1
|
Gutiérrez-Rebolledo GA, Drier-Jonas S, Jiménez-Arellanes MA. Natural compounds and extracts from Mexican medicinal plants with anti-leishmaniasis activity: An update. ASIAN PAC J TROP MED 2017; 10:1105-1110. [PMID: 29268964 DOI: 10.1016/j.apjtm.2017.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/23/2017] [Accepted: 10/25/2017] [Indexed: 11/17/2022] Open
Abstract
Leishmaniasis is considered as an emerging, uncontrolled disease and is endemic in 98 countries. Annually, about 2 million cases of cutaneous and 500000 cases of visceral-type leishmaniasis are recorded and 60000 persons died from the disease. In Mexico, cutaneous leishmaniasis is known as chiclero's ulcer and is reported in 22 states, it is considered as a health problem. For its treatment, pentavalent antimonial drugs are administered. These drugs cause severe side effects, are costly. Drug-resistant cases have been reported and have been developing for over 70 years. One alternative to the drugs that are currently available is to find active molecules in medicinal plants. Dihydrocorynantheine, corynantheine and corynantheidine are active against Leishmania major, while harmane, pleiocarpin, buchtienin, luteolin and quercetin are active against Leishmania donovani. In Mexico, about 20 medicinal plants have been evaluated against Leishmania mexicana, among which the most active are Tridax procumbens, Lonchocarpus xuul and Pentalinon andrieuxii. From these plants, active compounds with IC50 ≤ 30 μg/mL or μM have been isolated, such as 3(S)-16,17-didehydrofalcarinol or Oxylipin, cholestra-4,20,24-trien-3-one or pentalinosterol, 24-methylcholest-4-24(28)-dien-3-one, cholest-4-en-3-one, 6,7-dihydroneridie-none, neridienone, cholest-5,20,24-trien-3β-ol, and isocordoin. Today, only pentalinonsterol has been synthesized and assayed in the visceral leishmaniasis experimental model using BALB/c mice infected with Leishmania donovani. Liposome formulation of this compound administered by intravenous route at 2.5 mg/kg showed a significant reduction of parasite load in mouse liver and spleen.
Collapse
Affiliation(s)
- Gabriel Alfonso Gutiérrez-Rebolledo
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Delg. Cuauhtémoc, 06720 Ciudad de México, Mexico
| | - Susan Drier-Jonas
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Delg. Cuauhtémoc, 06720 Ciudad de México, Mexico
| | - María Adelina Jiménez-Arellanes
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Delg. Cuauhtémoc, 06720 Ciudad de México, Mexico.
| |
Collapse
|
2
|
Ardelli BF. Transport proteins of the ABC systems superfamily and their role in drug action and resistance in nematodes. Parasitol Int 2013; 62:639-46. [DOI: 10.1016/j.parint.2013.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/28/2022]
|
3
|
Abstract
SUMMARYABC systems are one of the largest described protein superfamilies. These systems have a domain organization that may contain 1 or more transmembrane domains (ABC_TM1F) and 1 or 2 ATP-binding domains (ABC_2). The functions (e.g., import, export and DNA repair) of these proteins distinguish the 3 classes of ABC systems. Mining and PCR-based cloning were used to identify 33 putative ABC systems from theBrugia malayigenome. There were 31 class 2 genes, commonly called ABC transporters, and 2 class 3 genes. The ABC transporters were divided into subfamilies. Three belonged to subfamily A, 16 to subfamily B, 5 to subfamily C, 1 to subfamily E and 3 to subfamilies F and G, respectively. None were placed in subfamilies D and H. Similar to other ABC systems, the ABC_2 domain ofB. malayigenes was conserved and contained the Walker A and B motifs, the signature sequence/linker region and the switch region with the conserved histidine. The ABC_TM1F domain was less conserved. The relative abundance of ABC systems was quantified using real-time reverse transcription PCR and was significantly higher in female adults ofB. malayithan in males and microfilaria, particularly those in subfamilies B and C, which are associated with drug resistance.
