1
|
Freemantle JB, Towler MC, Hudson ER, Macartney T, Zwirek M, Liu DJK, Pan DA, Ponnambalam S, Hardie DG. AMPK associates with and causes fragmentation of the Golgi by phosphorylating the guanine nucleotide exchange factor GBF1. J Cell Sci 2024; 137:jcs262182. [PMID: 39575556 PMCID: PMC11827860 DOI: 10.1242/jcs.262182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/01/2024] [Indexed: 12/24/2024] Open
Abstract
AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular functions in response to changes in energy availability. However, whether AMPK activity is spatially regulated, and the implications for cell function, have been unclear. We now report that AMPK associates with the Golgi, and that its activation by two specific pharmacological activators leads to Golgi fragmentation similar to that caused by the antibiotic Golgicide A, an inhibitor of Golgi-specific Brefeldin A resistance factor-1 (GBF1), a guanine nucleotide exchange factor that targets ADP-ribosylation factor 1 (ARF1). Golgi fragmentation in response to AMPK activators is lost in cells carrying gene knockouts of AMPK-α subunits. AMPK has been previously reported to phosphorylate GBF1 at residue Thr1337, and its activation causes phosphorylation at that residue. Importantly, Golgi disassembly upon AMPK activation is blocked in cells expressing a non-phosphorylatable GBF1-T1337A mutant generated by gene editing. Furthermore, the trafficking of a plasma membrane-targeted protein through the Golgi complex is delayed by AMPK activation. Our findings provide a mechanism to link AMPK activation during cellular energy stress to downregulation of protein trafficking involving the Golgi.
Collapse
Affiliation(s)
- Jordana B. Freemantle
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Mhairi C. Towler
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Emma R. Hudson
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Monika Zwirek
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - David J. K. Liu
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - David A. Pan
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - D. Grahame Hardie
- Division of Cell Signalling & Immunology and School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
2
|
Smiles WJ, Ovens AJ, Oakhill JS, Kofler B. The metabolic sensor AMPK: Twelve enzymes in one. Mol Metab 2024; 90:102042. [PMID: 39362600 PMCID: PMC11752127 DOI: 10.1016/j.molmet.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined. SCOPE OF REVIEW Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research. MAJOR CONCLUSIONS Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
| | - Ashley J Ovens
- Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
3
|
Mandatori S, Liu Y, Marturia-Navarro J, Hadi M, Henriksen K, Zheng J, Rasmussen LM, Rizza S, Kaestner KH, Issazadeh-Navikas S. PRKAG2.2 is essential for FoxA1 + regulatory T cell differentiation and metabolic rewiring distinct from FoxP3 + regulatory T cells. SCIENCE ADVANCES 2023; 9:eadj8442. [PMID: 38117896 PMCID: PMC10732530 DOI: 10.1126/sciadv.adj8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
Forkhead box A1 (FoxA1)+ regulatory T cells (Tregs) exhibit distinct characteristics from FoxP3+ Tregs while equally effective in exerting anti-inflammatory properties. The role of FoxP3+ Tregs in vivo has been challenged, motivating a better understanding of other Tregs in modulating hyperactive immune responses. FoxA1+ Tregs are generated on activation of the transcription factor FoxA1 by interferon-β (IFNβ), an anti-inflammatory cytokine. T cell activation, expansion, and function hinge on metabolic adaptability. We demonstrated that IFNβ promotes a metabolic rearrangement of FoxA1+ Tregs by enhancing oxidative phosphorylation and mitochondria clearance by mitophagy. In response to IFNβ, FoxA1 induces a specific transcription variant of adenosine 5'-monophosphate-activated protein kinase (AMPK) γ2 subunit, PRKAG2.2. This leads to the activation of AMPK signaling, thereby enhancing mitochondrial respiration and mitophagy by ULK1-BNIP3. This IFNβ-FoxA1-PRKAG2.2-BNIP3 axis is pivotal for their suppressive function. The involvement of PRKAG2.2 in FoxA1+ Treg, not FoxP3+ Treg differentiation, underscores the metabolic differences between Treg populations and suggests potential therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Sara Mandatori
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yawei Liu
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joana Marturia-Navarro
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mahdieh Hadi
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Henriksen
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jin Zheng
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Munk Rasmussen
