1
|
Zheng Y, Wang J, Zhao G, Zhang Z, Shao Y, Lu B, Zhang Y, Chen R, Sun L, Xie X, Ding J, Zheng J, Chai D. Targeting Siglec-E facilitates tumor vaccine-induced antitumor immunity in renal carcinoma. J Immunother Cancer 2025; 13:e010521. [PMID: 39755580 PMCID: PMC11749828 DOI: 10.1136/jitc-2024-010521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Siglec-E is an immune checkpoint inhibitory molecule. Expression of Siglec-E on the immune cells has been shown to promote tumor regression. This study aimed to develop an adenovirus (Ad) vaccine targeting Siglec-E and carbonic anhydrase IX (CAIX) (Ad-Siglec-E/CAIX) and to evaluate its potential antitumor effects in several preclinical renal cancer models. METHODS Ad vaccines encoding Siglec-E or CAIX were developed and evaluated for their therapeutic potential in mouse subcutaneous, lung metastatic, and orthotopic tumor models. The expression of Ad-Siglec-E/CAIX was confirmed via PCR and flow cytometry. Immune responses induced by Ad-Siglec-E/CAIX were assessed in vitro and in vivo using flow cytometry, immunohistochemistry, ELISA, histological analysis, cell proliferation, enzyme-linked immunosorbent spot, cytotoxic T lymphocytes (CTL) killing, and cell depletion assays. RESULTS Ad-Siglec-E/CAIX vaccine induced the increase of tumor-infiltrated immune cells, and significantly suppressed the subcutaneous tumor growth of renal carcinoma. Immunization with Ad-Siglec-E/CAIX promoted the induction and maturation of CD11c+ dendritic cells and their subsets, which in turn enhanced tumor-specific CD8+ T cell immune responses, as evidenced by increased CD8+ T cell proliferation and CTL activity. Importantly, the deletion of CD8+ T cells in vivo abolished the antitumor effect of the Ad-Siglec-E/CAIX vaccine, highlighting the essential role of functional CD8+ T cell responses. The potent therapeutic efficacy of the Ad-Siglec-E/CAIX vaccine was also observed in lung metastasis and orthotopic tumor models through tumor-specific CD8+ T cell immune responses. CONCLUSIONS Our results indicate that targeting Siglec-E enhances the therapeutic efficacy of Ad-CAIX against renal carcinoma, providing a promising therapeutic option for solid tumors.
Collapse
Affiliation(s)
- Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiawei Wang
- Department of Oncology, Ninghe District Hospital of Tianjin, Tianjin, China
| | - Guangya Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zichun Zhang
- Department of Urology, The Yancheng Clinical College of Xuzhou Medical University, Yancheng City No 1 People's Hospital, Yancheng, Jiangsu, China
| | - Yingxiang Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bowen Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuchen Zhang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Sun
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaohui Xie
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jiage Ding
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Ochman B, Kot A, Mielcarska S, Kula A, Dawidowicz M, Koszewska D, Hudy D, Szrot M, Piecuch J, Waniczek D, Czuba Z, Świętochowska E. Association of SIGLEC9 Expression with Cytokine Expression, Tumor Grading, KRAS, NRAS, BRAF, PIK3CA, AKT Gene Mutations, and MSI Status in Colorectal Cancer. Curr Issues Mol Biol 2024; 46:13617-13646. [PMID: 39727942 PMCID: PMC11726853 DOI: 10.3390/cimb46120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
SIGLEC9 (sialic acid-binding Ig-like lectin 9) is a molecule thought to have a significant influence on the immune properties of the colorectal cancer (CRC) tumor microenvironment (TME). In our study, we assessed the expression of the SIGLEC9 protein in CRC tissue and the surgical margin tissue. Using RT-PCR, we analyzed mutations in the KRAS, NRAS, BRAF, PIK3CA, and AKT genes. We observed a significantly elevated expression of the SIGLEC9 protein in CRC tissue compared to the control group. No significant differences were observed in SIGLEC9 protein expression depending on mutations in the KRAS, NRAS, BRAF, PIK3CA, and AKT genes or microsatellite instability (MSI) status. However, we found a significantly higher expression of the SIGLEC9 protein in high-grade tumors compared to the low-grade tumors group. SIGLEC9 expression was significantly associated with the expression of multiple cytokines, chemokines, and growth factors in the CRC TME. These associations suggest the significant potential of SIGLEC9 as a molecule that plays a crucial role in shaping the immune properties of the CRC TME, as well as its potential therapeutic relevance, particularly in the group of high-grade CRC tumors.
Collapse
Affiliation(s)
- Błażej Ochman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Anna Kot
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Dominika Koszewska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Monika Szrot
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland; (M.S.); (J.P.)
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland; (M.S.); (J.P.)
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland;
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| |
Collapse
|
3
|
Schmitz D, Li Z, Lo Faro V, Rask-Andersen M, Ameur A, Rafati N, Johansson Å. Copy number variations and their effect on the plasma proteome. Genetics 2023; 225:iyad179. [PMID: 37793096 PMCID: PMC10697815 DOI: 10.1093/genetics/iyad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
Structural variations, including copy number variations (CNVs), affect around 20 million bases in the human genome and are common causes of rare conditions. CNVs are rarely investigated in complex disease research because most CNVs are not targeted on the genotyping arrays or the reference panels for genetic imputation. In this study, we characterize CNVs in a Swedish cohort (N = 1,021) using short-read whole-genome sequencing (WGS) and use long-read WGS for validation in a subcohort (N = 15), and explore their effect on 438 plasma proteins. We detected 184,182 polymorphic CNVs and identified 15 CNVs to be associated with 16 proteins (P < 8.22×10-10). Of these, 5 CNVs could be perfectly validated using long-read sequencing, including a CNV which was associated with measurements of the osteoclast-associated immunoglobulin-like receptor (OSCAR) and located upstream of OSCAR, a gene important for bone health. Two other CNVs were identified to be clusters of many short repetitive elements and another represented a complex rearrangement including an inversion. Our findings provide insights into the structure of common CNVs and their effects on the plasma proteome, and highlights the importance of investigating common CNVs, also in relation to complex diseases.