Collapse
|
4
|
Osorio EJ, Robledo SM, Bastida J. Alkaloids with antiprotozoal activity. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2008; 66:113-90. [PMID: 19025098 DOI: 10.1016/s1099-4831(08)00202-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Edison J Osorio
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Química-Farmacéutica, Universidad de Antioquia, A. A. 1226, Medellín, Colombia.
| | | | | |
Collapse
|
5
|
Pérez-Victoria JM, Cortés-Selva F, Parodi-Talice A, Bavchvarov BI, Pérez-Victoria FJ, Muñoz-Martínez F, Maitrejean M, Costi MP, Barron D, Di Pietro A, Castanys S, Gamarro F. Combination of suboptimal doses of inhibitors targeting different domains of LtrMDR1 efficiently overcomes resistance of Leishmania spp. to Miltefosine by inhibiting drug efflux. Antimicrob Agents Chemother 2006; 50:3102-10. [PMID: 16940108 PMCID: PMC1563564 DOI: 10.1128/aac.00423-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Miltefosine (hexadecylphosphocholine) is the first orally active drug approved for the treatment of leishmaniasis. We have previously shown the involvement of LtrMDR1, a P-glycoprotein-like transporter belonging to the ATP-binding cassette superfamily, in miltefosine resistance in Leishmania. Here we show that overexpression of LtrMDR1 increases miltefosine efflux, leading to a decrease in drug accumulation in the parasites. Although LtrMDR1 modulation might be an efficient way to overcome this resistance, a main drawback associated with the use of P-glycoprotein inhibitors is related to their intrinsic toxicity. In order to diminish possible side effects, we have combined suboptimal doses of modulators targeting both the cytosolic and transmembrane domains of LtrMDR1. Preliminary structure-activity relationships have allowed us to design a new and potent flavonoid derivative with high affinity for the cytosolic nucleotide-binding domains. As modulators directed to the transmembrane domains, we have selected one of the most potent dihydro-beta-agarofuran sesquiterpenes described, and we have also studied the effects of two of the most promising, latest-developed modulators of human P-glycoprotein, zosuquidar (LY335979) and elacridar (GF120918). The results show that this combinatorial strategy efficiently overcomes P-glycoprotein-mediated parasite miltefosine resistance by increasing intracellular miltefosine accumulation without any side effect in the parental, sensitive, Leishmania line and in different mammalian cell lines.
Collapse
Affiliation(s)
- José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Boumendjel A, Baubichon-Cortay H, Trompier D, Perrotton T, Di Pietro A. Anticancer multidrug resistance mediated by MRP1: recent advances in the discovery of reversal agents. Med Res Rev 2005; 25:453-72. [PMID: 15834856 DOI: 10.1002/med.20032] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multidrug resistance protein 1 (MRP1) belongs to the ATP-binding cassette (ABC) transporter family. It is able to transport a broad range of anticancer drugs through cellular membranes, thus limiting their antiproliferative action. Since its discovery in 1992, MRP1 has been the most studied among MRP proteins, which now count nine members. Besides the biological work, which targets structure elucidation, binding sites location, and mode of action, most efforts have been focused on finding molecules which act as MRP1 inhibitors. In this review, we attempt to summarize and highlight studies dealing with modulators of MRP1-mediated multidrug resistance (MDR), which have been accomplished in the last 5 years. The reported MRP1 inhibitors are discussed according to their chemical class. Finally, we try to bring information on structure-activity relationship (SAR) aspects and how modulators might interact with MRP1. This study may facilitate the rational design of future modulators of MDR.