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Pena JLB, de Melo FJ, Santos WC, Moura ICG, Nakashima GP, Freitas NC, Sternick EB. Right Ventricle Involvement by Glycogen Storage Cardiomyopathy (PRKAG2): Standard and Advanced Echocardiography Analyses. Arq Bras Cardiol 2022; 119:902-909. [PMID: 36417616 PMCID: PMC9814818 DOI: 10.36660/abc.20210801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND PRKAG2 syndrome is a rare, early-onset autosomal dominant inherited disease. We aimed to describe the right ventricle (RV) echocardiographic findings using two and three-dimensional (2D and 3D) modalities including myocardial deformation indices in this cardiomyopathy. We also aimed to demonstrate whether this technique could identify changes in RV function that could distinguish any particular findings. METHODS Thirty patients with genetically proven PRKAG2 (R302Q and H401Q), 16 (53.3%) males, mean age 39.1 ± 15.4 years, underwent complete echocardiography examination. RV-focused, 4-chamber view was acquired for 2D and 3D measurements. Student's t or Wilcoxon-Mann-Whitney tests were used to compare numerical variables between 2 groups, and p < 0.05 was considered significant. RESULTS Twelve patients (40%) had a pacemaker implanted for 12.4 ± 9.9 years. RV free wall mean diastolic thickness was 7.9 ± 2.9 mm. RV 4-chamber longitudinal strain (RV4LS), including the free wall and interventricular septum, was -17.3% ± 6.7%, and RV free wall longitudinal strain (RVFWLS) was -19.1% ± 8.5%. The RVFWLS apical ratio measured 0.63 ± 0.15. Mean RV 3D ejection fraction (EF) was 42.6% ± 10.9% and below normal limits in 56.7% of patients. Positive correlation occurred between RV 3DEF, RV4LS, and RVFWLS, especially for patients without a pacemaker (p = 0.006). CONCLUSION RV involvement in PRKAG2 syndrome is frequent, occurring in different degrees. Echocardiography is a valuable tool in detecting RV myocardial abnormalities in this condition. The use of 2D RV4LS, RVFWLS, and 3DEF offers reliable indicators of RV systolic dysfunction in this rare, challenging cardiomyopathy.
Collapse
Affiliation(s)
- José Luiz Barros Pena
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade de Ciências Médicas de Minas Gerais – Pós-Graduação, Belo Horizonte, MG – Brasil,Hospital Felicio RochoBelo HorizonteMGBrasilHospital Felicio Rocho – Ecocardiografia, Belo Horizonte, MG – Brasil
| | - Fabricio Junqueira de Melo
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade de Ciências Médicas de Minas Gerais – Pós-Graduação, Belo Horizonte, MG – Brasil
| | - Wander Costa Santos
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade de Ciências Médicas de Minas Gerais – Pós-Graduação, Belo Horizonte, MG – Brasil
| | - Isabel Cristina Gomes Moura
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade de Ciências Médicas de Minas Gerais – Pós-Graduação, Belo Horizonte, MG – Brasil
| | - Gabriela Pansanato Nakashima
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade de Ciências Médicas de Minas Gerais – Pós-Graduação, Belo Horizonte, MG – Brasil
| | - Natalia Costa Freitas
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade de Ciências Médicas de Minas Gerais – Pós-Graduação, Belo Horizonte, MG – Brasil
| | - Eduardo Back Sternick
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasilFaculdade de Ciências Médicas de Minas Gerais – Pós-Graduação, Belo Horizonte, MG – Brasil
| |
Collapse
|
5
|
Miyamoto L. Molecular Pathogenesis of Familial Wolff-Parkinson-White Syndrome. THE JOURNAL OF MEDICAL INVESTIGATION 2018; 65:1-8. [PMID: 29593177 DOI: 10.2152/jmi.65.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Familial Wolff-Parkinson-White (WPW) syndrome is an autosomal dominant inherited disease and consists of a small percentage of WPW syndrome which exhibits ventricular pre-excitation by development of accessory atrioventricular pathway. A series of mutations in PRKAG2 gene encoding gamma2 subunit of 5'AMP-activated protein kinase (AMPK) has been identified as the cause of familial WPW syndrome. AMPK is one of the most important metabolic regulators of carbohydrates and lipids in many types of tissues including cardiac and skeletal muscles. Patients and animals with the mutation in PRKAG2 gene exhibit aberrant atrioventricular conduction associated with cardiac glycogen overload. Recent studies have revealed "novel" significance of canonical pathways leading to glycogen synthesis and provided us profound insights into molecular mechanism of the regulation of glycogen metabolism by AMPK. This review focuses on the molecular basis of the pathogenesis of cardiac abnormality due to PRKAG2 mutation and will provide current overviews of the mechanism of glycogen regulation by AMPK. J. Med. Invest. 65:1-8, February, 2018.
