1
|
Trainito A, Muscarà C, Gugliandolo A, Chiricosta L, Salamone S, Pollastro F, Mazzon E, D’Angiolini S. Cannabinol (CBN) Influences the Ion Channels and Synaptic-Related Genes in NSC-34 Cell Line: A Transcriptomic Study. Cells 2024; 13:1573. [PMID: 39329756 PMCID: PMC11430194 DOI: 10.3390/cells13181573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Neurological disorders such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and schizophrenia are associated with altered neuronal excitability, resulting from dysfunctions in the molecular architecture and physiological regulation of ion channels and synaptic transmission. Ion channels and synapses are regarded as suitable therapeutic targets in modern pharmacology. Cannabinoids have received great attention as an original therapeutic approach for their effects on human health due to their ability to modulate the neurotransmitter release through interaction with the endocannabinoid system. In our study, we explored the effect of cannabinol (CBN) through next-generation sequencing analysis of NSC-34 cell physiology. Our findings revealed that CBN strongly influences the ontologies related to ion channels and synapse activity at all doses tested. Specifically, the genes coding for calcium and potassium voltage-gated channel subunits, and the glutamatergic and GABAergic receptors (Cacna1b, Cacna1h, Cacng8, Kcnc3, Kcnd1, Kcnd2, Kcnj4, Grik5, Grik1, Slc17a7, Gabra5), were up-regulated. Conversely, the genes involved into serotoninergic and cholinergic pathways (Htr3a, Htr3b, Htr1b, Chrna3, Chrnb2, Chrnb4), were down-regulated. These findings highlight the influence of CBN in the expression of genes involved into ion influx and synaptic transmission.
Collapse
Affiliation(s)
- Alessandra Trainito
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Claudia Muscarà
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy (F.P.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy (F.P.)
| | - Emanuela Mazzon
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Simone D’Angiolini
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
2
|
Seo S, Kim YA, Lee Y, Kim YJ, Kim BJ, An JH, Jin H, Do AR, Park K, Won S, Seo JH. Epigenetic link between Agent Orange exposure and type 2 diabetes in Korean veterans. Front Endocrinol (Lausanne) 2024; 15:1375459. [PMID: 39072272 PMCID: PMC11272593 DOI: 10.3389/fendo.2024.1375459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Conflicting findings have been reported regarding the association between Agent Orange (AO) exposure and type 2 diabetes. This study aimed to examine whether AO exposure is associated with the development of type 2 diabetes and to verify the causal relationship between AO exposure and type 2 diabetes by combining DNA methylation with DNA genotype analyses. An epigenome-wide association study and DNA genotype analyses of the blood of AO-exposed and AO-unexposed individuals with type 2 diabetes and that of healthy controls were performed. Methylation quantitative trait locus and Mendelian randomisation analyses were performed to evaluate the causal effect of AO-exposure-identified CpGs on type 2 diabetes. AO-exposed individuals with type 2 diabetes were associated with six hypermethylated CpG sites (cg20075319, cg21757266, cg05203217, cg20102280, cg26081717, and cg21878650) and one hypo-methylated CpG site (cg07553761). Methylation quantitative trait locus analysis showed the methylation levels of some CpG sites (cg20075319, cg20102280, and cg26081717) to be significantly different. Mendelian randomisation analysis showed that CpG sites that were differentially methylated in AO-exposed individuals were causally associated with type 2 diabetes; the reverse causal effect was not significant. These findings reflect the need for further epigenetic studies on the causal relationship between AO exposure and type 2 diabetes.
Collapse
Affiliation(s)
- Sujin Seo
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Ye An Kim
- Division of Endocrinology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Jae Hoon An
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Ah Ra Do
- Interdisciplinary Program of Bioinformatics, College of National Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Sungho Won
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Bioinformatics, College of National Sciences, Seoul National University, Seoul, Republic of Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| |
Collapse
|
3
|
Kalm T, Schob C, Völler H, Gardeitchik T, Gilissen C, Pfundt R, Klöckner C, Platzer K, Klabunde-Cherwon A, Ries M, Syrbe S, Beccaria F, Madia F, Scala M, Zara F, Hofstede F, Simon MEH, van Jaarsveld RH, Oegema R, van Gassen KLI, Holwerda SJB, Barakat TS, Bouman A, van Slegtenhorst M, Álvarez S, Fernández-Jaén A, Porta J, Accogli A, Mancardi MM, Striano P, Iacomino M, Chae JH, Jang S, Kim SY, Chitayat D, Mercimek-Andrews S, Depienne C, Kampmeier A, Kuechler A, Surowy H, Bertini ES, Radio FC, Mancini C, Pizzi S, Tartaglia M, Gauthier L, Genevieve D, Tharreau M, Azoulay N, Zaks-Hoffer G, Gilad NK, Orenstein N, Bernard G, Thiffault I, Denecke J, Herget T, Kortüm F, Kubisch C, Bähring R, Kindler S. Etiological involvement of KCND1 variants in an X-linked neurodevelopmental disorder with variable expressivity. Am J Hum Genet 2024; 111:1206-1221. [PMID: 38772379 PMCID: PMC11179411 DOI: 10.1016/j.ajhg.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024] Open
Abstract
Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary β subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.
Collapse
Affiliation(s)
- Tassja Kalm
- Institute for Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claudia Schob
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hanna Völler
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thatjana Gardeitchik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Annick Klabunde-Cherwon
- Division of Pediatric Epileptology, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Markus Ries
- Division of Pediatric Epileptology, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Francesca Beccaria
- Epilepsy Center, Department of Child Neuropsychiatry, Territorial Social-Health Agency, 46100 Mantova, Italy
| | - Francesca Madia
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Marcello Scala
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16145 Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16145 Genoa, Italy
| | - Floris Hofstede
- Department of General Pediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Marleen E H Simon
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands
| | - Richard H van Jaarsveld
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands
| | - Renske Oegema
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands
| | - Koen L I van Gassen
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands
| | - Sjoerd J B Holwerda
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3000 CA, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam 3000 CA, the Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Sara Álvarez
- Genomics and Medicine, NIMGenetics, 28108 Madrid, Spain
| | - Alberto Fernández-Jaén
- Pediatric Neurology Department, Quironsalud University Hospital Madrid, School of Medicine, European University of Madrid, 28224 Madrid, Spain
| | - Javier Porta
- Genomics, Genologica Medica, 29016 Málaga, Spain
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre, QC H4A 3J1 Montreal, Canada; Department of Human Genetics, McGill University, QC H4A 3J1 Montreal, Canada
| | | | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16145 Genoa, Italy; Pediatric Neurology and Neuromuscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Michele Iacomino
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea; Department of Genomic Medicine, Rare Disease Center, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - SeSong Jang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
| | - Soo Y Kim
- Department of Genomic Medicine, Rare Disease Center, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto ON M5G 1E2 Toronto, Canada; Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for SickKids, University of Toronto, M5G 1X8 Toronto, Canada
| | - Saadet Mercimek-Andrews
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for SickKids, University of Toronto, M5G 1X8 Toronto, Canada; Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, AB T6G 2H7 Edmonton, Canada
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Antje Kampmeier
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Harald Surowy
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | | | | | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Lucas Gauthier
- Department of Molecular Genetics and Cytogenomics, Rare and Autoinflammatory Diseases Unit, University Hospital of Montpellier, 34295 Montpellier, France
| | - David Genevieve
- Montpellier University, Inserm U1183, Montpellier, France; Department of Clinical Genetics, University Hospital of Montpellier, 34295 Montpellier, France
| | - Mylène Tharreau
- Department of Molecular Genetics and Cytogenomics, Rare and Autoinflammatory Diseases Unit, University Hospital of Montpellier, 34295 Montpellier, France
| | - Noy Azoulay
- The Genetic Institute of Maccabi Health Services, Rehovot 7610000, Israel; Raphael Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 49100, Israel
| | - Gal Zaks-Hoffer
- Raphael Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 49100, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nesia K Gilad
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikvah 4920235, Israel
| | - Naama Orenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikvah 4920235, Israel
| | - Geneviève Bernard
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre, QC H4A 3J1 Montreal, Canada; Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Isabelle Thiffault
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA; UKMC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Robert Bähring
- Institute for Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Stefan Kindler
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
4
|
Holley JM, Stanbouly S, Pecaut MJ, Willey JS, Delp M, Mao XW. Characterization of gene expression profiles in the mouse brain after 35 days of spaceflight mission. NPJ Microgravity 2022; 8:35. [PMID: 35948598 PMCID: PMC9365836 DOI: 10.1038/s41526-022-00217-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
It has been proposed that neuroinflammatory response plays an important role in the neurovascular remodeling in the brain after stress. The goal of the present study was to characterize changes in the gene expression profiles associated with neuroinflammation, neuronal function, metabolism and stress in mouse brain tissue. Ten-week old male C57BL/6 mice were launched to the International Space Station (ISS) on SpaceX-12 for a 35-day mission. Within 38 ± 4 h of splashdown, mice were returned to Earth alive. Brain tissues were collected for analysis. A novel digital color-coded barcode counting technology (NanoStringTM) was used to evaluate gene expression profiles in the spaceflight mouse brain. A set of 54 differently expressed genes (p < 0.05) significantly segregates the habitat ground control (GC) group from flight (FLT) group. Many pathways associated with cellular stress, inflammation, apoptosis, and metabolism were significantly altered by flight conditions. A decrease in the expression of genes important for oligodendrocyte differentiation and myelin sheath maintenance was observed. Moreover, mRNA expression of many genes related to anti-viral signaling, reactive oxygen species (ROS) generation, and bacterial immune response were significantly downregulated. Here we report that significantly altered immune reactions may be closely associated with spaceflight-induced stress responses and have an impact on the neuronal function.
