell cycle reactivation in mature neurons: a link with brain plasticity, neuronal injury and neurodegenerative diseases? Neurosci Bull 2011; 27:185-96. [PMID: 21614101 DOI: 10.1007/s12264-011-1002-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although the cell cycle machinery is essentially linked to cellular proliferation, recent findings suggest that neuronal cell death is frequently concurrent with the aberrant expression of cell cycle proteins in post-mitotic neurons. The present work reviews the evidence of cell cycle reentry and expression of cell cycle-associated proteins as a complex response of neurons to insults in the adult brain but also as a mechanism underlying brain plasticity. The basic aspects of cell cycle mechanisms, as well as the evidence showing cell cycle protein expression in the injured brain, are reviewed. The discussion includes recent experimental work attempting to establish a correlation between altered brain plasticity and neuronal death, and an analysis of recent evidence on how neural cell cycle dysregulation is related to neurodegenerative diseases especially the Alzheimer's disease. Understanding the mechanisms that control reexpression of proteins required for cell cycle progression which is involved in brain remodeling, may shed new light into the mechanisms involved in neuronal demise under diverse pathological circumstances. This would provide valuable clues about the possible therapeutic targets, leading to potential treatment of presently challenging neurodegenerative diseases.
Collapse
|
15
|
Cai K, Di Q, Shi J, Zhang Y. Dynamic changes of cell cycle elements in the ischemic brain after bone marrow stromal cells transplantation in rats. Neurosci Lett 2009; 467:15-9. [PMID: 19799967 DOI: 10.1016/j.neulet.2009.09.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 12/29/2022]
Abstract
Transplantation of bone marrow stromal cells (BMSCs) improves animal neurological functional recovery after stroke. But the mechanism remains unclear. As cell cycle machinery plays an important role in stroke, we investigated the dynamic changes of cell cycle elements in a rat model of middle cerebral artery occlusion. We found the cell cycle markers, cdk4 along with its activator cyclin D1, and proliferating cell nuclear antigen (PCNA), increased after brain ischemia-reperfusion. Phosphorylation of the retinoblastoma protein (pRb, on ser-795), the cyclin D/cdk4 complex mutual target, was upregulated accordingly. However, intravenously administrated BMSCs facilitated cyclin D1, cdk4, and PCNA decrease in the ischemic cortex. Meanwhile, phospho-pRb (ser-795) was completely inhibited. On the contrary, endogenous cdk inhibitor p27 reduced before but enhanced after BMSCs treatment. These findings suggested BMSCs might modulate cell cycle progression in injured brain via downregulation of the cyclin D1/cdk4/pRb pathway as well as upregulation of p27 level. These results provide another way by which BMSCs may contribute to the recovery from stroke.
Collapse
Affiliation(s)
- Kefu Cai
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, No. 264 Guangzhou Road, Nanjing 210029, China
| | | | | | | |
Collapse
|
16
|
Wang W, Bu B, Xie M, Zhang M, Yu Z, Tao D. Neural cell cycle dysregulation and central nervous system diseases. Prog Neurobiol 2009; 89:1-17. [DOI: 10.1016/j.pneurobio.2009.01.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/04/2008] [Accepted: 01/27/2009] [Indexed: 01/19/2023]
|
17
|
Diaz-Corrales FJ, Asanuma M, Miyazaki I, Miyoshi K, Hattori N, Ogawa N. Dopamine induces supernumerary centrosomes and subsequent cell death through Cdk2 up-regulation in dopaminergic neuronal cells. Neurotox Res 2009; 14:295-305. [PMID: 19073433 DOI: 10.1007/bf03033854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aggregation of proteins in the centrosome is implicated in the pathophysiology of Parkinson's disease. However, the relevance of the centrosome in neurodegeneration is still obscure. Centrosome duplication is initiated by the cyclin E/cyclin-dependent kinase 2 (Cdk2) complex. The present study determined changes in cyclin E or Cdk2 expression and in the centrosomal structure in dopaminergic neuronal CATH.a cells exposed to 50, 100 and 150 micromolar dopamine (DA) for 24 h. DA induced significant increase in Cdk2 protein and cyclin E protein, but not cyclin e mRNA. In DA-treated cells, the intense cyclin E- and Cdk2-immunofluorescence signals were co-localized around large and supernumerary centrosomes, and these two parameters of centrosome amplification were significantly increased compared with the control. Simultaneous co-treatment with DA and a Cdk2 inhibitor blocked centrosome amplification and enhanced cell viability. Our results demonstrated that DA could lead to cyclin E accumulation and Cdk2 up-regulation triggering supernumerary centrosomes and apoptotic cell death.