Collapse
|
6
|
Olivier S, Foretz M, Viollet B. Promise and challenges for direct small molecule AMPK activators. Biochem Pharmacol 2018; 153:147-158. [PMID: 29408352 DOI: 10.1016/j.bcp.2018.01.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
AMP-activated protein kinase (AMPK) is an evolutionary conserved and ubiquitously expressed serine/threonine kinase playing a central role in the coordination of energy homeostasis. Based on the beneficial outcomes of its activation on metabolism, AMPK has emerged as an attractive target for the treatment of metabolic diseases. Identification of novel downstream targets of AMPK beyond the regulation of energy metabolism has renewed considerable attention in exploiting AMPK signaling for novel therapeutic targeting strategies including treatment of cancer and inflammatory diseases. The complexity of AMPK system with tissue- and species-specific expression of multiple isoform combination regulated by various inputs, post-traductional modifications and subcellular locations presents unique challenges for drug discovery. Here, we review the most recent advances in the understanding of the mechanism(s) of action of direct small molecule AMPK activators and the potential therapeutic opportunities.
Collapse
Affiliation(s)
- Séverine Olivier
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, France.
| |
Collapse
|
7
|
Abstract
In humans, dominant mutations in the gene encoding the regulatory γ2-subunit of AMP-activated protein kinase (PRKAG2) result in a highly penetrant phenotype dominated by cardiac features: left ventricular hypertrophy, ventricular pre-excitation, atrial tachyarrhythmia, cardiac conduction disease, and myocardial glycogen storage. The discovery of a link between the cell's fundamental energy sensor, AMPK, and inherited cardiac disease catalyzed intense interest into the biological role of AMPK in the heart. In this chapter, we provide an introduction to the spectrum of human disease resulting from pathogenic variants in PRKAG2, outlining its discovery, clinical genetics, and current perspectives on its pathogenesis and highlighting mechanistic insights derived through the evaluation of disease models. We also present a clinical perspective on the major components of the cardiomyopathy associated with mutations in PRKAG2, together with less commonly described extracardiac features, its prognosis, and principles of management.
Collapse
Affiliation(s)
- Arash Yavari
- Experimental Therapeutics, Radcliffe Department of Medicine, University of Oxford, Oxford, UK. .,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK. .,The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Dhruv Sarma
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Eduardo B Sternick
- Instituto de Pós-Graduação, Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Towbin JA, Jefferies JL. Cardiomyopathies Due to Left Ventricular Noncompaction, Mitochondrial and Storage Diseases, and Inborn Errors of Metabolism. Circ Res 2017; 121:838-854. [PMID: 28912186 DOI: 10.1161/circresaha.117.310987] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The normal function of the human myocardium requires the proper generation and utilization of energy and relies on a series of complex metabolic processes to achieve this normal function. When metabolic processes fail to work properly or effectively, heart muscle dysfunction can occur with or without accompanying functional abnormalities of other organ systems, particularly skeletal muscle. These metabolic derangements can result in structural, functional, and infiltrative deficiencies of the heart muscle. Mitochondrial and enzyme defects predominate as disease-related etiologies. In this review, left ventricular noncompaction cardiomyopathy, which is often caused by mutations in sarcomere and cytoskeletal proteins and is also associated with metabolic abnormalities, is discussed. In addition, cardiomyopathies resulting from mitochondrial dysfunction, metabolic abnormalities, storage diseases, and inborn errors of metabolism are described.