Collapse
Affiliation(s)
- Daniel Schmitz
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Zhiwei Li
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Valeria Lo Faro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Nima Rafati
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| |
Collapse
|
4
|
The Roles of Siglec7 and Siglec9 on Natural Killer Cells in Virus Infection and Tumour Progression. J Immunol Res 2020; 2020:6243819. [PMID: 32322597 PMCID: PMC7165337 DOI: 10.1155/2020/6243819] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
The function of natural killer (NK) cells, defending against virus infection and tumour progression, is regulated by multiple activating and inhibiting receptors expressed on NK cells, among which sialic acid-bind immunoglobulin-like lectins (Siglecs) act as a vital inhibitory group. Previous studies have shown that Siglec7 and Siglec9 are expressed on NK cells, which negatively regulate the function of NK cells and modulate the immune response through the interaction of sialic acid-containing ligands. Siglec7 and Siglec9 are very similar in distribution, gene encoding, protein sequences, ligand affinity, and functions in regulating the immune system against virus and cancers, but differences still exist between them. In this review, we aim to discuss the similarities and differences between Siglec7 and Siglec9 and analyze their functions in virus infection and tumour progression in order to develop better anti-viral and anti-tumor immunotherapy in the future.
Collapse
|
5
|
Puckowska P, Borowska A, Szwaczkowski T, Oleński K, Kamiński S. Effects of a novel missense polymorphism within the SIGLEC5 gene on fertility traits in Holstein-Friesian cattle. Reprod Domest Anim 2019; 54:1163-1168. [PMID: 31165528 DOI: 10.1111/rda.13484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/30/2019] [Indexed: 11/29/2022]
Abstract
The aim of the study was to find functional polymorphism within two exons of the SIGLEC5 (sialic acid-binding Ig-like lectin-5) gene and to examine its effects on the production and fertility traits of cows and bulls. Two hundred seventytwo Holstein-Friesian cows and 574 bulls were included in the study. Novel missense polymorphism (A > G) within exon 3 causing substitution of amino acid arginine by glutamate in position 260 of SIGLEC5 protein (R260Q) was identified by sequencing and digestion by restriction enzyme Msp I. Basic production and fertility traits of cows and estimated breeding values (EBV) of bulls were analysed. The study demonstrated a significant association of SIGLEC5 R260Q polymorphism with days open and calving interval in cows as well as with breeding value for calving interval in bulls. An opposite effect of SIGLEC5 alleles for production and fertility traits was observed: the allele G increased the breeding value for the protein yield, while the allele A increased the breeding value for the calving interval. The current study suggests the involvement of SIGLEC5 R260Q polymorphism in biological processes related to fertility traits. This finding can be applied as a biomarker for a genetic improvement programme in Holstein-Friesian cattle.
Collapse
Affiliation(s)
- Paulina Puckowska
- Department of Animal Genetics, University of Warmia and Mazury, Olsztyn, Poland
| | - Alicja Borowska
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Tomasz Szwaczkowski
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Kamil Oleński
- Department of Animal Genetics, University of Warmia and Mazury, Olsztyn, Poland
| | - Stanislaw Kamiński
- Department of Animal Genetics, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
6
|
Pérez-Ibave DC, Burciaga-Flores CH, Elizondo-Riojas MÁ. Prostate-specific antigen (PSA) as a possible biomarker in non-prostatic cancer: A review. Cancer Epidemiol 2018; 54:48-55. [DOI: 10.1016/j.canep.2018.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/26/2022]
|
7
|
Wang X, Liu D, Ning Y, Liu J, Wang X, Tu R, Shen H, Chen Q, Xiong Y. Siglec-9 is upregulated in rheumatoid arthritis and suppresses collagen-induced arthritis through reciprocal regulation of Th17-/Treg-cell differentiation. Scand J Immunol 2017; 85:433-440. [PMID: 28273363 DOI: 10.1111/sji.12543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/02/2017] [Indexed: 12/25/2022]
Affiliation(s)
- X. Wang
- Institute of Endemic Diseases; Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission; Health Science Center; Xi'an Jiaotong University; Xi'an China
- Department of Rheumatology; Second Hospital of Lanzhou University; Lanzhou Gansu China
| | - D. Liu
- Institute of Endemic Diseases; Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission; Health Science Center; Xi'an Jiaotong University; Xi'an China
- Department of Rheumatology and Immunology; Xi'an No.5 Hospital; Xi'an Shaanxi China
| | - Y. Ning
- Department of Nephrology; Second Hospital of Lanzhou University; Lanzhou Gansu China
| | - J. Liu
- Department of Rheumatology and Immunology; Xi'an No.5 Hospital; Xi'an Shaanxi China
| | - X. Wang
- Core Research Laboratory; Second Hospital of Lanzhou University; Lanzhou Gansu China
- Department of Rheumatology; Second Hospital of Lanzhou University; Lanzhou Gansu China
| | - R. Tu
- College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
| | - H. Shen
- Department of Rheumatology; Second Hospital of Lanzhou University; Lanzhou Gansu China
| | - Q. Chen
- Institute of Endemic Diseases; Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission; Health Science Center; Xi'an Jiaotong University; Xi'an China
| | - Y. Xiong
- Institute of Endemic Diseases; Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission; Health Science Center; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
8
|
Prescher H, Frank M, Gütgemann S, Kuhfeldt E, Schweizer A, Nitschke L, Watzl C, Brossmer R. Design, Synthesis, and Biological Evaluation of Small, High-Affinity Siglec-7 Ligands: Toward Novel Inhibitors of Cancer Immune Evasion. J Med Chem 2017; 60:941-956. [DOI: 10.1021/acs.jmedchem.6b01111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Martin Frank
- Molecular
Structure Analysis Core Facility-W160, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | - Astrid Schweizer
