1
|
Panda SP, Roy P, Soren D, Ranjan Sahoo D, Dehury B, Rout AK, Behera BK, Das BK. Structural insights of Labeo catla (catla) myxovirus resistance protein,GTP binding recognition and constitutive expression induced with Poly I:C. J Biomol Struct Dyn 2024; 42:3520-3534. [PMID: 37227778 DOI: 10.1080/07391102.2023.2213345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
The Myxovirus resistance (Mx) proteins are critical effectors belonging to the super-family of guanidine triphosphatase, often stimulated by type I interferon (IFN) and mediates antiviral responses to restrict the replication of numerous viral genes in fishes. In teleosts, Mx proteins display diverse and complicated antiviral activity in different species. The present investigation seeks to characterize the Mx gene from Labeo catla upon induction by double-stranded (ds) RNA, polyinosinic-polycytidylic acid, (poly I: C). Molecular modeling and all-atoms molecular dynamics (MD) simulations were employed to understand the architecture of the GTPase domain and its plausible mode of GTP recognition in Mx protein. The full-length L. catla Mx (LcMx) gene sequence (1821 bp nucleotides) encodes an open reading frame of 606 amino acids. Domain search indicated conserved tripartite domain architecture of LcMx and forms a major cluster with the Mx from other teleosts. The positively charged Arginine and polar Glutamine residues from helix 3 and 4 of stalk region LcMx aid in homo-oligomerization. MD simulation portrayed the role of conserved critical residues aid in GTP recognition by the GTPase domain which perfectly corroborates with experimental findings and prior MD studies. After injection of poly I:C, the temporal mRNA profile showed that LcMx expression was significantly elevated in the spleen, brain, kidney, liver, muscle, heart, intestine, and gill tissues. Collectively, these results suggest that the elevated expression of the major innate immune defense gene Mx was able to inhibit the poly I: C mediated virulence in fish.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soumya Prasad Panda
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
- Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
- Department of Zoology, Ravenshaw University, Cuttack, Odisha, India
| | - Pragyan Roy
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Dhananjay Soren
- Department of Zoology, Ravenshaw University, Cuttack, Odisha, India
| | | | - Budheswar Dehury
- Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Ajaya Kumar Rout
- Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Bijay Kumar Behera
- Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Basanta Kumar Das
- Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Cohen-Rengifo M, Danion M, Gonzalez AA, Bégout ML, Cormier A, Noël C, Cabon J, Vitré T, Mark FC, Mazurais D. The extensive transgenerational transcriptomic effects of ocean acidification on the olfactory epithelium of a marine fish are associated with a better viral resistance. BMC Genomics 2022; 23:448. [PMID: 35710351 PMCID: PMC9204966 DOI: 10.1186/s12864-022-08647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background Progressive CO2-induced ocean acidification (OA) impacts marine life in ways that are difficult to predict but are likely to become exacerbated over generations. Although marine fishes can balance acid–base homeostasis efficiently, indirect ionic regulation that alter neurosensory systems can result in behavioural abnormalities. In marine invertebrates, OA can also affect immune system function, but whether this is the case in marine fishes is not fully understood. Farmed fish are highly susceptible to disease outbreak, yet strategies for overcoming such threats in the wake of OA are wanting. Here, we exposed two generations of the European sea bass (Dicentrarchus labrax) to end-of-century predicted pH levels (IPCC RCP8.5), with parents (F1) being exposed for four years and their offspring (F2) for 18 months. Our design included a transcriptomic analysis of the olfactory rosette (collected from the F2) and a viral challenge (exposing F2 to betanodavirus) where we assessed survival rates. Results We discovered transcriptomic trade-offs in both sensory and immune systems after long-term transgenerational exposure to OA. Specifically, RNA-Seq analysis of the olfactory rosette, the peripheral olfactory organ, from 18-months-old F2 revealed extensive regulation in genes involved in ion transport and neuronal signalling, including GABAergic signalling. We also detected OA-induced up-regulation of genes associated with odour transduction, synaptic plasticity, neuron excitability and wiring and down-regulation of genes involved in energy metabolism. Furthermore, OA-exposure induced up-regulation of genes involved in innate antiviral immunity (pathogen recognition receptors and interferon-stimulated genes) in combination with down-regulation of the protein biosynthetic machinery. Consistently, OA-exposed F2 challenged with betanodavirus, which causes damage to the nervous system of marine fish, had acquired improved resistance. Conclusion F2 exposed to long-term transgenerational OA acclimation showed superior viral resistance, though as their metabolic and odour transduction programs were altered, odour-mediated behaviours might be consequently impacted. Although it is difficult to unveil how long-term OA impacts propagated between generations, our results reveal that, across generations, trade-offs in plastic responses is a core feature of the olfactory epithelium transcriptome in OA-exposed F2 offspring, and will have important consequences for how cultured and wild fish interacts with its environment. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08647-w.
Collapse
Affiliation(s)
| | - Morgane Danion
- Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Anne-Alicia Gonzalez
- MGX, CNRS, INSERM, University of Montpellier, Biocampus Montpellier, Montpellier, France
| | - Marie-Laure Bégout
- MARBEC, University of Montpellier, CNRS, IFREMER, 34250, Palavas-les-Flots, IRD, France
| | | | - Cyril Noël
- IFREMER, SEBIMER, 29280, Plouzané, France
| | - Joëlle Cabon
- Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Technopôle Brest-Iroise, 29280, Plouzané, France
| | | | - Felix C Mark
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Department of Integrative Ecophysiology, 27570, Bremerhaven, Germany
| | | |
Collapse
|
3
|
Samms KA, Alkie TN, Jenik K, de Jong J, Klinger KM, DeWitte-Orr SJ. Oral delivery of a dsRNA-Phytoglycogen nanoparticle complex enhances both local and systemic innate immune responses in rainbow trout. FISH & SHELLFISH IMMUNOLOGY 2022; 121:215-222. [PMID: 34999226 DOI: 10.1016/j.fsi.2021.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Salmonids are one of the most farmed fish species worldwide. These aquatic vertebrates rely heavily on their innate immune responses as the first line of defense to defend themselves against invading pathogens. Although commercial vaccines are available against some viral and bacterial pathogens affecting salmonids, their protective efficacy varies. Using a prophylactic inducer of local and systemic innate immune responses to limit infection could have significant implications in salmonid aquaculture. A potent inducer of innate immune responses in fish is double-stranded RNA (dsRNA), a molecule that all viruses make during their replicative cycle. Polyinosinic: polycytidylic acid (polyI:C) is a synthetic dsRNA commonly used to induce type I interferons (IFNs), interferon stimulated genes (ISGs) as well as an antiviral state in vertebrate species. Based on in vitro data it was hypothesized that both local and systemic innate immune responses, in salmonids, would be enhanced by orally delivering high molecular weight polyI:C (HMW polyI:C) using cationic phytoglycogen nanoparticles (NPs) as a delivery method. The present study investigates this hypothesis using two feed delivery methods. In the first in vivo study, to ensure an equal distribution of dose, individual rainbow trout (Oncorhynchus mykiss) were orally gavaged with feed moistened with a solution containing HMW-NP (polyI:C complexed with cationic phytoglycogen nanoparticles) or HMW polyI:C alone. In a second in vivo experiment, to better mimic a more realistic feeding scenario, rainbow trout were fed feed pellets to which HMW, or HMW-NP was added. The expression of IFN1 and ISGs (vig-3, Mx1) were quantified using real-time PCR in the intestine (local response) and head kidney (systemic response). The results of these studies indicate that HMW-NP induced a higher level of IFN1 and ISG expression in the intestine and head kidney compared to the HMW fed fish. The results of this study could lead to new advances in therapeutics for the aquaculture industry by utilizing the innate immune response against invading pathogens using an orally delivered stimulant.
Collapse
Affiliation(s)
- Kayla A Samms
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Tamiru N Alkie
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Kristof Jenik
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | | | | |
Collapse
|
4
|
Abstract
Cytokines belong to the most widely studied group of intracellular molecules involved in the function of the immune system. Their secretion is induced by various infectious stimuli. Cytokine release by host cells has been extensively used as a powerful tool for studying immune reactions in the early stages of viral and bacterial infections. Recently, research attention has shifted to the investigation of cytokine responses using mRNA expression, an essential mechanism related to pathogenic and nonpathogenic-immune stimulants in fish. This review represents the current knowledge of cytokine responses to infectious diseases in the common carp (Cyprinus carpio L.). Given the paucity of literature on cytokine responses to many infections in carp, only select viral diseases, such as koi herpesvirus disease (KHVD), spring viremia of carp (SVC), and carp edema virus disease (CEVD), are discussed. Aeromonas hydrophila is one of the most studied bacterial pathogens associated with cytokine responses in common carp. Therefore, the cytokine-based immunoreactivity raised by this specific bacterial pathogen is also highlighted in this review.
Collapse
|
5
|
Li Y, Qiao X, Liu Z, Wang L, Song L. A myxovirus resistance like protein involved in CgIFNLP mediated immune response of oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2021; 119:318-328. [PMID: 34655740 DOI: 10.1016/j.fsi.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The myxovirus resistance (Mx) proteins belong to interferon (IFN)-induced dynamin GTPase and play a pivotal role in the inhibition of replication of numerous viruses. In the present study, an Mx homologue (designated as CgMx1) was identified from oyster Crassostrea gigas. The open reading frame (ORF) of CgMx1 cDNA was of 1689 bp encoding a peptide of 562 amino acid residues. There was an N-terminal dynamin GTPase domain in the predicted peptide, which consisted of a tripartite GTP-binding motif (GDXXSGKS, DLPG and T/NKXD). The deduced amino acid sequence of CgMx1 shared 30-39% similarity with other Mx family members. And CgMx1 was clustered with Mx from H. discus, and then assigned into the invertebrate branch of the phylogenetic tree. The mRNA transcripts of CgMx1 were constitutively distributed in all the tested tissues, with the highest level in haemocytes (1342.45-fold of labial palps, p < 0.05). The mRNA expression of CgMx1 in haemocytes was significantly up-regulated to the highest level at 6 h (13.14-fold, p < 0.001) after poly (I:C) treatment and at 24 h (66.28-fold, p < 0.001) after recombinant IFN-like protein (rCgIFNLP) stimulation, respectively. CgMx1 protein was found to distribute in both the cytoplasm and nucleus of haemocytes. In the oysters with CgIFNLP and signal transducer and activator of transcription (CgSTAT) silenced by RNAi, the mRNA expression of CgMx1 decreased significantly in the haemocytes at 12 h after poly (I:C) stimulation, which was 0.02-fold and 0.04-fold of that in EGFP-RNAi oysters (p < 0.001), respectively. Meanwhile, EMSA assay revealed that CgSTAT was able to transactivate CgMx1 promoter through directly binding to its interferon-stimulated response element (ISRE) and gamma interferon activation site (GAS). The above results indicated that CgMx1 participated in the immune response of C. gigas through the signal pathway mediated by CgIFNLP and CgSTAT.