Collapse
Affiliation(s)
- Jacob M Holley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University, School of Medicine, Winston-Salem, NC, 27101, USA
| | - Michael Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
5
|
Bi Q, Wang C, Cheng G, Chen N, Wei B, Liu X, Li L, Lu C, He J, Weng Y, Yin C, Lin Y, Wan S, Zhao L, Xu J, Wang Y, Gu Y, Shen XZ, Shi P. Microglia-derived PDGFB promotes neuronal potassium currents to suppress basal sympathetic tonicity and limit hypertension. Immunity 2022; 55:1466-1482.e9. [PMID: 35863346 DOI: 10.1016/j.immuni.2022.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
Although many studies have addressed the regulatory circuits affecting neuronal activities, local non-synaptic mechanisms that determine neuronal excitability remain unclear. Here, we found that microglia prevented overactivation of pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) at steady state. Microglia constitutively released platelet-derived growth factor (PDGF) B, which signaled via PDGFRα on neuronal cells and promoted their expression of Kv4.3, a key subunit that conducts potassium currents. Ablation of microglia, conditional deletion of microglial PDGFB, or suppression of neuronal PDGFRα expression in the PVN elevated the excitability of pre-sympathetic neurons and sympathetic outflow, resulting in a profound autonomic dysfunction. Disruption of the PDGFBMG-Kv4.3Neuron pathway predisposed mice to develop hypertension, whereas central supplementation of exogenous PDGFB suppressed pressor response when mice were under hypertensive insult. Our results point to a non-immune action of resident microglia in maintaining the balance of sympathetic outflow, which is important in preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Qianqian Bi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chao Wang
- Center of Stem Cell and Regenerative Medicine and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guo Cheng
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ningting Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Bo Wei
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoli Liu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Li Li
- Department of Pharmacy, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
| | - Cheng Lu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jian He
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuancheng Weng
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chunyou Yin
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yunfan Lin
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
| | - Shu Wan
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiaxi Xu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, China
| | - Yi Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiao Z Shen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Peng Shi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Li M, Liu F, Hao X, Fan Y, Li J, Hu Z, Shi J, Fan L, Zhang S, Ma D, Guo M, Xu Y, Shi C. Rare KCND3 Loss-of-Function Mutation Associated With the SCA19/22. Front Mol Neurosci 2022; 15:919199. [PMID: 35813061 PMCID: PMC9261871 DOI: 10.3389/fnmol.2022.919199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Spinocerebellar ataxia 19/22 (SCA19/22) is a rare neurodegenerative disorder caused by mutations of the KCND3 gene, which encodes the Kv4. 3 protein. Currently, only 22 KCND3 single-nucleotide mutation sites of SCA19/22 have been reported worldwide, and detailed pathogenesis remains unclear. In this study, Sanger sequencing was used to screen 115 probands of cerebellar ataxia families in 67 patients with sporadic cerebellar ataxia and 200 healthy people to identify KCND3 mutations. Mutant gene products showed pathogenicity damage, and the polarity was changed. Next, we established induced pluripotent stem cells (iPSCs) derived from SCA19/22 patients. Using a transcriptome sequencing technique, we found that protein processing in the endoplasmic reticulum was significantly enriched in SCA19/22-iPS-derived neurons and was closely related to endoplasmic reticulum stress (ERS) and apoptosis. In addition, Western blotting of the SCA19/22-iPS-derived neurons showed a reduction in Kv4.3; but, activation of transcription factor 4 (ATF4) and C/EBP homologous protein was increased. Therefore, the c.1130 C>T (p.T377M) mutation of the KCND3 gene may mediate misfold and aggregation of Kv4.3, which activates the ERS and further induces neuron apoptosis involved in SCA19/22.
Collapse
Affiliation(s)
- Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Jiadi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Jingjing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Cell Biology and Medical Genetics, Basic Medical College of Zhengzhou University, Zhengzhou, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mengnan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Cell Biology and Medical Genetics, Basic Medical College of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Changhe Shi
| |
Collapse
|
7
|
Wu Z, Cai Z, Shi H, Huang X, Cai M, Yuan K, Huang P, Shi G, Yan T, Li Z. Effective biomarkers and therapeutic targets of nerve-immunity interaction in the treatment of depression: an integrated investigation of the miRNA-mRNA regulatory networks. Aging (Albany NY) 2022; 14:3569-3596. [PMID: 35468096 PMCID: PMC9085226 DOI: 10.18632/aging.204030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/11/2022] [Indexed: 11/25/2022]
Abstract
Background: Major depressive disorder (MDD) is an emotional condition that interferes with sufferers’ work and daily life. Numerous studies have found that miRNAs play a significant role in the development of MDD and can be utilized as a biomarker for its diagnosis and therapy. However, there have been few studies on nerve-immunity interaction treatment for the brains of MMD patients. Methods: The work is performed on microarray data. We analyzed the differences of miRNAs (GSE58105, GSE81152, GSE152267, and GSE182194) and mRNA (GSE19738, GSE32280, GSE44593, GSE53987, and GSE98793) in MDD and healthy samples from GEO datasets. FunRich was used to predict the transcription factors and target genes of the miRNAs, and TF and GO enrichment analyses were performed. Then, by comparing the differential expression of the anticipated target genes and five mRNAs, intersecting mRNAs were discovered. The intersecting genes were submitted to GO and KEGG analyses to determine their functions. These intersecting potential genes and pathways that linked to MDD in neurological and immunological aspects have been identified for future investigation. Results: We discovered five hub genes: KCND2, MYT1L, GJA1, CHL1, and SNAP25, which were all up-regulated genes. However, in MMD, the equivalent miRNAs, hsa-miR-206 and hsa-miR-338-3p, were both down-regulated. These miRNAs can activate or inhibit the T cell receptor signal pathway, JAK-STAT and other signal pathways, govern immune-inflammatory response, neuronal remodeling, and mediate the onset and development of MMD Conclusions: The results of a thorough bioinformatics investigation of miRNAs and mRNAs in MDD showed that miR-338-3P and miR-206 might be effective biomarkers and possible therapeutic targets for the treatment of MDD via nerve-immunity interaction.
Collapse
Affiliation(s)
- Zixuan Wu
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Zhixiang Cai
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Hongshuo Shi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| | - Xuyan Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Minjie Cai
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China.,Shantou Health School, Shantou 515061, Guangdong Province, China
| | - Kai Yuan
- Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Peidong Huang
- Yunnan University of Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Guoqi Shi
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Tao Yan
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China.,Department of Cardiovascular Surgery, General Hospital of Southern Theater Command, PLA 510010, Guangdong Province, China
| | - Zhichao Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| |
Collapse
|
8
|
Zhang Y, Tachtsidis G, Schob C, Koko M, Hedrich UBS, Lerche H, Lemke JR, Haeringen A, Ruivenkamp C, Prescott T, Tveten K, Gerstner T, Pruniski B, DiTroia S, VanNoy GE, Rehm HL, McLaughlin H, Bolz HJ, Zechner U, Bryant E, McDonough T, Kindler S, Bähring R. KCND2 variants associated with global developmental delay differentially impair Kv4.2 channel gating. Hum Mol Genet 2021; 30:2300-2314. [PMID: 34245260 DOI: 10.1093/hmg/ddab192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
Here, we report on six unrelated individuals, all presenting with early-onset global developmental delay, associated with impaired motor, speech and cognitive development, partly with developmental epileptic encephalopathy and physical dysmorphisms. All individuals carry heterozygous missense variants of KCND2, which encodes the voltage-gated potassium (Kv) channel α-subunit Kv4.2. The amino acid substitutions associated with the variants, p.(Glu323Lys) (E323K), p.(Pro403Ala) (P403A), p.(Val404Leu) (V404L) and p.(Val404Met) (V404M), affect sites known to be critical for channel gating. To unravel their likely pathogenicity, recombinant mutant channels were studied in the absence and presence of auxiliary β-subunits under two-electrode voltage-clamp in Xenopus oocytes. All channel mutants exhibited slowed and incomplete macroscopic inactivation, and the P403A variant in addition slowed activation. Co-expression of KChIP2 or DPP6 augmented the functional expression of both wild-type and mutant channels, however, the auxiliary β-subunit-mediated gating modifications differed from wild-type and among mutants. To simulate the putative setting in the affected individuals, heteromeric Kv4.2 channels (wild-type + mutant) were studied as ternary complexes (containing both KChIP2 and DPP6). In the heteromeric ternary configuration, the E323K variant exhibited only marginal functional alterations compared to homomeric wild-type ternary, compatible with mild loss-of-function. By contrast, the P403A, V404L and V404M variants displayed strong gating impairment in the heteromeric ternary configuration, compatible with loss or gain-of-function. Our results support the etiological involvement of Kv4.2 channel gating impairment in early-onset monogenic global developmental delay. In addition, they suggest that gain-of-function mechanisms associated with a substitution of V404 increase epileptic seizure susceptibility.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Institute for Cellular and Integrative Physiology, Center for Experimental Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Southeast University, Nanjing, China
| | - Georgios Tachtsidis
- Institute for Cellular and Integrative Physiology, Center for Experimental Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Schob
- Institute for Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Johannes R Lemke
- University Center for Rare Diseases, Institute for Human Genetics, University Hospital, Leipzig, Germany
| | - Arie Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Thorsten Gerstner
- Department of Child Neurology and Rehabilitation and Department of Pediatrics, Hospital of Southern Norway, Arendal, Norway
| | - Brianna Pruniski
- Division of Genetics & Metabolism, Phoenix Children's Medical Group, Phoenix, AZ, USA
| | - Stephanie DiTroia
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grace E VanNoy
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Heidi L Rehm
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Hanno J Bolz
- Senckenberg Centre for Human Genetics, Frankfurt/Main, Germany.,Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Ulrich Zechner
- Senckenberg Centre for Human Genetics, Frankfurt/Main, Germany.,Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Emily Bryant
- Ann & Robert H Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg Scool of Medicine, Chicago, IL, USA
| | - Tiffani McDonough
- Ann & Robert H Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg Scool of Medicine, Chicago, IL, USA
| | - Stefan Kindler
- Institute for Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Bähring
- Institute for Cellular and Integrative Physiology, Center for Experimental Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Cercós P, Peraza DA, de Benito-Bueno A, Socuéllamos PG, Aziz-Nignan A, Arrechaga-Estévez D, Beato E, Peña-Acevedo E, Albert A, González-Vera JA, Rodríguez Y, Martín-Martínez M, Valenzuela C, Gutiérrez-Rodríguez M. Pharmacological Approaches for the Modulation of the Potassium Channel K V4.x and KChIPs. Int J Mol Sci 2021; 22:ijms22031419. [PMID: 33572566 PMCID: PMC7866805 DOI: 10.3390/ijms22031419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Ion channels are macromolecular complexes present in the plasma membrane and intracellular organelles of cells. Dysfunction of ion channels results in a group of disorders named channelopathies, which represent an extraordinary challenge for study and treatment. In this review, we will focus on voltage-gated potassium channels (KV), specifically on the KV4-family. The activation of these channels generates outward currents operating at subthreshold membrane potentials as recorded from myocardial cells (ITO, transient outward current) and from the somata of hippocampal neurons (ISA). In the heart, KV4 dysfunctions are related to Brugada syndrome, atrial fibrillation, hypertrophy, and heart failure. In hippocampus, KV4.x channelopathies are linked to schizophrenia, epilepsy, and Alzheimer's disease. KV4.x channels need to assemble with other accessory subunits (β) to fully reproduce the ITO and ISA currents. β Subunits affect channel gating and/or the traffic to the plasma membrane, and their dysfunctions may influence channel pharmacology. Among KV4 regulatory subunits, this review aims to analyze the KV4/KChIPs interaction and the effect of small molecule KChIP ligands in the A-type currents generated by the modulation of the KV4/KChIP channel complex. Knowledge gained from structural and functional studies using activators or inhibitors of the potassium current mediated by KV4/KChIPs will better help understand the underlying mechanism involving KV4-mediated-channelopathies, establishing the foundations for drug discovery, and hence their treatments.
Collapse
Affiliation(s)
- Pilar Cercós
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (P.C.); (M.M.-M.)
| | - Diego A. Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.A.P.); (A.d.B.-B.); (P.G.S.)
- Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angela de Benito-Bueno
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.A.P.); (A.d.B.-B.); (P.G.S.)
- Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula G. Socuéllamos
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.A.P.); (A.d.B.-B.); (P.G.S.)
- Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Abdoul Aziz-Nignan
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | - Dariel Arrechaga-Estévez
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | - Escarle Beato
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | - Emilio Peña-Acevedo
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | - Armando Albert
- Instituto de Química Física Rocasolano (IQFR-CSIC), 28006 Madrid, Spain;
| | - Juan A. González-Vera
- Departamento de Físicoquímica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain;
| | - Yoel Rodríguez
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | | | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.A.P.); (A.d.B.-B.); (P.G.S.)
- Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; (C.V.); (M.G.-R.); Tel.: +34-91-585-4493 (C.V.); +34-91-258-7493 (M.-G.R.)
| | - Marta Gutiérrez-Rodríguez
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (P.C.); (M.M.-M.)
- Correspondence: ; (C.V.); (M.G.-R.); Tel.: +34-91-585-4493 (C.V.); +34-91-258-7493 (M.-G.R.)
| |
Collapse
|
10
|
Kessi M, Chen B, Peng J, Tang Y, Olatoutou E, He F, Yang L, Yin F. Intellectual Disability and Potassium Channelopathies: A Systematic Review. Front Genet 2020; 11:614. [PMID: 32655623 PMCID: PMC7324798 DOI: 10.3389/fgene.2020.00614] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023] Open
Abstract
Intellectual disability (ID) manifests prior to adulthood as severe limitations to intellectual function and adaptive behavior. The role of potassium channelopathies in ID is poorly understood. Therefore, we aimed to evaluate the relationship between ID and potassium channelopathies. We hypothesized that potassium channelopathies are strongly associated with ID initiation, and that both gain- and loss-of-function mutations lead to ID. This systematic review explores the burden of potassium channelopathies, possible mechanisms, advancements using animal models, therapies, and existing gaps. The literature search encompassed both PubMed and Embase up to October 2019. A total of 75 articles describing 338 cases were included in this review. Nineteen channelopathies were identified, affecting the following genes: KCNMA1, KCNN3, KCNT1, KCNT2, KCNJ10, KCNJ6, KCNJ11, KCNA2, KCNA4, KCND3, KCNH1, KCNQ2, KCNAB1, KCNQ3, KCNQ5, KCNC1, KCNB1, KCNC3, and KCTD3. Twelve of these genes presented both gain- and loss-of-function properties, three displayed gain-of-function only, three exhibited loss-of-function only, and one had unknown function. How gain- and loss-of-function mutations can both lead to ID remains largely unknown. We identified only a few animal studies that focused on the mechanisms of ID in relation to potassium channelopathies and some of the few available therapeutic options (channel openers or blockers) appear to offer limited efficacy. In conclusion, potassium channelopathies contribute to the initiation of ID in several instances and this review provides a comprehensive overview of which molecular players are involved in some of the most prominent disease phenotypes.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China.,Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yulin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Eleonore Olatoutou
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
11
|
Hsiao CT, Fu SJ, Liu YT, Lu YH, Zhong CY, Tang CY, Soong BW, Jeng CJ. Novel SCA19/22-associated KCND3 mutations disrupt human K V 4.3 protein biosynthesis and channel gating. Hum Mutat 2019; 40:2088-2107. [PMID: 31293010 DOI: 10.1002/humu.23865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 11/07/2022]
Abstract
Mutations in the human voltage-gated K+ channel subunit KV 4.3-encoding KCND3 gene have been associated with the autosomal dominant neurodegenerative disorder spinocerebellar ataxia types 19 and 22 (SCA19/22). The precise pathophysiology underlying the dominant inheritance pattern of SCA19/22 remains elusive. Using cerebellar ataxia-specific targeted next-generation sequencing technology, we identified two novel KCND3 mutations, c.950 G>A (p.C317Y) and c.1123 C>T (p.P375S) from a cohort with inherited cerebellar ataxias in Taiwan. The patients manifested notable phenotypic heterogeneity that includes cognitive impairment. We employed in vitro heterologous expression systems to inspect the biophysical and biochemical properties of human KV 4.3 harboring the two novel mutations, as well as two previously reported but uncharacterized disease-related mutations, c.1013 T>A (p.V338E) and c.1130 C>T (p.T377M). Electrophysiological analyses revealed that all of these SCA19/22-associated KV 4.3 mutant channels manifested loss-of-function phenotypes. Protein chemistry and immunofluorescence analyses further demonstrated that these mutants displayed enhanced protein degradation and defective membrane trafficking. By coexpressing KV 4.3 wild-type with the disease-related mutants, we provided direct evidence showing that the mutants instigated anomalous protein biosynthesis and channel gating of KV 4.3. We propose that the dominant inheritance pattern of SCA19/22 may be explained by the dominant-negative effects of the mutants on protein biosynthesis and voltage-dependent gating of KV 4.3 wild-type channel.
Collapse
Affiliation(s)
- Cheng-Tsung Hsiao
- Department of Internal Medicine, Taipei Veterans General Hospital Taoyuan Branch, Taoyuan, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ssu-Ju Fu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yo-Tsen Liu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Hsiang Lu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ciao-Yu Zhong
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yung Tang
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bing-Wen Soong
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
12
|
Novel De Novo KCND3 Mutation in a Japanese Patient with Intellectual Disability, Cerebellar Ataxia, Myoclonus, and Dystonia. THE CEREBELLUM 2019; 17:237-242. [PMID: 28895081 DOI: 10.1007/s12311-017-0883-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spinocerebellar ataxia 19/22 (SCA19/22) is a rare type of autosomal dominant SCA that was previously described in 11 families. We report the case of a 30-year-old Japanese man presenting with intellectual disability, early onset cerebellar ataxia, myoclonus, and dystonia without a family history. MRI showed cerebellar atrophy, and electroencephalograms showed paroxysmal sharp waves during hyperventilation and photic stimulation. Trio whole-exome sequencing analysis of DNA samples from the patient and his parents revealed a de novo novel missense mutation (c.1150G>A, p.G384S) in KCND3, the causative gene of SCA19/22, substituting for evolutionally conserved glycine. The mutation was predicted to be functionally deleterious by bioinformatic analysis. Although pure cerebellar ataxia is the most common clinical feature in SCA19/22 families, extracerebellar symptoms including intellectual disability and myoclonus are reported in a limited number of families, suggesting a genotype-phenotype correlation for particular mutations. Although autosomal recessive diseases are more common in patients with early onset sporadic cerebellar ataxia, the present study emphasizes that such a possibility of de novo mutation should be considered.
Collapse
|
13
|
Abstract
Spinocerebellar ataxia type 19 (SCA19), allelic with spinocerebellar ataxia type 22 (SCA22), is a rare syndrome caused by mutations in the KCND3 gene which encodes the potassium channel Kv4.3. Only 18 SCA19/22 families and sporadic cases of different ethnic backgrounds have been previously reported. As in other SCAs, the SCA19/22 phenotype is variable and usually consists of adult-onset slowly progressive ataxia and cognitive impairment; myoclonus and seizures; mild Parkinsonism occurs in some cases. Here we describe a Swedish SCA19/22 family spanning five generations and harboring the T377M mutation in KCND3. For the first time for this disease, 18F-fluorodeoxyglucose PET was assessed revealing widespread brain hypometabolism. In addition, we identified white matter abnormalities and found unusual features for SCA19/22 including early age of onset and fast rate of progression in the late course of disease in the oldest patient of this family.
Collapse
|
14
|
Miao P, Feng J, Guo Y, Wang J, Xu X, Wang Y, Li Y, Gao L, Zheng C, Cheng H. Genotype and phenotype analysis using an epilepsy‐associated gene panel in Chinese pediatric epilepsy patients. Clin Genet 2018; 94:512-520. [PMID: 30182498 DOI: 10.1111/cge.13441] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Pu Miao
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Jianhua Feng
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Yufan Guo
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Jianda Wang
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Xiaoxiao Xu
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Ye Wang
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Yanfang Li
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Liuyan Gao
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Chaoguang Zheng
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Haiying Cheng
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
15
|
Bae H, Choi J, Kim YW, Lee D, Kim JH, Ko JH, Bang H, Kim T, Lim I. Effects of Nitric Oxide on Voltage-Gated K⁺ Currents in Human Cardiac Fibroblasts through the Protein Kinase G and Protein Kinase A Pathways but Not through S-Nitrosylation. Int J Mol Sci 2018. [PMID: 29534509 PMCID: PMC5877675 DOI: 10.3390/ijms19030814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study investigated the expression of voltage-gated K+ (KV) channels in human cardiac fibroblasts (HCFs), and the effect of nitric oxide (NO) on the KV currents, and the underlying phosphorylation mechanisms. In reverse transcription polymerase chain reaction, two types of KV channels were detected in HCFs: delayed rectifier K+ channel and transient outward K+ channel. In whole-cell patch-clamp technique, delayed rectifier K+ current (IK) exhibited fast activation and slow inactivation, while transient outward K+ current (Ito) showed fast activation and inactivation kinetics. Both currents were blocked by 4-aminopyridine. An NO donor, S-nitroso-N-acetylpenicillamine (SNAP), increased the amplitude of IK in a concentration-dependent manner with an EC50 value of 26.4 µM, but did not affect Ito. The stimulating effect of SNAP on IK was blocked by pretreatment with 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or by KT5823. 8-bromo-cyclic GMP stimulated the IK. The stimulating effect of SNAP on IK was also blocked by pretreatment with KT5720 or by SQ22536. Forskolin and 8-bromo-cyclic AMP each stimulated IK. On the other hand, the stimulating effect of SNAP on IK was not blocked by pretreatment of N-ethylmaleimide or by DL-dithiothreitol. Our data suggest that NO enhances IK, but not Ito, among KV currents of HCFs, and the stimulating effect of NO on IK is through the PKG and PKA pathways, not through S-nitrosylation.
Collapse
Affiliation(s)
- Hyemi Bae
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Jeongyoon Choi
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Young-Won Kim
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Donghee Lee
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Jung-Ha Kim
- Department of Family Medicine, College of Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Seoul 06973, Korea.
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Taeho Kim
- Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Seoul 06973, Korea.