Collapse
Affiliation(s)
- Francisco J Diaz-Corrales
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Kim TW, Kim H, Sun W. Effects of 6-hydroxydopamine on the Adult Neurogenesis of Dopaminergic Neurons in the Mouse Midbrain. Exp Neurobiol 2009. [DOI: 10.5607/en.2009.18.1.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Tae Woo Kim
- Department of Anatomy, BK21 Program, Korea University College of Medicine, Seoul 136-705, Korea
| | - Hyun Kim
- Department of Anatomy, BK21 Program, Korea University College of Medicine, Seoul 136-705, Korea
| | - Woong Sun
- Department of Anatomy, BK21 Program, Korea University College of Medicine, Seoul 136-705, Korea
| |
Collapse
|
19
|
Arias-Carrión O, Yamada E, Freundlieb N, Djufri M, Maurer L, Hermanns G, Ipach B, Chiu WH, Steiner C, Oertel WH, Höglinger GU. Neurogenesis in substantia nigra of parkinsonian brains? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:279-85. [PMID: 20411786 DOI: 10.1007/978-3-211-92660-4_23] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The clinical motor dysfunction in Parkinson's disease is primarily the consequence of a progressive degeneration of dopaminergic neurons in the substantia nigra of the nigrostriatal pathway. The degeneration of this tract provokes a depletion of dopamine in the striatum, where it is required as a permissive factor for normal motor function. Despite intense investigations, no effective therapy is available to prevent the onset or to halt the progression of the neuronal cell loss. Therefore, recent years have seen research into the mechanisms of endogenous repair processes occurring in the adult brain, particularly in the substantia nigra. Neurogenesis occurs in the adult brain in a constitutive manner under physiological circumstances within two regions: the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. In contrast to these two so-called neurogenic areas, the remainder of the brain is considered to be primarily nonneurogenic in nature, implying that no new neurons are produced there under normal conditions. The occurrence of adult neurogenesis in the substantia nigra under the pathological conditions of Parkinson's disease, however, remains controversial. Here, we review the published evidence of whether adult neurogenesis exists or not within the substantia nigra, where dopaminergic neurons are lost in Parkinson's disease.
Collapse
|
20
|
Cowper-Smith CD, Anger GJA, Magal E, Norman MH, Robertson GS. Delayed administration of a potent cyclin dependent kinase and glycogen synthase kinase 3 beta inhibitor produces long-term neuroprotection in a hypoxia-ischemia model of brain injury. Neuroscience 2008; 155:864-75. [PMID: 18640243 DOI: 10.1016/j.neuroscience.2008.05.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 05/08/2008] [Accepted: 05/30/2008] [Indexed: 12/15/2022]
Abstract
We compared the neuroprotective efficacy of a potent and CNS-penetrant cyclin dependent kinase (CDK) and glycogen synthase kinase 3 beta (GSK3beta) inhibitor (Compound 1) in juvenile (postnatal day 21; P21) and adult C57Bl/6 mice (postnatal day 60; P60) using a model of hypoxic-ischemic brain injury (HI). Neuronal cell counts and density measures from brain sections stained with Cresyl Violet revealed that exposure of P21 mice to 60 min of HI resulted in extensive damage to the ipsilateral cornu ammonis 1 (CA1) region of the hippocampus (40% cell loss) and striatum (30% cell loss) 7 days later. Exposure of P60 mice to 40 min of HI produced a similar pattern of cell loss. Intraperitoneal administration of Compound 1 (3 mg/kg) 1, 5 and 9 h after 60 min of HI did not reduce brain injury in P21 mice relative to vehicle controls. By contrast, in P60 mice, this treatment significantly decreased cell loss in the ipsilateral hippocampus (10% cell loss) and striatum (15% loss) relative to vehicle controls. Terminal uridine deoxynucleotidyl transferase (TUNNEL) positive cell counts and infarct volume were also substantially reduced in P60 mice treated with Compound 1. A motor coordination test performed twice weekly until 5 weeks post-HI confirmed that Compound 1 produced long lasting functional recovery. Our results indicate that Compound 1 produced long lasting neuroprotective effects in adult but not juvenile mice suggesting that inhibition of the CDKs and GSK3beta plays a distinct neuroprotective role in the juvenile and adult brain.
Collapse
Affiliation(s)
- C D Cowper-Smith
- Department of Pharmacology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | | | | | |
Collapse
|
21
|
Emerging restorative treatments for Parkinson's disease. Prog Neurobiol 2008; 85:407-32. [PMID: 18586376 DOI: 10.1016/j.pneurobio.2008.05.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Revised: 04/03/2008] [Accepted: 05/06/2008] [Indexed: 01/18/2023]
Abstract
Several exciting approaches for restorative therapy in Parkinson's disease have emerged over the past two decades. This review initially describes experimental and clinical data regarding growth factor administration. We focus on glial cell line-derived neurotrophic factor (GDNF), particularly its role in neuroprotection and in regeneration in Parkinson's disease. Thereafter, we discuss the challenges currently facing cell transplantation in Parkinson's disease and briefly consider the possibility to continue testing intrastriatal transplantation of fetal dopaminergic progenitors clinically. We also give a more detailed overview of the developmental biology of dopaminergic neurons and the potential of certain stem cells, i.e. neural and embryonic stem cells, to differentiate into dopaminergic neurons. Finally, we discuss adult neurogenesis as a potential tool for restoring lost dopamine neurons in patients suffering from Parkinson's disease.
Collapse
|
22
|
Rashidian J, Iyirhiaro GO, Park DS. Cell cycle machinery and stroke. Biochim Biophys Acta Mol Basis Dis 2007; 1772:484-93. [PMID: 17241774 DOI: 10.1016/j.bbadis.2006.11.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 11/22/2006] [Accepted: 11/29/2006] [Indexed: 11/30/2022]
Abstract
Stroke results from a transient or permanent reduction in blood flow to the brain. The mechanisms involving neuronal death following ischemic insult are complex and not fully understood. One signal which may control ischemic neuronal death is the inappropriate activation of cell cycle regulators including cyclins, cyclin dependent kinases (CDKs) and endogenous cyclin dependent kinase inhibitors (CDKIs). In dividing cells, activation of cell cycle machinery induces cell proliferation. In the context of terminally differentiated-neurons, however, aberrant activation of these elements triggers neuronal death. Indeed, there are several lines of correlative and functional evidence supporting this "cell cycle/neuronal death hypothesis". The objective of this review is to summarize the findings implicating cell cycle machinery in ischemic neuronal death from in vitro and in vivo studies. Importantly, determining and blocking the signaling pathway(s) by which these molecules act to mediate ischemic neuronal death, in conjunction with other targets may provide a viable therapeutic strategy for stroke damage.