Collapse
Affiliation(s)
- Jeffrey A Towbin
- From the Le Bonheur Children's Hospital, St Jude Children's Research Hospital, University of Tennessee Health Science Center, Memphis; and Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH.
| | - John Lynn Jefferies
- From the Le Bonheur Children's Hospital, St Jude Children's Research Hospital, University of Tennessee Health Science Center, Memphis; and Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH
| |
Collapse
|
9
|
Giacomelli E, Mummery CL, Bellin M. Human heart disease: lessons from human pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci 2017; 74:3711-3739. [PMID: 28573431 PMCID: PMC5597692 DOI: 10.1007/s00018-017-2546-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
Technical advances in generating and phenotyping cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are now driving their wider acceptance as in vitro models to understand human heart disease and discover therapeutic targets that may lead to new compounds for clinical use. Current literature clearly shows that hPSC-CMs recapitulate many molecular, cellular, and functional aspects of human heart pathophysiology and their responses to cardioactive drugs. Here, we provide a comprehensive overview of hPSC-CMs models that have been described to date and highlight their most recent and remarkable contributions to research on cardiovascular diseases and disorders with cardiac traits. We conclude discussing immediate challenges, limitations, and emerging solutions.
Collapse
Affiliation(s)
- E Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - C L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Building Zuidhorst, 7500 AE, Enschede, The Netherlands
| | - M Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
10
|
Hinson JT, Chopra A, Lowe A, Sheng CC, Gupta RM, Kuppusamy R, O'Sullivan J, Rowe G, Wakimoto H, Gorham J, Burke MA, Zhang K, Musunuru K, Gerszten RE, Wu SM, Chen CS, Seidman JG, Seidman CE. Integrative Analysis of PRKAG2 Cardiomyopathy iPS and Microtissue Models Identifies AMPK as a Regulator of Metabolism, Survival, and Fibrosis. Cell Rep 2016; 17:3292-3304. [PMID: 28009297 PMCID: PMC5193246 DOI: 10.1016/j.celrep.2016.11.066] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/19/2016] [Accepted: 11/21/2016] [Indexed: 01/20/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a metabolic enzyme that can be activated by nutrient stress or genetic mutations. Missense mutations in the regulatory subunit, PRKAG2, activate AMPK and cause left ventricular hypertrophy, glycogen accumulation, and ventricular pre-excitation. Using human iPS cell models combined with three-dimensional cardiac microtissues, we show that activating PRKAG2 mutations increase microtissue twitch force by enhancing myocyte survival. Integrating RNA sequencing with metabolomics, PRKAG2 mutations that activate AMPK remodeled global metabolism by regulating RNA transcripts to favor glycogen storage and oxidative metabolism instead of glycolysis. As in patients with PRKAG2 cardiomyopathy, iPS cell and mouse models are protected from cardiac fibrosis, and we define a crosstalk between AMPK and post-transcriptional regulation of TGFβ isoform signaling that has implications in fibrotic forms of cardiomyopathy. Our results establish critical connections among metabolic sensing, myocyte survival, and TGFβ signaling.