- Division
of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Lars Nitschke
- Division
of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | | | | |
Collapse
|
9
|
Cole JB, VanRaden PM, O'Connell JR, Van Tassell CP, Sonstegard TS, Schnabel RD, Taylor JF, Wiggans GR. Distribution and location of genetic effects for dairy traits. J Dairy Sci 2009; 92:2931-46. [PMID: 19448026 DOI: 10.3168/jds.2008-1762] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genetic effects for many dairy traits and for total economic merit are evenly distributed across all chromosomes. A high-density scan using 38,416 single nucleotide polymorphism markers for 5,285 bulls confirmed 2 previously known major genes on Bos taurus autosomes (BTA) 6 and 14 but revealed few other large effects. Markers on BTA18 had the largest effects on calving ease, several conformation traits, longevity, and total merit. Prediction accuracy was highest using a heavy-tailed prior assuming that each marker had an effect on each trait, rather than assuming a normal distribution of effects as in a linear model, or that only some loci have nonzero effects. A prior model combining heavy tails with finite alleles produced results that were intermediate compared with the individual models. Differences between models were small (1 to 2%) for traits with no major genes and larger for heavy tails with traits having known quantitative trait loci (QTL; 6 to 8%). Analysis of bull recessive codes suggested that marker effects from genomic selection may be used to identify regions of chromosomes to search in detail for candidate genes, but individual single nucleotide polymorphisms were not tracking causative mutations with the exception of diacylglycerol O-acyltransferase 1. Additive genetic merits were constructed for each chromosome, and the distribution of BTA14-specific estimated breeding value (EBV) showed that selection primarily for milk yield has not changed the distribution of EBV for fat percentage even in the presence of a known QTL. Such chromosomal EBV also may be useful for identifying complementary mates in breeding programs. The QTL affecting dystocia, conformation, and economic merit on BTA18 appear to be related to calf size or birth weight and may be the result of longer gestation lengths. Results validate quantitative genetic assumptions that most traits are due to the contributions of a large number of genes of small additive effect, rather than support the finite locus model.
Collapse
Affiliation(s)
- J B Cole
- Animal Improvement Programs Laboratory, ARS, USDA, Beltsville, MD 20705-2350, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Clements JA, Willemsen NM, Myers SA, Dong Y. The Tissue Kallikrein Family of Serine Proteases: Functional Roles in Human Disease and Potential as Clinical Biomarkers. Crit Rev Clin Lab Sci 2008; 41:265-312. [PMID: 15307634 DOI: 10.1080/10408360490471931] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate specific antigen (PSA) or human kallikrein 3 (hK3) has long been an effective biomarker for prostate cancer. Now, other members of the tissue kallikrein (KLK) gene family are fast becoming of clinical interest due to their potential as prognostic biomarkers. particularly for hormone dependent cancers. The tissue kallikreins are serine proteases that are encoded by highly conserved multi-gene family clusters in rodents and humans. The rat and mouse loci contain 10 and 25 functional genes, respectively, while the human locus at 19q 13.4 contains 15 genes. The structural organization and size of these genes are similar across species; all genes have 5 coding exons that encode a prepro-enzyme. Although the physiological activators of these zymogens have not been described, in vitro biochemical studies show that some kallikreins can auto-activate and others can activate each other, suggesting that the kallikreins may participate in an enzymatic cascade similar to that of the coagulation cascade. These genes are expressed, to varying degrees, in a wide range of tissues suggesting a functional involvement in a diverse range of physiological and pathophysiological processes. These include roles in normal skin desquamation and psoriatic lesions, tooth development, neural plasticity, and Alzheimer's disease (AD). Of particular interest is the expression of many kallikreins in prostate, ovarian, and breast cancers where they are emerging as useful prognostic indicators of disease progression.
Collapse
Affiliation(s)
- Judith A Clements
- Hormone Dependent Cancer Program, Cluster for Molecular Biotechnology, School of Life Sciences & Science Research Centre, Queensland University of Technology, Brisbane, Australia.
| | | | | | | |
Collapse
|
11
|
Emami N, Diamandis EP. New insights into the functional mechanisms and clinical applications of the kallikrein-related peptidase family. Mol Oncol 2007; 1:269-87. [PMID: 19383303 DOI: 10.1016/j.molonc.2007.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/04/2007] [Accepted: 09/07/2007] [Indexed: 11/28/2022] Open
Abstract
The Kallikrein-related peptidase (KLK) family consists of fifteen conserved serine proteases that form the largest contiguous cluster of proteases in the human genome. While primarily recognized for their clinical utilities as potential disease biomarkers, new compelling evidence suggests that this family plays a significant role in various physiological processes, including skin desquamation, semen liquefaction, neural plasticity, and body fluid homeostasis. KLK activation is believed to be mediated through highly organized proteolytic cascades, regulated through a series of feedback loops, inhibitors, auto-degradation and internal cleavages. Gene expression is mainly hormone-dependent, even though transcriptional epigenetic regulation has also been reported. These regulatory mechanisms are integrated with various signaling pathways to mediate multiple functions. Dysregulation of these pathways has been implicated in a large number of neoplastic and non-neoplastic pathological conditions. This review highlights our current knowledge of structural/phylogenetic features, functional role and regulatory/signaling mechanisms of this important family of enzymes.