Collapse
Affiliation(s)
- J Rashidian
- Ottawa Health Research Institute, Neuroscience Group, Centre for Stroke Recovery, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | | | | |
Collapse
|
23
|
|
24
|
Höglinger GU, Breunig JJ, Depboylu C, Rouaux C, Michel PP, Alvarez-Fischer D, Boutillier AL, DeGregori J, Oertel WH, Rakic P, Hirsch EC, Hunot S. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proc Natl Acad Sci U S A 2007; 104:3585-90. [PMID: 17360686 PMCID: PMC1805567 DOI: 10.1073/pnas.0611671104] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Indexed: 02/04/2023] Open
Abstract
The mechanisms leading to degeneration of dopaminergic neurons (DNs) in the substantia nigra of patients with Parkinson's disease (PD) are not completely understood. Here, we show, in the postmortem human tissue, that these neurons aberrantly express mitosis-associated proteins, including the E2F-1 transcription factor, and appear to duplicate their nuclear DNA. We further demonstrate that the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injected into mice and application of its active metabolite 1-methyl-4-phenylpyridinium to mesencephalic cultures activate the retinoblastoma-E2F pathway in postmitotic DNs. We also find that cell death rather than mitotic division followed the toxin-induced replication of DNA, as determined by BrdU incorporation in DNs. In addition, blocking E2F-1 transcription protected cultured DNs against 1-methyl-4-phenylpyridinium toxicity. Finally, E2F-1-deficient mice were significantly more resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic cell death than their wild-type littermates. Altogether, BrdU incorporation in mature neurons and lack of evidence for newborn neurons argue against neuronal turnover in normal conditions or during pathological states in the substantia nigra. Instead, our results demonstrate that mitosis-like signals are activated in mature DNs in patients with PD and mediate neuronal death in experimental models of the disease. Inhibition of mitosis-like signals may therefore provide strategies for neuroprotection in PD.
Collapse
Affiliation(s)
- Günter U. Höglinger
- *Department of Experimental Neurology, Philipps University, 35039 Marburg, Germany
- Department of Experimental Neurology and Therapeutics, Unité Mixte de Recherche 679, Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France
- Faculté de Médecine, Unité Mixte de Recherche 679, Université Pierre et Marie Curie-Paris, 75013 Paris, France
| | - Joshua J. Breunig
- Department of Neurobiology, Yale University School of Medicine, and
- Kavli Institute for Neuroscience, Yale University, New Haven, CT 06510
| | - Candan Depboylu
- *Department of Experimental Neurology, Philipps University, 35039 Marburg, Germany
| | - Caroline Rouaux
- **Laboratoire de Signalisations Moléculaires et Neurodegenerescence, Unité Mixte de Recherche 692, Institut National de la Santé et de la Recherche Médicale, F-67085 Strasbourg, France; and
| | - Patrick P. Michel
- Department of Experimental Neurology and Therapeutics, Unité Mixte de Recherche 679, Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France
- Faculté de Médecine, Unité Mixte de Recherche 679, Université Pierre et Marie Curie-Paris, 75013 Paris, France
| | | | - Anne-Laurence Boutillier
- **Laboratoire de Signalisations Moléculaires et Neurodegenerescence, Unité Mixte de Recherche 692, Institut National de la Santé et de la Recherche Médicale, F-67085 Strasbourg, France; and
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, CO 80262
| | - Wolfgang H. Oertel
- *Department of Experimental Neurology, Philipps University, 35039 Marburg, Germany
| | - Pasko Rakic
- Department of Neurobiology, Yale University School of Medicine, and
- Kavli Institute for Neuroscience, Yale University, New Haven, CT 06510
| | - Etienne C. Hirsch
- Department of Experimental Neurology and Therapeutics, Unité Mixte de Recherche 679, Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France
- Faculté de Médecine, Unité Mixte de Recherche 679, Université Pierre et Marie Curie-Paris, 75013 Paris, France
| | - Stéphane Hunot
- Department of Experimental Neurology and Therapeutics, Unité Mixte de Recherche 679, Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France
- Faculté de Médecine, Unité Mixte de Recherche 679, Université Pierre et Marie Curie-Paris, 75013 Paris, France
| |
Collapse
|
25
|
Abstract
Dopamine is an important neurotransmitter implicated in the regulation of mood, motivation and movement. We have reviewed here recent data suggesting that dopamine, in addition to being a neurotransmitter, also plays a role in the regulation of endogenous neurogenesis in the adult mammalian brain. In addition, we approach a highly controversial question: can the adult human brain use neurogenesis to replace the dopaminergic neurones in the substantia nigra that are lost in Parkinson's disease?