Collapse
Affiliation(s)
- J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Cardiology Center, University of Connecticut Health, Farmington, CT 06030, USA.
| | - Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Andre Lowe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Calvin C Sheng
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rajat M Gupta
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rajarajan Kuppusamy
- Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John O'Sullivan
- Division of Cardiovascular Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Glenn Rowe
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Burke
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kehan Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Kiran Musunuru
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Cardiovascular Medicine, Beth Israel Deaconess Hospital, Boston, MA 02115, USA
| | - Sean M Wu
- Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
11
|
López M, Nogueiras R, Tena-Sempere M, Diéguez C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat Rev Endocrinol 2016; 12:421-32. [PMID: 27199291 DOI: 10.1038/nrendo.2016.67] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AMP-activated protein kinase (AMPK) has a major role in the modulation of energy balance. AMPK is activated in conditions of low energy, increasing energy production and reducing energy consumption. The AMPK pathway is a canonical route regulating energy homeostasis by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence has implicated AMPK in the hypothalamus and hindbrain with feeding, brown adipose tissue thermogenesis and browning of white adipose tissue, through modulation of the sympathetic nervous system, as well as glucose homeostasis. Interestingly, several potential antiobesity and/or antidiabetic agents, some of which are currently in clinical use such as metformin and liraglutide, exert some of their actions by acting on AMPK. Furthermore, the orexigenic and weight-gain effects of commonly used antipsychotic drugs are also mediated by hypothalamic AMPK. Overall, this evidence suggests that hypothalamic AMPK signalling is an interesting target for drug development, but is this approach feasible? In this Review we discuss the current understanding of hypothalamic AMPK and its role in the central regulation of energy balance and metabolism.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain
- FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| |
Collapse
|
12
|
Liu Y, Xue Y, Wu S, Hu D. Inherited Wolff‐Parkinson‐White Syndrome. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2016. [DOI: 10.15212/cvia.2016.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Zeke A, Bastys T, Alexa A, Garai Á, Mészáros B, Kirsch K, Dosztányi Z, Kalinina OV, Reményi A. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases. Mol Syst Biol 2015; 11:837. [PMID: 26538579 PMCID: PMC4670726 DOI: 10.15252/msb.20156269] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mitogen‐activated protein kinases (MAPK) are broadly used regulators of cellular signaling. However, how these enzymes can be involved in such a broad spectrum of physiological functions is not understood. Systematic discovery of MAPK networks both experimentally and in silico has been hindered because MAPKs bind to other proteins with low affinity and mostly in less‐characterized disordered regions. We used a structurally consistent model on kinase‐docking motif interactions to facilitate the discovery of short functional sites in the structurally flexible and functionally under‐explored part of the human proteome and applied experimental tools specifically tailored to detect low‐affinity protein–protein interactions for their validation in vitro and in cell‐based assays. The combined computational and experimental approach enabled the identification of many novel MAPK‐docking motifs that were elusive for other large‐scale protein–protein interaction screens. The analysis produced an extensive list of independently evolved linear binding motifs from a functionally diverse set of proteins. These all target, with characteristic binding specificity, an ancient protein interaction surface on evolutionarily related but physiologically clearly distinct three MAPKs (JNK, ERK, and p38). This inventory of human protein kinase binding sites was compared with that of other organisms to examine how kinase‐mediated partnerships evolved over time. The analysis suggests that most human MAPK‐binding motifs are surprisingly new evolutionarily inventions and newly found links highlight (previously hidden) roles of MAPKs. We propose that short MAPK‐binding stretches are created in disordered protein segments through a variety of ways and they represent a major resource for ancient signaling enzymes to acquire new regulatory roles.
Collapse
Affiliation(s)
- András Zeke
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Tomas Bastys
- Max Planck Institute for Informatics, Saarbrücken, Germany Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | - Anita Alexa
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágnes Garai
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Bálint Mészáros
- Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Klára Kirsch
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | | | - Attila Reményi
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
14
|
Zhang BL, Ye Z, Xu RL, You XH, Qin YW, Wu H, Cao J, Zhang JL, Zheng X, Zhao XX. Overexpression of G100S mutation in PRKAG2 causes Wolff-Parkinson-White syndrome in zebrafish. Clin Genet 2013; 86:287-91. [PMID: 23992123 DOI: 10.1111/cge.12267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 11/29/2022]
Abstract
The Wolff-Parkinson-White (WPW) syndrome was believed to be associated with PRKAG2 gene mutations. In this study, we verified the pathopoiesis of G100S mutation, a novel mutation only discovered in Chinese patients with WPW, in cardiac disorder. Similar to R302Q, when overexpressed PRKAG2 G100S mutant in zebrafish, we observed a thicker heart wall, detected a decreased AMPK enzymatic activity by tissue AMPK kinase activity colorimetric technique, as well as examined an increased glycogen storage in heart wall using the method for periodic acid-Schiff staining, in comparison with the zebrafish without exogenous PRKAG2 (mock) or with wild-type PRKAG2 (WT). Taken together, we concluded PRKAG2 G100S mutation might contribute to impair the AMP-activated protein kinase function, which resulted in increased cardiac glycogen storage, serving as a pathogenesis for WPW syndrome in Chinese.