Collapse
Affiliation(s)
- Nashmil Emami
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
12
|
Obiezu CV, Diamandis EP. Human tissue kallikrein gene family: applications in cancer. Cancer Lett 2005; 224:1-22. [PMID: 15911097 DOI: 10.1016/j.canlet.2004.09.024] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 09/15/2004] [Indexed: 10/26/2022]
Abstract
Human tissue kallikrein genes, located on the long arm of chromosome 19, are a subgroup of the serine protease family of proteolytic enzymes. Initially thought to consist of three members, the human kallikrein locus has now been extended and includes 15 tandemly located genes. These genes, and their protein products, share a high degree of homology and are expressed in a wide array of tissues, mainly those that are under steroid hormone control. PSA (hK3) is one of the human kallikreins, and is the most useful tumor marker for prostate cancer screening, diagnosis, prognosis and monitoring. hK2, another prostate-specific kallikrein, has also been proposed as a complementary prostate cancer biomarker. In the past 5 years, the newly discovered kallikreins (KLK4-KLK15) have been associated with several types of cancer. For example, hK4, hK5, hK6, hK7, hK8, hK10, hK11, hK13 and hK14 are emerging biomarkers for ovarian, breast, prostate and testicular cancer. New evidence raises the possibility that some kallikreins are directly involved with cancer progression. We here review the evidence linking kallikreins and cancer and their applicability as novel biomarkers for cancer diagnosis and management.
Collapse
Affiliation(s)
- Christina V Obiezu
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5
| | | |
Collapse
|
13
|
Abstract
Animal glycan-recognizing proteins can be broadly classified into two groups-lectins (which typically contain an evolutionarily conserved carbohydrate-recognition domain [CRD]) and sulfated glycosaminoglycan (SGAG)-binding proteins (which appear to have evolved by convergent evolution). Proteins other than antibodies and T-cell receptors that mediate glycan recognition via immunoglobulin (Ig)-like domains are called "I-type lectins." The major homologous subfamily of I-type lectins with sialic acid (Sia)-binding properties and characteristic amino-terminal structural features are called the "Siglecs" (Sia-recognizing Ig-superfamily lectins). The Siglecs can be divided into two groups: an evolutionarily conserved subgroup (Siglecs-1, -2, and -4) and a CD33/Siglec-3-related subgroup (Siglecs-3 and -5-13 in primates), which appear to be rapidly evolving. This article provides an overview of historical and current information about the Siglecs.
Collapse
Affiliation(s)
- Ajit Varki
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan.
| | | |
Collapse
|
14
|
Michael IP, Sotiropoulou G, Pampalakis G, Magklara A, Ghosh M, Wasney G, Diamandis EP. Biochemical and enzymatic characterization of human kallikrein 5 (hK5), a novel serine protease potentially involved in cancer progression. J Biol Chem 2005; 280:14628-35. [PMID: 15713679 DOI: 10.1074/jbc.m408132200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human kallikrein 5 (KLK5) is a member of the human kallikrein gene family of serine proteases. Preliminary results indicate that the protein, hK5, may be a potential serological marker for breast and ovarian cancer. Other studies implicate hK5 with skin desquamation and skin diseases. To gain further insights on hK5 physiological functions, we studied its substrate specificity, the regulation of its activity by various inhibitors, and identified candidate physiological substrates. After producing and purifying recombinant hK5 in yeast, we determined the k(cat)/K(m) ratio of the fluorogenic substrates Gly-Pro-Arg-AMC and Gly-Pro-Lys-AMC, and showed that it has trypsin-like activity with strong preference for Arg over Lys in the P1 position. The serpins alpha(2)-antiplasmin and antithrombin were able to inhibit hK5 with an inhibition constant (k(+2)/K(i)) of 1.0 x 10(-) (2)and 4.2 x 10(-4) m(-1) min(-1), respectively. No inhibition was observed with the serpins alpha(1)-antitrypsin and alpha(1)-antichymotrypsin, although alpha(2)-macroglobulin partially inhibited hK5 at high concentrations. We also demonstrated that hK5 can efficiently digest the extracellular matrix components, collagens type I, II, III, and IV, fibronectin, and laminin. Furthermore, our results suggest that hK5 can potentially release (a) angiostatin 4.5 from plasminogen, (b) "cystatin-like domain 3" from low molecular weight kininogen, and (c) fibrinopeptide B and peptide beta15-42 from the Bbeta chain of fibrinogen. hK5 could also play a role in the regulation of the binding of plasminogen activator inhibitor 1 to vitronectin. Our findings suggest that hK5 may be implicated in tumor progression, particularly in invasion and angiogenesis, and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Iacovos P Michael
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Borgoño CA, Michael IP, Diamandis EP. Human Tissue Kallikreins: Physiologic Roles and Applications in Cancer. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.257.2.5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
Tissue kallikreins are members of the S1 family (clan SA) of trypsin-like serine proteases and are present in at least six mammalian orders. In humans, tissue kallikreins (hK) are encoded by 15 structurally similar, steroid hormone–regulated genes (KLK) that colocalize to chromosome 19q13.4, representing the largest cluster of contiguous protease genes in the entire genome. hKs are widely expressed in diverse tissues and implicated in a range of normal physiologic functions from the regulation of blood pressure and electrolyte balance to tissue remodeling, prohormone processing, neural plasticity, and skin desquamation. Several lines of evidence suggest that hKs may be involved in cascade reactions and that cross-talk may exist with proteases of other catalytic classes. The proteolytic activity of hKs is regulated in several ways including zymogen activation, endogenous inhibitors, such as serpins, and via internal (auto)cleavage leading to inactivation. Dysregulated hK expression is associated with multiple diseases, primarily cancer. As a consequence, many kallikreins, in addition to hK3/PSA, have been identified as promising diagnostic and/or prognostic biomarkers for several cancer types, including ovarian, breast, and prostate. Recent data also suggest that hKs may be causally involved in carcinogenesis, particularly in tumor metastasis and invasion, and, thus, may represent attractive drug targets to consider for therapeutic intervention.