Collapse
Affiliation(s)
- Andreas Borta
- Experimental Neurology, Philipps University, Marburg, Germany
| | | |
Collapse
|
26
|
Chong ZZ, Li F, Maiese K. Attempted cell cycle induction in post-mitotic neurons occurs in early and late apoptotic programs through Rb, E2F1, and caspase 3. Curr Neurovasc Res 2006; 3:25-39. [PMID: 16472123 PMCID: PMC1986668 DOI: 10.2174/156720206775541741] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Either the absence or dysfunction of a number of critical pathways, such as those that involve the nuclear retinoblastoma protein (Rb) and the transcription factor E2F1, may account for the aberrant induction of the cell cycle in post-mitotic neurons that can be responsible for oxidative stress-induced apoptotic cellular destruction. Yet, it is unclear whether early programs of apoptotic injury that involve membrane phosphatidylserine (PS) exposure and calreticulin expression as well as later phases of apoptotic injury with nuclear DNA injury require the critical modulation of Rb and E2F1. We demonstrate that both the post-translational of phosphorylation of Rb to prevent E2F1 transcription as well as the protein integrity of Rb are closely aligned with the modulation of cell cycle induction in post mitotic neurons during oxidative stress. More importantly, we illustrate that both the initial onset of apoptosis with either membrane PS exposure or calreticulin analysis as well as the more terminal phases of apoptosis that involve nuclear DNA degradation proceed concurrently in the same neuronal cells with cell cycle induction. Progression of attempted cell cycle induction is closely associated with the phosphorylation of Rb, its inability to bind to E2F1, and the degradation of the Rb protein. Inhibition of Rb phosphorylation using cyclin dependent kinase inhibitors maintains the integrity of the E2F1/Rb complex and is neuroprotective during free radical exposure. Furthermore, maintenance of the integrity of the Rb protein is specifically dependent upon caspase 3-like activity, since caspase 3 can cleave Rb during free radical activity and this degradation of Rb can be blocked during the inhibition of caspase 3 activity. Our studies not only highlight the critical role of attempted cell cycle induction during oxidative stress-induced neuronal apoptotic injury, but also bring to light the significant impact of the Rb and E2F1 pathways upon early apoptotic programs that can directly influence both intrinsic cell survival as well as extrinsic inflammatory cell activation.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Faqi Li
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201
- Departments of Neurology and Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201
- Center for Molecular and Cellular Toxicology, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
27
|
Shan X, Chi L, Bishop M, Luo C, Lien L, Zhang Z, Liu R. Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease-like mice. Stem Cells 2006; 24:1280-7. [PMID: 16424396 PMCID: PMC1840319 DOI: 10.1634/stemcells.2005-0487] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research reports on de novo neurogenesis, particularly dopaminergic (DA) neurogenesis in the adult mammalian substantia nigra (SN), remain very controversial. For this reason, we used the nestin second intron enhancer-controlled LacZ reporter transgenic mouse model coupled with the 1-methyl-4-phyenyl-1,2,3,6-tetrahydropyridine (MPTP) lesion system to investigate whether there are neurogenesis and DA neurogenesis in the SN of the adult normal and Parkinson's disease (PD)-like mice. First, we demonstrated the presence of neural progenitor cells (NPCs), basal levels of neurogenesis, and DA neurogenesis in the normal adult mouse SN. Second, we showed that there is not only a significant increase in the number of NPCs but also a dramatic increase of neurogenesis from the NPCs in the SN and the midline region adjacent to the SN of the PD-like mice compared with that of normal controls. More importantly, we also demonstrated that there is an increase of DA neurogenesis in the SN of the MPTP-lesioned mice. Third, we showed that the increased DA neurogenesis in the MPTP-lesioned mice was derived from the NPCs and 5-bromodeoxyuridine-positive cells, suggesting that multiple stem cell lineages may contribute to the enhanced neurogenesis in the adult SN. Taken together, these results establish that there are basal levels, albeit low, and increased levels of de novo neurogenesis and DA neurogenesis in the SN of the adult normal and PD-like mice, respectively. The increased NPCs in the MPTP-lesioned mice further suggest that experimental approaches to promote de novo neurogenesis may provide an effective therapy for PD by functional replacement of degenerated DA neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rugao Liu
- *Corresponding author: Rugao Liu, Ph.D., Department of Anatomy and Cell Biology, University of North Dakota School of Medicine, Grand Forks, ND 58202, Telephone: (701)-777-2559; Fax: (701)-777-2477, E-mail:
| |
Collapse
|
28
|
Abstract
Adult neurogenesis is studied in vivo using thymidine analogues such as bromodeoxyuridine (BrdU) to label DNA synthesis during the S phase of the cell cycle. However, BrdU may also label DNA synthesis events not directly related to cell proliferation, such as DNA repair and/or abortive reentry into the cell cycle, which can occur as part of an apoptotic process in postmitotic neurons. In this study, we used three well-characterized models of injury-induced neuronal apoptosis and the combined visualization of cell birth (BrdU labeling) and death (Tdt-mediated dUTP-biotin nick end labeling) to investigate the specificity of BrdU incorporation in the adult mouse brain in vivo. We present evidence that BrdU is not significantly incorporated during DNA repair and that labeling is not detected in vulnerable or dying postmitotic neurons, even when a high dose of BrdU is directly infused into the brain. These findings have important implications for a controversy surrounding adult neurogenesis: the connection between cell cycle reactivation and apoptosis of terminally differentiated neurons.