Collapse
Affiliation(s)
- Yuanmei Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
6
|
Muñoz C, González-Lorca J, Parra M, Soto S, Valdes N, Sandino AM, Vargas R, González A, Tello M. Lactococcus lactis Expressing Type I Interferon From Atlantic Salmon Enhances the Innate Antiviral Immune Response In Vivo and In Vitro. Front Immunol 2021; 12:696781. [PMID: 34475871 PMCID: PMC8406758 DOI: 10.3389/fimmu.2021.696781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
In salmon farming, viruses are responsible for outbreaks that produce significant economic losses for which there is a lack of control tools other than vaccines. Type I interferon has been successfully used for treating some chronic viral infections in humans. However, its application in salmonids depends on the proper design of a vehicle that allows its massive administration, ideally orally. In mammals, administration of recombinant probiotics capable of expressing cytokines has shown local and systemic therapeutic effects. In this work, we evaluate the use of Lactococcus lactis as a type I Interferon expression system in Atlantic salmon, and we analyze its ability to stimulate the antiviral immune response against IPNV, in vivo and in vitro. The interferon expressed in L. lactis, even though it was located mainly in the bacterial cytoplasm, was functional, stimulating Mx and PKR expression in CHSE-214 cells, and reducing the IPNV viral load in SHK-1 cells. In vivo, the oral administration of this L. lactis producer of Interferon I increases Mx and PKR expression, mainly in the spleen, and to a lesser extent, in the head kidney. The oral administration of this strain also reduces the IPNV viral load in Atlantic salmon specimens challenged with this pathogen. Our results show that oral administration of L. lactis producing Interferon I induces systemic effects in Atlantic salmon, allowing to stimulate the antiviral immune response. This probiotic could have effects against a wide variety of viruses that infect Atlantic salmon and also be effective in other salmonids due to the high identity among their type I interferons.
Collapse
Affiliation(s)
- Carlos Muñoz
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Josue González-Lorca
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mick Parra
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sarita Soto
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Natalia Valdes
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ana María Sandino
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,ActivaQ S.A., Santiago, Chile
| | - Rodrigo Vargas
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Alex González
- Laboratorio de Microbiología Ambiental y Extremófilos, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de los Lagos, Osorno, Chile
| | - Mario Tello
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,IctioBiotic SpA, Santiago, Chile
| |
Collapse
|
7
|
Salazar C, Galaz M, Ojeda N, Marshall SH. Expression of ssa-miR-155 during ISAV infection in vitro: Putative role as a modulator of the immune response in Salmo salar. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104109. [PMID: 33930457 DOI: 10.1016/j.dci.2021.104109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Multiple cellular components are involved in pathogen-host interaction during viral infection; in this context, the role of miRNAs have become highly relevant. We assessed the expression of selected miRNAs during an in vitro infection of a Salmo salar cell line with Infectious Salmon Anemia Virus (ISAV), the causative agent of a severe disease by the same name. Salmon orthologs for miRNAs that regulate antiviral responses were measured using RT-qPCR in an in vitro time-course assay. We observed a modulation of specific miRNAs expression, where ssa-miR-155-5p was differentially over-expressed. Using in silico analysis, we identified the putative mRNA targets for ssa-miR-155-5p, finding a high prevalence of hosts immune response-related genes; moreover, several mRNAs involved in the viral infective process were also identified as targets for this miRNA. Our results suggest a relevant role for miR-155-5p in Salmo salar during an ISAV infection as a regulator of the immune response to the virus.
Collapse
Affiliation(s)
- Carolina Salazar
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Martín Galaz
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Nicolás Ojeda
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Sergio H Marshall
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile.
| |
Collapse
|
8
|
Cortés HD, Gómez FA, Marshall SH. The Phagosome-Lysosome Fusion Is the Target of a Purified Quillaja saponin Extract (PQSE) in Reducing Infection of Fish Macrophages by the Bacterial Pathogen Piscirickettsia salmonis. Antibiotics (Basel) 2021; 10:antibiotics10070847. [PMID: 34356768 PMCID: PMC8300623 DOI: 10.3390/antibiotics10070847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
Piscirickettsia salmonis, the etiological agent of Piscirickettsiosis, is a Gram-negative and facultative intracellular pathogen that has affected the Chilean salmon industry since 1989. The bacterium is highly aggressive and can survive and replicate within fish macrophages using the Dot/Icm secretion system to evade the host’s immune response and spread systemically. To date, no efficient control measures have been developed for this disease; therefore, the producers use large amounts of antibiotics to control this pathogen. In this frame, this work has focused on evaluating the use of saponins from Quillaja saponaria as a new alternative to control the Piscirickettsiosis. It has been previously reported that purified extract of Q. saponaria (PQSE) displays both antimicrobial activity against pathogenic bacteria and viruses and adjuvant properties. Our results show that PQSE does not present antimicrobial activity against P. salmonis, although it reduces P. salmonis infection in an in vitro model, promoting the phagosome–lysosome fusion. Additionally, we demonstrate that PQSE modulates the expression of IL-12 and IL-10 in infected cells, promoting the immune response against the pathogen and reducing the expression of pathogen virulence genes. These results together strongly argue for specific anti-invasion and anti-intracellular replication effects induced by the PQSE in macrophages.
Collapse
|
9
|
Fan C, Su H, Liao Z, Su J, Yang C, Zhang Y, Su J. Teleost-Specific MxG, a Traitor in the Mx Family, Negatively Regulates Antiviral Responses by Targeting IPS-1 for Proteasomal Degradation and STING for Lysosomal Degradation. THE JOURNAL OF IMMUNOLOGY 2021; 207:281-295. [PMID: 34135063 DOI: 10.4049/jimmunol.2000555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
IFN-β promoter stimulator-1 (IPS-1)- and stimulator of IFN genes (STING)-mediated type I IFNs play a critical role in antiviral responses. Myxovirus resistance (Mx) proteins are pivotal components of the antiviral effectors induced by IFNs in many species. An unprecedented expansion of Mx genes has occurred in fish. However, the functions and mechanisms of Mx family members remain largely unknown in fish. In this study, we found that grass carp (Ctenopharyngodon idella) MxG, a teleost-specific Mx protein, is induced by IFNs and viruses, and it negatively regulates both IPS-1- and STING-mediated antiviral responses to facilitate grass carp reovirus, spring viremia of carp virus, and cyprinid herpesvirus-2 replication. MxG binds and degrades IPS-1 via the proteasomal pathway and STING through the lysosomal pathway, thereby negatively regulating IFN1 antiviral responses and NF-κB proinflammatory cytokines. MxG also suppresses the phosphorylation of STING IFN regulatory factor 3/7, and it subsequently downregulates IFN1 and NF-κB1 at the promoter, transcription, and protein levels. GTPase and GTPase effector domains of MxG contribute to the negative regulatory function. On the contrary, MxG knockdown weakens virus replication and cytopathic effect. Therefore, MxG can be an ISG molecule induced by IFNs and viruses, and degrade IPS-1 and STING proteins in a negative feedback manner to maintain homeostasis and avoid excessive immune responses after virus infection. To our knowledge, this is the first identification of a negative regulator in the Mx family, and our findings clarify a novel mechanism by which the IFN response is regulated.
Collapse
Affiliation(s)
- Chengjian Fan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hang Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Juanjuan Su
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; and
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongan Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Transcriptome Response of Atlantic Salmon ( Salmo salar) to a New Piscine Orthomyxovirus. Pathogens 2020; 9:pathogens9100807. [PMID: 33007914 PMCID: PMC7600774 DOI: 10.3390/pathogens9100807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/12/2023] Open
Abstract
Pilchard orthomyxovirus (POMV) is an emerging pathogen of concern to the salmon industry in Australia. To explore the molecular events that underpin POMV infection, we challenged Atlantic salmon (Salmo salar) post-smolts in seawater via cohabitation. Tissue samples of the head kidney and liver were collected from moribund and surviving individuals and analyzed using transcriptome sequencing. Viral loads were higher in the head kidney compared to the liver, yet the liver presented more upregulated genes. Fish infected with POMV showed a strong innate immune response that included the upregulation of pathogen recognition receptors such as RIG-I and Toll-like receptors as well as the induction of interferon-stimulated genes (MX, ISG15). Moribund fish also presented a dramatic induction of pro-inflammatory cytokines, contributing to severe tissue damage and morbidity. An induction of major histocompatibility complex (MHC) class I genes (B2M) and markers of T cell-mediated immunity (CD8-alpha, CD8-beta, Perforin-1, Granzyme-A) was observed in both moribund fish and survivors. In addition, differential connectivity analysis showed that three key regulators (RELA/p65, PRDM1, and HLF) related to cell-mediated immunity had significant differences in connectivity in "clinically healthy" versus "clinically affected" or moribund fish. Collectively, our results show that T cell-mediated immunity plays a central role in the response of Atlantic salmon to the infection with POMV.
Collapse
|
11
|
Andresen AMS, Boudinot P, Gjøen T. Kinetics of transcriptional response against poly (I:C) and infectious salmon anemia virus (ISAV) in Atlantic salmon kidney (ASK) cell line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103716. [PMID: 32360383 DOI: 10.1016/j.dci.2020.103716] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 05/03/2023]
Abstract
Vaccine adjuvants induce host innate immune responses improving long-lasting adaptive immunity against vaccine antigens. In vitro models can be used to compare these responses between adjuvants and the infection targeted by the vaccine. We utilized transcriptomic profiling of an Atlantic salmon cell line to compare innate immune responses against ISAV and an experimental viral vaccine adjuvant: poly (I:C). Induction of interferon and interferon induced genes were observed after both treatments, but often with different amplitude and kinetics. Using KEGG ortholog database and available software from Bioconductor we could specify a complete bioinformatic pipeline for analysis of transcriptomic data from Atlantic salmon, a feature not previously available. We have identified important differences in the transcriptional profile of Atlantic salmon cells exposed to viral infection and a viral vaccine adjuvant candidate, poly (I:C). This report increases our knowledge of viral host-pathogen interaction in salmon and to which extent these can be mimicked by adjuvant compounds.