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| |
Collapse
|
16
|
Lainez S, Doray A, Hancox JC, Cannell MB. Regulation of Kv4.3 and hERG potassium channels by KChIP2 isoforms and DPP6 and response to the dual K + channel activator NS3623. Biochem Pharmacol 2018; 150:120-130. [PMID: 29378180 PMCID: PMC5906734 DOI: 10.1016/j.bcp.2018.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/22/2018] [Indexed: 12/14/2022]
Abstract
Transient outward potassium current (Ito) contributes to early repolarization of many mammalian cardiac action potentials, including human, whilst the rapid delayed rectifier K+ current (IKr) contributes to later repolarization. Fast Ito channels can be produced from the Shal family KCNDE gene product Kv4.3s, although accessory subunits including KChIP2.x and DPP6 are also needed to produce a near physiological Ito. In this study, the effect of KChIP2.1 & KChIP2.2 (also known as KChIP2b and KChIP2c respectively), alone or in conjunction with the accessory subunit DPP6, on both Kv4.3 and hERG were evaluated. A dual Ito and IKr activator, NS3623, has been recently proposed to be beneficial in heart failure and the action of NS3623 on the two channels was also investigated. Whole-cell patch-clamp experiments were performed at 33 ± 1 °C on HEK293 cells expressing Kv4.3 or hERG in the absence or presence of these accessory subunits. Kv4.3 current magnitude was augmented by co-expression with either KChIP2.2 or KChIP2.1 and KChIP2/DPP6 with KChIP2.1 producing a greater effect than KChIP2.2. Adding DPP6 removed the difference in Kv4.3 augmentation between KChIP2.1 and KChIP2.2. The inactivation rate and recovery from inactivation were also altered by KChIP2 isoform co-expression. In contrast, hERG (Kv11.1) current was not altered by co-expression with KChIP2.1, KChIP2.2 or DPP6. NS3623 increased Kv4.3 amplitude to a similar extent with and without accessory subunit co-expression, however KChIP2 isoforms modulated the compound’s effect on inactivation time course. The agonist effect of NS3623 on hERG channels was not affected by KChIP2.1, KChIP2.2 or DPP6 co-expression.
Collapse
Affiliation(s)
- Sergio Lainez
- School of Physiology, Pharmacology and Neuroscience, Faculty of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Adélaïde Doray
- School of Physiology, Pharmacology and Neuroscience, Faculty of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Faculty of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | - Mark B Cannell
- School of Physiology, Pharmacology and Neuroscience, Faculty of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
17
|
A nanobody-based tracer targeting DPP6 for non-invasive imaging of human pancreatic endocrine cells. Sci Rep 2017; 7:15130. [PMID: 29123178 PMCID: PMC5680294 DOI: 10.1038/s41598-017-15417-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023] Open
Abstract
There are presently no reliable ways to quantify endocrine cell mass (ECM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. To address this unmet need, we coupled RNA sequencing of human pancreatic islets to a systems biology approach to identify new biomarkers of the endocrine pancreas. Dipeptidyl-Peptidase 6 (DPP6) was identified as a target whose mRNA expression is at least 25-fold higher in human pancreatic islets as compared to surrounding tissues and is not changed by proinflammatory cytokines. At the protein level, DPP6 localizes only in beta and alpha cells within the pancreas. We next generated a high-affinity camelid single-domain antibody (nanobody) targeting human DPP6. The nanobody was radiolabelled and in vivo SPECT/CT imaging and biodistribution studies were performed in immunodeficient mice that were either transplanted with DPP6-expressing Kelly neuroblastoma cells or insulin-producing human EndoC-βH1 cells. The human DPP6-expressing cells were clearly visualized in both models. In conclusion, we have identified a novel beta and alpha cell biomarker and developed a tracer for in vivo imaging of human insulin secreting cells. This provides a useful tool to non-invasively follow up intramuscularly implanted insulin secreting cells.
Collapse
|
18
|
Groen C, Bähring R. Modulation of human Kv4.3/KChIP2 channel inactivation kinetics by cytoplasmic Ca 2. Pflugers Arch 2017; 469:1457-1470. [PMID: 28735419 DOI: 10.1007/s00424-017-2039-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
The transient outward current (I to) in the human heart is mediated by Kv4.3 channels complexed with Kv channel interacting protein (KChIP) 2, a cytoplasmic Ca2+-binding EF-hand protein known to modulate Kv4.3 inactivation gating upon heterologous co-expression. We studied Kv4.3 channels co-expressed with wild-type (wt) or EF-hand-mutated (ΔEF) KChIP2 in human embryonic kidney (HEK) 293 cells. Co-expression took place in the absence or presence of BAPTA-AM, and macroscopic currents were recorded in the whole-cell patch-clamp configuration with different free Ca2+ concentrations in the patch-pipette. Our data indicate that Ca2+ is not necessary for Kv4.3/KChIP2 complex formation. The Kv4.3/KChIP2-mediated current decay was faster and the recovery of Kv4.3/KChIP2 channels from inactivation slower with 50 μM Ca2+ than with BAPTA (nominal Ca2+-free) in the patch-pipette. The apparent Ca2+-mediated slowing of recovery kinetics was still observed when EF-hand 4 of KChIP2 was mutated (ΔEF4) but not when EF-hand 2 (ΔEF2) was mutated, and turned into a Ca2+-mediated acceleration of recovery kinetics when EF-hand 3 (ΔEF3) was mutated. In the presence of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 cytoplasmic Ca2+ (50 μM) induced an acceleration of Kv4.3/KChIP2 recovery kinetics, which was still observed when EF-hand 2 was mutated (ΔEF2) but not when EF-hand 3 (ΔEF3) or EF-hand 4 (ΔEF4) was mutated. Our results support the notion that binding of Ca2+ to KChIP2 EF-hands can acutely modulate Kv4.3/KChIP2 channel inactivation gating, but the Ca2+-dependent gating modulation depends on CaMKII action. Our findings speak for an acute modulation of I to kinetics and frequency-dependent I to availability in cardiomyocytes under conditions with elevated Ca2+ levels and CaMKII activity.
Collapse
Affiliation(s)
- Christiane Groen
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Robert Bähring
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
19
|
Robinson SD, Safavi-Hemami H. Venom peptides as pharmacological tools and therapeutics for diabetes. Neuropharmacology 2017; 127:79-86. [PMID: 28689026 DOI: 10.1016/j.neuropharm.2017.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/24/2017] [Accepted: 07/04/2017] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus is a chronic disease caused by a deficiency in production of insulin by the beta cells of the pancreas (type 1 diabetes, T1D), or by partial deficiency of insulin production and the ineffectiveness of the insulin produced (type 2 diabetes, T2D). Animal venoms are a unique source of compounds targeting ion channels and receptors in the nervous and cardiovascular systems. In recent years, several venom peptides have also emerged as pharmacological tools and therapeutics for T1D and T2D. Some of these peptides act directly as mimics of endogenous metabolic hormones while others act on ion channels expressed in pancreatic beta cells. Here, we provide an overview of the discovery of these venom peptides, their mechanisms of action in the context of diabetes, and their therapeutic potential for the treatment of this disease. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Samuel D Robinson
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
20
|
Waldschmidt L, Junkereit V, Bähring R. KChIP2 genotype dependence of transient outward current (Ito) properties in cardiomyocytes isolated from male and female mice. PLoS One 2017; 12:e0171213. [PMID: 28141821 PMCID: PMC5283746 DOI: 10.1371/journal.pone.0171213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/18/2017] [Indexed: 11/19/2022] Open
Abstract
The transient outward current (Ito) in cardiomyocytes is largely mediated by Kv4 channels associated with Kv Channel Interacting Protein 2 (KChIP2). A knockout model has documented the critical role of KChIP2 in Ito expression. The present study was conducted to characterize in both sexes the dependence of Ito properties, including current magnitude, inactivation kinetics, recovery from inactivation and voltage dependence of inactivation, on the number of functional KChIP2 alleles. For this purpose we performed whole-cell patch-clamp experiments on isolated left ventricular cardiomyocytes from male and female mice which had different KChIP2 genotypes; i.e., wild-type (KChIP2+/+), heterozygous knockout (KChIP2+/-) or complete knockout of KChIP2 (KChIP2-/-). We found in both sexes a KChIP2 gene dosage effect (i.e., a proportionality between number of alleles and phenotype) on Ito magnitude, however, concerning other Ito properties, KChIP2+/- resembled KChIP2+/+. Only in the total absence of KChIP2 (KChIP2-/-) we observed a slowing of Ito kinetics, a slowing of recovery from inactivation and a negative shift of a portion of the voltage dependence of inactivation. In a minor fraction of KChIP2-/- myocytes Ito was completely lost. The distinct KChIP2 genotype dependences of Ito magnitude and inactivation kinetics, respectively, seen in cardiomyocytes were reproduced with two-electrode voltage-clamp experiments on Xenopus oocytes expressing Kv4.2 and different amounts of KChIP2. Our results corroborate the critical role of KChIP2 in controlling Ito properties. They demonstrate that the Kv4.2/KChIP2 interaction in cardiomyocytes is highly dynamic, with a clear KChIP2 gene dosage effect on Kv4 channel surface expression but not on inactivation gating.
Collapse
Affiliation(s)
- Lara Waldschmidt
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Vera Junkereit
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Bähring
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
21
|
McKinnon D, Rosati B. Transmural gradients in ion channel and auxiliary subunit expression. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:165-186. [PMID: 27702655 DOI: 10.1016/j.pbiomolbio.2016.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Evolution has acted to shape the action potential in different regions of the heart in order to produce a maximally stable and efficient pump. This has been achieved by creating regional differences in ion channel expression levels within the heart as well as differences between equivalent cardiac tissues in different species. These region- and species-dependent differences in channel expression are established by regulatory evolution, evolution of the regulatory mechanisms that control channel expression levels. Ion channel auxiliary subunits are obvious targets for regulatory evolution, in order to change channel expression levels and/or modify channel function. This review focuses on the transmural gradients of ion channel expression in the heart and the role that regulation of auxiliary subunit expression plays in generating and shaping these gradients.
Collapse
Affiliation(s)
- David McKinnon
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Barbara Rosati
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
22
|
Wu B, Zhu Y, Shi J, Tao J, Ji Y. BmP02 Atypically Delays Kv4.2 Inactivation: Implication for a Unique Interaction between Scorpion Toxin and Potassium Channel. Toxins (Basel) 2016; 8:toxins8100280. [PMID: 27690098 PMCID: PMC5086640 DOI: 10.3390/toxins8100280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/20/2016] [Indexed: 01/22/2023] Open
Abstract
BmP02, a short-chain peptide with 28 residues from the venom of Chinese scorpion Buthus martensi Karsch, has been reported to inhibit the transient outward potassium currents (Ito) in rat ventricular muscle cells. However, it remains unclear whether BmP02 modulates the Kv4.2 channel, one of the main contributors to Ito. The present study investigated the effects of BmP02 on Kv4.2 kinetics and its underlying molecular mechanism. The electrophysiological recordings showed that the inactivation of Kv4.2 expressed in HEK293T cells was significantly delayed by BmP02 in a dose-response manner with EC50 of ~850 nM while the peak current, activation and voltage-dependent inactivation of Kv4.2 were not affected. Meanwhile, the recovery from inactivation of Kv4.2 was accelerated and the deactivation was slowed after the application of BmP02. The site-directed mutagenesis combined with computational modelling identified that K347 and K353, located in the turret motif of the Kv4.2, and E4/E5, D20/D21 in BmP02 are key residues to interact with BmP02 through electrostatic force. These findings not only reveal a novel interaction between Kv4.2 channel and its peptidyl modulator, but also provide valuable information for design of highly-selective Kv4.2 modulators.