Collapse
Affiliation(s)
- Sylvian Bauer
- Biology Division, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
29
|
Diaz-Corrales FJ, Asanuma M, Miyazaki I, Miyoshi K, Ogawa N. Rotenone induces aggregation of gamma-tubulin protein and subsequent disorganization of the centrosome: relevance to formation of inclusion bodies and neurodegeneration. Neuroscience 2005; 133:117-35. [PMID: 15893636 DOI: 10.1016/j.neuroscience.2005.01.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 01/25/2005] [Accepted: 01/26/2005] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders are characterized by progressive loss of specific neurons in the central nervous system. Although they have different etiologies and clinical manifestations, most of them share similar histopathologic characteristics such as the presence of inclusion bodies in both neurons and glial cells, which represent intracellular aggregation of misfolded or aberrant proteins. In Parkinson's disease, formation of inclusion bodies has been associated with the aggresome-related process and consequently with the centrosome. However, the significance of the centrosome in the neurodegenerative process remains obscure. In the present study, the morphological and functional changes in the centrosome induced by rotenone, a common insecticide used to produce experimental Parkinsonism, were examined both in vitro and in vivo. Aggregation of gamma-tubulin protein, which is a component of the centrosome matrix and recently identified in Lewy bodies of Parkinson's disease, was observed in primary cultures of mesencephalic cells treated with rotenone. Rotenone-treated neurons and astrocytes showed enlarged and multiple centrosomes. These centrosomes also displayed multiple aggregates of alpha-synuclein protein. Neurons with disorganized centrosomes exhibited neurite retraction and microtubule destabilization, and astrocytes showed disturbances of mitotic spindles. The Golgi apparatus, which is closely related to the centrosome, was dispersed in both rotenone-treated neuronal cells and the substantia nigra of rotenone-treated rats. Our findings suggested that recruitment of abnormal proteins in the centrosome contributed to the formation of inclusion bodies, and that rotenone markedly affected the structure and function of the centrosome with consequent induction of cytoskeleton disturbances, disassembly of the Golgi apparatus and collapse of neuronal cells.
Collapse
Affiliation(s)
- F J Diaz-Corrales
- Department of Brain Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikatacho, Okayama 700-8558, Japan
| | | | | | | | | |
Collapse
|
30
|
Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 2005; 75:207-46. [PMID: 15882775 DOI: 10.1016/j.pneurobio.2005.02.004] [Citation(s) in RCA: 421] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 02/16/2005] [Accepted: 02/16/2005] [Indexed: 01/28/2023]
Abstract
Despite our present knowledge of some of the cellular pathways that modulate central nervous system injury, complete therapeutic prevention or reversal of acute or chronic neuronal injury has not been achieved. The cellular mechanisms that precipitate these diseases are more involved than initially believed. As a result, identification of novel therapeutic targets for the treatment of cellular injury would be extremely beneficial to reduce or eliminate disability from nervous system disorders. Current studies have begun to focus on pathways of oxidative stress that involve a variety of cellular pathways. Here we discuss novel pathways that involve the generation of reactive oxygen species and oxidative stress, apoptotic injury that leads to nuclear degradation in both neuronal and vascular populations, and the early loss of cellular membrane asymmetry that mitigates inflammation and vascular occlusion. Current work has identified exciting pathways, such as the Wnt pathway and the serine-threonine kinase Akt, as central modulators that oversee cellular apoptosis and their downstream substrates that include Forkhead transcription factors, glycogen synthase kinase-3beta, mitochondrial dysfunction, Bad, and Bcl-x(L). Other closely integrated pathways control microglial activation, release of inflammatory cytokines, and caspase and calpain activation. New therapeutic avenues that are just open to exploration, such as with brain temperature regulation, nicotinamide adenine dinucleotide modulation, metabotropic glutamate system modulation, and erythropoietin targeted expression, may provide both attractive and viable alternatives to treat a variety of disorders that include stroke, Alzheimer's disease, and traumatic brain injury.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
31
|
Pallàs M, Verdaguer E, Jordà EG, Jiménez A, Canudas AM, Camins A. Flavopiridol: an antitumor drug with potential application in the treatment of neurodegenerative diseases. Med Hypotheses 2005; 64:120-3. [PMID: 15533627 DOI: 10.1016/j.mehy.2004.03.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 03/05/2004] [Indexed: 11/15/2022]
Abstract
Several lines of evidence show that cyclin-dependent kinases (CDKs) contribute to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, and amyotrophic lateral sclerosis. Given their role in the neuronal apoptosis, the inhibition of CDKs by specific drugs such as flavopiridol may be a valid therapeutic approach. Expression of CDKs was observed in rodent models of excitotoxicity and stroke, and CDK inhibitors showed neuroprotective effects. Flavopiridol may provide significant improvement in neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- M Pallàs
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
32
|
Liu DX, Nath N, Chellappan SP, Greene LA. Regulation of neuron survival and death by p130 and associated chromatin modifiers. Genes Dev 2005; 19:719-32. [PMID: 15769944 PMCID: PMC1065725 DOI: 10.1101/gad.1296405] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
E2F-mediated gene repression plays a key role in regulation of neuron survival and death. However, the key molecules involved in such regulation and the mechanisms by which they respond to apoptotic stimuli are largely unknown. Here we show that p130 is the predominant Rb family member associated with E2F in neurons, that its major partner for repression of pro-apoptotic genes is E2F4, and that the p130-E2F4 complex recruits the chromatin modifiers HDAC1 and Suv39H1 to promote gene silencing and neuron survival. Apoptotic stimuli induce neuron death by sequentially causing p130 hyperphosphorylation, dissociation of p130-E2F4-Suv39H1-HDAC complexes, altered modification of H3 histone and gene derepression. Experimental suppression of such events blocks neuron death while interference with the synthesis of E2F4 or p130, or with the interaction of E2F4-p130 with chromatin modifiers, induces neuron death. Thus, neuron survival and death are dependent on the integrity of E2F4-p130-HDAC/Suv39H1 complexes.