Collapse
Affiliation(s)
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Tor Gjøen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
12
|
Mandal SC, Weidmann M, Albalat A, Carrick E, Morro B, MacKenzie S. Polarized Trout Epithelial Cells Regulate Transepithelial Electrical Resistance, Gene Expression, and the Phosphoproteome in Response to Viral Infection. Front Immunol 2020; 11:1809. [PMID: 32922394 PMCID: PMC7456818 DOI: 10.3389/fimmu.2020.01809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/07/2020] [Indexed: 11/13/2022] Open
Abstract
The burden of disease is a major challenge in aquaculture production. The fish gill characterized with a large surface area and short route to the bloodstream is a major environmental interface and a significant portal of entry for pathogens. To investigate gill responses to viral infection the salmonid gill cell line RTgill-W1 was stimulated with synthetic dsRNA and the salmonid alphavirus subtype 2 (SAV-2). Epithelial integrity in polarized cells can be measured as transepithelial electrical resistance (TEER) which is defined as the electrical resistance across a cell monolayer. TEER is a widely accepted quantitative measure of cellular integrity of a cell monolayer. TEER increased immediately after stimulation with the synthetic dsRNA, polyinosinic:polycytidylic acid (poly(I:C)). In parallel, tight junction and gene expression of innate immune activation markers was modulated in response to poly(I:C). The SAV-2 virus was found to replicate at a low level in RTgill-W1 cells where TEER was disturbed at an early stage of infection, however, gene expression related to tight junction regulation was not modulated. A strong poly(I:C)-driven antiviral response was observed including increases of Rig-like receptors (RLRs) and interferon stimulating genes (ISGs) mRNAs. At the level of signal transduction, poly(I:C) stimulation was accompanied by the phosphorylation of 671 proteins, of which 390 were activated solely in response to the presence of poly(I:C). According to motif analysis, kinases in this group included MAPKs, Ca2+/calmodulin-dependent kinase (CaMK) and cAMP-dependent protein kinase (PKA), all reported to be activated in response to viral infection in mammals. Results also highlighted an activation of the cytoskeletal organization that could be mediated by members of the integrin family. While further work is needed to validate these results, our data indicate that salmonid gill epithelia has the ability to mount a significant response to viral infection which might be important in disease progression. In vitro cell culture can facilitate both a deeper understanding of the anti-viral response in fish and open novel therapeutic avenues for fish health management in aquaculture.
Collapse
Affiliation(s)
- Shankar C Mandal
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom.,Department of Fisheries, University of Dhaka, Dhaka, Bangladesh
| | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Amaya Albalat
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Emma Carrick
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Bernat Morro
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
13
|
Sirisena DMKP, Tharuka MDN, Liyanage DS, Jung S, Kim MJ, Lee J. An interferon-induced GTP-binding protein, Mx, from the redlip mullet, Liza haematocheila: Deciphering its structural features and immune function. FISH & SHELLFISH IMMUNOLOGY 2020; 96:279-289. [PMID: 31783148 DOI: 10.1016/j.fsi.2019.11.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
The interferon-induced GTP-binding protein Mx is responsible for a specific antiviral state against a broad spectrum of viral infections that are induced by type-I interferons (IFN α/β) in different vertebrates. In this study, the Mx gene was isolated from the constructed mullet cDNA database. Structural features of mullet Mx (MuMx) were analyzed using different in-silico tools. The pairwise comparison revealed that the MuMx sequence was related to Stegastes partitus Mx with an 83.7% sequence identity, whereas MuMx was clustered into the teleost category in the phylogentic analysis. Sequence alignment showed that the dynamin-type guanine nucleotide-binding domain (G_DYNAMIN_2), central interactive domain (CID), and GTPase effector domain (GED) were conserved among Mx counterparts. The transcriptional expression of MuMx was the highest in blood cells from unchallenged fish. The temporal mRNA profile showed that MuMx expression was significantly elevated in all tissues, including blood, spleen, head kidney, liver, and gills after the injection of polyinosinic-polycytidylic acid (poly I:C) at many time points. Moreover, MuMx expression increased slightly, in the blood, spleen, and head kidney at a few time points after the injection of lipopolysaccharide (LPS) and Lactococcus garvieae (L. garvieae). Results of the subcellular localization analysis confirmed that the MuMx protein was highly expressed in the cytoplasm. The analysis of the gene expression of the viral hemorrhagic septicemia virus (VHSV) under conditions of MuMx overexpression confirmed the significant inhibition of viral transcripts. The cell viability (MTT) assay and VHSV titer quantification with the presence of MuMx indicated a significant reduction in virus replication. Collectively, these findings suggest that Mx is a specific immune-related gene that elicits crucial antiviral functions against viral antigens in the mullet fish.
Collapse
Affiliation(s)
- D M K P Sirisena
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
14
|
Avunje S, Jung SJ. Poly (I:C) and imiquimod induced immune responses and their effects on the survival of olive flounder (Paralichthys olivaceus) from viral haemorrhagic septicaemia. FISH & SHELLFISH IMMUNOLOGY 2017; 71:338-345. [PMID: 29054829 DOI: 10.1016/j.fsi.2017.10.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
The stimulation of immune genes by polyinosinic:polycytidylic acid (poly (I:C)) and imiquimod in olive flounder (Paralichthys olivaceus) and their role in control of viral haemorrhagic septicaemia virus (VHSV) infection were examined. Poly (I:C) (100 μg/fish) treated olive flounder had very low mortality (5%) post VHSV infection, while the imiquimod treated group had 65% and 85% mortality at a dose of 100 μg/fish and 50 μg/fish, respectively. Though the imiquimod treated group had high mortality, it was lower than the untreated group, which had 90% mortality. In vivo experiments were conducted to determine effect of the two ligands on immune modulation in the head kidney of olive flounder. Poly (I:C) activated the immune genes (TLR-3, TLR-7, MDA-5, LGP-2, IRF-3, IRF-7, IL-1β type I IFN and Mx) very early, within 1 d post stimulation, faster and stronger than imiquimod. Though Mx levels were enhanced by imiquimod, the host was still susceptible to VHSV. The poly (I:C) treated group had a high immune response at the time of infection and 1 dpi, though it decreased at later stages. The imiquimod treated group and the unstimulated group had a higher immune response to VHSV compared to the poly (I:C) treated group. The nucleoprotein copies of VHSV were very low in the poly (I:C) treated group but interestingly, were high in both untreated and imiquimod treated fish. Thus, host survival from a viral infection does not only depend on the quantity of immune response but also the time of response. Although imiquimod enhanced immune gene expression in olive flounder, a delayed response could be the reason for high mortality to VHS compared with poly (I:C), which induced the immune system effectively and efficiently to protect the host.
Collapse
Affiliation(s)
- Satheesha Avunje
- Department of Aqualife Medicine, Chonnam National University, Chonnam 59626, South Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Chonnam 59626, South Korea.
| |
Collapse
|
15
|
Pham PH, Tong WWL, Misk E, Jones G, Lumsden JS, Bols NC. Atlantic salmon endothelial cells from the heart were more susceptible than fibroblasts from the bulbus arteriosus to four RNA viruses but protected from two viruses by dsRNA pretreatment. FISH & SHELLFISH IMMUNOLOGY 2017; 70:214-227. [PMID: 28882807 DOI: 10.1016/j.fsi.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Heart diseases caused by viruses are major causes of Atlantic salmon aquaculture loss. Two Atlantic salmon cardiovascular cell lines, an endothelial cell line (ASHe) from the heart and a fibroblast cell line (BAASf) from the bulbus arteriosus, were evaluated for their response to four fish viruses, CSV, IPNV, VHSV IVa and VHSV IVb, and the innate immune agonist, double-stranded RNA mimic poly IC. All four viruses caused cytopathic effects in ASHe and BAASf. However, ASHe was more susceptible to all four viruses than BAASf. When comparing between the viruses, ASHe cells were found to be moderately susceptible to CSV and VHSV IVb, but highly susceptible to IPNV and VHSV IVa induced cell death. All four viruses were capable of propagating in the ASHe cell line, leading to increases in virus titre over time. In BAASf, CSV and IPNV produced more than one log increase in titre from initial infection, but VHSV IVb and IVa did not. When looking at the antiviral response of both cell lines, Mx proteins were induced in ASHe and BAASf by poly IC. All four viruses induced Mx proteins in BAASf, while only CSV and VHSV IVb induced Mx proteins in ASHe. IPNV and VHSV IVa suppressed Mx proteins expression in ASHe. Pretreatment of ASHe with poly IC to allow for Mx proteins accumulation protected the culture from subsequent infections with IPNV and VHSV IVa, resulting in delayed cell death, reduced virus titres and reduced viral proteins expression. These data suggest that endothelial cells potentially can serve as points of infections for viruses in the heart and that two of the four viruses, IPNV and VHSV IVa, have mechanisms to avoid or downregulate antiviral responses in ASHe cells. Furthermore, the high susceptibility of the ASHe cell line to IPNV and VHSV IVa can make it a useful tool for studying antiviral compounds against these viruses and for general detection of fish viruses.
Collapse
Affiliation(s)
- Phuc H Pham
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Winnie W L Tong
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Ehab Misk
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ginny Jones
- Elanco Canada Limited, Aqua Business R&D, Victoria, PEI, Canada
| | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada; St. George's University, True Blue, Grenada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
16
|
Clarke BD, McColl KA, Ward AC, Doran TJ. shRNAs targeting either the glycoprotein or polymerase genes inhibit Viral haemorrhagic septicaemia virus replication in zebrafish ZF4 cells. Antiviral Res 2017; 141:124-132. [DOI: 10.1016/j.antiviral.2017.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
|
17
|
Antiviral effects of extracts from Celosia cristata and Raphanus sativus roots against viral hemorrhagic septicemia virus. Arch Virol 2017; 162:1711-1716. [DOI: 10.1007/s00705-017-3270-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
|
18
|
Poynter SJ, DeWitte-Orr SJ. Fish interferon-stimulated genes: The antiviral effectors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:218-225. [PMID: 27451256 DOI: 10.1016/j.dci.2016.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Type I interferons (IFN) are the cornerstone cytokine of innate antiviral immunity. In response to a viral infection, IFN signaling results in the expression of a diverse group of genes known as interferon-stimulated genes (ISGs). These ISGs are responsible for interfering with viral replication and infectivity, helping to limit viral infection within a cell. In mammals, many antiviral effector ISGs have been identified and the antiviral mechanisms are at least partially elucidated. In fish fewer ISGs have been identified and while there is evidence they limit viral infection, almost nothing is known of their respective antiviral mechanisms. This review discusses seven ISGs common to mammals and fish and three ISGs that are unique to fish. The lack of understanding regarding fish ISG's antiviral effector functions is highlighted and draws attention to the need for research in this aspect of aquatic innate immunity.
Collapse
Affiliation(s)
- Sarah J Poynter
- Department of Biology, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| | - Stephanie J DeWitte-Orr
- Department of Health Sciences and Biology, 75 University Ave W, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
19
|
Xiao J, Yan J, Chen H, Li J, Tian Y, Tang L, Feng H. Mx1 of black carp functions importantly in the antiviral innate immune response. FISH & SHELLFISH IMMUNOLOGY 2016; 58:584-592. [PMID: 27717902 DOI: 10.1016/j.fsi.2016.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
Mx (myxovirus resistance) is an important antiviral protein in the innate immune responses of vertebrates to microbial pathogens. In this study, we cloned and characterized Mx1 of black carp (Mylopharyngodon piceus). The full-length cDNA of black carp Mx1 (bcMx1) consists of 2781 nucleotides and the predicted bcMx1 protein contains 631 amino acids. bcMx1 contains a GTPase domain at the N-terminnus, a "central interactive domain" in the middle and a GTPase effector domain at the C-terminus. bcMx1 mRNA was constitutively transcribed in all tissues tested, including the heart, liver, spleen, kidney, intestine, muscle, skin and gill; and bcMx1 mRNA levels increased in all but the gill after grass carp reovirus (GCRV) or viraemia of carp virus (SVCV) infection. Quantitative PCR analysis of Mylopharyngodon piceus fin (MPF) cells indicated that bcMx1 mRNA levels increased after GCRV or SVCV infection at different multiplicities of infection (MOI). Western blotting demonstrated that the molecular weight of bcMx1 is ∼75 kDa and immunofluorescent staining data of both HeLa cells and EPC cells showed that bcMx1 is a cytosolic protein. EPC cells transfected with plasmid expressing bcMx1 showed increased antiviral activity against SVCV and GCRV. All our data suggest that bcMx1 is an antiviral protein in the innate immune response of the black carp.