Collapse
Affiliation(s)
- Carla A. Borgoño
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Iacovos P. Michael
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Eleftherios P. Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Collins BE, Blixt O, Bovin NV, Danzer CP, Chui D, Marth JD, Nitschke L, Paulson JC. Constitutively unmasked CD22 on B cells of ST6Gal I knockout mice: novel sialoside probe for murine CD22. Glycobiology 2002; 12:563-71. [PMID: 12213789 DOI: 10.1093/glycob/cwf067] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The interaction of CD22 with glycoprotein ligands bearing the Siaalpha2,6Gal-R sequence is believed to modulate its function as a regulator of B cell signaling. Although a commercial sialoside-polyacrylamide (PAA) probe, NeuAc- alpha2,6Gal-PAA, has facilitated studies on ligand binding by human CD22, murine CD22 binds instead with high affinity to NeuGcalpha2,6Gal-R. A multivalent probe with this sequence was constructed to facilitate investigations of ligand binding in CD22 function using genetically defined murine models. The probe is based on the sialoside-PAA platform, which is then biotinylated for easy detection. A series of sialoside probes were constructed with two different length linker arms between the sialoside and the backbone and three different sialoside to PAA molar ratios. The NeuGcalpha2,6Gal-PAA probe is specific for CD22: it binds to sialidase-treated B cells of wild-type mice but not B cells of CD22-null mice. Additionally, because the probe only binds to sialidase-treated wild-type cells, it confirms that CD22 is constitutively "masked" on most B cells from wild-type mice by binding to ligands in cis. In contrast, the probe bound equally well to native or sialidase-treated B cells from the immunocompromised ligand-deficient ST6Gal I knockout mice, demonstrating that CD22 is constitutively "unmasked" in these cells.
Collapse
Affiliation(s)
- Brian E Collins
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., MEM-L71, La Jolla, CA 92075, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
AbstractKallikreins are a subgroup of the serine protease enzyme family. Until recently, it was thought that the human kallikrein gene family contained only three members. In the past 3 years, the entire human kallikrein gene locus was discovered and found to contain 15 kallikrein genes. Kallikreins are expressed in many tissues, including steroid hormone-producing or hormone-dependent tissues such as the prostate, breast, ovary, and testis. Most, if not all, kallikreins are regulated by steroid hormones in cancer cell lines. There is strong but circumstantial evidence linking kallikreins and cancer. Prostate-specific antigen (PSA; hK3) and, more recently, human glandular kallikrein (hK2) are widely used tumor markers for prostate cancer. Three other kallikreins, hK6, hK10, and hK11, are emerging new serum biomarkers for ovarian and prostate cancer diagnosis and prognosis. Several other kallikreins are differentially expressed at both the mRNA and protein levels in various endocrine-related malignancies, and they have prognostic value. The coexpression of many kallikreins in the same tissues (healthy and malignant) points to the possible involvement of kallikreins in cascade enzymatic pathways. In addition to their diagnostic/prognostic potential, kallikreins may also emerge as attractive targets for therapeutics.
Collapse
Affiliation(s)
- Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5G 1X5 Canada
| | - George M Yousef
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5G 1X5 Canada
| |
Collapse
|
18
|
Grobe K, Powell LD. Role of protein kinase C in the phosphorylation of CD33 (Siglec-3) and its effect on lectin activity. Blood 2002; 99:3188-96. [PMID: 11964282 DOI: 10.1182/blood.v99.9.3188] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD33 (Siglec-3) is a marker of myeloid progenitor cells, mature myeloid cells, and most myeloid leukemias. Although its biologic role remains unknown, it has been demonstrated to function as a sialic acid-specific lectin and a cell adhesion molecule. Many of the Siglecs (including CD33) have been reported to be tyrosine phosphorylated in the cytosolic tails under specific stimulation conditions. Here we report that CD33 is also a serine/threonine phosphoprotein, containing at least 2 sites of serine phosphorylation in its cytoplasmic domain, catalyzed by protein kinase C (PKC). Phosphorylation could be augmented by exposure to the protein kinase-activating cytokines interleukin 3, erythropoietin, or granulocyte-macrophage colony-stimulating factor, in a cytokine-dependent cell line, TF-1. The CD33 cytoplasmic tail was phosphorylated by PKC in vitro, in a Ca(++)/lipid-dependent manner. CHOK1 cells stably expressing CD33 with cytoplasmic tails of various length also showed phorbol myristate acetate (PMA)-dependent phosphorylation of CD33. Inhibition of CD33 phosphorylation with pharmacologic agents resulted in an increase of sialic acid-dependent rosette formation. Furthermore, the occupancy of the lectin site affected its basal level of phosphorylation. Rosette formation by COS cells expressing a form of CD33 lacking its cytoplasmic domain was not affected by these same agents. These data indicate that CD33 is a phosphoprotein, that its phosphorylation may be controlled by PKC downstream of cytokine stimulation, and that its phosphorylation is cross-regulated with its lectin activity. Notably, although this is the first example of serine/threonine phosphorylation in the subfamily of CD33-like Siglecs, some of the other members also have putative target sites in their cytoplasmic tails.