Collapse
Affiliation(s)
- B L Zhang
- Department of Cardiovascular Diseases, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Localisation of AMPK γ subunits in cardiac and skeletal muscles. J Muscle Res Cell Motil 2013; 34:369-78. [PMID: 24037260 PMCID: PMC3853370 DOI: 10.1007/s10974-013-9359-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/30/2013] [Indexed: 11/22/2022]
Abstract
The trimeric protein AMP-activated protein kinase (AMPK) is an important sensor of energetic status and cellular stress, and mutations in genes encoding two of the regulatory γ subunits cause inherited disorders of either cardiac or skeletal muscle. AMPKγ2 mutations cause hypertrophic cardiomyopathy with glycogen deposition and conduction abnormalities; mutations in AMPKγ3 result in increased skeletal muscle glycogen. In order to gain further insight into the roles of the different γ subunits in muscle and into possible disease mechanisms, we localised the γ2 and γ3 subunits, along with the more abundant γ1 subunit, by immunofluorescence in cardiomyocytes and skeletal muscle fibres. The predominant cardiac γ2 variant, γ2-3B, gave a striated pattern in cardiomyocytes, aligning with the Z-disk but with punctate staining similar to T-tubule (L-type Ca2+ channel) and sarcoplasmic reticulum (SERCA2) markers. In skeletal muscle fibres AMPKγ3 localises to the I band, presenting a uniform staining that flanks the Z-disk, also coinciding with the position of Ca2+ influx in these muscles. The localisation of γ2-3B- and γ3-containing AMPK suggests that these trimers may have similar functions in the different muscles. AMPK containing γ2-3B was detected in oxidative skeletal muscles which had low expression of γ3, confirming that these two regulatory subunits may be co-ordinately regulated in response to metabolic requirements. Compartmentalisation of AMPK complexes is most likely dependent on the regulatory γ subunit and this differential localisation may direct substrate selection and specify particular functional roles.
Collapse
|
16
|
Ramon M, Ruelens P, Li Y, Sheen J, Geuten K, Rolland F. The hybrid four-CBS-domain KINβγ subunit functions as the canonical γ subunit of the plant energy sensor SnRK1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:11-25. [PMID: 23551663 PMCID: PMC6599549 DOI: 10.1111/tpj.12192] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/15/2013] [Accepted: 03/26/2013] [Indexed: 05/17/2023]
Abstract
The AMPK/SNF1/SnRK1 protein kinases are a family of ancient and highly conserved eukaryotic energy sensors that function as heterotrimeric complexes. These typically comprise catalytic α subunits and regulatory β and γ subunits, the latter function as the energy-sensing modules of animal AMPK through adenosine nucleotide binding. The ability to monitor accurately and adapt to changing environmental conditions and energy supply is essential for optimal plant growth and survival, but mechanistic insight in the plant SnRK1 function is still limited. In addition to a family of γ-like proteins, plants also encode a hybrid βγ protein that combines the Four-Cystathionine β-synthase (CBS)-domain (FCD) structure in γ subunits with a glycogen-binding domain (GBD), typically found in β subunits. We used integrated functional analyses by ectopic SnRK1 complex reconstitution, yeast mutant complementation, in-depth phylogenetic reconstruction, and a seedling starvation assay to show that only the hybrid KINβγ protein that recruited the GBD around the emergence of the green chloroplast-containing plants, acts as the canonical γ subunit required for heterotrimeric complex formation. Mutagenesis and truncation analysis further show that complex interaction in plant cells and γ subunit function in yeast depend on both a highly conserved FCD and a pre-CBS domain, but not the GBD. In addition to novel insight into canonical AMPK/SNF/SnRK1 γ subunit function, regulation and evolution, we provide a new classification of plant FCD genes as a convenient and reliable tool to predict regulatory partners for the SnRK1 energy sensor and novel FCD gene functions.
