1
|
Das S, Chaudhari AK. Encapsulation of Apium graveolens essential oil into chitosan nanobiopolymer for protection of stored rice against Fusarium verticillioides and fumonisins contamination. Heliyon 2024; 10:e29954. [PMID: 38694117 PMCID: PMC11061702 DOI: 10.1016/j.heliyon.2024.e29954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The present investigation entails the encapsulation of Apium graveolens essential oil into chitosan nanobiopolymer (AGEO-Ne) and assessment of its efficacy against Fusarium verticillioides contamination and fumonisins biosynthesis in stored rice (Oryza sativa L.) samples. The AGEO was encapsulated through ionic gelation process and characterized by scanning electron microscopy (SEM), Dynamic light scattering (DLS), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The AGEO exhibited bi-phasic delivery pattern from chitosan matrix. The AGEO caused complete inhibition of F. verticillioides growth at 1.2 μL/mL, while fumonisin B1 (FB1) and B2 (FB2) biosynthesis at 1.2 and 1.0 μL/mL, respectively. On the other hand, nanoencapsulated AGEO (AGEO-Ne) exhibited improved efficacy, caused complete inhibition of fungal growth at 0.8 μL/mL, and FB1 and FB2 production at 0.8 and 0.6 μL/mL, respectively. AGEO-Ne caused 100 % inhibition of ergosterol synthesis at 0.8 μL/mL and exhibited greater efflux of Ca2+, Mg2+, K+ ions (18.99, 21.63, and 25.38 mg/L) as well as 260 and 280 nm absorbing materials from exposed fungal cells. The in silico interaction of granyl acetate and linalyl acetate with FUM 21 protein validated the molecular mechanism for inhibition of FB1 and FB2 biosynthesis. Further, improvement in antioxidant activity of AGEO-Ne was observed after encapsulation with IC50 values of 12.08 and 6.40 μL/mL against DPPH and ABTS radicals, respectively. During in situ investigation, AGEO caused 82.09 and 86.32 % protection of rice against F. verticillioides contamination in inoculated and uninoculated rice samples, respectively, while AGEO-Ne exhibited 100 % protection of fumigated rice samples against F. verticillioides proliferation as well as FB1 and FB2 contamination. The AGEO-Ne also caused better retardation of lipid peroxidation (41.35 and 37.52 μM/g FW malondialdehyde in inoculated and uninoculated treatment) and acceptable organoleptic properties in rice samples, which strengthen its application as plant based novel preservative in food and agricultural industries.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India
| | - Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur, Uttar Pradesh, 233001, India
| |
Collapse
|
2
|
Josselin L, Proctor RH, Lippolis V, Cervellieri S, Hoylaerts J, De Clerck C, Fauconnier ML, Moretti A. Does alteration of fumonisin production in Fusarium verticillioides lead to volatolome variation? Food Chem 2024; 438:138004. [PMID: 37983995 DOI: 10.1016/j.foodchem.2023.138004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Fusarium verticillioides, a major fungal pathogen of maize, produces fumonisins, mycotoxins of global food safety concern. Control practices are needed to reduce the negative health and economic impacts of fumonisins. Therefore, we investigated volatile organic compounds (VOCs) emitted by fumonisin-producing (wild-type) and nonproducing (mutant) strains of F. verticillioides. VOC emissions were analyzed by gas chromatography-mass spectrometry following inoculation of maize kernels, and fumonisin accumulation was analyzed by high-performance liquid chromatography. Mutants emitted VOCs, including ethyl 3-methylbutanoate, that the wild type did not emit. In particular, ANOVA analysis showed significant differences between mutants and wild type for 4 VOCs which emission was correlated with absence of fumonisins. Exogenous ethyl 3-methylbutanoate reduced growth and fumonisin production in wild-type F. verticillioides, showing its potential in biocontrol. Together, our findings offer valuable insights into how mycotoxin production can impact VOC emissions from F. verticillioides and reveal a potential biocontrol strategy to reduce fumonisin contamination.
Collapse
Affiliation(s)
- Laurie Josselin
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology Unit, United States Department of Agriculture (USDA), Agriculture Research Service, National Center for Agricultural Utilization Research, 1815 N. University St. Peoria, IL 61604, USA.
| | - Vincenzo Lippolis
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola 122/o, 70126 Bari, Italy.
| | - Salvatore Cervellieri
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola 122/o, 70126 Bari, Italy.
| | - Jeffrey Hoylaerts
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola 122/o, 70126 Bari, Italy.
| |
Collapse
|
3
|
Miao Q, Wang Z, Yin Z, Liu X, Li R, Zhang KQ, Li J. Nematode-induced trap formation regulated by the histone H3K4 methyltransferase AoSET1 in the nematode-trapping fungus Arthrobotrys oligospora. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2663-2679. [PMID: 37233873 DOI: 10.1007/s11427-022-2300-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/19/2023] [Indexed: 05/27/2023]
Abstract
The methylation of lysine 4 of histone H3 (H3K4), catalyzed by the histone methyltransferase KMT2/SET1, has been functionally identified in many pathogenic fungi but remains unexplored in nematode-trapping fungi (NTFs). Here, we report a regulatory mechanism of an H3K4-specific SET1 orthologue, AoSET1, in the typical nematode-trapping fungus Arthrobotrys oligospora. When the fungus is induced by the nematode, the expression of AoSET1 is up-regulated. Disruption of AoSet1 led to the abolishment of H3K4me. Consequently, the yield of traps and conidia of ΔAoSet1 was significantly lower than that of the WT strain, and the growth rate and pathogenicity were also compromised. Moreover, H3K4 trimethylation was enriched mainly in the promoter of two bZip transcription factor genes (AobZip129 and AobZip350) and ultimately up-regulated the expression level of these two transcription factor genes. In the ΔAoSet1 and AoH3K4A strains, the H3K4me modification level was significantly decreased at the promoter of transcription factor genes AobZip129 and AobZip350. These results suggest that AoSET1-mediated H3KEme serves as an epigenetic marker of the promoter region of the targeted transcription factor genes. Furthermore, we found that AobZip129 negatively regulates the formation of adhesive networks and the pathogenicity of downstream AoPABP1 and AoCPR1. Our findings confirm that the epigenetic regulatory mechanism plays a pivotal role in regulating trap formation and pathogenesis in NTFs, and provide novel insights into the mechanisms of interaction between NTFs and nematodes.
Collapse
Affiliation(s)
- Qiao Miao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zhengqi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ziyu Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Xiaoying Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ran Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Juan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
4
|
Yan H, Zhou Z, Zhang H, Shim WB. Vacuole Proteins with Optimized Microtubule Assembly Is Required for Fum1 Protein Localization and Fumonisin Biosynthesis in Mycotoxigenic Fungus Fusarium verticillioides. J Fungi (Basel) 2023; 9:jof9020268. [PMID: 36836382 PMCID: PMC9961181 DOI: 10.3390/jof9020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Fumonisin contamination of corn caused by Fusarium verticillioides is a major concern worldwide. While key genes involved in fumonisin biosynthesis are known, the location within the fungal cell where this process occurs has yet to be fully characterized. In this study, three key enzymes, i.e., Fum1, Fum8, and Fum6, associated with early steps of fumonisin biosynthesis pathway, were tagged with GFP, and we examined their cellular localization. Results showed that these three proteins co-localized with the vacuole. To further understand the role of the vacuole in fumonisin B1 (FB1) biosynthesis, we disrupted two predicted vacuole associated proteins, FvRab7 and FvVam7, resulting in a significant reduction of FB1 biosynthesis and a lack of Fum1-GFP fluorescence signal. Furthermore, we used the microtubule-targeting drug carbendazim to show that proper microtubule assembly is critical for proper Fum1 protein localization and FB1 biosynthesis. Additionally, we found that α1 tubulin is a negative regulator in FB1 biosynthesis. We concluded that vacuole proteins with optimized microtubule assembly play a crucial role in proper Fum1 protein localization and fumonisin production in F. verticillioides.
Collapse
Affiliation(s)
- Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Zehua Zhou
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- College of Plant Protection & Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Plant Pests, Hunan Agricultural University, Changsha 410128, China
| | - Huan Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (H.Z.); (W.B.S.)