Collapse
Affiliation(s)
- Kay Grobe
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
19
|
Yousef GM, Ordon MH, Foussias G, Diamandis EP. Genomic organization of the siglec gene locus on chromosome 19q13.4 and cloning of two new siglec pseudogenes. Gene 2002; 286:259-70. [PMID: 11943481 DOI: 10.1016/s0378-1119(02)00432-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The sialic acid binding immunoglobulin-like lectin (Siglec) family of genes is a recently described member of the immunoglobulin superfamily. Within this Siglec family there is a subgroup of genes which bear a high degree of homology with Siglec-3 (CD33), thus designated the Siglec-3-like subgroup of Siglecs. While their mRNA structure has been reported, the full genomic organization of these genes, is not known. Genes of this subgroup have been mapped to chromosome 19q13.4, primarily through in situ hybridization. Through analysis of several bacterial artificial chromosome (BAC) clones, we studied an approximate 700 kb region that encompasses the putative Siglec gene locus on chromosome 19q13.4. We established the first detailed map of the locus, which contains 8 Siglec and Siglec-like genes. Our map shows the relative position of all genes and the precise distances between them, along with the direction of transcription of each gene. To our knowledge, this is the first report that describes the full genomic organization of all members of the CD33-like subgroup of Siglecs, including the promoter sequences of all genes. Members of this subfamily exhibit two patterns of organization of the signal peptide, which is followed by one V-set domain (except for the long form of the siglecL1 gene). Exons containing the C2-set domains are all comparable in size and are separated by linker exons. The transmembrane domain is encoded for by a separate exon of almost the same size in all genes. The total number of exons differs according to the number of C2-set Ig domains, but intron phases are identical. The cytoplasmic domain is always encoded by two exons. We further identified two new Siglec pseudogenes in this locus, and analyzed their tissue expression pattern and their structural features.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, CD/genetics
- Antigens, Differentiation/genetics
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, Myelomonocytic/genetics
- Cell Adhesion Molecules
- Chromosomes, Human, Pair 19/genetics
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- Exons
- Female
- Gene Expression
- Gene Order
- Genes/genetics
- Humans
- Introns
- Lectins
- Male
- Molecular Sequence Data
- Multigene Family
- Phylogeny
- Pseudogenes/genetics
- Restriction Mapping
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sialic Acid Binding Ig-like Lectin 2
- Sialic Acid Binding Ig-like Lectin 3
Collapse
Affiliation(s)
- George M Yousef
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | | | | | | |
Collapse
|
20
|
Whitney G, Wang S, Chang H, Cheng KY, Lu P, Zhou XD, Yang WP, McKinnon M, Longphre M. A new siglec family member, siglec-10, is expressed in cells of the immune system and has signaling properties similar to CD33. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6083-96. [PMID: 11733002 DOI: 10.1046/j.0014-2956.2001.02543.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The siglecs (sialic acid-binding Ig-like lectins) are a distinct subset of the Ig superfamily with adhesion-molecule-like structure. We describe here a novel member of the siglec protein family that shares a similar structure including five Ig-like domains, a transmembrane domain, and a cytoplasmic tail containing two ITIM-signaling motifs. Siglec-10 was identified through database mining of an asthmatic eosinophil EST library. Using the Stanford G3 radiation hybrid panel we were able to localize the genomic sequence of siglec-10 within the cluster of genes on chromosome 19q13.3-4 that encode other siglec family members. We have demonstrated that siglec-10 is an immune system-restricted membrane-bound protein that is highly expressed in peripheral blood leukocytes as demonstrated by Northern, RT-PCR and flow cytometry. Binding assays determined that the extracellular domain of siglec-10 was capable of binding to peripheral blood leukocytes. The cytoplasmic tail of siglec-10 contains four tyrosines, two of which are embedded in ITIM-signaling motifs (Y597 and Y667) and are likely involved in intracellular signaling. The ability of tyrosine kinases to phosphorylate the cytoplasmic tyrosines was evaluated by kinase assay using wild-type siglec-10 cytoplasmic domain and Y-->F mutants. The majority of the phosphorylation could be attributed to Y597 andY667. Further experiments with cell extracts suggest that SHP-1 interacts with Y667 and SHP-2 interacts with Y667 in addition to another tyrosine. This is very similar to CD33, which also binds the phosphatases SHP-1 and SHP-2, therefore siglec-10, as CD33, may be characterized as an inhibitory receptor.
Collapse
Affiliation(s)
- G Whitney
- Inflammation and Pulmonary Drug Discovery Department, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543-4000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Siglecs are members of the Ig superfamily that bind to sialic acid (Sia) and are mainly expressed by cells of the hematopoietic system. Until three years ago, only four Siglecs were known, namely sialoadhesin, CD22, myelin-associated glycoprotein and CD33. Since then, a further six human CD33-related Siglecs with features of inhibitory receptors have been identified and shown to be expressed by discrete subsets of leukocytes. Recognition of Sia by these Siglecs could play a role in the regulation of the innate immune system.
Collapse
Affiliation(s)
- P R Crocker
- The Wellcome Trust Biocentre, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK.