Collapse
Affiliation(s)
- Bin Wu
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200444, China.
| | - Yan Zhu
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200444, China.
| | - Jian Shi
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200444, China.
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - Jie Tao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi road, Shanghai 200062, China.
| | - Yonghua Ji
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200444, China.
| |
Collapse
|
23
|
Abstract
Approximately 80 genes in the human genome code for pore-forming subunits of potassium (K(+)) channels. Rare variants (mutations) in K(+) channel-encoding genes may cause heritable arrhythmia syndromes. Not all rare variants in K(+) channel-encoding genes are necessarily disease-causing mutations. Common variants in K(+) channel-encoding genes are increasingly recognized as modifiers of phenotype in heritable arrhythmia syndromes and in the general population. Although difficult, distinguishing pathogenic variants from benign variants is of utmost importance to avoid false designations of genetic variants as disease-causing mutations.
Collapse
Affiliation(s)
- Ahmad S Amin
- Department of Clinical and Experimental Cardiology, Heart Centre, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Heart Centre, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands; King Abdulaziz University, Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, PO Box 80200, Jeddah 21589, Kingdom of Saudi Arabia.
| |
Collapse
|
24
|
Zhang J, Wang G, Feng J, Zhang L, Li J. Identifying ion channel genes related to cardiomyopathy using a novel decision forest strategy. MOLECULAR BIOSYSTEMS 2015; 10:2407-14. [PMID: 24977958 DOI: 10.1039/c4mb00193a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ion channels play many crucial functions in life. Their dysfunction may lead to a number of diseases, such as arrhythmia and beta cell dysfunction. In this study, we firstly selected the ion channel gene expression profiles using a dimensionality reduction method. After that, we applied a novel decision forest strategy to mine cardiomyopathy related ion channel genes. The novel proposed Zi integrated the information of the decision trees' height and the frequency at which a gene was located in the tree. It achieved a much higher ability of feature selection. In the result, 26 cardiomyopathy related ion channel genes were identified. Their Zi were higher than the threshold Z*. Furthermore, most of these genes had been reported to have relationships with cardiomyopathies. In conclusion, our proposed decision forest strategy had a better classification performance. Our result can provide a theoretical basis for cardiovascular researchers.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Prevention, Tongji University School of Medicine, Shanghai, China.
| | | | | | | | | |
Collapse
|
25
|
Venglovecz V, Rakonczay Z, Gray MA, Hegyi P. Potassium channels in pancreatic duct epithelial cells: their role, function and pathophysiological relevance. Pflugers Arch 2015; 467:625-640. [PMID: 25074489 DOI: 10.1007/s00424-014-1585-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/09/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal epithelial cells play a fundamental role in HCO3 (-) secretion, a process which is essential for maintaining the integrity of the pancreas. Although several studies have implicated impaired HCO3 (-) and fluid secretion as a triggering factor in the development of pancreatitis, the mechanism and regulation of HCO3 (-) secretion is still not completely understood. To date, most studies on the ion transporters that orchestrate ductal HCO3 (-) secretion have focussed on the role of Cl(-)/HCO3 (-) exchangers and Cl(-) channels, whereas much less is known about the role of K(+) channels. However, there is growing evidence that many types of K(+) channels are present in ductal cells where they have an essential role in establishing and maintaining the electrochemical driving force for anion secretion. For this reason, strategies that increase K(+) channel function may help to restore impaired HCO3 (-) and fluid secretion, such as in pancreatitis, and therefore provide novel directions for future pancreatic therapy. In this review, our aims are to summarize the types of K(+) channels found in pancreatic ductal cells and to discuss their individual roles in ductal HCO3 (-) secretion. We will also describe how K(+) channels are involved in pathophysiological conditions and discuss how they could act as new molecular targets for the development of therapeutic approaches to treat pancreatic diseases.
Collapse
Affiliation(s)
- Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary,
| | | | | | | |
Collapse
|
26
|
Manteniotis S, Lehmann R, Flegel C, Vogel F, Hofreuter A, Schreiner BSP, Altmüller J, Becker C, Schöbel N, Hatt H, Gisselmann G. Comprehensive RNA-Seq expression analysis of sensory ganglia with a focus on ion channels and GPCRs in Trigeminal ganglia. PLoS One 2013; 8:e79523. [PMID: 24260241 PMCID: PMC3832644 DOI: 10.1371/journal.pone.0079523] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/02/2013] [Indexed: 12/14/2022] Open
Abstract
The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain.
Collapse
|
27
|
Abstract
Venomous animals use a highly complex cocktails of proteins, peptides and small molecules to subdue and kill their prey. As such, venoms represent highly valuable combinatorial peptide libraries, displaying an extensive range of pharmacological activities, honed by natural selection. Modern analytical technologies enable us to take full advantage of this vast pharmacological cornucopia in the hunt for novel drug leads. Spider venoms represent a resource of several million peptides, which selectively target specific subtypes of ion channels. Structure-function studies of spider toxins are leading not only to the discovery of novel molecules, but also to novel therapeutic routes for cardiovascular diseases, cancer, neuromuscular diseases, pain and to a variety of other pathological conditions. This review presents an overview of spider peptide toxins as candidates for therapeutics and focuses on their applications in the discovery of novel mechanisms of analgesia.
Collapse
Affiliation(s)
- Pierre Escoubas
- University of Nice - Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC) - CNRS UMR6097, 660 Route des Lucioles, 06560 Valbonne, France +33 04 93 95 77 35 ; +33 04 93 95 77 08 ;
| | | |
Collapse
|
28
|
Lee YC, Durr A, Majczenko K, Huang YH, Liu YC, Lien CC, Tsai PC, Ichikawa Y, Goto J, Monin ML, Li JZ, Chung MY, Mundwiller E, Shakkottai V, Liu TT, Tesson C, Lu YC, Brice A, Tsuji S, Burmeister M, Stevanin G, Soong BW. Mutations in KCND3 cause spinocerebellar ataxia type 22. Ann Neurol 2013; 72:859-69. [PMID: 23280837 DOI: 10.1002/ana.23701] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To identify the causative gene in spinocerebellar ataxia (SCA) 22, an autosomal dominant cerebellar ataxia mapped to chromosome 1p21-q23. METHODS We previously characterized a large Chinese family with progressive ataxia designated SCA22, which overlaps with the locus of SCA19. The disease locus in a French family and an Ashkenazi Jewish American family was also mapped to this region. Members from all 3 families were enrolled. Whole exome sequencing was performed to identify candidate mutations, which were narrowed by linkage analysis and confirmed by Sanger sequencing and cosegregation analyses. Mutational analyses were also performed in 105 Chinese and 55 Japanese families with cerebellar ataxia. Mutant gene products were examined in a heterologous expression system to address the changes in protein localization and electrophysiological functions. RESULTS We identified heterozygous mutations in the voltage-gated potassium channel Kv4.3-encoding gene KCND3: an in-frame 3-nucleotide deletion c.679_681delTTC p.F227del in both the Chinese and French pedigrees, and a missense mutation c.1034G>T p.G345V in the Ashkenazi Jewish family. Direct sequencing of KCND3 further identified 3 mutations, c.1034G>T p.G345V, c.1013T>C p.V338E, and c.1130C>T p.T377M, in 3 Japanese kindreds. Immunofluorescence analyses revealed that the mutant p.F227del Kv4.3 subunits were retained in the cytoplasm, consistent with the lack of A-type K(+) channel conductance in whole cell patch-clamp recordings. INTERPRETATION Our data identify the cause of SCA19/22 in patients of diverse ethnic origins as mutations in KCND3. These findings further emphasize the important role of ion channels as key regulators of neuronal excitability in the pathogenesis of cerebellar degeneration.
Collapse
Affiliation(s)
- Yi-Chung Lee
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Connolly JJ, Glessner JT, Hakonarson H. A genome-wide association study of autism incorporating autism diagnostic interview-revised, autism diagnostic observation schedule, and social responsiveness scale. Child Dev 2012; 84:17-33. [PMID: 22935194 DOI: 10.1111/j.1467-8624.2012.01838.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efforts to understand the causes of autism spectrum disorders (ASDs) have been hampered by genetic complexity and heterogeneity among individuals. One strategy for reducing complexity is to target endophenotypes, simpler biologically based measures that may involve fewer genes and constitute a more homogenous sample. A genome-wide association study of 2,165 participants (mean age = 8.95 years) examined associations between genomic loci and individual assessment items from the Autism Diagnostic Interview-Revised, Autism Diagnostic Observation Schedule, and Social Responsiveness Scale. Significant associations with a number of loci were identified, including KCND2 (overly serious facial expressions), NOS2A (loss of motor skills), and NELL1 (faints, fits, or blackouts). These findings may help prioritize directions for future genomic efforts.
Collapse
|
30
|
Witzel K, Fischer P, Bähring R. Hippocampal A-type current and Kv4.2 channel modulation by the sulfonylurea compound NS5806. Neuropharmacology 2012; 63:1389-403. [PMID: 22964468 DOI: 10.1016/j.neuropharm.2012.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/16/2012] [Accepted: 08/18/2012] [Indexed: 12/24/2022]
Abstract
We examined the effects of the sulfonylurea compound NS5806 on neuronal A-type channel function. Using whole-cell patch-clamp we studied the effects of NS5806 on the somatodendritic A-type current (I(SA)) in cultured hippocampal neurons and the currents mediated by Kv4.2 channels coexpressed with different auxiliary β-subunits, including both Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-related proteins (DPPs), in HEK 293 cells. The amplitude of the I(SA) component in hippocampal neurons was reduced in the presence of 20 μM NS5806. I(SA) decay kinetics were slowed and the recovery kinetics accelerated, but the voltage dependence of steady-state inactivation was shifted to more negative potentials by NS5806. The peak amplitudes of currents mediated by ternary Kv4.2 channel complexes, associated with DPP6-S (short splice-variant) and either KChIP2, KChIP3 or KChIP4, were potentiated and their macroscopic inactivation slowed by NS5806, whereas the currents mediated by binary Kv4.2 channels, associated only with DPP6-S, were suppressed, and the NS5806-mediated slowing of macroscopic inactivation was less pronounced. Neither potentiation nor suppression and no effect on current decay kinetics in the presence of NS5806 were observed for Kv4.2 channels associated with KChIP3 and the N-type inactivation-conferring DPP6a splice-variant. For all recombinant channel complexes, NS5806 slowed the recovery from inactivation and shifted the voltage dependence of steady-state inactivation to more negative potentials. Our results demonstrate the activity of NS5806 on native I(SA) and possible molecular correlates in the form of recombinant Kv4.2 channels complexed with different KChIPs and DPPs, and they shed some light on the mechanism of NS5806 action.