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (H.Z.); (W.B.S.)
| |
Collapse
|
5
|
Navale VD, Sawant AM, Vamkudoth KR. Genetic diversity of toxigenic Fusarium verticillioides associated with maize grains, India. Genet Mol Biol 2023; 46:e20220073. [PMID: 37036389 PMCID: PMC10084715 DOI: 10.1590/1678-4685-gmb-2022-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/22/2022] [Indexed: 04/11/2023] Open
Abstract
In the present investigation, prevalence, genetic diversity, and mycotoxin producing potential of Fusarium species associated with maize grain samples were studied from different geographical regions of India. The highest prevalence of Fusarium verticillioides was recorded as 88.52%, followed by F. coffeatum, F. foetens, and F. euwallaceae, 6.55%, 3.27%, and 1.63%, respectively. We isolated 54 strains of F. verticillioides, and their genetic diversity was studied by inter simple sequence repeats (ISSR). The ISSR fingerprints (AG) 8C and (AG) 8G showed 252 and 368 microsatellite sites in the genome of F. verticillioides and resulted in 99-100% repeatability and reproducibility. The Simpson (SID) and Shannon (H) indices (0.78 and 2.36) suggest that F. verticillioides strains exhibit moderate to high diversity. Molecular detection of fumonisin B1 (FB1) biosynthetic genes (FUM1 and FUM13) involved in FB1 production in F. verticillioides was confirmed by polymerase chain reaction (PCR). Furthermore, 91% of the strains were positive for FB1 production, which was affirmed by liquid chromatography with tandem mass spectrometry (LC-MS-MS). In-vitro appurtenance of F. verticillioides spores exhibited a high to moderate effect on the growth and development of the maize. The current finding demonstrated that most F. verticillioides strains showed a wide range of genetic diversity with varied toxigenic and pathogenic potentials. In conclusion, for the first time, F. coffeatum, F. foetens, and F. euwallaceae species were reported from maize grain samples in India. They were positive for FB1 and negatively affecting grain quality, which is a major concern in food safety.
Collapse
Affiliation(s)
- Vishwambar D Navale
- CSIR-National Chemical Laboratory, Biochemical Sciences Division, Pune, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amol M Sawant
- CSIR-National Chemical Laboratory, Biochemical Sciences Division, Pune, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Koteswara Rao Vamkudoth
- CSIR-National Chemical Laboratory, Biochemical Sciences Division, Pune, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
A review of mycotoxin biosynthetic pathways: associated genes and their expressions under the influence of climatic factors. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Lilly M, Rheeder J, Proctor R, Gelderblom W. FUM gene expression and variation in fumonisin production of clonal isolates of Fusarium verticillioides MRC 826. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B-series fumonisins (FBs) are a family of carcinogenic mycotoxins that commonly occur in maize. These mycotoxins cause multiple diseases in animals and are epidemiologically associated with several human diseases in populations for which maize is a dietary staple. FBs are produced by multiple genera of the fungi Aspergillus, Fusarium and Tolypocladium, but the plant pathogen Fusarium verticillioides is considered the primary cause of FB contamination in maize. One F. verticillioides strain, MRC 826, is reported to produce high levels of FBs. However, in the current study, 18 isolates derived from strain MRC 826 exhibited highly variable levels of FB, which negatively correlated (r=-0.333; P<0.008) with fungal growth. Microsatellite analysis confirmed that all MRC 826 derived isolates examined were clonal, and 100% DNA sequence identity was observed across the FUM gene clusters of two high FB producing and two low FB producing isolates. At the gene expression level, qRT-PCR at each time point (7, 14, 21 and 28 days of incubation) showed differential upregulation of selected FUM genes in the high compared to the low FB isolates. Variation in FB production appears due to differences in FUM gene expression, most likely caused by sequence differences at unexamined loci not part of the FUM cluster or from epigenetic influences. Clarification of the genetic/epigenetic basis for quantitative differences in fumonisin production among strains and isolates of F. verticillioides has potential to reveal targets for reducing FB contamination in maize.
Collapse
Affiliation(s)
- M. Lilly
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
| | - J.P. Rheeder
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
- Department of Biotechnology and Consumer Science, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
| | - R.H. Proctor
- US Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University St., Peoria, IL 61604, USA
| | - W.C.A. Gelderblom
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
- Department of Biochemistry, Stellenbosch University, Private Bag X9, 7602 Matieland, South Africa
| |
Collapse
|
8
|
Sultana S, Bao W, Shimizu M, Kageyama K, Suga H. Frequency of three mutations in the fumonisin biosynthetic gene cluster of Fusarium fujikuroi that are predicted to block fumonisin production. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fusarium fujikuroi is the most prominent pathogen found in rice. In addition to gibberellin, F. fujikuroi produces various secondary metabolites, including the polyketide mycotoxins, fumonisins. Fumonisin production is conferred by the fumonisin biosynthetic gene (FUM) cluster consisting of 15-17 genes. F. fujikuroi is phylogenetically subclassified into one group with fumonisin production (F-group) and another group in which fumonisin production is undetectable (G-group). In a previous study, a G-to-T substitution (FUM21_G2551T) in the FUM cluster transcription factor gene, FUM21, was identified as a cause of fumonisin-non-production in a G-group strain. In the current study, further analysis of G-group strains identified two additional mutations that involved FUM-cluster genes essential for fumonisin production: (1) a 22.4-kbp deletion in the FUM10-FUM19 region; and (2) a 1.4-kbp insertion in FUM6. PCR analysis of 44 G-group strains, indicated that 84% had the FUM21_G2551T mutation, 50% had the 22.4-kbp FUM10-FUM19 deletion, and 32% had the 1.4-kbp insertion in FUM6, and some strains had two or all the mutations. None of the mutations were detected in the 51 F-group strains examined. Each of the three mutations alone could account for the lack of fumonisin production in G-group strains. However, one G-group strain did not have any of the mutations. Therefore, another mutation(s) is likely responsible for the lack of fumonisin production in some G-group strains of F. fujikuroi.
Collapse
Affiliation(s)
- S. Sultana
- The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan
| | - W.X. Bao
- The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan
| | - M. Shimizu
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - K. Kageyama
- River Basin Research Center, Gifu University, Gifu 501-1193, Japan
| | - H. Suga
- Life Science Research Center, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
9
|
|
10
|
Chen J, Li Z, Cheng Y, Gao C, Guo L, Wang T, Xu J. Sphinganine-Analog Mycotoxins (SAMs): Chemical Structures, Bioactivities, and Genetic Controls. J Fungi (Basel) 2020; 6:E312. [PMID: 33255427 PMCID: PMC7711896 DOI: 10.3390/jof6040312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022] Open
Abstract
Sphinganine-analog mycotoxins (SAMs) including fumonisins and A. alternata f. sp. Lycopersici (AAL) toxins are a group of related mycotoxins produced by plant pathogenic fungi in the Fusarium genus and in Alternaria alternata f. sp. Lycopersici, respectively. SAMs have shown diverse cytotoxicity and phytotoxicity, causing adverse impacts on plants, animals, and humans, and are a destructive force to crop production worldwide. This review summarizes the structural diversity of SAMs and encapsulates the relationships between their structures and biological activities. The toxicity of SAMs on plants and animals is mainly attributed to their inhibitory activity against the ceramide biosynthesis enzyme, influencing the sphingolipid metabolism and causing programmed cell death. We also reviewed the detoxification methods against SAMs and how plants develop resistance to SAMs. Genetic and evolutionary analyses revealed that the FUM (fumonisins biosynthetic) gene cluster was responsible for fumonisin biosynthesis in Fusarium spp. Sequence comparisons among species within the genus Fusarium suggested that mutations and multiple horizontal gene transfers involving the FUM gene cluster were responsible for the interspecific difference in fumonisin synthesis. We finish by describing methods for monitoring and quantifying SAMs in food and agricultural products.
Collapse
Affiliation(s)
- Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Chunsheng Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Litao Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Tuhong Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
| | - Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (J.C.); (Z.L.); (Y.C.); (C.G.); (L.G.); (T.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
11
|
Magnaporthe oryzae MoNdt80 is a transcriptional regulator of GlcNAc catabolic pathway involved in pathogenesis. Microbiol Res 2020; 239:126550. [DOI: 10.1016/j.micres.2020.126550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/01/2023]
|
12
|
Kim HS, Lohmar JM, Busman M, Brown DW, Naumann TA, Divon HH, Lysøe E, Uhlig S, Proctor RH. Identification and distribution of gene clusters required for synthesis of sphingolipid metabolism inhibitors in diverse species of the filamentous fungus Fusarium. BMC Genomics 2020; 21:510. [PMID: 32703172 PMCID: PMC7376913 DOI: 10.1186/s12864-020-06896-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sphingolipids are structural components and signaling molecules in eukaryotic membranes, and many organisms produce compounds that inhibit sphingolipid metabolism. Some of the inhibitors are structurally similar to the sphingolipid biosynthetic intermediate sphinganine and are referred to as sphinganine-analog metabolites (SAMs). The mycotoxins fumonisins, which are frequent contaminants in maize, are one family of SAMs. Due to food and feed safety concerns, fumonisin biosynthesis has been investigated extensively, including characterization of the fumonisin biosynthetic gene cluster in the agriculturally important fungi Aspergillus and Fusarium. Production of several other SAMs has also been reported in fungi, but there is almost no information on their biosynthesis. There is also little information on how widely SAM production occurs in fungi or on the extent of structural variation of fungal SAMs. RESULTS Using fumonisin biosynthesis as a model, we predicted that SAM biosynthetic gene clusters in fungi should include a polyketide synthase (PKS), an aminotransferase and a dehydrogenase gene. Surveys of genome sequences identified five putative clusters with this three-gene combination in 92 of 186 Fusarium species examined. Collectively, the putative SAM clusters were distributed widely but discontinuously among the species. We propose that the SAM5 cluster confers production of a previously reported Fusarium SAM, 2-amino-14,16-dimethyloctadecan-3-ol (AOD), based on the occurrence of AOD production only in species with the cluster and on deletion analysis of the SAM5 cluster PKS gene. We also identified SAM clusters in 24 species of other fungal genera, and propose that one of the clusters confers production of sphingofungin, a previously reported Aspergillus SAM. CONCLUSION Our results provide a genomics approach to identify novel SAM biosynthetic gene clusters in fungi, which should in turn contribute to identification of novel SAMs with applications in medicine and other fields. Information about novel SAMs could also provide insights into the role of SAMs in the ecology of fungi. Such insights have potential to contribute to strategies to reduce fumonisin contamination in crops and to control crop diseases caused by SAM-producing fungi.