Collapse
Affiliation(s)
- Jun Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Yan
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yu Tian
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China; The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Luosheng Tang
- The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Hao Feng
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, 430072, China.
| |
Collapse
|
20
|
Mladineo I, Bušelić I, Hrabar J, Radonić I, Vrbatović A, Jozić S, Trumbić Ž. Autochthonous Bacterial Isolates Successfully Stimulate In vitro Peripheral Blood Leukocytes of the European Sea Bass (Dicentrarchus labrax). Front Microbiol 2016; 7:1244. [PMID: 27551281 PMCID: PMC4976100 DOI: 10.3389/fmicb.2016.01244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
Commercially available probiotics are routinely administered as feed supplements in aquaculture important species. Among them, the European sea bass (Dicentrarchus labrax) is the most widely reared fish in the Mediterranean, whose rearing systems are highly variable between countries, affecting at some level the sustainability of production. After random isolation of autochthonous gut bacteria of the sea bass, their identification and pathogenicity testing, we have selected three potentially probiotic isolates; Pseudoalteromonas sp., Alteromonas sp., and Enterovibrio coralii. Selected isolates were tested and their immunostimulative efficiency was compared with a commercially available Lactobacillus casei isolate, inferring inflammatory, apoptotic and anti-pathogen response of sea bass’ peripheral blood leukocytes. Phagocytic activity, respiratory burst, and expression of lysozyme, Mx protein, caspase 3, TNF-α, IL-10 genes was measured 1, 3, 5, and 12 h post-stimulation by four bacterial isolates to evaluate early kinetics of the responses. Best immunostimulative properties were observed in Pseudoalteromonas-stimulated leukocytes, followed by Alteromonas sp. and L. casei, while Enterovibrio coralii failed to induce significant stimulation. Based on such in vitro assay intestinal autochthonous bacterial isolates showed to have better immunostimulative effect in sea bass compared to aquaculture-widely used L. casei, and further steps need to engage tank and field feeding trials to evaluate long-term prophylactic suitability of the chosen isolates. A panel of biomarkers that represent pro-/anti-inflammatory, pro-/anti-apoptotic, and anti-bacteria/viral responses of the fish should be taken into consideration when evaluating the usefulness of the potential probiotic in aquaculture.
Collapse
Affiliation(s)
| | - Ivana Bušelić
- Institute of Oceanography and Fisheries Split, Croatia
| | - Jerko Hrabar
- Institute of Oceanography and Fisheries Split, Croatia
| | - Ivana Radonić
- Institute of Oceanography and Fisheries Split, Croatia
| | | | - Slaven Jozić
- Institute of Oceanography and Fisheries Split, Croatia
| | - Željka Trumbić
- Department of Marine Studies, University of Split Split, Croatia
| |
Collapse
|
21
|
Caruffo M, Maturana C, Kambalapally S, Larenas J, Tobar JA. Protective oral vaccination against infectious salmon anaemia virus in Salmo salar. FISH & SHELLFISH IMMUNOLOGY 2016; 54:54-9. [PMID: 26994669 DOI: 10.1016/j.fsi.2016.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/13/2016] [Accepted: 03/10/2016] [Indexed: 05/19/2023]
Abstract
Infectious salmon anemia (ISA) is a systemic disease caused by an orthomyxovirus, which has a significant economic impact on the production of Atlantic salmon (Salmo salar). Currently, there are several commercial ISA vaccines available, however, those products are applied through injection, causing stress in the fish and leaving them susceptible to infectious diseases due to the injection process and associated handling. In this study, we evaluated an oral vaccine against ISA containing a recombinant viral hemagglutinin-esterase and a fusion protein as antigens. Our findings indicated that oral vaccination is able to protect Atlantic salmon against challenge with a high-virulence Chilean isolate. The oral vaccination was also correlated with the induction of IgM-specific antibodies. On the other hand, the vaccine was unable to modulate expression of the antiviral related gene Mx, showing the importance of the humoral response to the disease survival. This study provides new insights into fish protection and immune response induced by an oral vaccine against ISA, but also promises future development of preventive solutions or validation of the current existing therapies.
Collapse
Affiliation(s)
- Mario Caruffo
- Virbac-Centrovet, Av. Salomón Sack 255, Cerrillos, Santiago, Chile; Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa, 11735, La Pintana, Santiago, Chile
| | - Carlos Maturana
- Virbac-Centrovet, Av. Salomón Sack 255, Cerrillos, Santiago, Chile
| | - Swetha Kambalapally
- Advanced Bionutrition Corp., 7155 Columbia Gateway Drive, Suite H. Columbia, MD, 21046, USA
| | - Julio Larenas
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa, 11735, La Pintana, Santiago, Chile
| | - Jaime A Tobar
- Virbac-Centrovet, Av. Salomón Sack 255, Cerrillos, Santiago, Chile.
| |
Collapse
|
22
|
Yazdani M, Andresen AMS, Gjøen T. Short-term effect of bisphenol-a on oxidative stress responses in Atlantic salmon kidney cell line: a transcriptional study. Toxicol Mech Methods 2016; 26:295-300. [PMID: 27117342 DOI: 10.1080/15376516.2016.1177864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bisphenol A (BPA) is regularly detected in aquatic ecosystems due to increased use of products based on polycarbonate plastics and epoxy resins. It migrates from these products directly into rivers and marine waters or indirectly through effluents from wastewater treatment plants and landfilled sites. BPA can affect aquatic organisms both chronically and acutely at sensitive live stages. Despite reports indicating harmful effects of BPA, little is known about its role in oxidative stress responses in fish. In this study, we investigated the transcriptional effect of BPA (0, 1, 10, 100 μM) on an Atlantic salmon kidney (ASK) cell line for 6 h and 24 h by monitoring expression of 11 genes: elongation factor 1-alpha (ef1a), 18S ribosomal RNA (18s), gluthation (gsh), superoxide dismutase (sod), thioredoxin (txd), Salmo salar oxidative stress-responsive serine-rich 1 (oxr), glucose-regulated protein 78 (grp78), heat shock protein 70 (hsp70), sequestosome1 (p62), interleukin-1 beta (il-1beta) and toll-like receptor 8 (tlr8). In general, only the 100 μM concentration treatment altered the mRNA expression. BPA down-regulated the expression of gsh and sod genes for both exposure-times while txd gene was the only down-regulated after 6-h exposure. The up-regulation of genes in the ASK cell line exposed for 6 h was only observed in il-1beta, while the 24-h exposure resulted in the up-regulation of oxr, tlr8, hsp70, p62 and il-1beta genes. The last three genes increased several fold compared to the others. The results showed that BPA exposure at 100 μM imposed oxidative stress on the ASK cell line and longer exposure time involved transcriptional responses of immune-related genes. This may indicate the possible role of BPA-associated oxidative stress in induction of inflammatory response in this macrophage-like cell type.
Collapse
Affiliation(s)
- Mazyar Yazdani
- a Department of Biosciences , University of Oslo , Oslo , Norway ;,b Department of Pharmaceutical Biosciences, School of Pharmacy , University of Oslo , Norway
| | | | - Tor Gjøen
- b Department of Pharmaceutical Biosciences, School of Pharmacy , University of Oslo , Norway
| |
Collapse
|
23
|
Infectious Salmon Anaemia Virus (ISAV) RNA Binding Protein Encoded by Segment 8 ORF2 and Its Interaction with ISAV and Intracellular Proteins. Viruses 2016; 8:v8020052. [PMID: 26901217 PMCID: PMC4776207 DOI: 10.3390/v8020052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/15/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022] Open
Abstract
Infectious salmon anaemia virus (ISAV) is an orthomyxovirus infecting salmonid fish. The virus is adapted to low temperature and has a replication optimum between 10–15 °C. In this study the subcellular localization and protein interactions for the protein encoded by the largest open reading frame of gene segment 8 (s8ORF2) were investigated. In ISAV infected cells the s8ORF2 protein was found mainly in the cytosol but a minor fraction of cells expressed the protein in the nucleus as well. Green fluorescent protein-tagged s8ORF2 did not leak out of the cell when the plasma membrane was permeabilized, suggesting interactions with intracellular structural components. The s8ORF2 protein exists both as monomer and homodimer, and co-immunoprecipitation experiments strongly suggests it binds to the ISAV fusion-, nucleo- and matrix proteins. Two versions of s8ORF2 were detected with apparent molecular weights of 24–26 and 35 kDa in lysates of infected cells. The 35 kDa type is an early viral protein while the smaller version appears during the later phases of infection. The 24–26 kDa type was also the predominant form in viral particles. The s8ORF2 protein has previously been shown to bind RNA and interfere with interferon induction and signaling. Here we found that a fraction of the s8ORF2 protein pool in infected cells is likely to be conjugated to the interferon stimulated gene 15 (ISG15) and ubiquitin. Furthermore, several endogenous proteins pulled down by the s8ORF2 protein were identified by liquid chromatography mass spectrometry (LC-MS).
Collapse
|
24
|
González-Mariscal JA, Fernández-Trujillo MA, Alonso MC, García-Rosado E, Álvarez MC, Béjar J. Gilthead seabream (Sparus aurata) Mx gene promoters respond differentially to IPNV and VHSV infections in RTG-2 cells. Vet Immunol Immunopathol 2016; 171:73-80. [PMID: 26964720 DOI: 10.1016/j.vetimm.2016.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/25/2016] [Accepted: 02/10/2016] [Indexed: 12/20/2022]
Abstract
The understanding of virus-host interactions relies on the knowledge of the regulatory mechanisms of the type I interferon (IFN I)-stimulated genes (ISGs). Among ISGs, those coding Mx proteins play a main role due to their direct antiviral activity. The study of these genes in gilthead seabream is interesting, since this species displays high natural resistance to viral diseases, being asymptomatic carrier of infectious pancreatic necrosis virus (IPNV) and viral haemorrhagic septicaemia virus (VHSV). Gilthead seabream has three Mx genes (Mx1, Mx2, and Mx3), encoding proteins with a wide spectrum of antiviral activity. The structure of the three promoters (pMx1, pMx2 and pMx3) has been previously disclosed, and their response to poly I:C in RTG-2 cells characterized. To further analyze these promoters, their response to two viral infections has been evaluated in the present study. For that purpose, RTG-2 cells transiently transfected with the luciferase gene under the control of each promoter were inoculated with either IPNV or VHSV at two different doses. The highest and lowest fold induction values were recorded for pMx2 and pMx3, respectively. The promoter induction was always stronger after VHSV inoculation than in IPNV-inoculated cells. In addition, the higher dose of VHSV tested induced higher response of the three promoters, whereas in IPNV-infected cells the highest induction was recorded after inoculation with the lower viral dose. To further study the response of the Mx2 promoter, RTG-2 cells stably transfected with the luciferase gene under the control of pMx2 were stimulated with poly I:C and subsequently infected with IPNV or VHSV. Interestingly, IPNV infection inhibited the induction caused by poly I:C, suggesting an antagonistic activity of IPNV on Mx2 transcription. In contrast, VHSV infection did not alter the response triggered by poly I:C. These results highlight the specific regulation that controls the activity of each promoter, and support the existence of complex interactions between host cells, specific Mx promoters, and viruses, which are responsible for the final outcome of a viral infection.