Collapse
Affiliation(s)
- David X Liu
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
33
|
Li F, Chong ZZ, Maiese K. Erythropoietin on a tightrope: balancing neuronal and vascular protection between intrinsic and extrinsic pathways. Neurosignals 2005; 13:265-89. [PMID: 15627815 DOI: 10.1159/000081963] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 09/16/2004] [Indexed: 01/06/2023] Open
Abstract
Enthusiasm for erythropoietin (EPO) as a broad cytoprotective agent continues to increase at an almost exponential rate. The premise that EPO was required only for erythropoiesis was eventually shed by recent work demonstrating the existence of EPO and its receptor in other organs and tissues outside of the liver and the kidney, such as the brain and heart. As a result, EPO has been identified as a possible candidate in the formulation of therapeutic strategies for both cardiac and nervous system diseases. EPO has been shown to mediate an array of vital cellular functions that involve progenitor stem cell development, cellular protection, angiogenesis, DNA repair, and cellular longevity. An important requirement to achieve the goal of preventing or even reducing cellular injury by any cytoprotective agent is the ability to uncover the cellular pathways that ultimately drive a cell to its demise. We present for consideration several critical cellular pathways modulated by EPO that involve Janus kinase 2 (Jak2), the serine-threonine kinase Akt, forkhead transcription factors, glycogen synthase kinase-3beta (GSK-3beta), cellular calcium, protein kinase C, caspases, as well as the control of inflammatory microglial activation. As we continue to gain new insight into these pathways, EPO should emerge as a critical agent for the development, maturation, and survival of cells throughout the body.
Collapse
Affiliation(s)
- Faqi Li
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Mich. 48201, USA
| | | | | |
Collapse
|
34
|
Chong ZZ, Li F, Maiese K. Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer's disease. ACTA ACUST UNITED AC 2005; 49:1-21. [PMID: 15960984 PMCID: PMC2276700 DOI: 10.1016/j.brainresrev.2004.11.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 09/28/2004] [Accepted: 11/12/2004] [Indexed: 01/24/2023]
Abstract
More than a century has elapsed since the description of Alois Alzheimer's patient Auguste D. Yet, the well-documented generation of beta-amyloid aggregates and neurofibrillary tangles that define Alzheimer's disease is believed to represent only a portion of the cellular processes that can determine the course of Alzheimer's disease. Understanding of the complex nature of this disorder has evolved with an increased appreciation for pathways that involve the generation of reactive oxygen species and oxidative stress, apoptotic injury that leads to nuclear degradation in both neuronal and vascular populations, and the early loss of cellular membrane asymmetry that mitigates inflammation and vascular occlusion. Recent work has identified novel pathways, such as the Wnt pathway and the serine-threonine kinase Akt, as central modulators that oversee cellular apoptosis and the formation of neurofibrillary tangles through their downstream substrates that include glycogen synthase kinase-3beta, Bad, and Bcl-xL. Other closely integrated pathways control microglial activation, release of inflammatory cytokines, and caspase and calpain activation for the processing of amyloid precursor protein, tau protein cleavage, and presenilin disposal. New therapeutic avenues that are just open to exploration, such as with nicotinamide adenine dinucleotide modulation, cell cycle modulation, metabotropic glutamate system modulation, and erythropoietin targeted expression, may provide both attractive and viable alternatives to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Faqi Li
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Departments of Neurology and Anatomy and Cell Biology, Center for Molecular Medicine and Genetics, Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Corresponding author. Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201. Fax: +1 313 966 0486. E-mail address: (K. Maiese)
| |
Collapse
|
35
|
Chong ZZ, Li F, Maiese K. Employing new cellular therapeutic targets for Alzheimer's disease: a change for the better? Curr Neurovasc Res 2005; 2:55-72. [PMID: 16181100 PMCID: PMC2254177 DOI: 10.2174/1567202052773508] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease is a progressive disorder that results in the loss of cognitive function and memory. Although traditionally defined by the presence of extracellular plaques of amyloid-beta peptide aggregates and intracellular neurofibrillary tangles in the brain, more recent work has begun to focus on elucidating the complexities of Alzheimer's disease that involve the generation of reactive oxygen species and oxidative stress. Apoptotic processes that are incurred as a function of oxidative stress affect neuronal, vascular, and monocyte derived cell populations. In particular, it is the early apoptotic induction of cellular membrane asymmetry loss that drives inflammatory microglial activation and subsequent neuronal and vascular injury. In this article, we discuss the role of novel cellular pathways that are invoked during oxidative stress and may potentially mediate apoptotic injury in Alzheimer's disease. Ultimately, targeting new avenues for the development of therapeutic strategies linked to mechanisms that involve inflammatory microglial activation, cellular metabolism, cell-cycle regulation, G-protein regulated receptors, and cytokine modulation may provide fruitful gains for both the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Faqi Li
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
- Departments of Neurology and Anatomy & Cell Biology, Center for Molecular Medicine and Genetics and Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| |
Collapse
|
36
|
Zhang M, Li J, Chakrabarty P, Bu B, Vincent I. Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in Niemann-Pick Type C mice. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:843-53. [PMID: 15331409 PMCID: PMC1618588 DOI: 10.1016/s0002-9440(10)63347-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dysregulation of cyclin-dependent kinases (cdks) and cytoskeletal protein hyperphosphorylation characterizes a subset of human neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, and Niemann-Pick Type C (NPC). It is thought that these cytoskeletal changes lead eventually to development of hallmark cytoskeletal lesions such as neurofibrillary tangles and axonal spheroids. Although many studies support an involvement of cdks in these neurodegenerative cascades, it is not known whether cdk activity is essential. The naturally occurring npc-1 mutant mouse mimics human NPC, in displaying activation of cdk5, mitotic cdc2, and cdk4, with concomitant cytoskeletal pathology and neurodegeneration. We availed of this model and specific pharmacological inhibitors of cdk activity, to determine whether cdks are necessary for NPC neuropathology. The inhibitors were infused intracerebroventricularly for a 2-week period, initiated at a pathologically incipient stage. While an inactive stereoisomer, iso-olomoucine, was ineffective, two potent inhibitors, roscovitine and olomoucine, attenuated significantly the hyperphosphorylation of neurofilament, tau, and mitotic proteins, reduced the number of spheroids, modulated Purkinje neuron death, and ameliorated motor defects in npc mice. These results suggest that cdk activity is required for neuropathology and subsequent motor impairment in NPC. Studies aimed at knocking down individual cdks in these mice will help identify the specific cdk(s) that are essential, and delineate their precise roles in the neurodegenerative process.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