Collapse
Affiliation(s)
- Hye-Seon Kim
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Jessica M Lohmar
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Mark Busman
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Daren W Brown
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Todd A Naumann
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | | | - Erik Lysøe
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Robert H Proctor
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA.
| |
Collapse
|
13
|
Ren W, Liu N, Hou Y, Li B, Zhou M, Chen C. Characterization of the Resistance Mechanism and Risk of Fusarium verticillioides to the Myosin Inhibitor Phenamacril. PHYTOPATHOLOGY 2020; 110:790-794. [PMID: 31961255 DOI: 10.1094/phyto-11-19-0407-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fusarium verticillioides is a major pathogen of maize that causes ear rot and produces mycotoxins. Phenamacril is a novel cyanoacrylate fungicide that exhibits favorable activity against Fusarium species. In this study, the phenamacril-resistant mutants of F. verticillioides were obtained by ultraviolet mutagenesis. Single point mutations of S73L or E276K in the myosin-1 FvMyo1 were proven to be responsible for the high-level resistance of F. verticillioides to phenamacril. Phenamacril had a significant impact on the localization of the wild-type FvMyo1 (FvMyo1WT-green fluorescent protein [GFP]), but not on the mutated FvMyo1 (FvMyo1S73L-GFP and FvMyo1E276K-GFP) at the hyphal tips. Molecular docking analysis suggested that mutation (S73L or E276K) in FvMyo1 altered the binding mode and decreased the binding affinity between phenamacril and myosin-1. There was no significant fitness penalty in mycelial growth, conidiation, and virulence of F. verticillioides associated with resistance to phenamacril. The results will enhance our understanding of the resistance mechanism of F. verticillioides to phenamacril and provide new reference data for the management of maize ear rot.
Collapse
Affiliation(s)
- Weichao Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Na Liu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Baohua Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Fusarium Secondary Metabolism Biosynthetic Pathways: So Close but So Far Away. REFERENCE SERIES IN PHYTOCHEMISTRY 2020. [DOI: 10.1007/978-3-319-96397-6_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Perincherry L, Lalak-Kańczugowska J, Stępień Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins (Basel) 2019; 11:toxins11110664. [PMID: 31739566 PMCID: PMC6891594 DOI: 10.3390/toxins11110664] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection.
Collapse
|
16
|
Hassan ZU, Al Thani R, Balmas V, Migheli Q, Jaoua S. Prevalence of Fusarium fungi and their toxins in marketed feed. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Kjærbølling I, Mortensen UH, Vesth T, Andersen MR. Strategies to establish the link between biosynthetic gene clusters and secondary metabolites. Fungal Genet Biol 2019; 130:107-121. [DOI: 10.1016/j.fgb.2019.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/26/2019] [Accepted: 06/02/2019] [Indexed: 01/01/2023]
|
18
|
Yan H, Huang J, Zhang H, Shim WB. A Rab GTPase protein FvSec4 is necessary for fumonisin B1 biosynthesis and virulence in Fusarium verticillioides. Curr Genet 2019; 66:205-216. [PMID: 31292685 DOI: 10.1007/s00294-019-01013-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Rab GTPases are responsible for a variety of membrane trafficking and vesicular transportation in fungi. But the role of Rab GTPases in Fusarium verticillioides, one of the key corn pathogens worldwide, remains elusive. These Small GTPases in fungi, particularly those homologous to Saccharomyces cerevisiae Sec4, are known to be associated with protein secretion, vesicular trafficking, secondary metabolism and pathogenicity. In this study, our aim was to investigate the molecular functions of FvSec4 in F. verticillioides associated with physiology and virulence. Interestingly, the FvSec4 null mutation did not impair the expression of key conidiation-related genes. Also, the mutant did not show any defect in sexual development, including perithecia production. Meanwhile, GFP-FvSec4 localized to growing hyphal tips and raised the possibility that FvSec4 is involved in protein trafficking and endocytosis. The mutant exhibited defect in corn stalk rot virulence and also significant alteration of fumonisin B1 production. The mutation led to higher sensitivity to oxidative and cell wall stress agents, and defects in carbon utilization. Gene complementation fully restored the defects in the mutant demonstrating that FvSec4 plays important roles in these functions. Taken together, our data indicate that FvSec4 is critical in F. verticillioides hyphal development, virulence, mycotoxin production and stress responses.
Collapse
Affiliation(s)
- Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Jun Huang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Huan Zhang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
19
|
Kamle M, Mahato DK, Devi S, Lee KE, Kang SG, Kumar P. Fumonisins: Impact on Agriculture, Food, and Human Health and their Management Strategies. Toxins (Basel) 2019; 11:E328. [PMID: 31181628 PMCID: PMC6628439 DOI: 10.3390/toxins11060328] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 11/17/2022] Open
Abstract
The fumonisins producing fungi, Fusarium spp., are ubiquitous in nature and contaminate several food matrices that pose detrimental health hazards on humans as well as on animals. This has necessitated profound research for the control and management of the toxins to guarantee better health of consumers. This review highlights the chemistry and biosynthesis process of the fumonisins, their occurrence, effect on agriculture and food, along with their associated health issues. In addition, the focus has been put on the detection and management of fumonisins to ensure safe and healthy food. The main focus of the review is to provide insights to the readers regarding their health-associated food consumption and possible outbreaks. Furthermore, the consumers' knowledge and an attempt will ensure food safety and security and the farmers' knowledge for healthy agricultural practices, processing, and management, important to reduce the mycotoxin outbreaks due to fumonisins.
Collapse
Affiliation(s)
- Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli-791109, Arunachal Pradesh, India.
| | - Dipendra K Mahato
- School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, Burwood VIC 3125, Australia.
| | - Sheetal Devi
- SAB Miller India Ltd., Sonipat, Haryana 131001, India.
| | - Kyung Eun Lee
- Molecular Genetics Laboratory, Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Sang G Kang
- Molecular Genetics Laboratory, Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea.
- Stemforce, 302 Institute of Industrial Technology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli-791109, Arunachal Pradesh, India.
| |
Collapse
|
20
|
Effects of Disruption of Five FUM Genes on Fumonisin Biosynthesis and Pathogenicity in Fusarium proliferatum. Toxins (Basel) 2019; 11:toxins11060327. [PMID: 31181598 PMCID: PMC6628412 DOI: 10.3390/toxins11060327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
The mycotoxin fumonisin is known to be harmful to humans and animals, and thus it is desirable to reduce fumonisin content in crop products. We explored the functions of several genes that function in fumonisin biosynthesis (FUM1, FUM6, FUM8, FUM19, and FUM21) in Fusarium proliferatum and found that deletion of FUM1, FUM6, FUM8, or FUM21 results in a severe reduction in fumonisin biosynthesis, while loss of FUM19 does not. In addition, fumonisin-deficient strains display significantly decreased pathogenicity. Co-cultivation of the ΔFUM1, ΔFUM6, ΔFUM8, and ΔFUM19 mutants restores fumonisin synthesis. However, co-cultivation was unable to restore fumonisin synthesis in the ΔFUM21 strain. The relative expression levels of three key FUM genes (FUM1, FUM6, and FUM8) differed significantly in each mutant strain; notably, the expression levels of these three genes were significantly down-regulated in the ΔFUM21 strain. Taken together, our results demonstrate that FUM1, FUM6, FUM8, and FUM21 are essential for fumonisin synthesis, and FUM19 is non-essential. Partial mutants lost the ability to synthesize fumonisin, the co-culture of the mutants was able to restore fumonisin biosynthesis. While the pathogenicity of F. proliferatum is affected by many factors, inhibition of the synthesis of the mycotoxin fumonisin will weaken the pathogenicity of rice spikelet rot disease (RSRD).
Collapse
|
21
|
Sharma SK, Poudel Sharma S, Miller D, Parel JMA, Leblanc RM. Interfacial Behavior of Fumonisin B1 Toxin and Its Degradation on the Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2814-2820. [PMID: 30673288 DOI: 10.1021/acs.langmuir.8b03505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fumonisin B1 (FB1), the most abundant component of the fumonisin family, is highly responsible for fungal infections. In this paper, our main aim is to study the surface chemistry and spectroscopic properties of the FB1 molecule and observe the impact of green LED light on the FB1 Langmuir monolayer. From the surface chemistry and spectroscopic studies, we found that the FB1 molecule forms a self-assembled Langmuir monolayer which is sufficient to mimic its interaction with the corneal tissues. The irradiation of green LED light on the FB1 Langmuir monolayer showed the degradation of the FB1 when compared to that in the absence of light. This observation reveals that FB1 molecules lose their tendency to stay as a Langmuir monolayer. The degradation observed on the interface was compared with the bulk phase of FB1. The bulk phase observation also indicated the degradation tendency which reinforced the observed interfacial property of FB1.