Collapse
Affiliation(s)
| | | | - M C Alonso
- Universidad de Málaga, Department of Microbiology, Spain
| | | | - M C Álvarez
- Universidad de Málaga, Department of Genetics, Spain
| | - J Béjar
- Universidad de Málaga, Department of Genetics, Spain.
| |
Collapse
|
25
|
Julin K, Johansen LH, Sommer AI, Jørgensen JB. Persistent infections with infectious pancreatic necrosis virus (IPNV) of different virulence in Atlantic salmon, Salmo salar L. JOURNAL OF FISH DISEASES 2015; 38:1005-1019. [PMID: 25557127 DOI: 10.1111/jfd.12317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 06/04/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV) is a prevalent pathogen in fish worldwide. The virus causes substantial mortality in Atlantic salmon juveniles and smolts when transferred to sea water and persistent infection in surviving fish after disease outbreaks. Here, we have investigated the occurrence of the virus as well as the innate immune marker Mx in the head kidney (HK) of Atlantic salmon throughout an experimental challenge covering both a fresh and a seawater phase. The fish were challenged with a high (HV) and low virulence (LV) IPNV. Both isolates caused mortality due to reactivation of the virus after transfer to sea water. In the freshwater phase, higher levels of virus transcripts were detected in the HK of fish infected with LV IPNV compared to HV, suggesting that the HV isolate is able to limit its own replication to a level where the innate immune system is not alerted. Further, ex vivoHK leucocytes derived from fish infected with the two isolates were stimulated with CpG DNA. Significantly, higher IFN levels were found in the LV compared to the HV group in the freshwater phase. This suggests that the viruses attenuate the antiviral host immune response at different levels which may contribute to the observed differences in disease outcome.
Collapse
Affiliation(s)
| | | | | | - J B Jørgensen
- Norwegian College of Fisheries Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
26
|
Müller A, Sutherland BJG, Koop BF, Johnson SC, Garver KA. Infectious hematopoietic necrosis virus (IHNV) persistence in Sockeye Salmon: influence on brain transcriptome and subsequent response to the viral mimic poly(I:C). BMC Genomics 2015; 16:634. [PMID: 26306576 PMCID: PMC4549833 DOI: 10.1186/s12864-015-1759-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022] Open
Abstract
Background Sockeye Salmon are an iconic species widely distributed throughout the North Pacific. A devastating pathogen of Sockeye Salmon is infectious hematopoietic necrosis virus (IHNV, genus Novirhabdovirus, family Rhabdoviridae). It has been postulated that IHNV is maintained in salmon populations by persisting over the life of its host and/or by residing in natural reservoirs other than its susceptible hosts. Herein we demonstrate the presence of IHNV in the brain of Sockeye Salmon that survived an experimentally-induced outbreak, suggesting the presence of viral persistence in this susceptible species. To understand the viral persistent state in Sockeye Salmon we profiled the transcriptome to evaluate the host response in asymptomatic carriers and to determine what effects (if any) IHNV exposure may have on subsequent virus challenges. Results A laboratory disease model to simulate a natural IHNV outbreak in Sockeye Salmon resulted in over a third of the population incurring acute IHN disease and mortality during the first four months after initial exposure. Nine months post IHNV exposure, despite the absence of disease and mortality, a small percentage (<4 %) of the surviving population contained IHNV in brain. Transcriptome analysis in brain of asymptomatic virus carriers and survivors without virus exhibited distinct transcriptional profiles in comparison to naïve fish. Characteristic for carriers was the up-regulation of genes involved in antibody production and antigen presentation. In both carriers and survivors a down-regulation of genes related to cholesterol biosynthesis, resembling an antiviral mechanism observed in higher vertebrates was revealed along with differences in nervous system development. Moreover, following challenge with poly(I:C), survivors and carriers displayed an elevated antiviral immune response in comparison to naïve fish. Conclusions IHN virus persistence was identified in Sockeye Salmon where it elicited a unique brain transcriptome profile suggesting an ongoing adaptive immune response. IHNV carriers remained uncompromised in mounting efficient innate antiviral responses when exposed to a viral mimic. The capacity of IHNV to reside in asymptomatic hosts supports a virus carrier hypothesis and if proven infectious, could have significant epidemiological consequences towards maintaining and spreading IHNV among susceptible host populations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1759-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anita Müller
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, V9T 6N7, British Columbia, Canada.
| | - Ben J G Sutherland
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada. .,Present address: Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada.
| | - Ben F Koop
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada.
| | - Stewart C Johnson
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, V9T 6N7, British Columbia, Canada.
| | - Kyle A Garver
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, V9T 6N7, British Columbia, Canada.
| |
Collapse
|
27
|
Gamil AAA, Evensen Ø, Mutoloki S. Infection Profiles of Selected Aquabirnavirus Isolates in CHSE Cells. PLoS One 2015; 10:e0134173. [PMID: 26263557 PMCID: PMC4532444 DOI: 10.1371/journal.pone.0134173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/06/2015] [Indexed: 01/12/2023] Open
Abstract
The wide host range and antigenic diversity of aquabirnaviruses are reflected by the presence of a collection of isolates with different sero- and genotypic properties that have previously been classified as such. Differences in cytopathogenic mechanisms and host responses induced by these isolates have not been previously examined. In the present study, we investigated infection profiles induced by genetically and serologically closely related as well as distant isolates in-vitro. CHSE-214 cells were infected with either E1S (serotype A3, genogroup 3), VR-299 (serotype A1, genogroup 1), highly virulent Sp (TA) or avirulent Sp (PT) (serotype A2, genogroup 5). The experiments were performed at temperatures most optimum for each of the isolates namely 15°C for VR-299, TA and PT strains and 20°C for E1S. Differences in virus loads and ability to induce cytopathic effect, inhibition of protein synthesis, apoptosis, and induction of IFNa, Mx1, PKR or TNFα gene expression at different times post infection were examined. The results showed on one hand, E1S with the highest ability to replicate, induce apoptosis and IFNa gene expression while VR-299 inhibited protein synthesis and induced Mx1 and PKR gene expression the most. The two Sp isolates induced the highest TNFα gene expression but differed in their ability to replicate, inhibit protein synthesis, and induce gene expression, with TA being more superior. Collectively, these findings point towards the adaptation by different virus isolates to suit environments and hosts that they patronize. Furthermore, the results also suggest that genetic identity is not prerequisite to functional similarities thus results of one aquabirnavirus isolate cannot necessarily be extrapolated to another.
Collapse
Affiliation(s)
- Amr A. A. Gamil
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146, Dep. 0033 Oslo, Norway
| | - Øystein Evensen
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146, Dep. 0033 Oslo, Norway
| | - Stephen Mutoloki
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146, Dep. 0033 Oslo, Norway
- * E-mail:
| |
Collapse
|
28
|
Valenzuela-Miranda D, Boltaña S, Cabrejos ME, Yáñez JM, Gallardo-Escárate C. High-throughput transcriptome analysis of ISAV-infected Atlantic salmon Salmo salar unravels divergent immune responses associated to head-kidney, liver and gills tissues. FISH & SHELLFISH IMMUNOLOGY 2015; 45:367-377. [PMID: 25910847 DOI: 10.1016/j.fsi.2015.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 06/04/2023]
Abstract
Infectious salmon anaemia virus (ISAV) is an orthomyxovirus causing high mortality in farmed Atlantic salmon (Salmo salar). The collective data from the Atlantic salmon-ISAV interactions, performed "in vitro" using various salmon cell lines and "in vivo" fish infected with different ISAV isolates, have shown a strong regulation of immune related transcripts during the infection. Despite this strong defence response, the majority of fish succumb to infections with ISAV. The deficient protection of the host against ISAV is in part due to virulence factors of the virus, which allow evade the host-defence machinery. As such, the viral replication is uninhibited and viral loads quickly spread to several tissues causing massive cellular damage before the host can develop an effective cell-mediated and humoral outcome. To interrogate the correlation of the viral replication with the host defence response, we used fish that have been infected by cohabitation with ISAV-injected salmons. Whole gene expression patterns were measured with RNA-seq using RNA extracted from Head-kidney, Liver and Gills. The results show divergent mRNA abundance of functional modules related to interferon pathway, adaptive/innate immune response and cellular proliferation/differentiation. Furthermore, gene regulation in distinct tissues during the infection process was independently controlled within the each tissue and the observed mRNA expression suggests high modulation of the ISAV-segment transcription. Importantly this is the first time that strong correlations between functional modules containing significant immune process with protein-protein affinities and viral-segment transcription have been made between different tissues of ISAV-infected fish.
Collapse
Affiliation(s)
- Diego Valenzuela-Miranda
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Sebastian Boltaña
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Maria E Cabrejos
- Facultad de Ciencias Agronómicas, Universidad de Chile, Av Santa Rosa 11315, La Pintana, Santiago 8820808, Chile
| | - José M Yáñez
- Aquainnovo, Talca 60, P.O. Box 30B, Puerto Montt 5503032, Chile; Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile.