| | | |
Collapse
|
22
|
Li N, Zhang W, Wan T, Zhang J, Chen T, Yu Y, Wang J, Cao X. Cloning and Characterization of Siglec-10, a Novel Sialic Acid Binding Member of the Ig Superfamily, from Human Dendritic Cells. J Biol Chem 2001; 276:28106-12. [PMID: 11358961 DOI: 10.1074/jbc.m100467200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Siglecs (sialic acid-binding Ig-like lectins) are a subfamily of I-type lectins, which specifically recognize sialic acids. Nine members of the family have been identified thus far. We have obtained a novel cDNA clone from a human dendritic cell cDNA library encoding a protein with sequence and structural features of the Siglec family, hence designated as Siglec-10. The full-length Siglec-10 cDNA encodes a type 1 transmembrane protein containing four extracellular immunoglobulin-like domains, a transmembrane region, and a cytoplasmic tail with two classical immunoreceptor tyrosine-based inhibitory motifs. The N-terminal V-set Ig domain has most of the amino acid residues typical of the Siglecs. Siglec-10 shows the closest homology to Siglec-5 and Siglec-3/CD33. Various cells and cell lines including monocytes and dendritic cells express Siglec-10. High levels of mRNA expression were seen in peripheral blood leukocytes, spleen, and liver. When expressed on COS-7 cells, Siglec-10 was able to bind human red blood cells and soluble sialoglycoconjugates in a sialic acid-dependent manner. The identification of Siglec-10 as a new Siglec family member and its expression profile, together with its sialic acid-dependent binding capacity, suggest that it may be involved in cell-cell recognition by interacting with sialylated ligands expressed on specific cell populations.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Blotting, Northern
- COS Cells
- Cell Line
- Cell Membrane/metabolism
- Cloning, Molecular
- DNA, Complementary/metabolism
- Dendritic Cells/metabolism
- Erythrocytes/metabolism
- Gene Library
- HL-60 Cells
- HeLa Cells
- Humans
- Immunoglobulins/chemistry
- Immunoglobulins/genetics
- Lectins/chemistry
- Lectins/genetics
- Leukocytes/metabolism
- Liver/metabolism
- Models, Biological
- Molecular Sequence Data
- Monocytes/metabolism
- Neuraminidase/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Receptors, Cell Surface
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Sialic Acids/metabolism
- Spleen/metabolism
- Tissue Distribution
- Transfection
- Tumor Cells, Cultured
- U937 Cells
Collapse
Affiliation(s)
- N Li
- Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Foussias G, Taylor SM, Yousef GM, Tropak MB, Ordon MH, Diamandis EP. Cloning and molecular characterization of two splice variants of a new putative member of the Siglec-3-like subgroup of Siglecs. Biochem Biophys Res Commun 2001; 284:887-99. [PMID: 11409877 DOI: 10.1006/bbrc.2001.5052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sialic acid binding immunoglobulin-like lectin (Siglec) family is a recently described member of the immunoglobulin superfamily. Within this Siglec family there exists a subgroup of molecules which bear a very high degree of homology with the molecule Siglec-3 (CD33), and has thus been designated the Siglec-3-like subgroup of Siglecs. The members of this subgroup have been localized to chromosome 19q13.4, through both in situ hybridization and precise genomic mapping at the nucleotide level. Through the positional cloning approach we have identified and characterized a Siglec-like gene (SLG), a putative novel member of the Siglec-3-like subgroup of Siglecs. We have characterized the complete genomic structure of SLG, as well as two alternative splice variants, and determined its chromosomal localization. The short isoform, SLG-S, consists of seven exons, with six intervening introns, while the longer isoform, SLG-L, consists of eight exons and seven intervening introns. The SLG gene is localized 32.9 kb downstream of Siglec-8 on chromosome 19q13.4. The putative SLG-S and SLG-L proteins, of 477 and 595 amino acid residues, respectively, show extensive homology to many members of the Siglec-3-like subgroup. This high degree of homology is conserved in the extracellular Ig-like domains, as well as in the cytoplasmic tyrosine-based motifs. Interestingly, the SLG-L protein contains two N-terminal V-set Ig-like domains, as opposed to SLG-S and other Siglec-3-like subgroup members which contain only one such domain. Through RT-PCR we have examined the expression profile of both SLG splice variants in a panel of human tissues and have found that SLG-S is highly expressed in spleen, small intestine and adrenal gland, while SLG-L exhibits high levels of expression in spleen, small intestine, and bone marrow. This gene is quite likely the latest novel member of the CD33-like subgroup of Siglecs, and given its high degree of homology, it may also serve a regulatory role in the proliferation and survival of a particular hematopoietic stem cell lineage, as has been found for CD33 and Siglec7.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, Differentiation, Myelomonocytic/chemistry
- Antigens, Differentiation, Myelomonocytic/genetics
- Base Sequence
- Cell Division
- Cell Survival
- Chromosome Mapping
- Chromosomes, Human, Pair 19
- Cloning, Molecular/methods
- Exons
- Genetic Variation
- Hematopoietic Stem Cells/cytology
- Humans
- Lectins/chemistry
- Lectins/genetics
- Membrane Proteins
- Molecular Sequence Data
- Phylogeny
- Recombinant Proteins/chemistry
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sialic Acid Binding Ig-like Lectin 3
Collapse
Affiliation(s)
- G Foussias
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Yousef GM, Ordon MH, Foussias G, Diamandis EP. Molecular characterization, tissue expression, and mapping of a novel Siglec-like gene (SLG2) with three splice variants. Biochem Biophys Res Commun 2001; 284:900-10. [PMID: 11409878 DOI: 10.1006/bbrc.2001.5053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sialic acid binding immunglobulin-like lectin (Siglec) family is a recently described member of the immunoglobulin superfamily. Within the Siglec family, there exists a subgroup, which bears a high degree of homology with the molecule CD33 (Siglec-3), and has thus been designated the CD33-like subgroup of Siglecs. Members of this subgroup have been localized to chromosome 19q13.4. Through the positional candidate approach, we identified a novel potential member of this subgroup of Siglecs. We have characterized the complete genomic structure of this gene, determined its chromosomal localization, its homology to other members of the Siglec family, and its tissue expression profile. This new Siglec-like gene is comprised of 11 exons, with 10 intervening introns, and is localized 278 kb telomeric to Siglec-9 and 35 kb centromeric to Siglec-8 and on chromosome 19q13.4. The coding region consists of 2094 base pairs, and encodes for a putative 76.6 kDa protein. All Siglec-conserved structural features, including V-set domain, three C-set domains, transmembrane domain, ITIM and SLAM motifs, were found in this Siglec-like gene. Also, it has the conserved amino acids essential for sialic acid binding. The Siglec-like gene has 40-66% homology with members of the CD33-like subgroup, including Siglecs 5-9. Through RT-PCR we have examined the expression profile of this new gene in a panel of human tissues and found it to be primarily expressed in the bone marrow, spleen, brain, small intestine, colon, and spinal cord. We were also able to identify three different splice variants of the new gene. This gene may represent the latest novel member of the CD33-like subgroup of Siglecs, and, given its high degree of homology, it may also serve a regulatory role in the proliferation and survival of a particular hematopoietic stem cell lineage, as has been found for CD33 and Siglec-7.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/physiology
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/physiology
- Antigens, Differentiation, Myelomonocytic/genetics
- Base Sequence
- Cell Adhesion Molecules
- Chromosome Mapping
- Chromosomes, Human, Pair 19
- Cloning, Molecular
- Expressed Sequence Tags
- Female
- Genetic Variation
- Humans
- Introns
- Lectins
- Male
- Molecular Sequence Data
- Organ Specificity
- Phylogeny
- Protein Conformation
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sialic Acid Binding Ig-like Lectin 2
- Sialic Acid Binding Ig-like Lectin 3
- Software
Collapse
Affiliation(s)
- G M Yousef
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- P R Crocker
- The Wellcome Trust Biocentre at Dundee, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | |
Collapse
|
26
|
Yousef GM, Diamandis EP. The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev 2001; 22:184-204. [PMID: 11294823 DOI: 10.1210/edrv.22.2.0424] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human tissue kallikrein gene family was, until recently, thought to consist of only three genes. Two of these human kallikreins, prostate-specific antigen and human glandular kallikrein 2, are currently used as valuable biomarkers of prostatic carcinoma. More recently, new kallikrein-like genes have been discovered. It is now clear that the human tissue kallikrein gene family contains at least 15 genes. All genes share important similarities, including mapping at the same chromosomal locus (19q13.4), significant homology at both the nucleotide and protein level, and similar genomic organization. All genes encode for putative serine proteases and most of them are regulated by steroid hormones. Recent data suggest that at least a few of these kallikrein genes are connected to malignancy. In this review, we summarize the recently accumulated knowledge on the human tissue kallikrein gene family, including gene and protein structure, predicted enzymatic activities, tissue expression, hormonal regulation, and alternative splicing. We further describe the reported associations of the human kallikreins with various human diseases and identify future avenues for research.