Collapse
Affiliation(s)
- Shiv K Sharma
- Department of Chemistry , University of Miami , 1301 Memorial Drive , Coral Gables , Florida 33146 , United States
| | - Sijan Poudel Sharma
- Department of Biology , University of Miami , 1301 Memorial Drive , Coral Gables, Florida 33146 , United States
| | - Darlene Miller
- Bascom Palmer Eye Institute , Miller School of Medicine , 900 NW 17th St. , Miami , Florida 33136 , United States
| | - Jean-Marie A Parel
- Bascom Palmer Eye Institute , Miller School of Medicine , 900 NW 17th St. , Miami , Florida 33136 , United States
| | - Roger M Leblanc
- Department of Chemistry , University of Miami , 1301 Memorial Drive , Coral Gables , Florida 33146 , United States
| |
Collapse
|
22
|
Alfatah M, Wong JH, Nge CE, Kong KW, Low KN, Leong CY, Crasta S, Munusamy M, Chang AML, Hoon S, Ng SB, Kanagasundaram Y, Arumugam P. Hypoculoside, a sphingoid base-like compound from Acremonium disrupts the membrane integrity of yeast cells. Sci Rep 2019; 9:710. [PMID: 30679518 PMCID: PMC6345779 DOI: 10.1038/s41598-018-35979-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/09/2018] [Indexed: 11/15/2022] Open
Abstract
We have isolated Hypoculoside, a new glycosidic amino alcohol lipid from the fungus Acremonium sp. F2434 belonging to the order Hypocreales and determined its structure by 2D-NMR (Nuclear Magnetic Resonance) spectroscopy. Hypoculoside has antifungal, antibacterial and cytotoxic activities. Homozygous profiling (HOP) of hypoculoside in Saccharomyces cerevisiae (budding yeast) revealed that several mutants defective in vesicular trafficking and vacuolar protein transport are sensitive to hypoculoside. Staining of budding yeast cells with the styryl dye FM4-64 indicated that hypoculoside damaged the vacuolar structure. Furthermore, the propidium iodide (PI) uptake assay showed that hypoculoside disrupted the plasma membrane integrity of budding yeast cells. Interestingly, the glycosidic moiety of hypoculoside is required for its deleterious effect on growth, vacuoles and plasma membrane of budding yeast cells.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Jin Huei Wong
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Choy Eng Nge
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Kiat Whye Kong
- Molecular Engineering Laboratory, 61 Biopolis Drive, #03-12, Proteos, 13867, Singapore
| | - Kia Ngee Low
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Chung Yan Leong
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Sharon Crasta
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Madhaiyan Munusamy
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | | | - Shawn Hoon
- Molecular Engineering Laboratory, 61 Biopolis Drive, #03-12, Proteos, 13867, Singapore
| | - Siew Bee Ng
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore.
| | | | - Prakash Arumugam
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore.
| |
Collapse
|
23
|
Li N, Zhao J, Zhang R, Deng L, Li J, Gao Y, Liu C. Effect of Tebuconazole Enantiomers and Environmental Factors on Fumonisin Accumulation and FUM Gene Expression in Fusarium verticillioides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13107-13115. [PMID: 30458614 DOI: 10.1021/acs.jafc.8b04900] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusarium verticillioides is an important corn pathogen that can produce fumonisins (FBs) under certain environmental conditions. In this study, we evaluated the enantioselective impact of tebuconazole enantiomers on the growth and FB production of F. verticillioides on maize-based media at different abiotic factors. The expression of FB biosynthetic genes ( FUM1 and FUM6) was quantified by real-time reverse transcription polymerase chain reaction. The results showed that water activity ( aw), temperature, and types of tebuconazole significantly affected the growth of F. verticillioides. The order of fungicidal activity was (-)-tebuconazole > rac-tebuconazole > (+)-tebuconazole. (-)-tebuconazole exhibited the maximal selective fungicidal activity (242-fold) against F. verticillioides at 0.95 aw and 35 °C. Production of fumonisin B1 (FB1) and fumonisin B2 (FB2) by F. verticillioides was influenced by aw, temperature, types of tebuconazole, and dose. Under most conditions, (-)-tebuconazole showed stronger inhibition for FB1 and FB2 production than (+)-tebuconazole (1.87-2.85-fold reduction in FBs) and rac-tebuconazole. The optimal environmental condition for FB production was at 0.99 aw and 25 °C. Tebuconazole enantiomers differently affected FB biosynthetic gene ( FUM1 and FUM6) expression, but the effects on FB production and gene expression showed no positive correlation. The present study provides a better understanding on ways to minimize FB production in corn treated with fungicides.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province , South China Agricultural University , Wushan Road 483 , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Junlong Zhao
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province , South China Agricultural University , Wushan Road 483 , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Rui Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province , South China Agricultural University , Wushan Road 483 , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Luqing Deng
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province , South China Agricultural University , Wushan Road 483 , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Jianfang Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province , South China Agricultural University , Wushan Road 483 , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Yan Gao
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute , Guangdong Academy of Agricultural Sciences , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province , South China Agricultural University , Wushan Road 483 , Guangzhou , Guangdong 510642 , People's Republic of China
| |
Collapse
|
24
|
Jakšić D, Kocsubé S, Bencsik O, Kecskeméti A, Szekeres A, Jelić D, Kopjar N, Vágvölgyi C, Varga J, Šegvić Klarić M. Fumonisin production and toxic capacity in airborne black Aspergilli. Toxicol In Vitro 2018; 53:160-171. [DOI: 10.1016/j.tiv.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 06/11/2018] [Accepted: 08/10/2018] [Indexed: 01/25/2023]
|
25
|
Shin J, Kim JE, Lee YW, Son H. Fungal Cytochrome P450s and the P450 Complement (CYPome) of Fusarium graminearum. Toxins (Basel) 2018; 10:E112. [PMID: 29518888 PMCID: PMC5869400 DOI: 10.3390/toxins10030112] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450s (CYPs), heme-containing monooxygenases, play important roles in a wide variety of metabolic processes important for development as well as biotic/trophic interactions in most living organisms. Functions of some CYP enzymes are similar across organisms, but some are organism-specific; they are involved in the biosynthesis of structural components, signaling networks, secondary metabolisms, and xenobiotic/drug detoxification. Fungi possess more diverse CYP families than plants, animals, or bacteria. Various fungal CYPs are involved in not only ergosterol synthesis and virulence but also in the production of a wide array of secondary metabolites, which exert toxic effects on humans and other animals. Although few studies have investigated the functions of fungal CYPs, a recent systematic functional analysis of CYP genes in the plant pathogen Fusarium graminearum identified several novel CYPs specifically involved in virulence, asexual and sexual development, and degradation of xenobiotics. This review provides fundamental information on fungal CYPs and a new platform for further metabolomic and biochemical studies of CYPs in toxigenic fungi.
Collapse
Affiliation(s)
| | | | | | - Hokyoung Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.S.); (J.-E.K.); (Y.-W.L.)
| |
Collapse
|
26
|
Knutsen HK, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Dall'Asta C, Gutleb AC, Humpf HU, Galli C, Metzler M, Oswald IP, Parent-Massin D, Binaglia M, Steinkellner H, Alexander J. Appropriateness to set a group health-based guidance value for fumonisins and their modified forms. EFSA J 2018; 16:e05172. [PMID: 32625807 PMCID: PMC7009576 DOI: 10.2903/j.efsa.2018.5172] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The EFSA Panel on Contaminants in the Food Chain (CONTAM) established a tolerable daily intake (TDI) for fumonisin B1 (FB 1) of 1.0 μg/kg body weight (bw) per day based on increased incidence of megalocytic hepatocytes found in a chronic study with mice. The CONTAM Panel considered the limited data available on toxicity and mode of action and structural similarities of FB 2-6 and found it appropriate to include FB 2, FB 3 and FB 4 in a group TDI with FB 1. Modified forms of FBs are phase I and phase II metabolites formed in fungi, infested plants or farm animals. Modified forms also arise from food or feed processing, and include covalent adducts with matrix constituents. Non-covalently bound forms are not considered as modified forms. Modified forms of FBs identified are hydrolysed FB 1-4 (HFB 1-4), partially hydrolysed FB 1-2 (pHFB 1-2), N-(carboxymethyl)-FB 1-3 (NCM-FB 1-3), N-(1-deoxy-d-fructos-1-yl)-FB 1 (NDF-FB 1), O-fatty acyl FB 1, N-fatty acyl FB 1 and N-palmitoyl-HFB 1. HFB 1, pHFB 1, NCM-FB 1 and NDF-FB 1 show a similar toxicological profile but are less potent than FB 1. Although in vitro data shows that N-fatty acyl FBs are more toxic in vitro than FB 1, no in vivo data were available for N-fatty acyl FBs and O-fatty acyl FBs. The CONTAM Panel concluded that it was not appropriate to include modified FBs in the group TDI for FB 1-4. The uncertainty associated with the present assessment is high, but could be reduced provided more data are made available on occurrence, toxicokinetics and toxicity of FB 2-6 and modified forms of FB 1-4.