Collapse
Affiliation(s)
- Ahcène Boumendjel
- Département de Pharmacochimie Moléculaire, UMR 5063 CNRS/Université Joseph Fourier-Grenoble I, 5 Avenue de Verdun BP 138, 38243 Meylan, France. Ahcène.Boumendjelujf-grenoble.fr
| | | | | | | | | |
Collapse
|
7
|
Jones PM, George AM. Multidrug resistance in parasites: ABC transporters, P-glycoproteins and molecular modelling. Int J Parasitol 2005; 35:555-66. [PMID: 15826647 DOI: 10.1016/j.ijpara.2005.01.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 12/09/2004] [Accepted: 01/10/2005] [Indexed: 01/13/2023]
Abstract
Parasitic diseases, caused by protozoa, helminths and arthropods, rank among the most important problems in human and veterinary medicine, and in agriculture, leading to debilitating sicknesses and loss of life. In the absence of vaccines and with the general failure of vector eradication programs, drugs are the main line of defence, but the newest drugs are being tracked by the emergence of resistance in parasites, sharing ominous parallels with multidrug resistance in bacterial pathogens. Any of a number of mechanisms will elicit a drug resistance phenotype in parasites, including: active efflux, reduced uptake, target modification, drug modification, drug sequestration, by-pass shunting, or substrate competition. The role of ABC transporters in parasitic multidrug resistance mechanisms is being subjected to more scrutiny, due in part to the established roles of certain ABC transporters in human diseases, and also to an increasing portfolio of ABC transporters from parasite genome sequencing projects. For example, over 100 ABC transporters have been identified in the Escherichia coli genome, but to date only about 65 in all parasitic genomes. Long established laboratory investigations are now being assisted by molecular biology, bioinformatics, and computational modelling, and it is in these areas that the role of ABC transporters in parasitic multidrug resistance mechanisms may be defined and put in perspective with that of other proteins. We discuss ABC transporters in parasites, and conclude with an example of molecular modelling that identifies a new interaction between the structural domains of a parasite P-glycoprotein.
Collapse
Affiliation(s)
- P M Jones
- Department of Cell and Molecular Biology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | | |
Collapse
|
8
|
Ferrer-Rodríguez I, Pérez-Rosado J, Gervais GW, Peters W, Robinson BL, Serrano AE. PLASMODIUM YOELII: IDENTIFICATION AND PARTIAL CHARACTERIZATION OF ANMDR1GENE IN AN ARTEMISININ-RESISTANT LINE. J Parasitol 2004; 90:152-60. [PMID: 15040683 DOI: 10.1645/ge-3225] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The molecular mechanisms by which the malarial parasite has managed to develop resistance to many antimalarial drugs remain to be completely elucidated. Mutations in the pfmdr1 gene of Plasmodium falciparum, as well as an increase in pfmdr1 copy number, have been associated with resistance to the quinoline-containing antimalarial drugs. We investigated the mechanisms of drug resistance in Plasmodium using a collection of P. yoelii lines with different drug resistance profiles. The mdr1 gene of P. yoelii (pymdr1) was identified and characterized. A 2- to 3-fold increase in the pymdr1 gene copy number was observed in the P. yoelii ART line (artemisinin resistant) when compared with the NS parental line. The pymdr1 gene was mapped to a chromosome of 2.1 Mb in all lines analyzed. Reverse transcriptase-polymerase chain reaction and Western blot experiments confirmed the expression of the gene at the RNA and protein levels.
Collapse
Affiliation(s)
- Iván Ferrer-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, P.O. Box 365067, San Juan, Puerto Rico
| | | | | | | | | | | |
Collapse
|
9
|
Cauchetier E, Loiseau PM, Lehman J, Rivollet D, Fleury J, Astier A, Deniau M, Paul M. Characterisation of atovaquone resistance in Leishmania infantum promastigotes. Int J Parasitol 2002; 32:1043-51. [PMID: 12076633 DOI: 10.1016/s0020-7519(02)00065-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atovaquone, an antiparasitic agent, could possibly represent an alternative therapy after relapse following classical treatment for visceral leishmaniasis. Atovaquone-resistant strains were selected in vitro by stepwise drug pressure to study the mechanism of resistance in Leishmania. Characteristics of a promastigote strain resistant to 250 microg/ml of atovaquone were compared with those of the wild type (WT) strain. Resistant strains were shown to have a high level of resistance (45 times). They were stable in drug-free medium for 6 months, and showed no cross-resistance with other antileishmanial drugs. Rhodamine uptake and efflux were studied. They were not modified in the resistant strain, indicating the absence of P-glycoprotein overexpession. The effect of atovaquone on membrane lipidic composition was determined in both WT and atovaquone-resistant promastigotes. Analysis of lipid composition of the atovaquone-resistant strain showed that sterol biosynthesis was decreased in atovaquone-resistant parasites. Cholesterol was found to be the major membrane sterol as opposed to the WT strain. Cholesterol, due to its ordering effect, could decrease membrane fluidity and subsequently block the passage of atovaquone through the membrane. Increased membrane cholesterol content and altered drug membrane fluidity resulted from possible decrease of ergosterol biosynthesis by atovaquone, incorporation of cholesterol by promastigotes in the culture medium, solubilisation of atovaquone by cholesterol and co-passage of the two compounds or influence of dimethylsulfoxide. These results indicate that different cellular alterations may participate in the resistant phenotype, by altering drug membrane permeability.