| |
Collapse
|
29
|
Vo NTK, Bender AW, Ammendolia DA, Lumsden JS, Dixon B, Bols NC. Development of a walleye spleen stromal cell line sensitive to viral hemorrhagic septicemia virus (VHSV IVb) and to protection by synthetic dsRNA. FISH & SHELLFISH IMMUNOLOGY 2015; 45:83-93. [PMID: 25701636 DOI: 10.1016/j.fsi.2015.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
A cell line, WE-spleen6, has been developed from the stromal layer of primary spleen cell cultures. On conventional plastic, WE-spleen6 cells had a spindle-shaped morphology at low cell density but grew to become epithelial-like at confluency. On the commercial extracellular matrix (ECM), Matrigel, the cells remained spindle-shaped and formed lumen-like structures. WE-spleen6 cells had intermediate filament protein, vimentin and the ECM protein, collagen I, but not smooth muscle α-actin (SMA) and von Willebrand factor (vWF) and lacked alkaline phosphatase and phagocytic activities. WE-spleen6 was more susceptible to infection with VHSV IVb than a fibroblast and epithelial cell lines from the walleye caudal fin, WE-cfin11f and WE-cfin11e, respectively. Viral transcripts and proteins appeared earlier in WE-spleen6 cultures as did cytopathic effect (CPE) and significant virus production. The synthetic double-stranded RNA (dsRNA), polyinosinic: polycytidylic acid (pIC), induced the antiviral protein Mx in both cell lines. Treating WE-spleen6 cultures with pIC prior to infection with VHSV IVb inhibited the early accumulation of viral transcripts and proteins and delayed the appearance of CPE and significant viral production. Of particular note, pIC caused the disappearance of viral P protein 2 days post infection. WE-spleen6 should be useful for investigating the impact of VHSV IVb on hematopoietic organs and the actions of pIC on the rhabdovirus life cycle.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Aaron W Bender
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - John S Lumsden
- Ontario Veterinary College, Pathobiology, University of Guelph, Guelph, ON N2G 2W1, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
30
|
Rodriguez Saint-Jean S, González C, Monrás M, Romero A, Ballesteros N, Enríquez R, Perez-Prieto S. Establishment and characterization of a new cell line (SSP-9) derived from Atlantic salmon Salmo salar that expresses type I ifn. JOURNAL OF FISH BIOLOGY 2014; 85:1526-1545. [PMID: 25230295 DOI: 10.1111/jfb.12503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
In the present work, the establishment and biological characterization of a new cell line, SSP-9, derived from the pronephros of the Atlantic salmon Salmo salar, are reported. These cells grew well in Leibovitz's (L15) medium supplemented with 10% foetal calf serum at temperatures from 15 to 25° C, and they have been sub-cultured over 100 passages to produce a continuous cell line with an epithelial-like morphology. The SSP-9 cells attached and spread efficiently at different plating densities, retaining 80% of cell viability after storage in liquid nitrogen. When karyotyped, the cells had 40-52 chromosomes, with a modal number of 48. Viral susceptibility tests showed that SSP-9 cells were susceptible to infectious pancreatic necrosis virus and infectious haematopoietic necrosis virus, producing infectious virus and regular cytopathic effects. Moreover, these cells could be stimulated by poly I:C, showing significant up-regulation in the expression of the genes that regulate immune responses, such as ifn and mx-1. SSP-9 cells constitutively express genes characteristic of macrophages, such as major histocompatibility complex (mhc-II) and interleukin 12b (il-12b), and flow cytometry assays confirmed that SSP-9 cells can be permanently transfected with plasmids expressing a reporter gene. Accordingly, this new cell line is apparently suitable for transgenic manipulation, and to study host cell-virus interactions and immune processes.
Collapse
|
31
|
Thanasaksiri K, Sakai N, Yamashita H, Hirono I, Kondo H. Influence of temperature on Mx gene expression profiles and the protection of sevenband grouper, Epinephelus septemfasciatus, against red-spotted grouper nervous necrosis virus (RGNNV) infection after poly (I:C) injection. FISH & SHELLFISH IMMUNOLOGY 2014; 40:441-5. [PMID: 25107694 DOI: 10.1016/j.fsi.2014.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/18/2014] [Accepted: 07/25/2014] [Indexed: 05/22/2023]
Abstract
Influence of temperature on the susceptibility of fish against virus infection has been studied for a decade. Recent reports have been shown the effects of rearing temperatures on the fish immune system against virus infection. However, the roles of temperature in regulation of type I interferon (IFN) system has not yet been investigated. Thus, the effects of temperature on type I IFN response were investigated in this study using poly (I:C) injection in sevenband grouper and Mx gene was used as a marker for type I IFN expression. Quantitative real-time PCR (qPCR) result showed that Mx expression profiles were moderately different between temperatures. The highly up-regulated Mx transcripts at 3 h post injection (hpi) were observed in high temperatures (25 °C and 30 °C) but not in low temperatures (15 °C and 20 °C). Meanwhile, low temperatures (15 °C and 20 °C) could detect the highly up-regulated Mx transcripts at 24 hpi. Expression of Mx transcripts was also observed at 72 hpi at 15 °C. Poly (I:C)-injected fish were challenged with RGNNV after 72 and 168 hpi. At 72 hpi, 100% of fish survived at all temperatures, whereas 95% survival rate was observed at 168 hpi at 25 °C during 14 days of observation. To further verify the duration period of an antiviral state at different temperatures, qPCR and endpoint dilution assay were used to quantify the number of virus in fish challenged with RGNNV. The reduction of viral copy numbers and viral titers could be observed at 72 and 168 hpi. However, high viral copy numbers and viral titers could be detected at 168 hpi at 30 °C. These results demonstrate that temperatures influenced on the Mx expression profiles and the duration period of an antiviral state efficiently interfered with virus replication at different temperatures.
Collapse
Affiliation(s)
- Kittipong Thanasaksiri
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Nichika Sakai
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Hirofumi Yamashita
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Uwajima, Ehime, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan.
| |
Collapse
|
32
|
Alvarez-Torres D, Alonso MC, Garcia-Rosado E, Collet B, Béjar J. Differential response of the Senegalese sole (Solea senegalensis) Mx promoter to viral infections in two salmonid cell lines. Vet Immunol Immunopathol 2014; 161:251-7. [DOI: 10.1016/j.vetimm.2014.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/08/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
|
33
|
Chiang WW, Chuang CK, Chao M, Chen WJ. Cell type-dependent RNA recombination frequency in the Japanese encephalitis virus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:471323. [PMID: 25165704 PMCID: PMC4140105 DOI: 10.1155/2014/471323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/02/2014] [Indexed: 11/17/2022]
Abstract
Japanese encephalitis virus (JEV) is one of approximately 70 flaviviruses, frequently causing symptoms involving the central nervous system. Mutations of its genomic RNA frequently occur during viral replication, which is believed to be a force contributing to viral evolution. Nevertheless, accumulating evidences show that some JEV strains may have actually arisen from RNA recombination between genetically different populations of the virus. We have demonstrated that RNA recombination in JEV occurs unequally in different cell types. In the present study, viral RNA fragments transfected into as well as viral RNAs synthesized in mosquito cells were shown not to be stable, especially in the early phase of infection possibly via cleavage by exoribonuclease. Such cleaved small RNA fragments may be further degraded through an RNA interference pathway triggered by viral double-stranded RNA during replication in mosquito cells, resulting in a lower frequency of RNA recombination in mosquito cells compared to that which occurs in mammalian cells. In fact, adjustment of viral RNA to an appropriately lower level in mosquito cells prevents overgrowth of the virus and is beneficial for cells to survive the infection. Our findings may also account for the slower evolution of arboviruses as reported previously.
Collapse
Affiliation(s)
- Wei-Wei Chiang
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | - Ching-Kai Chuang
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546-0312, USA
| | - Mei Chao
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | - Wei-June Chen
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
- Department of Public Health and Parasitology, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| |
Collapse
|
34
|
Cofre C, Gonzalez R, Moya J, Vidal R. Phenotype gene expression differences between resistant and susceptible salmon families to IPNV. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:887-96. [PMID: 24306554 DOI: 10.1007/s10695-013-9894-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/22/2013] [Indexed: 05/22/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV) is an economically important pathogen of the salmonid aquaculture industry. Selective breeding has been employed to improve resistance to this infectious disease, and it is of importance to investigate the expression profile of immune genes of Atlantic salmon with different genetic background in response to this virus. This study examined the immune modulation response of eight candidate genes in head kidney tissue in two families of Atlantic salmon with high and low mortalities, after challenge with IPNV. The results showed that the expression pattern of target genes differed in the two families. Generally, higher expression of antiviral, pro-inflammatory genes and transcription factors such as tripartite motif, NF-κB, IFNI, STAT1, protein kinase R, and Vig-2 in the resistant family were observed at the same time point. One may speculate the functional importance of these putative candidate genes in the characterization of the IPNV-resistant (low mortalities) immune phenotype. Therefore, on our findings, we suggest that future salmonids studies aiming to identify candidate genes/pathway or vaccines evaluation should consider validating detected genes/pathway across different genetic backgrounds or immune phenotype.
Collapse
Affiliation(s)
- C Cofre
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Faculty of Chemistry and Biology, Universidad Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | | | | | | |
Collapse
|
35
|
Mx proteins: antiviral gatekeepers that restrain the uninvited. Microbiol Mol Biol Rev 2014; 77:551-66. [PMID: 24296571 DOI: 10.1128/mmbr.00024-13] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fifty years after the discovery of the mouse Mx1 gene, researchers are still trying to understand the molecular details of the antiviral mechanisms mediated by Mx proteins. Mx proteins are evolutionarily conserved dynamin-like large GTPases, and GTPase activity is required for their antiviral activity. The expression of Mx genes is controlled by type I and type III interferons. A phylogenetic analysis revealed that Mx genes are present in almost all vertebrates, usually in one to three copies. Mx proteins are best known for inhibiting negative-stranded RNA viruses, but they also inhibit other virus families. Recent structural analyses provide hints about the antiviral mechanisms of Mx proteins, but it is not known how they can suppress such a wide variety of viruses lacking an obvious common molecular pattern. Perhaps they interact with a (partially) symmetrical invading oligomeric structure, such as a viral ribonucleoprotein complex. Such an interaction may be of a fairly low affinity, in line with the broad target specificity of Mx proteins, yet it would be strong enough to instigate Mx oligomerization and ring assembly. Such a model is compatible with the broad "substrate" specificity of Mx proteins: depending on the size of the invading viral ribonucleoprotein complexes that need to be wrapped, the assembly process would consume the necessary amount of Mx precursor molecules. These Mx ring structures might then act as energy-consuming wrenches to disassemble the viral target structure.
Collapse
|
36
|
Sever L, Vo NTK, Bols NC, Dixon B. Expression of tapasin in rainbow trout tissues and cell lines and up regulation in a monocyte/macrophage cell line (RTS11) by a viral mimic and viral infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:86-93. [PMID: 24321527 DOI: 10.1016/j.dci.2013.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Tapasin is a transmembrane glycoprotein that acts as a bridge between the transporter associated with antigen processing and the MHC class I receptor in mammals. Through the development of antibody against trout tapasin, this report demonstrates the detection of trout tapasin as a N-glycosylated 48 kDa protein. Tissue and cell line distribution revealed that tapasin protein is expressed mainly in immune system organs and in rainbow trout epithelial cell lines from gill (RTgill-W1), liver (RTL-W1), and intestine (RTgutGC). An additional 20 kDa band was observed in tissues and cell lines, and appeared to be most prominent in RTgutGC but was absent in peripheral blood leukocytes. Tapasin 48 kDa protein was most strongly expressed in RTS11 (monocyte/macrophage cell line) and its regulation following dsRNA stimulation was explored. Upon poly I:C treatment and Chum Salmon Reovirus (CSV) infection, tapasin protein expression was upregulated up to 3.5 fold and 3 fold respectively, in parallel with increased expression of the glycosylated MH class I heavy chain, whereas the expression of the 20 kDa form remained unchanged. Overall this work demonstrates the induction of tapasin protein by dsRNA stimulation, which implies its possible conserved regulation during viral infection in teleost cells.