Collapse
|
27
|
Li T, Gong L, Jiang G, Wang Y, Gupta VK, Qu H, Duan X, Wang J, Jiang Y. Carbon Sources Influence Fumonisin Production inFusarium proliferatum. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/21/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
| | - Liang Gong
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
| | - Guoxiang Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
| | - Yong Wang
- Zhong Shan Entry-Exit Inspection and Quarantine Bureau; Zhongshan P. R. China
| | - Vijai Kumar Gupta
- School of Science; Department of Chemistry and Biotechnology ERA Chair of Green Chemistry; Tallinn University of Technology; Tallinn Estonia
| | - Hongxia Qu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
| | - Jiasheng Wang
- Department of Environmental Health Science College of Public Health; University of Georgia; Athens GA USA
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
- Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden; Chinese Academy of Sciences; Guangzhou P. R. China
| |
Collapse
|
28
|
Busman M. Utilization of High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry for Characterization of 8-O-methylbostrycoidin Production by Species of the Fungus Fusarium. J Fungi (Basel) 2017; 3:jof3030043. [PMID: 29371560 PMCID: PMC5715938 DOI: 10.3390/jof3030043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 11/17/2022] Open
Abstract
The pigment 8-O-methylbostrycoidin is a polyketide metabolite produced by multiple species of the fungus Fusarium that infects plant crops, including maize. A technique was developed for the analysis of 8-O-methylbostrycoidin by high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The quantitative nature of the LC-MS/MS experiment was demonstrated over a range of concentrations in maize. Limits of detection for the method (10 ng/g from 8-O-methylbostrycoidin spiked into ground maize) were shown, and susceptibility of the method to matrix effects from maize was also evaluated. The method was applied to evaluate the ability of the maize pathogen Fusarium verticillioides to produce 8-O-methylbostrycoidin in developing maize ears grown in an agricultural field.
Collapse
Affiliation(s)
- Mark Busman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL 61604, USA.
| |
Collapse
|
29
|
Ozturk IK, Chettri P, Dupont PY, Barnes I, McDougal RL, Moore GG, Sim A, Bradshaw RE. Evolution of polyketide synthesis in a Dothideomycete forest pathogen. Fungal Genet Biol 2017; 106:42-50. [PMID: 28690095 DOI: 10.1016/j.fgb.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/27/2017] [Accepted: 07/05/2017] [Indexed: 11/16/2022]
Abstract
Fungal secondary metabolites have many important biological roles and some, like the toxic polyketide aflatoxin, have been intensively studied at the genetic level. Complete sets of polyketide synthase (PKS) genes can now be identified in fungal pathogens by whole genome sequencing and studied in order to predict the biosynthetic potential of those fungi. The pine needle pathogen Dothistroma septosporum is predicted to have only three functional PKS genes, a small number for a hemibiotrophic fungus. One of these genes is required for production of dothistromin, a polyketide virulence factor related to aflatoxin, whose biosynthetic genes are dispersed across one chromosome rather than being clustered. Here we evaluated the evolution of the other two genes, and their predicted gene clusters, using phylogenetic and population analyses. DsPks1 and its gene cluster are quite conserved amongst related fungi, whilst DsPks2 appears to be novel. The DsPks1 protein was predicted to be required for dihydroxynaphthalene (DHN) melanin biosynthesis but functional analysis of DsPks1 mutants showed that D. septosporum produced mainly dihydroxyphenylalanine (DOPA) melanin, which is produced by a PKS-independent pathway. Although the secondary metabolites made by these two PKS genes are not known, comparisons between strains of D. septosporum from different regions of the world revealed that both PKS core genes are under negative selection and we suggest they may have important cryptic roles in planta.
Collapse
Affiliation(s)
- I Kutay Ozturk
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand.
| | - Pranav Chettri
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand.
| | - Pierre-Yves Dupont
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand.
| | - Irene Barnes
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.
| | | | - Geromy G Moore
- Southern Regional Research Center, Agricultural Research Service, USDA, New Orleans, LA 70124, USA.
| | - Andre Sim
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand.
| | - Rosie E Bradshaw
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand.
| |
Collapse
|
30
|
Proteomics analysis of Fusarium proliferatum under various initial pH during fumonisin production. J Proteomics 2017; 164:59-72. [PMID: 28522339 DOI: 10.1016/j.jprot.2017.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022]
Abstract
Fusarium proliferatum as a fungal pathogen can produce fumonisin which causes a great threat to animal and human health. Proteomic approach was a useful tool for investigation into mycotoxin biosynthesis in fungal pathogens. In this study, we analyzed the fumonisin content and mycelium proteins of Fusarium proliferatum cultivated under the initial pH5 and 10. Fumonisin production after 10days was significantly induced in culture condition at pH10 than pH5. Ninety nine significantly differently accumulated protein spots under the two pH conditions were detected using two dimensional polyacrylamide gel electrophoresis and 89 of these proteins were successfully identified by MALDI-TOF/TOF and LC-ESI-MS/MS analysis. Among these 89 proteins, 45 were up-regulated at pH10 while 44 were up-accumulated at pH5. At pH10, these proteins were found to involve in the modification of fumonisin backbone including up-regulated polyketide synthase, cytochrome P450, S-adenosylmethionine synthase and O-methyltransferase, which might contribute to the induction of fumonisin production. At pH5, these up-regulated proteins such as l-amino-acid oxidase, isocitrate dehydrogenase and citrate lyase might inhibit the condensation of fumonisin backbone, resulting in reduced production of fumonisins. These results may help us to understand the molecular mechanism of the fumonisin synthesis in F. proliferatum. BIOLOGICAL SIGNIFICANCE To extend our understanding of the mechanism of the fumonisin biosynthesis of F. proliferatum, we reported the fumonisin production in relation to the differential proteins of F. proliferatum mycelium under two pH culture conditions. Among these 89 identified spots, 45 were up-accumulated at pH10 while 44 were up-accumulated at pH5. Our results revealed that increased fumonisin production at pH10 might be related to the induction of fumonisin biosynthesis caused by up-regulation of polyketide synthase, cytochrome P450, S-adenosylmethionine synthase and O-methyltransferase. Meanwhile, the up-regulation of l-amino-acid oxidase, isocitrate dehydrogenase and citrate lyase at pH5 might be related to the inhibition of the condensation of fumonisin backbone, resulting in reduced production of fumonisin. These results may help us to understand better the molecular mechanism of the fumonisin synthesis in F. proliferatum and then broaden the current knowledge of the mechanism of the fumonisin biosynthesis.
Collapse
|
31
|
Han J, Wang F, Gao P, Ma Z, Zhao S, Lu Z, Lv F, Bie X. Mechanism of action of AMP-jsa9, a LI-F-type antimicrobial peptide produced by Paenibacillus polymyxa JSa-9, against Fusarium moniliforme. Fungal Genet Biol 2017; 104:45-55. [PMID: 28512016 DOI: 10.1016/j.fgb.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/28/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022]
Abstract
LI-F type peptides (AMP-jsa9) are a group of cyclic lipodepsipeptides that exhibit broad antimicrobial spectrum against Gram-positive bacteria and filamentous fungi. We sought to assess the toxicity of AMP-jsa9 and the mechanism of AMP-jsa9 action against Fusarium moniliforme. AMP-jsa9 exhibited weak hemolytic activity and weak cytotoxicity at antimicrobial concentrations (32μg/ml). Confocal laser microscopy, SEM, and TEM indicated that AMP-jsa9 primarily targets the cell wall, plasma membrane, and cytoskeleton, increases membranepermeability, and enhances cytoplasm leakage (e.g., K+, protein). Quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) detected a total of 162 differentially expressed proteins (59 up-regulated and 103 down-regulated) following treatment of F. moniliforme with AMP-jsa9. AMP-jsa9 treatment also led to reductions in chitin, ergosterol, NADH, NADPH, and ATP levels. Moreover, fumonisin B1 expression and biosynthesis was suppressed in AMP-jsa9-treated F. moniliforme. Our results provide a theoretical basis for the application of AMP-jsa9 as a natural and effective antifungal agent in the agricultural, food, and animal feed industries.