Collapse
Affiliation(s)
- G M Yousef
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | | |
Collapse
|
27
|
Scholler N, Hayden-Ledbetter M, Hellström KE, Hellström I, Ledbetter JA. CD83 is an I-type lectin adhesion receptor that binds monocytes and a subset of activated CD8+ T cells [corrected]. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3865-72. [PMID: 11238630 DOI: 10.4049/jimmunol.166.6.3865] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To help determine CD83 function, a cDNA encoding a soluble protein containing the CD83 extracellular domain was fused with a mutated human IgG1 constant region (CD83Ig) and expressed by stable transfection of Chinese hamster ovary cells. Purified CD83Ig bound to peripheral blood monocytes and a subset of activated CD3(+)CD8(+) lymphocytes but did not bind to FcR. Monocytes that had adhered to plastic lost their ability to bind to CD83Ig after 90 min of in vitro incubation. CD83Ig bound to two of five T cell lines tested, HPB-ALL and Jurkat. The binding to HPB-ALL cells significantly increased when they were grown at a low pH (pH 6.5), whereas binding to Jurkat cells increased after apoptosis was induced with anti-Fas mAb. B cell and monocytic lines did not bind CD83Ig and neither did CD56(+) NK cells or granulocytes. Full-length CD83 expressed by a transfected carcinoma line mediated CD83-dependent adhesion to HPB-ALL cells. CD83Ig immunoprecipitated and immunoblotted a 72-kDa protein from HPB-ALL cells. Binding of CD83Ig to HPB-ALL cells was eliminated by neuraminidase treatment of the cells. We conclude that CD83 is an adhesion receptor with a counterreceptor expressed on monocytes and a subset of activated or stressed T lymphocytes, and that interaction between CD83 and its counterreceptor is dependent upon the state of glycosylation of a 72-kDa counterreceptor by sialic acid residues. In view of the selectivity of the expression of CD83 and its ligand, we postulate that the interaction between the two plays an important role in the induction and regulation of immune responses.
Collapse
Affiliation(s)
- N Scholler
- Laboratory of Tumor Immunology, Pacific Northwest Research Institute, Seattle, WA 98122, USA.
| | | | | | | | | |
Collapse
|
28
|
Clements J, Hooper J, Dong Y, Harvey T. The expanded human kallikrein (KLK) gene family: genomic organisation, tissue-specific expression and potential functions. Biol Chem 2001; 382:5-14. [PMID: 11258672 DOI: 10.1515/bc.2001.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The tissue kallikreins are serine proteases encoded by highly conserved multi-gene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13-26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5' or 3' untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25-44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.
Collapse
Affiliation(s)
- J Clements
- Centre for Molecular Biotechnology, School of Life Sciences, Queensland University of Technology, Brisbane, Australia
| | | | | | | |
Collapse
|
29
|
Foussias G, Yousef GM, Diamandis EP. Molecular characterization of a Siglec8 variant containing cytoplasmic tyrosine-based motifs, and mapping of the Siglec8 gene. Biochem Biophys Res Commun 2000; 278:775-81. [PMID: 11095983 DOI: 10.1006/bbrc.2000.3866] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Through efforts to investigate the CD33-like subgroup of sialic acid binding immunoglobulin-like lectins (Siglecs), which are believed to be located on chromosome 19q13.4, we have identified the precise genomic region containing the Siglec8 gene. It is located on chromosome 19q13.4, approximately 330 kb downstream of the Siglec9 gene. Further, we have identified a novel Siglec8 variant, named Siglec8-Long (Siglec8-L), which differs in its last two exons from the previously published mRNA sequence of Siglec8 (GenBank Accession No. AF195092). Both Siglec8 and Siglec8-L are comprised of seven exons, of which the first five are identical, followed by marked differences in exon usage and mRNA splicing. The 499 amino acid protein encoded by the Siglec8-L open reading frame has a molecular weight of 54 kDa. Like the other members of the CD33-like subgroup of Siglecs, except for the previously published Siglec8, Siglec8-L also contains the two tyrosine-based motifs that have been found to recruit both SH2 domain-containing tyrosine and inositol phosphatases.
Collapse
Affiliation(s)
- G Foussias
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|