Collapse
Affiliation(s)
- Lital Sever
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, Ontario N2L 3G1, Canada
| | - Nguyen T K Vo
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, Ontario N2L 3G1, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, Ontario N2L 3G1, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
37
|
Sever L, Vo NTK, Lumsden J, Bols NC, Dixon B. Induction of rainbow trout MH class I and accessory proteins by viral haemorrhagic septicaemia virus. Mol Immunol 2014; 59:154-62. [PMID: 24607971 DOI: 10.1016/j.molimm.2014.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/13/2014] [Accepted: 02/08/2014] [Indexed: 01/23/2023]
Abstract
Major histocompatibility (MH) class I receptors are glycoproteins which play a critical role during responses to intracellular pathogens by presenting endogenous peptides to cytotoxic T cell lymphocytes (CD8+). To date, little is known about MH class I regulation at the protein level during viral infections in fish. In this study, we characterised the MH class I pathway response to polyinosinic-polycytidylic acid (poly I:C) and upon infection with viral haemorrhagic septicemia virus (VHSV) genotype IVa using the rainbow trout monocyte/macrophage cell line RTS11. A 14-day challenge with VHSV IVa at 14°C demonstrated enhanced expression of the class I heavy chain, β2 microglobulin (β2M) and tapasin, while the expression of other accessory molecules ERp57 and calreticulin remained unchanged. However, when infection occurred at 2°C no change in expression levels of any of these molecules was observed. β2M accumulated in the media of RTS11 over time, however the β2M concentrations were 2 fold higher in cultures infected with VHSV 14 days post infection. Strikingly, when cells were maintained at 2°C the secretion of β2M was significantly reduced in both infected and non-infected cultures. These results indicate that VHSV infection alters the kinetics of β2M release as well as the expression of MH class I and suggests that cellular immunity against VHSV can be compromised at low temperatures which may increase host susceptibility to this virus during the winter.
Collapse
Affiliation(s)
- Lital Sever
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada N2L 3G1; Department of Pathobiology University of Guelph, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Nguyen T K Vo
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada N2L 3G1; Department of Pathobiology University of Guelph, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - John Lumsden
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada N2L 3G1; Department of Pathobiology University of Guelph, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Niels C Bols
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada N2L 3G1; Department of Pathobiology University of Guelph, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada N2L 3G1; Department of Pathobiology University of Guelph, 50 Stone Road E., Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
38
|
Molecular characterization and expression of type-I interferon gene in Labeo rohita. Mol Biol Rep 2014; 41:2979-87. [DOI: 10.1007/s11033-014-3155-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 01/13/2014] [Indexed: 12/29/2022]
|
39
|
Sobhkhez M, Hansen T, Iliev DB, Skjesol A, Jørgensen JB. The Atlantic salmon protein tyrosine kinase Tyk2: molecular cloning, modulation of expression and function. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:553-563. [PMID: 23872231 DOI: 10.1016/j.dci.2013.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Tyk2, a member of the Janus Kinase (JAK) family of protein tyrosine kinases, is required for interferon-α/β binding and signaling in higher vertebrates. Currently, little is known about the role of the different JAKs in signaling responses to interferon (IFN) in lower vertebrates including fish. In this paper we report the identification and characterization of Atlantic salmon (Salmo salar) Tyk2. Four cDNA sequences, two containing an open reading frame encoding full-length Tyk protein and two with an up-stream in frame stop codon, were identified. The deduced amino acid sequences of the salmon full-length Tyk2 proteins showed highest identity with Tyk2 from other species and their transcripts were ubiquitously expressed. Like in mammals the presented data suggests that salmon Tyk2 is auto-phosporylated when ectopically expressed in cells. In our experiments, full-length salmon Tyk2 overexpressed in CHSE-cells phosphorylated itself, while both a kinase-deficient mutant and the truncated Tyk2 (Tyk-short) were inactive. Interestingly, the overexpression of full length Tyk2 was shown to up-regulate the transcript levels of the IFN induced gene Mx, thus indicating the involvement of salmon Tyk2 in the salmon IFN I pathway.
Collapse
Affiliation(s)
- Mehrdad Sobhkhez
- Norwegian College of Fisheries Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
40
|
Svingerud T, Holand JK, Robertsen B. Infectious salmon anemia virus (ISAV) replication is transiently inhibited by Atlantic salmon type I interferon in cell culture. Virus Res 2013; 177:163-70. [DOI: 10.1016/j.virusres.2013.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 12/17/2022]
|
41
|
Green TJ, Montagnani C. Poly I:C induces a protective antiviral immune response in the Pacific oyster (Crassostrea gigas) against subsequent challenge with Ostreid herpesvirus (OsHV-1 μvar). FISH & SHELLFISH IMMUNOLOGY 2013; 35:382-388. [PMID: 23685009 DOI: 10.1016/j.fsi.2013.04.051] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/19/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
In-vivo studies were carried out to investigate the protective effect of a synthetic viral analogue (poly I:C) against Ostreid herpes virus (OsHV-1 μvar). Pacific oysters (Crassostrea gigas) were immune-primed by intramuscular injection of 240 μg of poly I:C or sterile seawater at 1 day prior to infection with OsHV-1 μvar. Poly I:C injection induced an antiviral state in C. gigas as the percentage of viral-infected oysters at 48 h post infection was significantly lower in the poly I:C treatment (11%) compared to seawater controls (100%). In an additional experiment, we demonstrated that the protective role of poly I:C is reproducible and elicits a specific antiviral response as immune-priming with heat-killed Vibrio splendidus provided no protection against subsequent viral infection. In both experiments, genes homologous to a toll-like receptor (TLR), MyD88, interferon regulatory factor (IRF) and protein kinase R (PKR) were up-regulated in oysters immune-primed with poly I:C compared to seawater controls (p < 0.05). The MyD88, IRF and PKR genes were also significantly up-regulated in response to OsHV-1 μvar infection (p < 0.05), which is suggestive that they are implicated in the antiviral response of C. gigas. Our results demonstrate that C. gigas can recognise double-strand RNA to initiate an innate immune response that inhibits viral infection. The observed response has striking similarities to the hallmarks of the type-1 interferon response of vertebrates.
Collapse
Affiliation(s)
- Timothy J Green
- Ifremer, UMR 5119 "Ecology of Coastal Marine Systems", Université Montpellier 2, Place Eugène Bataillon, CC80, 30495 Montpellier Cedex 05, France.
| | | |
Collapse
|
42
|
Feng J, Su Y, Guo Z, Xu L, Sun X, Wang Y. Identification and expression analysis of a CC chemokine from cobia (Rachycentron canadum). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:459-469. [PMID: 22955963 DOI: 10.1007/s10695-012-9711-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/28/2012] [Indexed: 06/01/2023]
Abstract
Chemokines are small, secreted cytokine peptides known principally for their ability to induce migration and activation of leukocyte populations and regulate the immune response mechanisms. The cobia (Rachycentron canadum), a marine finfish species, has a great potential for net cage aquaculture in the South China Sea. We isolated and characterized a CC chemokine cDNA from cobia-designated RcCC2. Its cDNA is 783 bp in length and encodes a putative protein of 110 amino acids. Homology and phylogenetic analysis revealed that the RcCC2 gene, which contains four conserved cysteine residues, shares a high degree of similarity with other known CC chemokine sequences and is closest to the CCL19/21 clade. The mRNA of RcCC2 is expressed constitutively in all tested tissues, including gill, liver, muscle, spleen, kidney, head kidney, skin, brain, stomach, intestine and heart, but not blood, with the highest level of expression in gill and liver. The reverse transcription quantitative polymerase chain reaction was used to examine the expression of the RcCC2 gene in immune-related tissues, including head kidney, spleen and liver, following intraperitoneal injection of the viral mimic polyriboinosinic polyribocytidylic acid, formalin-killed Vibrio carchariae (bacterial vaccine) and phosphate-buffered saline as a control. RcCC2 gene expression was up-regulated differentially in head kidney, spleen and liver during 12 h after challenge. These results indicate that the RcCC2 gene is inducible and is involved in immune responses, suggesting RcCC2 has an important role in the early stage of viral and bacterial infections.
Collapse
Affiliation(s)
- Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong, China.
| | | | | | | | | | | |
Collapse
|
43
|
Sever L, Bols NC, Dixon B. The cloning and inducible expression of the rainbow trout ERp57 gene. FISH & SHELLFISH IMMUNOLOGY 2013; 34:410-419. [PMID: 23165287 DOI: 10.1016/j.fsi.2012.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 06/01/2023]
Abstract
ERp57 is a member of a protein disulfide isomerase family and is a chaperone responsible for the correct folding of newly synthesized glycoproteins in the endoplasmic reticulum and in the assembly of the major histocompatibility complex class I in the endogenous pathway of antigen presentation. This study reports the identification of a full length ERp57 cDNA in rainbow trout that encodes a putative 477aa mature protein with an additional signal sequence of 16aa. The trout protein shared 75% identity with the human homolog, but interestingly did not include either a C terminal endoplasmic reticulum retention signal, Q/KEDL in humans, or a nuclear localization signal which is highly conserved in mammals. Amino acid sequence alignment revealed conservation of four classical domains in trout ERp57 and two conserved active CXXC redox motifs. Trout ERp57 protein was identified as a single band around 57 kDa. Southern blotting analysis revealed that there two copies of the ERp57 gene in the trout genome and northern blotting showed a wide tissue distribution of gene expression in various tissues with the highest expression in liver and egg. This study showed for the first time in teleost that ERp57 transcript is upregulated in response to immune stimuli such as double stranded RNA or phytohemagglutinin. Furthermore, upon treatment with ER stress inducer A23187, trout ERp57 protein expression levels were increased both in peripheral blood leukocytes and the RTS11 macrophage like cell line after 6 and 8 h respectively. These findings suggest a possible conserved function for trout ERp57 in the ER and during the activation of the immune response.
Collapse
Affiliation(s)
- Lital Sever
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
44
|
Jensen I, Steiro K, Sommer AI, Mennen S, Johansen A, Sandaker EK, Seppola M. Establishing a cell line from Atlantic cod as a novel tool for in vitro studies. FISH & SHELLFISH IMMUNOLOGY 2013; 34:199-208. [PMID: 23108254 DOI: 10.1016/j.fsi.2012.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/12/2012] [Accepted: 10/14/2012] [Indexed: 06/01/2023]
Abstract
The present work describes the generation of a cell line from newly hatched Atlantic cod (Gadus morhua) larvae (ACL cells). Primary cultures were initiated by explant outgrowth from partially minced tissues and subcultured cells were exposed to UV radiation. After a substantial period of growth lag, cells started to proliferate and different growth conditions were tested to establish the cell line. At present, the ACL cell line has been subcultured for more than 100 passages. ACL cells had a polygonal shape and the morphology appeared homogenous with epithelial-like cells. Cell growth was dependent on the presence of foetal bovine serum and cells proliferated in a wide temperature range with optimal growth at 15 °C. By exposure to a viral dsRNA mimic (poly I:C) the cells expressed high levels of a repertoire of genes comprising both inflammatory mediators and interferon stimulated genes. Infection studies with two different viruses showed that infectious pancreatic necrosis virus (IPNV) propagated efficiently, and induced low level expression of genes of both pathways before the cells rapidly died. No productive infection was obtained with nervous necrosis virus (NNV), but a transient increase in the viral RNA level, followed by a high increase in expression of selected ISGs, suggests that the virus enters the cells but is unable to complete its replication cycle. To our knowledge, ACL cells are at the moment the only existing cell line from Atlantic cod. Our results demonstrate that ACL cells can be a useful research tool for further exploration of host-pathogen interactions and it is believed that this cell line will serve as a valuable tool also for studies within other research areas.