Collapse
Affiliation(s)
- Jinzhi Han
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Fang Wang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Peng Gao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Zhi Ma
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Shengming Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China.
| |
Collapse
|
32
|
Cendoya E, Pinson-Gadais L, Farnochi MC, Ramirez ML, Chéreau S, Marcheguay G, Ducos C, Barreau C, Richard-Forget F. Abiotic conditions leading to FUM gene expression and fumonisin accumulation by Fusarium proliferatum strains grown on a wheat-based substrate. Int J Food Microbiol 2017; 253:12-19. [PMID: 28463723 DOI: 10.1016/j.ijfoodmicro.2017.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/20/2017] [Accepted: 04/24/2017] [Indexed: 11/27/2022]
Abstract
Fusarium proliferatum produces fumonisins B not only on maize but also on diverse crops including wheat. Using a wheat-based medium, the effects of abiotic factors, temperature and water activity (aW), on growth, fumonisin biosynthesis, and expression of FUM genes were compared for three F. proliferatum strains isolated from durum wheat in Argentina. Although all isolates showed similar profiles of growth, the fumonisin production profiles were slightly different. Regarding FUM gene transcriptional control, both FUM8 and FUM19 expression showed similar behavior in all tested conditions. For both genes, expression at 25°C correlated with fumonisin production, regardless of the aw conditions. However, at 15°C, these two genes were as highly expressed as at 25°C although the amounts of toxin were very weak, suggesting that the kinetics of fumonisin production was slowed at 15°C. This study provides useful baseline data on conditions representing a low or a high risk for contamination of wheat kernels with fumonisins.
Collapse
Affiliation(s)
- Eugenia Cendoya
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Laetitia Pinson-Gadais
- Institut National de la Recherche Agronomique (INRA), UR1264 MycSA, 71 avenue Edouard Bourlaux, cs20032, 33883 Villenave d'Ornon cedex, France
| | - María C Farnochi
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - María L Ramirez
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Sylvain Chéreau
- Institut National de la Recherche Agronomique (INRA), UR1264 MycSA, 71 avenue Edouard Bourlaux, cs20032, 33883 Villenave d'Ornon cedex, France
| | - Giselè Marcheguay
- Institut National de la Recherche Agronomique (INRA), UR1264 MycSA, 71 avenue Edouard Bourlaux, cs20032, 33883 Villenave d'Ornon cedex, France
| | - Christine Ducos
- Institut National de la Recherche Agronomique (INRA), UR1264 MycSA, 71 avenue Edouard Bourlaux, cs20032, 33883 Villenave d'Ornon cedex, France
| | - Christian Barreau
- Institut National de la Recherche Agronomique (INRA), UR1264 MycSA, 71 avenue Edouard Bourlaux, cs20032, 33883 Villenave d'Ornon cedex, France
| | - Florence Richard-Forget
- Institut National de la Recherche Agronomique (INRA), UR1264 MycSA, 71 avenue Edouard Bourlaux, cs20032, 33883 Villenave d'Ornon cedex, France
| |
Collapse
|
33
|
Pfannmüller A, Leufken J, Studt L, Michielse CB, Sieber CMK, Güldener U, Hawat S, Hippler M, Fufezan C, Tudzynski B. Comparative transcriptome and proteome analysis reveals a global impact of the nitrogen regulators AreA and AreB on secondary metabolism in Fusarium fujikuroi. PLoS One 2017; 12:e0176194. [PMID: 28441411 PMCID: PMC5404775 DOI: 10.1371/journal.pone.0176194] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/06/2017] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis of multiple secondary metabolites in the phytopathogenic ascomycete Fusarium fujikuroi is strongly affected by nitrogen availability. Here, we present the first genome-wide transcriptome and proteome analysis that compared the wild type and deletion mutants of the two major nitrogen regulators AreA and AreB. We show that AreB acts not simply as an antagonist of AreA counteracting the expression of AreA target genes as suggested based on the yeast model. Both GATA transcription factors affect a large and diverse set of common as well as specific target genes and proteins, acting as activators and repressors. We demonstrate that AreA and AreB are not only involved in fungal nitrogen metabolism, but also in the control of several complex cellular processes like carbon metabolism, transport and secondary metabolism. We show that both GATA transcription factors can be considered as master regulators of secondary metabolism as they affect the expression of more than half of the 47 putative secondary metabolite clusters identified in the genome of F. fujikuroi. While AreA acts as a positive regulator of many clusters under nitrogen-limiting conditions, AreB is able to activate and repress gene clusters (e.g. bikaverin) under nitrogen limitation and sufficiency. In addition, ChIP analyses revealed that loss of AreA or AreB causes histone modifications at some of the regulated gene clusters.
Collapse
Affiliation(s)
- Andreas Pfannmüller
- Institute of Biology and Biotechnology of Plants, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Johannes Leufken
- Institute of Biology and Biotechnology of Plants, Computational Biology, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Lena Studt
- Institute of Biology and Biotechnology of Plants, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-University Münster, Münster, Germany
- Division of Microbial Genetics and Pathogen Interaction, Department of Applied Genetics and Cell Biology, Campus-Tulln, BOKU-University of Natural Resources and Life Science, Vienna, Austria
| | - Caroline B. Michielse
- Institute of Biology and Biotechnology of Plants, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Christian M. K. Sieber
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Department of Genome-oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Susan Hawat
- Institute of Biology and Biotechnology of Plants, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Michael Hippler
- Institute of Biology and Biotechnology of Plants, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Christian Fufezan
- Institute of Biology and Biotechnology of Plants, Computational Biology, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Bettina Tudzynski
- Institute of Biology and Biotechnology of Plants, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-University Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
34
|
Gaona-López C, Julián-Sánchez A, Riveros-Rosas H. Diversity and Evolutionary Analysis of Iron-Containing (Type-III) Alcohol Dehydrogenases in Eukaryotes. PLoS One 2016; 11:e0166851. [PMID: 27893862 PMCID: PMC5125639 DOI: 10.1371/journal.pone.0166851] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/05/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Alcohol dehydrogenase (ADH) activity is widely distributed in the three domains of life. Currently, there are three non-homologous NAD(P)+-dependent ADH families reported: Type I ADH comprises Zn-dependent ADHs; type II ADH comprises short-chain ADHs described first in Drosophila; and, type III ADH comprises iron-containing ADHs (FeADHs). These three families arose independently throughout evolution and possess different structures and mechanisms of reaction. While types I and II ADHs have been extensively studied, analyses about the evolution and diversity of (type III) FeADHs have not been published yet. Therefore in this work, a phylogenetic analysis of FeADHs was performed to get insights into the evolution of this protein family, as well as explore the diversity of FeADHs in eukaryotes. PRINCIPAL FINDINGS Results showed that FeADHs from eukaryotes are distributed in thirteen protein subfamilies, eight of them possessing protein sequences distributed in the three domains of life. Interestingly, none of these protein subfamilies possess protein sequences found simultaneously in animals, plants and fungi. Many FeADHs are activated by or contain Fe2+, but many others bind to a variety of metals, or even lack of metal cofactor. Animal FeADHs are found in just one protein subfamily, the hydroxyacid-oxoacid transhydrogenase (HOT) subfamily, which includes protein sequences widely distributed in fungi, but not in plants), and in several taxa from lower eukaryotes, bacteria and archaea. Fungi FeADHs are found mainly in two subfamilies: HOT and maleylacetate reductase (MAR), but some can be found also in other three different protein subfamilies. Plant FeADHs are found only in chlorophyta but not in higher plants, and are distributed in three different protein subfamilies. CONCLUSIONS/SIGNIFICANCE FeADHs are a diverse and ancient protein family that shares a common 3D scaffold with a patchy distribution in eukaryotes. The majority of sequenced FeADHs from eukaryotes are distributed in just two subfamilies, HOT and MAR (found mainly in animals and fungi). These two subfamilies comprise almost 85% of all sequenced FeADHs in eukaryotes.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
| | - Adriana Julián-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
- * E-mail:
| |
Collapse
|
35
|
Ciaramella A, Minerdi D, Gilardi G. Catalytically self-sufficient cytochromes P450 for green production of fine chemicals. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2016. [DOI: 10.1007/s12210-016-0581-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Noar RD, Daub ME. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis. PLoS One 2016; 11:e0158471. [PMID: 27388157 PMCID: PMC4936691 DOI: 10.1371/journal.pone.0158471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/16/2016] [Indexed: 01/07/2023] Open
Abstract
Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity) to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode polyketides important in pathogenicity.