37
|
Smith PD, O'Hare MJ, Park DS. CDKs: taking on a role as mediators of dopaminergic loss in Parkinson's disease. Trends Mol Med 2004; 10:445-51. [PMID: 15350897 DOI: 10.1016/j.molmed.2004.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Patrice D Smith
- Ottawa Health Research Institute, Neuroscience Group, Ottawa, Ontario, Canada K1H8M5
| | | | | |
Collapse
|
38
|
Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 2004; 10 Suppl:S42-50. [PMID: 15272269 DOI: 10.1038/nm1064] [Citation(s) in RCA: 676] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 03/30/2004] [Indexed: 02/08/2023]
Abstract
Recent progress shows that neurons suitable for transplantation can be generated from stem cells in culture, and that the adult brain produces new neurons from its own stem cells in response to injury. These findings raise hope for the development of stem cell therapies in human neurodegenerative disorders. Before clinical trials are initiated, we need to know much more about how to control stem cell proliferation and differentiation into specific phenotypes, induce their integration into existing neural and synaptic circuits, and optimize functional recovery in animal models closely resembling the human disease.
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, Section of Restorative Neurology, Department of Clinical Neuroscience, Wallenberg Neuroscience Center, University Hospital, SE-221 84 Lund, Sweden.
| | | | | |
Collapse
|
39
|
Greene LA, Biswas SC, Liu DX. Cell cycle molecules and vertebrate neuron death: E2F at the hub. Cell Death Differ 2004; 11:49-60. [PMID: 14647236 DOI: 10.1038/sj.cdd.4401341] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Vertebrate neuron cell death is both a normal developmental process and the catastrophic outcome of nervous system trauma or degenerative disorders. Although the mechanisms of such death include an evolutionarily conserved core apoptotic pathway that is highly homologous to that first described by Horvitz and co-workers in Caenorhabditis elegans, it appears that many instances of neuron death additionally require the transcription-dependent induction of proapoptotic molecules. One such proapoptotic transcriptional pathway revealed by studies over the past decade revolves about the transcription factor E2F and those molecules that either regulate E2F activity or that are direct or indirect transcriptional targets of E2F. Many of the molecules associated with the E2F apoptotic pathway in postmitotic neurons also participate in the cell cycle in proliferating cells. Observations in human material and in animal and cell culture models show widespread correlation between changes in expression, activity and subcellular localization of E2F-related cell cycle molecules and developmental and catastrophic neuron death. A variety of experimental approaches support a causal role for such changes in the death process and are beginning to indicate how the neuronal E2F pathway activates the core apoptotic machinery. The discovery and elaboration of the neuronal apoptotic E2F pathway provides abundant targets as well as small molecule candidates for potential therapeutic intervention in nervous system trauma and degenerative disease.
Collapse
Affiliation(s)
- L A Greene
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York 10032, USA.
| | | | | |
Collapse
|
40
|
Frielingsdorf H, Schwarz K, Brundin P, Mohapel P. No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 2004; 101:10177-82. [PMID: 15210991 PMCID: PMC454184 DOI: 10.1073/pnas.0401229101] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recent report by Zhao et al. [Zhao, M., Momma, S., Delfani, K., Carlen, M., Cassidy, R. M., Johansson, C. B., Brismar, H., Shupliakov, O., Frisen, J. & Janson, A. M. (2003) Proc. Natl. Acad. Sci. USA 100, 7925-7930] suggests that dopaminergic neurons, the cell type lost in Parkinson's disease, are continuously generated in the adult substantia nigra pars compacta. Using similar methodological procedures to label dividing cells, we found no evidence of new dopaminergic neurons in the substantia nigra, either in normal or 6-hydroxydopamine-lesioned hemi-Parkinsonian rodents, or even after growth factor treatment. Furthermore, we found no evidence of neural stem cells emanating from the cerebroventricular system and migrating to the substantia nigra. We conclude that it is unlikely that dopaminergic neurons are generated in the adult mammalian substantia nigra.
Collapse
Affiliation(s)
- Helena Frielingsdorf
- Section for Neuronal Survival, Wallenberg Neuroscience Center, BMC A-10, Lund University, SE-221 84 Lund, Sweden
| | | | | | | |
Collapse
|
41
|
Verdaguer E, Jiménez A, Canudas AM, Jordà EG, Sureda FX, Pallàs M, Camins A. Inhibition of cell cycle pathway by flavopiridol promotes survival of cerebellar granule cells after an excitotoxic treatment. J Pharmacol Exp Ther 2004; 308:609-16. [PMID: 14610234 DOI: 10.1124/jpet.103.057497] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kainic acid (KA)-induced neuronal damage and the protective effects of flavopiridol were studied in primary cultures of rat cerebellar granule cells (CGNs). When neurons were treated with 500 microM KA, the percentage of cells with condensed nuclei measured by nuclear counting increased by up to 55%. After flavopiridol treatment, an antitumoral drug that is a broad inhibitor of cyclin-dependent kinases, the percentage of condensed nuclei decreased by up to 26%. Furthermore, this KA-mediated cell death was only partially dependent on the activation of the initiator caspase-9 and the effector caspases-3 and -6. This argues for a minor role of caspases in the intracellular pathway leading to KA-induced programmed cell death in CGNs. We examined the possible implication of cell cycle proteins in KA-induced neurotoxicity. We found an increase in the expression of proliferating cell nuclear antigen and E2F-1, two proteins implicated in S-phase, by Western blot. KA increased bromodeoxyuridine incorporation in CGNs, a marker of cell proliferation, and flavopiridol attenuated this effect. These results indicated that flavopiridol decreased the expression of cell cycle markers in CGNs after KA treatment. Flavopiridol might thus be used as a preventive agent against neurodegenerative diseases associated with cell cycle activation.