Collapse
Affiliation(s)
- I Jensen
- Nofima, Box 6122, N-9291 Tromsø, Norway.
| | | | | | | | | | | | | |
Collapse
|
45
|
Adamek M, Rakus KŁ, Chyb J, Brogden G, Huebner A, Irnazarow I, Steinhagen D. Interferon type I responses to virus infections in carp cells: In vitro studies on Cyprinid herpesvirus 3 and Rhabdovirus carpio infections. FISH & SHELLFISH IMMUNOLOGY 2012; 33:482-493. [PMID: 22683518 DOI: 10.1016/j.fsi.2012.05.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/06/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Interferons (IFNs) are secreted mediators that play a fundamental role in the innate immune response against viruses among all vertebrate classes. Common carp is a host for two highly contagious viruses: spring viraemia of carp virus (Rhabdovirus carpio, SVCV) and the Cyprinid herpesvirus 3 (CyHV-3), which belong to Rhabdoviridae and Alloherpesviridae families, respectively. Both viruses are responsible for significant losses in carp aquaculture. In this paper we studied the mRNA expression profiles of genes encoding for proteins promoting various functions during the interferon pathway, from pattern recognition receptors to antiviral genes, during in vitro viral infection. Furthermore, we investigated the impact of the interferon pathway (stimulated with poly I:C) on CyHV-3 replication and the speed of virus spreading in cell culture. The results showed that two carp viruses, CyHV-3 and SVCV induced fundamentally different type I IFN responses in CCB cells. SVCV induced a high response in all studied genes, whereas CyHV-3 seems to induce no response in CCB cells, but it induces a response in head kidney leukocytes. The lack of an IFN type I response to CyHV-3 could be an indicator of anti-IFN actions of the virus, however the nature of this mechanism has to be evaluated in future studies. Our results also suggest that an activation of type I IFN in CyHV-3 infected cells can limit the spread of the virus in cell culture. This would open the opportunity to treat the disease associated with CyHV-3 by an application of poly I:C in certain cases.
Collapse
Affiliation(s)
- Mikołaj Adamek
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
LeBlanc F, Arseneau JR, Leadbeater S, Glebe B, Laflamme M, Gagné N. Transcriptional response of Atlantic salmon (Salmo salar) after primary versus secondary exposure to infectious salmon anemia virus (ISAV). Mol Immunol 2012; 51:197-209. [PMID: 22475434 DOI: 10.1016/j.molimm.2012.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 11/25/2022]
Abstract
Following an infection with a specific pathogen, the acquired immune system of many teleostean fish, including salmonids, is known to retain a specific memory of the infectious agent, which protects the host against subsequent infections. For example, Atlantic salmon (Salmo salar) that have survived an infection with a low-virulence infectious salmon anemia virus (ISAV) isolate are less susceptible to subsequent ISAV infections. A greater understanding of the mechanisms and immunological components involved in this acquired protection against ISAV is fundamental for the development of efficacious vaccines and treatments against this pathogen. To better understand the immunity components involved in this observed resistance, we have used an Atlantic salmon DNA microarray to study the global gene expression responses of preexposed Atlantic salmon (fish having survived an infection with a low-virulence ISAV isolate) during the course of a secondary infection, 18 months later, with a high-virulence ISAV isolate. We present global gene expression patterns in both preexposed and naïve fish, following exposure by either cohabitation with infected fish or by direct intra-peritoneal injection of a high-virulence ISAV isolate. Our results show a clear reduction of ISAV viral loads in head-kidney of secondary infected fish compared to primary infected fish. Further, we note a lower-expression of many antiviral innate immunity genes in the secondary infected fish, such as the interferon induced GTP-binding protein Mx, CC-chemokine 19 and signal transducer and activator of transcription 1 (STAT 1), as well as MHC class I antigen presentation involved genes. Potential acquired immunity genes such as GILT, leukocyte antigen transcript CD37 and Ig mu chain C region membrane-bound form were observed to be over-expressed in secondary infected fish. The observed differential gene expression profile in secondary and primary infected fish head-kidney provides great insight into immunity components involved during primary and secondary ISAV infection.
Collapse
Affiliation(s)
- F LeBlanc
- Department of Fisheries & Oceans Canada, Gulf Fisheries Center, Moncton, NB, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Reyes-Cerpa S, Reyes-López FE, Toro-Ascuy D, Ibañez J, Maisey K, Sandino AM, Imarai M. IPNV modulation of pro and anti-inflammatory cytokine expression in Atlantic salmon might help the establishment of infection and persistence. FISH & SHELLFISH IMMUNOLOGY 2012; 32:291-300. [PMID: 22142704 DOI: 10.1016/j.fsi.2011.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/15/2011] [Accepted: 11/20/2011] [Indexed: 05/20/2023]
Abstract
IPNV is the agent of a well-characterized acute disease that produces a systemic infection and high mortality in farmed fish species and persistent infection in surviving fish after outbreaks. Because modulation of the host expression of pro and anti-inflammatory cytokines can help establish persistence, in this study, we examined the expression of IL-1β, IL-8, IFNα1 and IL-10 during acute and persistent IPNV infection of Atlantic salmon. Results showed that IPNV infection induces an increase of the IFNα1 and IL-10 mRNA levels in the spleen and head kidney (HK) of fish after acute experimental infection. Levels of the pro-inflammatory cytokines IL-1β and IL-8 did not rise in the spleen although an increase of IL-1β, but not of IL-8, was observed in head kidney. In carrier asymptomatic salmon, cytokine gene expression of IFNα1 in the spleen and IL-10 in head kidney were also significantly higher than expression in non-carrier fish. Interestingly, a decrease of IL-8 expression was also observed. IPNV infection of SHK-1, which is a macrophage-like cell line of salmon, also induced an increase of expression of the anti-inflammatory cytokine IL-10 with no effects on the expression of IL-1β and IL-8. The effects are induced by an unknown mechanism during viral infection because poly I:C and the viral genomic dsRNA showed the opposite effects on cytokine expression in SHK-1 cells. In summary, IPNV always induces up-regulation of the anti-inflammatory cytokine IL-10 in Atlantic salmon. As this is accompanied by a lack of induction of the pro-inflammatory cytokines IL-1β and IL-8, the anti-inflammatory milieu may explain the high frequency, prevalence and persistence of IPNV in salmon. Effects might be part of the viral mechanisms of immune evasion.
Collapse
Affiliation(s)
- Sebastián Reyes-Cerpa
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | | | | | | | | | | | | |
Collapse
|
48
|
Sun B, Skjæveland I, Svingerud T, Zou J, Jørgensen J, Robertsen B. Antiviral activity of salmonid gamma interferon against infectious pancreatic necrosis virus and salmonid alphavirus and its dependency on type I interferon. J Virol 2011; 85:9188-98. [PMID: 21697489 PMCID: PMC3165780 DOI: 10.1128/jvi.00319-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/06/2011] [Indexed: 11/20/2022] Open
Abstract
We investigated the antiviral activity and gene induction properties of interferon gamma (IFN-γ) compared to type I IFN (IFNa1) in Atlantic salmon. IFN-γ protected salmon cells against infectious pancreatic necrosis virus (IPNV)-induced cytopathic effect (CPE), reduced virus titers, and inhibited the synthesis of the viral structural protein VP3. Moreover, IFN-γ showed potent antiviral activity against salmonid alphavirus 3 (SAV3) measured as a reduction in virus nsP1 transcripts. IFN-γ (a type II IFN) had less specific antiviral activity against IPNV than IFNa1, showing a half-maximal effective concentration of 1.6 ng/ml versus 31 pg/ml determined in the CPE reduction assay. Compared to IFNa1, IFN-γ was a more effective inducer of the antiviral protein GBP, several interferon regulatory transcription factors (IRFs), and the chemokine IP-10. The antiviral activity of IFN-γ may also in part be ascribed to upregulation of Mx, ISG15, and viperin. These are typical type I IFN-induced genes in mammals and were also more strongly induced by IFNa1 than by IFN-γ in salmon cells. Fish and mammalian IFN-γ thus show strikingly similar gene induction properties. Interestingly, the antiviral activity of IFN-γ against IPNV and SAV3 and its ability to induce Mx and ISG15 markedly decreased in the presence of neutralizing antiserum against IFNa1. In contrast, antiIFNa1 had no effect on the induction of IRF-1 and IP-10 by IFN-γ. This suggests that the antiviral activity of IFN-γ is partially dependent on IFNa induction. However, because antiIFNa1 could not abolish the IFN-γ-mediated induction of Mx and ISG15 completely, IFN-γ may possibly also induce such genes directly.
Collapse
Affiliation(s)
- Baojian Sun
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Ingrid Skjæveland
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Tina Svingerud
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Jun Zou
- Scottish Fish Immunology Research Center, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jorunn Jørgensen
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Børre Robertsen
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| |
Collapse
|
49
|
Characterization of an infectious pancreatic necrosis (IPN) virus carrier cell culture with resistance to superinfection with heterologous viruses. Vet Microbiol 2011; 149:48-55. [DOI: 10.1016/j.vetmic.2010.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/19/2010] [Accepted: 10/20/2010] [Indexed: 01/02/2023]
|
50
|
Ortega C, Rodríguez S, de las Heras AI, Romero A, Monrás M, Enríquez R. Evaluation of the level of Mx3 protein synthesis induced by infectious pancreatic necrosis virus (IPNV) strains of different infectivity. Vet Immunol Immunopathol 2011; 141:190-200. [PMID: 21439653 DOI: 10.1016/j.vetimm.2011.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/14/2011] [Accepted: 02/24/2011] [Indexed: 11/26/2022]
Abstract
The in vitro infectivity and genotype of three IPNV strains (V70, V112 and V98) was linked to the level of transcript synthesis for the Mx3 protein in RTG-2 (Rainbow trout gonad) cells and in Salmo salar. The V70 and V98 strains corresponded to the Sp genotype, whilst the V112 corresponded to VR-299; the presence of Pro-217 and Ala-221 in VP2 identified V70 as a strain of medium virulence level whilst V112 (Ala-217 and Thr-221) and V98 (Pro-217 and Thr-221) were of low virulence. This is concurrent with several in vitro tests which showed V70 to be a strain with highly infectivity (P<0.05). In both the in vitro and in vivo trials, the strains demonstrated the induction of the Mx transcript, although no differences were detected, and the level always were significantly lesser that observed in poly I:C samples. The results suggest that the infectivity observed is related to the presence of certain specific residues in VP2, and that neither the infectivity nor the genotype appears to bear any relation to Mx induction capacity.
Collapse
Affiliation(s)
- César Ortega
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, AP 4-56, Toluca, Mexico.
| | | | | | | | | | | |
Collapse
|