Collapse
Affiliation(s)
- Roslyn D. Noar
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695-7616, United States of America
| | - Margaret E. Daub
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, 27695-7612, United States of America
- * E-mail:
| |
Collapse
|
37
|
Li T, Jian Q, Chen F, Wang Y, Gong L, Duan X, Yang B, Jiang Y. Influence of Butylated Hydroxyanisole on the Growth, Hyphal Morphology, and the Biosynthesis of Fumonisins in Fusarium proliferatum. Front Microbiol 2016; 7:1038. [PMID: 27468276 PMCID: PMC4942755 DOI: 10.3389/fmicb.2016.01038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/20/2016] [Indexed: 11/13/2022] Open
Abstract
Fusarium proliferatum as a common fungus pathogen in foods can produce toxic fumonisins, which can cause animal diseases and increase risks of human cancers. On contrary, butylated hydroxyanisole (BHA) as a synthetic antioxidant offers a clue for preventing growth of fungal species and inhibiting production of mycotoxins. Unfortunately, information of the inhibitory mechanism of BHA on Fusarium species is still limited. In this study, influence of BHA treatment on growth and inhibition of fumonisin production in relation to the expression of the fumonisin biosynthesis-related genes of the F. proliferatum ZYF was investigated, which revealed that BHA had a negative influence on growth and fumonisin production of F. proliferatum. To further elucidate the mechanism of BHA on the growth of F. proliferatum, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the F. proliferatum hyphae. The BHA treatment induced the loss of cytoplasm and cellular constituents, as well as distortion of mycelia, but it did not directly degrade the fumonisin. Furthermore, the BHA treatment markedly inhibited the expressions of FUM1 (a polyketide synthase encoding gene) and FUM8 (an aminotransferase encoding gene) genes, which resulted in the depression of metabolic pathway of F. proliferatum. The transcriptional analyses of the FUM1 and FUM8 genes confirmed a correlation between the fumonisin production and its gene expression. This study provided some insights into mechanisms of production of fumonisin and feasible prevention to reduce fumonisin contamination in favor of human and animal health.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, GuangzhouChina; University of Chinese Academy of Sciences, BeijingChina
| | - Qijie Jian
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, GuangzhouChina; University of Chinese Academy of Sciences, BeijingChina
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC USA
| | - Yong Wang
- Zhong Shan Entry-Exit Inspection and Quarantine Bureau, Zhong Shan China
| | - Liang Gong
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China
| | - Bao Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China
| |
Collapse
|
38
|
Rösler SM, Sieber CMK, Humpf HU, Tudzynski B. Interplay between pathway-specific and global regulation of the fumonisin gene cluster in the rice pathogen Fusarium fujikuroi. Appl Microbiol Biotechnol 2016; 100:5869-82. [PMID: 26966024 DOI: 10.1007/s00253-016-7426-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 12/17/2022]
Abstract
The rice pathogenic fungus Fusarium fujikuroi is known to produce a large variety of secondary metabolites. Besides the gibberellins, causing the bakanae effect in infected rice seedlings, the fungus produces several mycotoxins and pigments. Among the 47 putative secondary metabolite gene clusters identified in the genome of F. fujikuroi, the fumonisin gene cluster (FUM) shows very high homology to the FUM cluster of the main fumonisin producer Fusarium verticillioides, a pathogen of maize. Despite the high level of cluster gene conservation, total fumonisin FB1 and FB2 levels (FBx) produced by F. fujikuroi were only 1-10 % compared to F. verticillioides under inducing conditions. Nitrogen repression was found to be relevant for wild-type strains of both species. However, addition of germinated maize kernels activated the FBx production only in F. verticillioides, reflecting the different host specificity of both wild-type strains. Over-expression of the pathway-specific transcription factor Fum21 in F. fujikuroi strongly activated the FUM cluster genes leading to 1000-fold elevated FBx levels. To gain further insights into the nitrogen metabolite repression of FBx biosynthesis, we studied the impact of the global nitrogen regulators AreA and AreB and demonstrated that both GATA-type transcription factors are essential for full activation of the FUM gene cluster. Loss of one of them obstructs the pathway-specific transcription factor Fum21 to fully activate expression of FUM cluster genes.
Collapse
Affiliation(s)
- Sarah M Rösler
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149, Münster, Germany.,Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Christian M K Sieber
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Bioinformatics and Systems Biology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Bettina Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany.
| |
Collapse
|
39
|
Fanelli F, Geisen R, Schmidt-Heydt M, Logrieco A, Mulè G. Light regulation of mycotoxin biosynthesis: new perspectives for food safety. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2014.1860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mycotoxins are secondary metabolites produced by toxigenic fungi contaminating foods and feeds in pre-, post-harvest and processing, and represent a great concern worldwide, both for the economic implications and for the health of the consumers. Many environmental conditions are involved in the regulation of mycotoxin biosynthesis. Among these, light represents one of the most important signals for fungi, influencing several physiological responses such as pigmentation, sexual development and asexual conidiation, primary and secondary metabolism, including mycotoxin biosynthesis. In this review we summarise some recent findings on the effect of specific light wavelength and intensity on mycotoxin biosynthesis in the main toxigenic fungal genera. We describe the molecular mechanism underlying light perception and its involvement in the regulation of secondary metabolism, focusing on VeA, global regulator in Aspergillus nidulans, and the White-Collar proteins, key components of light response in Neurospora crassa. Light of specific wavelength and intensity exerts different effects both on growth and on toxin production depending on the fungal genus. In Penicillium spp. red (627 nm) and blue wavelengths (455-470 nm) reduce ochratoxin A (OTA) biosynthesis by modulating the level of expression of the ochratoxin polyketide synthase. Furthermore a mutual regulation between citrinin and OTA production is reported in Penicillium toxigenic species. In Aspergillus spp. the effect of light treatment is strongly dependent on the species and culture conditions. Royal blue wavelength (455 nm) of high intensity (1,700 Lux) is capable of completely inhibit fungal growth and OTA production in Aspergillus stenyii and Penicillum verrucosum. In Fusarium spp. the effect of light exposure is less effective; mycotoxin-producing species, such as Fusarium verticillioides and Fusarium proliferatum, grow better under light conditions, and fumonisin production increased. This review provides a comprehensive picture on light regulation of mycotoxin biosynthesis and discusses possible new applications of this resource in food safety.
Collapse
Affiliation(s)
- F. Fanelli
- Institute of Sciences of Food Production, CNR, via Amendola 122/0, 70126 Bari, Italy
| | - R. Geisen
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - M. Schmidt-Heydt
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - A.F. Logrieco
- Institute of Sciences of Food Production, CNR, via Amendola 122/0, 70126 Bari, Italy
| | - G. Mulè
- Institute of Sciences of Food Production, CNR, via Amendola 122/0, 70126 Bari, Italy
| |
Collapse
|
40
|
Becker‐Algeri TA, Castagnaro D, Bortoli K, Souza C, Drunkler DA, Badiale‐Furlong E. Mycotoxins in Bovine Milk and Dairy Products: A Review. J Food Sci 2016; 81:R544-52. [DOI: 10.1111/1750-3841.13204] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/02/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Tania Aparecida Becker‐Algeri
- Post Graduate Program in Engineering and Science of FoodDept. of Food Chemistry, Federal Univ. of Rio Grande (FURG) Av. Itália, Km 8, Bairro Carreiros Rio Grande RS CEP 96203–900 Brazil
| | - Denise Castagnaro
- Post Graduate Program in Food TechnologyDept. of Post Graduate Program in Food Technology (PPGTA), Federal Technological Univ. of Paraná (UTFPR) Av. Brasil, 4232, Bairro Independência Medianeira PR CEP 85884–000 Brazil
| | - Kennidy Bortoli
- Graduation in Food EngineeringFederal Technological Univ. of Paraná (UTFPR) Av. Brasil, 4232, Bairro Independência Medianeira PR CEP 85884‐000 Brazil
| | - Camila Souza
- Graduation in Food EngineeringFederal Technological Univ. of Paraná (UTFPR) Av. Brasil, 4232, Bairro Independência Medianeira PR CEP 85884‐000 Brazil
| | - Deisy Alessandra Drunkler
- Post Graduate Program in Food TechnologyDept. of Post Graduate Program in Food Technology (PPGTA), Federal Technological Univ. of Paraná (UTFPR) Av. Brasil, 4232, Bairro Independência Medianeira PR CEP 85884–000 Brazil
| | - Eliana Badiale‐Furlong
- Post Graduate Program in Engineering and Science of FoodDept. of Food Chemistry, Federal Univ. of Rio Grande (FURG) Av. Itália, Km 8, Bairro Carreiros Rio Grande RS CEP 96203–900 Brazil
| |
Collapse
|
41
|
Clustered array of ochratoxin A biosynthetic genes in Aspergillus steynii and their expression patterns in permissive conditions. Int J Food Microbiol 2015; 214:102-108. [PMID: 26256718 DOI: 10.1016/j.ijfoodmicro.2015.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/03/2015] [Accepted: 07/15/2015] [Indexed: 02/08/2023]
Abstract
Aspergillus steynii is probably the most relevant species of section Circumdati producing ochratoxin A (OTA). This mycotoxin contaminates a wide number of commodities and it is highly toxic for humans and animals. Little is known on the biosynthetic genes and their regulation in Aspergillus species. In this work, we identified and analysed three contiguous genes in A. steynii using 5'-RACE and genome walking approaches which predicted a cytochrome P450 monooxygenase (p450ste), a non-ribosomal peptide synthetase (nrpsste) and a polyketide synthase (pksste). These three genes were contiguous within a 20742 bp long genomic DNA fragment. Their corresponding cDNA were sequenced and their expression was analysed in three A. steynii strains using real time RT-PCR specific assays in permissive conditions in in vitro cultures. OTA was also analysed in these cultures. Comparative analyses of predicted genomic, cDNA and amino acid sequences were performed with sequences of similar gene functions. All the results obtained in these analyses were consistent and point out the involvement of these three genes in OTA biosynthesis by A. steynii and showed a co-ordinated expression pattern. This is the first time that a clustered organization OTA biosynthetic genes has been reported in Aspergillus genus. The results also suggested that this situation might be common in Aspergillus OTA-producing species and distinct to the one described for Penicillium species.