Collapse
Affiliation(s)
- Katrin Witzel
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | | | | |
Collapse
|
31
|
Mahida S, Lubitz SA, Rienstra M, Milan DJ, Ellinor PT. Monogenic atrial fibrillation as pathophysiological paradigms. Cardiovasc Res 2010; 89:692-700. [PMID: 21123219 DOI: 10.1093/cvr/cvq381] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac rhythm abnormality and represents a major burden, both to patients and to health-care systems. In recent years, increasing evidence from population-based studies has demonstrated that AF is a heritable condition. Although familial forms of AF have been recognized for many years, they represent a rare subtype of the arrhythmia. However, despite their limited prevalence, the identification of mutations in monogenic AF kindreds has provided valuable insights into the molecular pathways underlying the arrhythmia and a framework for investigating AF encountered in the general population. In contrast to these rare families, the typical forms of AF occurring in the community are likely to be multigenic and have significant environmental influences. Recently, genome-wide association studies have uncovered common sequence variants that confer increased susceptibility to the arrhythmia. In the future, the elucidation of the genetic substrate underlying both familial and more typical forms of AF will hopefully lead to the development of novel diagnostic tools as well as more targeted rhythm control strategies. In this article, we will focus on monogenic forms of AF and also provide an overview of case-control association studies for AF.
Collapse
Affiliation(s)
- Saagar Mahida
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | | | | |
Collapse
|
32
|
Arroyo A, Kim BS, Biehl A, Yeh J, Bett GCL. Expression of kv4.3 voltage-gated potassium channels in rat gonadotrophin-releasing hormone (GnRH) neurons during the estrous cycle. Reprod Sci 2010; 18:136-44. [PMID: 20861393 DOI: 10.1177/1933719110382306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Regular and timely electrical activity of gonadotrophin-releasing hormone (GnRH) neurons accompanies the pulsatile release of GnRH that plays a central role in regulating fertility. Although transient outward A-type currents (I(A)) have been electrophysiologically identified in GnRH neurons, the molecular identity of the channels that underlie these currents are unknown. Several families of voltage-gated potassium channels can underlie I(A). However, the biophysical properties of I(A) described in previous electrophysiological studies are strongly characteristic of members of the Kv4 family of voltage-gated channels. We, therefore, sought to determine the presence of Kv4 channels in GnRH neurons. We used reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis to determine whether Kv4 messenger RNA (mRNA) and protein are present in the rat medial preoptic area (MPOA) and median eminence (ME). We used double-label immunohistochemistry to determine whether Kv4 colocalized with GnRH cell bodies in the MPOA and GnRH axons in the ME. Kv4.3 channels co-localized with GnRH in the MPOA but not in the ME. Neither Kv4.2 nor Kv4.1 co-localized with GnRH in either the MPOA or the ME. The electrical activity of GnRH neurons changes dramatically during the estrous cycle. We, therefore, studied the change in Kv4.3 expression in GnRH neurons during the estrous cycle. In the estrus phase, 58.05% of GnRH neurons expressed Kv4.3 compared to 74.48% in diestrus-proestrus rats (P < .05). Our data suggest that Kv4.3 is the major molecular component of I(A) in GnRH neurons, and furthermore that the expression of Kv4.3 changes significantly during the rat estrous cycle.
Collapse
Affiliation(s)
- Armando Arroyo
- Department of Gynecology-Obstetrics, State University of New York, University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | | | | | | | | |
Collapse
|
33
|
Bokil NJ, Baisden JM, Radford DJ, Summers KM. Molecular genetics of long QT syndrome. Mol Genet Metab 2010; 101:1-8. [PMID: 20594883 DOI: 10.1016/j.ymgme.2010.05.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 12/19/2022]
Abstract
Long QT syndrome (LQTS) is a cardiac disorder associated with sudden death especially in young, seemingly healthy individuals. It is characterised by abnormalities of the heart beat detected as lengthening of the QT interval during cardiac repolarisation. The incidence of LQTS is given as 1 in 2000 but this may be an underestimation as many cases go undiagnosed, due to the rarity of the condition and the wide spectrum of symptoms. Presently 12 genes associated with LQTS have been identified with differing signs and symptoms, depending on the locus involved. The majority of cases have mutations in the KCNQ1 (LQT1), KCNH2 (LQT2) and SCN5A (LQT3) genes. Genetic testing is increasingly used when a clearly affected proband has been identified, to determine the nature of the mutation in that family. Unfortunately tests on probands may be uninformative, especially if the defect does not lie in the set of genes which are routinely tested. Novel mutations in these known LQTS genes and additional candidate genes are still being discovered. The functional implications of these novel mutations need to be assessed before they can be accepted as being responsible for LQTS. Known epigenetic modification affecting KCNQ1 gene expression may also be involved in phenotypic variability of LQTS. Genetic diagnosis of LQTS is thus challenging. However, where a disease associated mutation is identified, molecular diagnosis can be important in guiding therapy, in family testing and in determining the cause of sudden cardiac death. New developments in technology and understanding offer increasing hope to families with this condition.
Collapse
Affiliation(s)
- Nilesh J Bokil
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, QLD, Australia
| | | | | | | |
Collapse
|
34
|
Palo OM, Soronen P, Silander K, Varilo T, Tuononen K, Kieseppä T, Partonen T, Lönnqvist J, Paunio T, Peltonen L. Identification of susceptibility loci at 7q31 and 9p13 for bipolar disorder in an isolated population. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:723-35. [PMID: 19851985 DOI: 10.1002/ajmg.b.31039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We performed a linkage analysis on 23 Finnish families with bipolar disorder and originating from the North-Eastern region of Finland, using the Illumina Linkage Panel IV (6K) Array with an average intermarker spacing of 0.65 cM across the genome. We detected genome-wide significant evidence for linkage of mood disorder (bipolar disorder type I, II, or not otherwise specified, manic type of schizoaffective psychosis, cyclothymia, or recurrent depression) to chromosomes 7q31 (LOD = 3.20) and 9p13.1 (LOD = 4.02). Analyzing the best markers on the complete set of 179 Finnish bipolar families supported the findings on chromosome 9p13 (maximum LOD score of 3.02 at position 383 Mb, immediately upstream of the centromere). This region harbors several interesting candidate genes, including contactin associated protein-like 3 (CNTNAP3) and aldehyde dehydrogenase 1 (ALDH1B1). For the 7q31 locus, only one extended pedigree and ten families originating from the same late settlement region in North-Eastern Finland provided evidence for linkage, suggesting that a gene predisposing to bipolar disorder is enriched in that region. Candidate genes of interest in this locus include potassium-voltage-gated channel, member 2 (KCND2) and calcium-dependent activator protein for secretion 2 (CADPS2). The loci on the centromeric region of 9p13 and the telomeric region of 7q31 may represent susceptibility loci for mood disorder in the Finnish population.
Collapse
Affiliation(s)
- Outi M Palo
- FIMM, Institute for Molecular Medicine and National Institute for Health and Welfare, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Itri JN, Vosko AM, Schroeder A, Dragich JM, Michel S, Colwell CS. Circadian regulation of a-type potassium currents in the suprachiasmatic nucleus. J Neurophysiol 2009; 103:632-40. [PMID: 19939959 DOI: 10.1152/jn.00670.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In mammals, the precise circadian timing of many biological processes depends on the generation of oscillations in neural activity of pacemaker cells in the suprachiasmatic nucleus (SCN) of the hypothalamus. Understanding the ionic mechanisms underlying these rhythms is an important goal of research in chronobiology. Previous work has shown that SCN neurons express A-type potassium currents (IAs), but little is known about the properties of this current in the SCN. We sought to characterize some of these properties, including the identities of IA channel subunits found in the SCN and the circadian regulation of IA itself. In this study, we were able to detect significant hybridization for Shal-related family members 1 and 2 (Kv4.1 and 4.2) within the SCN. In addition, we used Western blot to show that the Kv4.1 and 4.2 proteins are expressed in SCN tissue. We further show that the magnitude of the IA current exhibits a diurnal rhythm that peaks during the day in the dorsal region of the mouse SCN. This rhythm seems to be driven by a subset of SCN neurons with a larger peak current and a longer decay constant. Importantly, this rhythm in neurons in the dorsal SCN continues in constant darkness, providing an important demonstration of the circadian regulation of an intrinsic voltage-gated current in mammalian cells. We conclude that the anatomical expression, biophysical properties, and pharmacological profiles measured are all consistent with the SCN IA current being generated by Kv4 channels. Additionally, these data suggest a role for IA in the regulation of spontaneous action potential firing during the transitions between day/night and in the integration of synaptic inputs to SCN neurons throughout the daily cycle.
Collapse
Affiliation(s)
- Jason N Itri
- Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, Los Angeles, CA 90024-1759, USA
| | | | | | | | | | | |
Collapse
|
36
|
Diao F, Waro G, Tsunoda S. Fast inactivation of Shal (K(v)4) K+ channels is regulated by the novel interactor SKIP3 in Drosophila neurons. Mol Cell Neurosci 2009; 42:33-44. [PMID: 19463952 PMCID: PMC2730949 DOI: 10.1016/j.mcn.2009.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 01/09/2023] Open
Abstract
Shal K+ (K(v)4) channels across species carry the major A-type K+ current present in neurons. Shal currents are activated by small EPSPs and modulate post-synaptic potentials, backpropagation of action potentials, and induction of LTP. Fast inactivation of Shal channels regulates the impact of this post-synaptic modulation. Here, we introduce SKIP3, as the first protein interactor of Drosophila Shal K+ channels. The SKIP gene encodes three isoforms with multiple protein-protein interaction domains. SKIP3 is nervous system specific and co-localizes with Shal channels in neuronal cell bodies, and in puncta along processes. Using a genetic deficiency of SKIP, we show that the proportion of neurons displaying a very fast inactivation, consistent with Shal channels exclusively in a "fast" gating mode, is increased in the absence of SKIP3. As a scaffold-like protein, SKIP3 is likely to lead to the identification of a novel regulatory complex that modulates Shal channel inactivation.