Collapse
Affiliation(s)
- E Cauchetier
- Laboratoire de Pharmacotechnie, Service Pharmacie, C.H.U. H.Mondor, AP-HP, 94010 Créteil, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Légaré D, Cayer S, Singh AK, Richard D, Papadopoulou B, Ouellette M. ABC proteins of Leishmania. J Bioenerg Biomembr 2001; 33:469-74. [PMID: 11804188 DOI: 10.1023/a:1012870904097] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
ABC proteins were first characterized in the protozoan parasite Leishmania while studying mechanisms of drug resistance. PGPA is involved in resistance to arsenite and antimonite and it most likely confers resistance by sequestering metal-thiol conjugates into an intracellular vesicle. PGPA is part of gene family with at least four more members which are in search of a function. Leishmania also contains a P-glycoprotein, homologous to the mammalian MDR1, that is involved in multidrug resistance. The ongoing genome project of Leishmania has pinpointed several novel ABC transporters and experiments are carried out to study the function of the ABC proteins in drug resistance and in host-pathogen interactions.
Collapse
Affiliation(s)
- D Légaré
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL, Québec, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Leishmaniae are obligatory intracellular protozoa in mononuclear phagocytes. They cause a spectrum of diseases, ranging in severity from spontaneously healing skin lesions to fatal visceral disease. Worldwide, there are 2 million new cases each year and 1/10 of the world's population is at risk of infection. To date, there are no vaccines against leishmaniasis and control measures rely on chemotherapy to alleviate disease and on vector control to reduce transmission. However, a major vaccine development program aimed initially at cutaneous leishmaniasis is under way. Studies in animal models and humans are evaluating the potential of genetically modified live attenuated vaccines, as well as a variety of recombinant antigens or the DNA encoding them. The program also focuses on new adjuvants, including cytokines, and delivery systems to target the T helper type 1 immune responses required for the elimination of this intracellular organism. The availability, in the near future, of the DNA sequences of the human and Leishmania genomes will extend the vaccine program. New vaccine candidates such as parasite virulence factors will be identified. Host susceptibility genes will be mapped to allow the vaccine to be targeted to the population most in need of protection.
Collapse
Affiliation(s)
- E Handman
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, The Royal Melbourne Hospital, Parkville 3050, Australia.
| |
Collapse
|
13
|
Abstract
Research in anthelmintic pharmacology faces a grim future. The parent field of veterinary parasitology has seemingly been devalued by governments, universities and the animal industry in general. Primarily due to the success of the macrocyclic lactone anthelmintics in cattle, problems caused by helminth infections are widely perceived to be unimportant. The market for anthelmintics in other host species that are plagued by resistance, such as sheep and horses, is thought to be too small to sustain a discovery program in the animal health pharmaceutical industry. These attitudes are both alarming and foolish. The recent history of resistance to antibiotics provides more than adequate warning that complacency about the continued efficacy of any class of drugs for the chemotherapy of an infectious disease is folly. Parasitology remains a dominant feature of veterinary medicine and of the animal health industry. Investment into research on the basic and clinical pharmacology of anthelmintics is essential to ensure chemotherapeutic control of these organisms into the 21st century. In this article, we propose a set of questions that should receive priority for research funding in order to bring this field into the modern era. While the specific questions are open for revision, we believe that organized support of a prioritized list of research objectives could stimulate a renaissance in research in veterinary helminthology. To accept the status quo is to surrender.
Collapse
Affiliation(s)
- T G Geary
- Animal Health Discovery Research, Pharmacia & Upjohn, Kalamazoo, MI 49007-4940, USA.
| | | | | |
Collapse
|