Collapse
|
42
|
SnPKS19 Encodes the Polyketide Synthase for Alternariol Mycotoxin Biosynthesis in the Wheat Pathogen Parastagonospora nodorum. Appl Environ Microbiol 2015; 81:5309-17. [PMID: 26025896 DOI: 10.1128/aem.00278-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/20/2015] [Indexed: 12/12/2022] Open
Abstract
Alternariol (AOH) is an important mycotoxin from the Alternaria fungi. AOH was detected for the first time in the wheat pathogen Parastagonospora nodorum in a recent study. Here, we exploited reverse genetics to demonstrate that SNOG_15829 (SnPKS19), a close homolog of Penicillium aethiopicum norlichexanthone (NLX) synthase gene gsfA, is required for AOH production. We further validate that SnPKS19 is solely responsible for AOH production by heterologous expression in Aspergillus nidulans. The expression profile of SnPKS19 based on previous P. nodorum microarray data correlated with the presence of AOH in vitro and its absence in planta. Subsequent characterization of the ΔSnPKS19 mutants showed that SnPKS19 and AOH are not involved in virulence and oxidative stress tolerance. Identification and characterization of the P. nodorum SnPKS19 cast light on a possible alternative AOH synthase gene in Alternaria alternata and allowed us to survey the distribution of AOH synthase genes in other fungal genomes. We further demonstrate that phylogenetic analysis could be used to differentiate between AOH synthases and the closely related NLX synthases. This study provides the basis for studying the genetic regulation of AOH production and for development of molecular diagnostic methods for detecting AOH-producing fungi in the future.
Collapse
|
43
|
Ferrigo D, Raiola A, Bogialli S, Bortolini C, Tapparo A, Causin R. In Vitro Production of Fumonisins by Fusarium verticillioides under Oxidative Stress Induced by H2O2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4879-4885. [PMID: 25910187 DOI: 10.1021/acs.jafc.5b00113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effects of oxidative stress induced by H2O2 were tested in liquid cultures in the fumonisin-producing fungus Fusarium verticillioides. The quantitative analysis of fumonisins B1, B2, B3, and B4 was achieved by means of liquid chromatography coupled to high-resolution mass spectrometry. Two effects in F. verticillioides, consisting of different abilities to produce fumonisins in response to oxidative stress, were identified. Following H2O2 addition, two F. verticillioides strains produced significantly more fumonisin (>300%) while three other strains produced significantly less (<20%) in comparison to control cultures. Transcriptional studies with seven biosynthetic genes showed a significant increase in transcript levels in the strain that made more fumonisin and either no or minimal changes in the strain that made less fumonisin. Our data indicate the important role of oxidative stress toward the modulation of the fumonisin biosynthesis and suggest the necessity to verify the presence of such divergent behavior in F. verticillioides populations under natural conditions.
Collapse
Affiliation(s)
- Davide Ferrigo
- †Department of Land, Environment, Agriculture and Forestry, University of Padua, Campus of Agripolis, Viale Università 16, 35020 Legnaro, Padua, Italy
| | - Alessandro Raiola
- †Department of Land, Environment, Agriculture and Forestry, University of Padua, Campus of Agripolis, Viale Università 16, 35020 Legnaro, Padua, Italy
| | - Sara Bogialli
- ‡Department of Chemical Science, University of Padua, via Marzolo 1, 35131 Padua, Italy
| | - Claudio Bortolini
- ‡Department of Chemical Science, University of Padua, via Marzolo 1, 35131 Padua, Italy
| | - Andrea Tapparo
- ‡Department of Chemical Science, University of Padua, via Marzolo 1, 35131 Padua, Italy
| | - Roberto Causin
- †Department of Land, Environment, Agriculture and Forestry, University of Padua, Campus of Agripolis, Viale Università 16, 35020 Legnaro, Padua, Italy
| |
Collapse
|
44
|
Shimizu K, Nakagawa H, Hashimoto R, Hagiwara D, Onji Y, Asano K, Kawamoto S, Takahashi H, Yokoyama K. The α-oxoamine synthase gene fum8 is involved in fumonisin B2 biosynthesis in Aspergillus niger. MYCOSCIENCE 2015. [DOI: 10.1016/j.myc.2014.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Niu C, Payne GA, Woloshuk CP. Transcriptome changes in Fusarium verticillioides caused by mutation in the transporter-like gene FST1. BMC Microbiol 2015; 15:90. [PMID: 25906821 PMCID: PMC4422464 DOI: 10.1186/s12866-015-0427-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/19/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Fusarium verticillioides causes an important seed disease on maize and produces the fumonisin group of mycotoxins, which are toxic to humans and livestock. A previous study discovered that a gene (FST1) in the pathogen affects fumonisin production and virulence. Although the predicted amino acid sequence of FST1 is similar to hexose transporters, previous experimental evidence failed to prove function. RESULTS Three new phenotypes were identified that are associated with the FST1 mutant of F. verticillioides (Δfst1), namely reduction in macroconidia production, increased sensitivity to hydrogen peroxide, and reduced mycelial hydrophobicity. A transcriptome comparison of the wild type and strain Δfst1 grown on autoclaved maize kernels for six days identified 2677 genes that were differentially expressed. Through gene ontology analysis, 961 genes were assigned to one of 12 molecular function categories. Sets of down-regulated genes in strain Δfst1 were identified that could account for each of the mutant phenotypes. CONCLUSION The study provides evidence that disruption of FST1 causes several metabolic and developmental defects in F. verticillioides. FST1 appears to connect the expression of several gene networks, including those involved in secondary metabolism, cell wall structure, conidiogenesis, virulence, and resistance to reactive oxygen species. The results support our hypothesis that FST1 functions within the framework of environmental sensing.
Collapse
Affiliation(s)
- Chenxing Niu
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA.
| | - Gary A Payne
- Department of Plant Pathology, North Carolina State University, 851 Main Campus Drive, Raleigh, NC, 27695-7567, USA.
| | - Charles P Woloshuk
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA.
| |
Collapse
|
46
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
47
|
Eugenia de la Torre-Hernández M, Sánchez-Rangel D, Galeana-Sánchez E, Plasencia-de la Parra J. Fumonisinas –Síntesis y función en la interacción Fusarium verticillioides-maíz. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2014. [DOI: 10.1016/s1405-888x(14)70321-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
48
|
Abstract
Mycotoxins are natural contaminants of food and feed products, posing a substantial health risk to humans and animals throughout the world. A plethora of filamentous fungi has been identified as mycotoxin producers and most of these fungal species belong to the genera Aspergillus, Fusarium, and Penicillium. A number of studies have been conducted to better understand the molecular mechanisms of biosynthesis of key mycotoxins and the regulatory cascades controlling toxigenesis. In many cases, the mycotoxin biosynthetic genes are clustered and regulated by one or more pathway-specific transcription factor(s). In addition, as biosynthesis of many secondary metabolites is coordinated with fungal growth and development, there are a number of upstream regulators affecting biosynthesis of mycotoxins in fungi. This review presents a concise summary of the regulation of mycotoxin biosynthesis, focusing on the roles of the upstream regulatory elements governing biosynthesis of aflatoxin and sterigmatocystin in Aspergillus.
Collapse
Affiliation(s)
| | - Jae-Hyuk Yu
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
49
|
Coordinated and distinct functions of velvet proteins in Fusarium verticillioides. EUKARYOTIC CELL 2014; 13:909-18. [PMID: 24792348 DOI: 10.1128/ec.00022-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Velvet-domain-containing proteins are broadly distributed within the fungal kingdom. In the corn pathogen Fusarium verticillioides, previous studies showed that the velvet protein F. verticillioides VE1 (FvVE1) is critical for morphological development, colony hydrophobicity, toxin production, and pathogenicity. In this study, tandem affinity purification of FvVE1 revealed that FvVE1 can form a complex with the velvet proteins F. verticillioides VelB (FvVelB) and FvVelC. Phenotypic characterization of gene knockout mutants showed that, as in the case of FvVE1, FvVelB regulated conidial size, hyphal hydrophobicity, fumonisin production, and oxidant resistance, while FvVelC was dispensable for these biological processes. Comparative transcriptional analysis of eight genes involved in the ROS (reactive oxygen species) removal system revealed that both FvVE1 and FvVelB positively regulated the transcription of a catalase-encoding gene, F. verticillioides CAT2 (FvCAT2). Deletion of FvCAT2 resulted in reduced oxidant resistance, providing further explanation of the regulation of oxidant resistance by velvet proteins in the fungal kingdom.
Collapse
|
50
|
The gene PatG involved in the biosynthesis pathway of patulin, a food-borne mycotoxin, encodes a 6-methylsalicylic acid decarboxylase. Int J Food Microbiol 2014; 171:77-83. [DOI: 10.1016/j.ijfoodmicro.2013.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/08/2013] [Accepted: 11/18/2013] [Indexed: 11/23/2022]
|