Collapse
Affiliation(s)
- Fengqiu Diao
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | |
Collapse
|
37
|
A VAMP7/Vti1a SNARE complex distinguishes a non-conventional traffic route to the cell surface used by KChIP1 and Kv4 potassium channels. Biochem J 2009; 418:529-40. [PMID: 19138172 PMCID: PMC2650881 DOI: 10.1042/bj20081736] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The KChIPs (K(+) channel-interacting proteins) are EF hand-containing proteins required for the traffic of channel-forming Kv4 K(+) subunits to the plasma membrane. KChIP1 is targeted, through N-terminal myristoylation, to intracellular vesicles that appear to be trafficking intermediates from the ER (endoplasmic reticulum) to the Golgi but differ from those underlying conventional ER-Golgi traffic. To define KChIP1 vesicles and the traffic pathway followed by Kv4/KChIP1 traffic, we examined their relationship to potential SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins mediating the trafficking step. To distinguish Kv4/KChIP1 from conventional constitutive traffic, we compared it to the traffic of the VSVG (vesicular-stomatitis virus G-protein). Expression of KChIP with single or triple EF hand mutations quantitatively inhibited Kv4/KChIP1 traffic to the cell surface but had no effect on VSVG traffic. KChIP1-expressing vesicles co-localized with the SNARE proteins Vti1a and VAMP7 (vesicle-associated membrane protein 7), but not with the components of two other ER-Golgi SNARE complexes. siRNA (small interfering RNA)-mediated knockdown of Vti1a or VAMP7 inhibited Kv4/KChIP1traffic to the plasma membrane in HeLa and Neuro2A cells. Vti1a and VAMP7 siRNA had no effect on VSVG traffic or that of Kv4.2 when stimulated by KChIP2, a KChIP with different intrinsic membrane targeting compared with KChIP1. The present results suggest that a SNARE complex containing VAMP7 and Vti1a defines a novel traffic pathway to the cell surface in both neuronal and non-neuronal cells.
Collapse
|
38
|
Abstract
Transient outward K+ currents are particularly important for the regulation of membrane excitability of neurons and repolarization of action potentials in cardiac myocytes. These currents are modulated by PKC (protein kinase C) activation, and the K+- channel subunit Kv4.2 is a major contributor to these currents. Furthermore, the current recorded from Kv4.2 channels expressed in oocytes is reduced by PKC activation. The mechanism underlying PKC regulation of Kv4.2 currents is unknown. In the present study, we determined that PKC directly phosphorylates the Kv4.2 channel protein. In vitro phosphorylation of the intracellular N- and C-termini of Kv4.2 GST (glutathione transferase) tagged fusion protein revealed that the C-terminal of Kv4.2 was phosphorylated by PKC, whereas the N-terminal was not. Amino acid mapping and site-directed mutagenesis revealed that the phosphorylated residues on the Kv4.2 C-terminal were Ser447 and Ser537. A phospho-site-specific antibody showed that phosphorylation at the Ser537 site was increased in the hippocampus in response to PKC activation. Surface biotinylation experiments revealed that mutation to alanine of both Ser447 and Ser537 in order to block phosphorylation at both of the PKC sites increased surface expression compared with wild-type Kv4.2. Electrophysiological recordings of the wild-type and both the alanine and aspartate mutant Kv4.2 channels expressed with KChIP3 (Kv4 channel-interacting protein 3) revealed no significant difference in the half-activation or half-inactivation voltage of the channel. Interestingly, Ser537 lies within a possible ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) recognition (docking) domain in the Kv4.2 C-terminal sequence. We found that phosphorylation of Kv4.2 by PKC enhanced ERK phosphorylation of the channel in vitro. These findings suggest the possibility that Kv4.2 is a locus for PKC and ERK cross-talk.
Collapse
|
39
|
Heitzmann D, Warth R. Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol Rev 2008; 88:1119-82. [PMID: 18626068 DOI: 10.1152/physrev.00020.2007] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epithelial cells of the gastrointestinal tract are an important barrier between the "milieu interne" and the luminal content of the gut. They perform transport of nutrients, salts, and water, which is essential for the maintenance of body homeostasis. In these epithelia, a variety of K(+) channels are expressed, allowing adaptation to different needs. This review provides an overview of the current literature that has led to a better understanding of the multifaceted function of gastrointestinal K(+) channels, thereby shedding light on pathophysiological implications of impaired channel function. For instance, in gastric mucosa, K(+) channel function is a prerequisite for acid secretion of parietal cells. In epithelial cells of small intestine, K(+) channels provide the driving force for electrogenic transport processes across the plasma membrane, and they are involved in cell volume regulation. Fine tuning of salt and water transport and of K(+) homeostasis occurs in colonic epithelia cells, where K(+) channels are involved in secretory and reabsorptive processes. Furthermore, there is growing evidence for changes in epithelial K(+) channel expression during cell proliferation, differentiation, apoptosis, and, under pathological conditions, carcinogenesis. In the future, integrative approaches using functional and postgenomic/proteomic techniques will help us to gain comprehensive insights into the role of K(+) channels of the gastrointestinal tract.
Collapse
Affiliation(s)
- Dirk Heitzmann
- Institute of Physiology and Clinic and Policlinic for Internal Medicine II, Regensburg, Germany
| | | |
Collapse
|
40
|
Yuan C, Liao Z, Zeng X, Dai L, Kuang F, Liang S. Jingzhaotoxin-XII, a gating modifier specific for Kv4.1 channels. Toxicon 2007; 50:646-52. [PMID: 17631373 DOI: 10.1016/j.toxicon.2007.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/15/2007] [Accepted: 05/29/2007] [Indexed: 01/17/2023]
Abstract
Jingzhaotoxin-XII (JZTX-XII), a 29-residue polypeptide, was purified from the venom of the Chinese tarantula Chilobrachys jingzhao. Electrophysiological recordings carried out in Xenopus laevis oocytes showed that JZTX-XII is specific for Kv4.1 channels, with the IC50 value of 0.363 microM. It interacts with the channels by modifying the gating behavior. JZTX-XII shares 80% sequence identity with phrixotoxin1, a potent inhibitor for Kv4.2 and Kv4.3 channels. Structure analysis indicates that the difference of the charge distribution in the interactive surface perhaps influences the specific pharmacology of the toxins. JZTX-XII should be a valuable tool for the investigation of the Kv4.1 channels.
Collapse
Affiliation(s)
- Chunhua Yuan
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, Life Science College, Hunan Normal University, Changsha 410081, PR China
| | | | | | | | | | | |
Collapse
|
41
|
Mulder J, Wernérus H, Shi TJ, Pontén F, Hober S, Uhlén M, Hökfelt T. Systematically generated antibodies against human gene products: High throughput screening on sections from the rat nervous system. Neuroscience 2007; 146:1689-703. [PMID: 17478047 DOI: 10.1016/j.neuroscience.2007.02.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 02/14/2007] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
Completion of the Human Genome Project and recent developments in proteomics make it possible to systematically generate affinity reagents to a large portion of the proteome. Recently an antibody-based human protein atlas covering many organs including four areas of the brain has been released (www.proteinatlas.org). Due to the heterogeneity, size, and availability of tissue a more thorough analysis of the human brain is associated with considerable difficulties. Here we applied 120 antibodies raised against 112 human gene products to the smaller rat brain, a rodent animal model, where a single section represents a 'superarray' including many brain areas, and consequently allowing analysis of a huge number of cell types and their neurochemicals. Immunoreactive structures were seen in the investigated brain tissue after incubation with 56 antibodies (46.6%), of which 25 (20.8%) showed a clearly discrete staining pattern that was limited to certain areas, or subsets of brain cells. Bioinformatics, pre-adsorption tests and Western blot analysis were applied to identify non-specific antibodies. Eleven antibodies, including such raised against four 'ambiguous' proteins, passed all validation criteria, and the expression pattern and subcellular distribution of these proteins were studied in detail. To further explore the potential of the systematically generated antibodies, all 11 antibodies that passed validation were used to analyze the spinal cord and lumbar dorsal root ganglia after unilateral transection of the sciatic nerve. Discrete staining patterns were observed for four of the proteins, and injury-induced regulation was found for one of them. In conclusion, the study presented here suggests that a significant portion (10%) of the antibodies generated to a human protein can be used to analyze orthologues present in the rodent brain and to produce a protein-based atlas of the rodent brain. It is hoped that this type of antibody-based, high throughput screening of brain tissue from various rodent disease models will provide new information on the brain chemical neuroanatomy and insights in processes underlying neurological pathologies.
Collapse
Affiliation(s)
- J Mulder
- Department of Neuroscience, Karolinska Institutet, Retzius v. 8, S171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
42
|
Schultz JH, Volk T, Bassalaý P, Hennings JC, Hübner CA, Ehmke H. Molecular and functional characterization of Kv4.2 and KChIP2 expressed in the porcine left ventricle. Pflugers Arch 2007; 454:195-207. [PMID: 17242957 DOI: 10.1007/s00424-006-0203-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 12/15/2006] [Indexed: 10/23/2022]
Abstract
Recent studies showed that the Ca(2+)-independent transient outward current (I (to)) is very small or even not detectable in the porcine left ventricle. We investigated whether an altered molecular expression or function of voltage-dependent potassium channels belonging to the Kv4 sub-family and their ancillary Ca(2+)-binding beta sub-unit KChIP2, which contribute to the major fraction of I (to )in other species, may underlie this lack of a significant I (to) in the porcine left ventricle. RT-PCR analysis with degenerate primers showed that both Kv4 mRNA and KChIP2 mRNA are expressed in porcine left ventricular tissue and in isolated ventricular myocytes. PCR cloning and sequence analysis predicted proteins with >98% identity to rat and human Kv4.2 and >99% identity to rat and human KChIP2. Heterologous expression of porcine Kv4.2 in Xenopus laevis oocytes gave rise to currents with characteristic properties of rat and human Kv4.2, and co-expression with its KChIP2 sub-unit increased current density (tenfold), slowed inactivation (twofold) and accelerated recovery from inactivation (tenfold). Kv4.2 immunohistochemistry in porcine left ventricular tissue revealed a predominant membrane-bound signal. Relative quantification of gene expression indicated that Kv4.2 and KChIP2 mRNA and protein are expressed at comparable ratios in porcine and rat left ventricular tissues, which displays a large I (to). Collectively, these data demonstrate that the lack of a significant I (to) in the porcine left ventricle does not result from dysfunctional or insufficiently expressed Kv4.2 and KChIP2 sub-units.
Collapse
Affiliation(s)
- Jobst-Hendrik Schultz
- Institut für Vegetative Physiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Takimoto K, Hayashi Y, Ren X, Yoshimura N. Species and tissue differences in the expression of DPPY splicing variants. Biochem Biophys Res Commun 2006; 348:1094-100. [PMID: 16899223 DOI: 10.1016/j.bbrc.2006.07.157] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Accepted: 07/26/2006] [Indexed: 11/29/2022]
Abstract
The non-functional dipeptidyl peptidase, DPPY (DPP10), regulates the expression and gating of K+ channels in Kv4 family by tightly binding to these pore-forming subunits. Neural tissue-specific expression of this and the related DPPX (DPP6) is thought to confer rapid inactivation and other unique properties of neuronal Kv4 channels. Here we report that DPPY mRNA is abundant in human adrenal gland, but very low in the corresponding rat tissue. Furthermore, multiple DPPY splicing variants with alternative first exons are significant in the brain, whereas the expression of DPPY gene in the adrenal gland and pancreas is predominantly initiated at the two latter sites. These splicing variants, as well as an N-terminal peptide-deleted DPPY, produce similar changes in Kv4.3 gating. Thus, transcription of DPPY gene is species- and tissue-specifically controlled.