Collapse
Affiliation(s)
- Ester Verdaguer
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
42
|
Becker EBE, Bonni A. Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 2004; 72:1-25. [PMID: 15019174 DOI: 10.1016/j.pneurobio.2003.12.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 12/16/2003] [Indexed: 10/26/2022]
Abstract
Apoptosis of neurons is indispensable to the normal development of the nervous system and contributes to neuronal loss in neurologic injury and disease. Life and death decisions are imposed upon neurons by extracellular and intracellular stimuli including the lack of trophic support, exposure to neurotoxins, oxidative stress, and DNA damage. These stimuli induce signaling pathways that are integrated at the mitochondrial apoptotic machinery culminating in cell survival or death. Growing evidence suggests that cell cycle proteins are expressed in dying neurons in the developing and adult brain. However, the role and mechanisms by which re-activation of cell cycle pathways in postmitotic neurons propagates an apoptotic signal to the cell death machinery are just beginning to be characterized. Here, we will review the molecular mechanisms of neuronal cell death and survival with a focus on recent findings on cell cycle regulation of neuronal apoptosis in primary cultures of neurons, mouse models of neuronal diseases, and human neurodegenerative diseases.
Collapse
Affiliation(s)
- Esther B E Becker
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
43
|
Smith PD, Crocker SJ, Jackson-Lewis V, Jordan-Sciutto KL, Hayley S, Mount MP, O'Hare MJ, Callaghan S, Slack RS, Przedborski S, Anisman H, Park DS. Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A 2003; 100:13650-5. [PMID: 14595022 PMCID: PMC263868 DOI: 10.1073/pnas.2232515100] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent evidence indicates that cyclin-dependent kinases (CDKs, cdks) may be inappropriately activated in several neurodegenerative conditions. Here, we report that cdk5 expression and activity are elevated after administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin that damages the nigrostriatal dopaminergic pathway. Supporting the pathogenic significance of the cdk5 alterations are the findings that the general cdk inhibitor, flavopiridol, or expression of dominant-negative cdk5, and to a lesser extent dominant-negative cdk2, attenuates the loss of dopaminergic neurons caused by MPTP. In addition, CDK inhibition strategies attenuate MPTP-induced hypolocomotion and markers of striatal function independent of striatal dopamine. We propose that cdk5 is a key regulator in the degeneration of dopaminergic neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Patrice D Smith
- Neuroscience Group, Ottawa Health Research Institute, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J Neurosci 2003. [PMID: 12832538 DOI: 10.1523/jneurosci.23-12-05141.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine (DA) neurons of the substantia nigra undergo a developmental cell death event that is biphasic, with peaks just after birth and at postnatal day 14. As envisioned by neurotrophic theory, this cell death is likely to be regulated by target interactions because it is augmented by their disruption. However, the nature of the trophic molecules mediating this regulation are unknown. We showed in vitro that glial cell line-derived neurotrophic factor (GDNF) is able to suppress apoptotic death in DA neurons in postnatal primary culture. We now demonstrate in vivo that administration of GDNF into the striatal target is able to suppress apoptosis. Consistent with a possible physiologic role for endogenous striatal GDNF in regulating this event, two anti-GDNF neutralizing antibodies augment cell death. These antibodies augment cell death only during the first (immediately postnatal) phase of the biphasic death event. We conclude that GDNF is the leading candidate for a target-derived neurotrophic factor for the regulation of the early phase of natural cell death in DA neurons.
Collapse
|
45
|
Maiese K, Chong ZZ. Nicotinamide: necessary nutrient emerges as a novel cytoprotectant for the brain. Trends Pharmacol Sci 2003; 24:228-32. [PMID: 12767721 DOI: 10.1016/s0165-6147(03)00078-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although usually identified as an essential cellular nutrient for cellular growth and maintenance, nicotinamide is under development as a novel cytoprotectant for acute and chronic neurodegenerative disorders. Here, we outline support for the premise that nicotinamide both prevents and reverses neuronal and vascular cell injury. Nicotinamide fosters DNA integrity and maintains phosphatidylserine membrane asymmetry to prevent cellular inflammation, cellular phagocytosis and vascular thrombosis. The downstream cellular and molecular cascades are considered vital for the cytoprotection offered by nicotinamide. These pathways encompass the modulation of Akt, the forkhead transcription factor FKHRL1, mitochondrial membrane potential, caspase activities and cellular energy metabolism, but remain independent of intracellular pH and mitogen-activated protein kinases. As both a therapeutic agent and an investigational tool, nicotinamide offers new therapeutic strategies for degenerative disorders of the CNS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University, School of Medicine Detroit, St Antoine, MI 48201, USA.
| | | |
Collapse
|