Collapse
Affiliation(s)
- Koichi Takimoto
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
44
|
Ordög B, Brutyó E, Puskás LG, Papp JG, Varró A, Szabad J, Boldogkoi Z. Gene expression profiling of human cardiac potassium and sodium channels. Int J Cardiol 2006; 111:386-93. [PMID: 16257073 DOI: 10.1016/j.ijcard.2005.07.063] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 07/26/2005] [Accepted: 07/30/2005] [Indexed: 11/24/2022]
Abstract
BACKGROUND The native cardiac ion currents and the action potential itself are the results of the concerted action of several different ion channels. The electrophysiological properties of cardiac cells are determined by the composition of ion channels and by their absolute abundance and proportional ratio. METHODS Our aim in this study was to compare the gene expression level of a representative panel of cardiac ion channels with each other and to compare the same channels in the atrium and ventricle of the human heart using quantitative real-time PCR analysis. RESULTS We obtained a significant difference in the gene expression levels in 21 of 35 channels between atrium and ventricle of healthy human hearts. Further, we found that the expression levels of Kv1.5 and Kv2.1 transcripts in the ventricle were very high, and that mRNAs for Kv1.7 and Kv3.4 are highly abundant in both the atrium and ventricle, which might indicate a functional role of these ion channel subunits in the formation of action potential in the human ventricle and both in the atrium and ventricle, respectively. CONCLUSIONS This is the first report on the expression of several ion channel subunits, such as Kv1.7, Kv3.3 or Kv3.4 in human cardiomyocytes. The expression levels of these genes are comparable with that of well known ion channel subunits. Therefore, it is reasonable to assume, that these ion channel subunits may contribute to native currents in the human myocardium.
Collapse
Affiliation(s)
- Balázs Ordög
- Department of Biology, Faculty of Medicine, University of Szeged, Somogyi B. 4. H-6720, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
45
|
Salvador-Recatalà V, Gallin WJ, Abbruzzese J, Ruben PC, Spencer AN. A potassium channel (Kv4) cloned from the heart of the tunicate Ciona intestinalis and its modulation by a KChIP subunit. ACTA ACUST UNITED AC 2006; 209:731-47. [PMID: 16449567 DOI: 10.1242/jeb.02032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage-gated ion channels of the Kv4 subfamily produce A-type currents whose properties are tuned by accessory subunits termed KChIPs, which are a family of Ca2+ sensor proteins. By modifying expression levels and the intrinsic biophysical properties of Kv4 channels, KChIPs modulate the excitability properties of neurons and myocytes. We studied how a Kv4 channel from a tunicate, the first branching clade of the chordates, is modulated by endogenous KChIP subunits. BLAST searches in the genome of Ciona intestinalis identified a single Kv4 gene and a single KChIP gene, implying that the diversification of both genes occurred during early vertebrate evolution, since the corresponding mammalian gene families are formed by several paralogues. In this study we describe the cloning and characterization of a tunicate Kv4 channel, CionaKv4, and a tunicate KChIP subunit, CionaKChIP. We demonstrate that CionaKChIP strongly modulates CionaKv4 by producing larger currents that inactivate more slowly than in the absence of the KChIP subunit. Furthermore, CionaKChIP shifted the midpoints of activation and inactivation and slowed deactivation and recovery from inactivation of CionaKv4. Modulation by CionaKChIP requires the presence of the intact N terminus of CionaKv4 because, except for a minor effect on inactivation, CionaKChIP did not modulate CionaKv4 channels that lacked amino acids 2-32. In summary, our results suggest that modulation of Kv4 channels by KChIP subunits is an ancient mechanism for modulating electrical excitability.
Collapse
|
46
|
Kunz L, Rämsch R, Krieger A, Young KA, Dissen GA, Stouffer RL, Ojeda SR, Mayerhofer A. Voltage-dependent K+ channel acts as sex steroid sensor in endocrine cells of the human ovary. J Cell Physiol 2006; 206:167-74. [PMID: 15991246 DOI: 10.1002/jcp.20453] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molecular targets of rapid non-genomic steroid actions are not well known compared to those of the classical transcription pathway, but ion channels have recently been identified to be steroid-sensitive. Especially, in the ovary, the very organ producing high amounts of sex steroids, their rapid actions are not well examined. We now identified a yet unknown target for sex steroids, a voltage-dependent K+ channel (Kv4.2) that contributes to a transient outward K+ current (I(A)) in human granulosa cells (GCs). Sex steroid hormones at concentrations typical for the ovary (1 microM) blocked Kv4.2 thereby attenuating I(A) by about 25% within seconds. We also found both Kv4.2 (KCND2) mRNA and protein in endocrine cells of the human and rhesus macaque ovary, emphasizing the physiological relevance of this channel. Therefore, we propose a role as fast-responding steroid sensor for the Kv4.2 channel. The direct regulation of K+ channel activity by sex steroids might represent a yet unknown mechanism of rapid steroid action in close proximity to the site of steroid production in the primate ovary. Our data might also be important for Kv4 channels in the brain and the cardiovascular system where rapid steroid effects are discussed in the context of prevention of cell death.
Collapse
Affiliation(s)
- Lars Kunz
- Anatomical Institute, University of Munich, Biedersteiner Str. 29, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Uhlén M, Björling E, Agaton C, Szigyarto CAK, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergström K, Brumer H, Cerjan D, Ekström M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Björklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, Olsson I, Oster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson A, Sköllermo A, Steen J, Stenvall M, Sterky F, Strömberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Waldén A, Wan J, Wernérus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Pontén F. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 2005; 4:1920-32. [PMID: 16127175 DOI: 10.1074/mcp.m500279-mcp200] [Citation(s) in RCA: 1130] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibody-based proteomics provides a powerful approach for the functional study of the human proteome involving the systematic generation of protein-specific affinity reagents. We used this strategy to construct a comprehensive, antibody-based protein atlas for expression and localization profiles in 48 normal human tissues and 20 different cancers. Here we report a new publicly available database containing, in the first version, approximately 400,000 high resolution images corresponding to more than 700 antibodies toward human proteins. Each image has been annotated by a certified pathologist to provide a knowledge base for functional studies and to allow queries about protein profiles in normal and disease tissues. Our results suggest it should be possible to extend this analysis to the majority of all human proteins thus providing a valuable tool for medical and biological research.
Collapse
Affiliation(s)
- Mathias Uhlén
- Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zarayskiy VV, Balasubramanian G, Bondarenko VE, Morales MJ. Heteropoda toxin 2 is a gating modifier toxin specific for voltage-gated K+ channels of the Kv4 family. Toxicon 2005; 45:431-42. [PMID: 15733564 DOI: 10.1016/j.toxicon.2004.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 11/10/2004] [Accepted: 11/12/2004] [Indexed: 11/19/2022]
Abstract
Kv4 voltage-gated K(+) channels are responsible for transient K(+) currents in the central nervous system and in the heart. HpTx2 is a peptide toxin that selectively inhibits these currents; making it a useful probe for understanding Kv4 channel structure and drug binding. Therefore, we developed a method to produce large amounts of recombinant HpTx2. Recombinant toxin inhibits all three Kv4 isoforms to the same degree; however, the voltage-dependence of inhibition is less apparent for Kv4.1 than for Kv4.3. Similarly, recombinant HpTx2(GS) effects gating characteristics of both channels, but Kv4.1 to a much lesser degree. The toxin lacks affinity for Kv1.4, Kv2.1, and Kv3.4. To locate the binding site, the amino acids linking the third and forth membrane spanning segments of Kv4.3 were replaced with analogous amino acids of Kv1.4. The chimeric K(+) channel was completely insensitive to block by rHpTx2, suggesting that its binding site is near the channel's voltage sensor. These data show that rHpTx2(GS) is a gating modifier toxin that binds to a site remote from the pore.
Collapse
Affiliation(s)
- Vladislav V Zarayskiy
- Department of Physiology and Biophysics, University at Buffalo-SUNY, 124 Sherman Hall, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
49
|
Frank-Hansen R, Larsen LA, Andersen P, Jespersgaard C, Christiansen M. Mutations in the genes KCND2 and KCND3 encoding the ion channels Kv4.2 and Kv4.3, conducting the cardiac fast transient outward current (ITO,f), are not a frequent cause of long QT syndrome. Clin Chim Acta 2005; 351:95-100. [PMID: 15563876 DOI: 10.1016/j.cccn.2004.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 08/06/2004] [Accepted: 08/06/2004] [Indexed: 11/24/2022]
Abstract
BACKGROUND Long QT syndrome (LQTS) is a hereditary cardiac arrhythmogenic disorder characterized by prolongation of the QT interval in the electrocardiogram, torsades de pointes arrhythmia, and syncopes and sudden death. LQTS is caused by mutations in ion channel genes. However, only in half of the families is it possible to identify mutations in one of the seven known LQTS genes, why further genetic heterogeneity is expected. The genes KCND2 and KCND3, encoding the alpha-subunits of the voltage-gated potassium channels Kv4.2 and Kv4.3 conducting the fast transient outward current (I(TO,f)) of the cardiac action potential (AP) in the myocardium, have been associated with prolongation of AP duration and QT prolongation in murine models. METHODS KCND2 and KCND3 were examined for mutations using single-strand conformation polymorphism (SSCP) analysis in 43 unrelated LQTS patients, where mutations in the coding regions of known LQTS genes had been excluded. RESULTS Seven single nucleotide polymorphismsm (SNPs) were found, two exonic SNPs in KCND2 and three exonic and two intronic in KCND3. None of the five exonic SNPs had coding effect. All seven SNPs are considered normal variants. CONCLUSION The data suggest that mutations in KCND2 and KCND3 are not a frequent cause of long QT syndrome.
Collapse
Affiliation(s)
- Rune Frank-Hansen
- Department of Clinical Biochemistry, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
50
|
Jerng HH, Pfaffinger PJ, Covarrubias M. Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol Cell Neurosci 2005; 27:343-69. [PMID: 15555915 DOI: 10.1016/j.mcn.2004.06.011] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/22/2004] [Accepted: 06/08/2004] [Indexed: 11/23/2022] Open
Abstract
The somatodendritic subthreshold A-type K+ current (ISA) in nerve cells is a critical component of the ensemble of voltage-gated ionic currents that determine somatodendritic signal integration. The underlying K+ channel belongs to the Shal subfamily of voltage-gated K+ channels. Most Shal channels across the animal kingdom share a high degree of structural conservation, operate in the subthreshold range of membrane potentials, and exhibit relatively fast inactivation and recovery from inactivation. Mammalian Shal K+ channels (Kv4) undergo preferential closed-state inactivation with features that are generally inconsistent with the classical mechanisms of inactivation typical of Shaker K+ channels. Here, we review (1) the physiological and genetic properties of ISA, 2 the molecular mechanisms of Kv4 inactivation and its remodeling by a family of soluble calcium-binding proteins (KChIPs) and a membrane-bound dipeptidase-like protein (DPPX), and (3) the modulation of Kv4 channels by protein phosphorylation.
Collapse
Affiliation(s)
- Henry H Jerng
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|