Collapse
Affiliation(s)
- Matthew Ramon
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Philip Ruelens
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Yi Li
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative, Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Koen Geuten
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| |
Collapse
|
17
|
Identification and functional analysis of a novel PRKAG2 mutation responsible for Chinese PRKAG2 cardiac syndrome reveal an important role of non-CBS domains in regulating the AMPK pathway. J Cardiol 2013; 62:241-8. [PMID: 23778007 DOI: 10.1016/j.jjcc.2013.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 02/28/2013] [Accepted: 04/12/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND PRKAG2 gene encodes the γ2 regulatory subunit of AMP-activated protein kinase (AMPK) that acts as a sensor of cellular energy status, and its germline mutations are responsible for PRKAG2 cardiac syndrome (PCS). The majority of missense mutations of cystathionine beta-synthase (CBS) domains found in PCS impair the binding activity of PRKAG2 to adenosine derivatives, and therefore lead to PRKAG2 function impairment and AMPK activity alteration, resulting in a familial syndrome of ventricular preexcitation, conduction defects, and cardiac hypertrophy. However, it is unclear about the PRKAG2 mutation in the non-CBS domain. Here, a Chinese family exhibiting the cardiac syndrome associated with a novel heterozygous PRKAG2 mutation (Gly100Ser) mapped to exon 3 encoding a non-CBS domain is described and the function of this novel mutation was investigated in vitro. METHODS The PRKAG2 G100S and R302Q mutations were constructed by a two-step polymerase chain reaction and then transfected into CCL13 cells by lentivirus vectors. Wild-type PRKAG2 gene transfection was used as a negative control. PRKAG2 expression was determined by Western blot. Immunofluorescence was used to localize the intracellular PRKAG2 proteins. MTT assay was performed to explore the effect of mutations on cell proliferation. Periodic acid-Schiff staining was used for detecting glycogen accumulation. AMPK concentration was measured with enzyme-linked immunosorbent assay. RESULTS Our results showed neither intracellular localization of PRKAG2 nor cell growth was altered. In contrast, PRKAG2 protein expression levels were significantly reduced by this mutation. Furthermore, PRKAG2-mediated activity of AMPK was attenuated, resulting in glycogen metabolism dysregulation. These findings revealed that non-CBS domains of PRKAG2 were essential to the regulation of AMPK activity, similar to CBS. CONCLUSIONS Our study ascribes a crucial regulatory role to the novel PRKAG2 G100S mutation, and reiterates that PCS occurs as a consequence of AMPK signaling abnormality caused by PRKAG2 gene mutations.
Collapse
|
18
|
Liu Y, Bai R, Wang L, Zhang C, Zhao R, Wan D, Chen X, Caceres G, Barr D, Barajas-Martinez H, Antzelevitch C, Hu D. Identification of a novel de novo mutation associated with PRKAG2 cardiac syndrome and early onset of heart failure. PLoS One 2013; 8:e64603. [PMID: 23741347 PMCID: PMC3669303 DOI: 10.1371/journal.pone.0064603] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/15/2013] [Indexed: 11/29/2022] Open
Abstract
Introduction The major structure elements of the AMP-activated protein kinase (AMPK) are α, β, and γ sunbunits. Mutations in γ2 subunit (PRKAG2) have been associated with a cardiac syndrome including inherited ventricular preexcitation, conduction disorder and hypertrophy mimicking hypertrophic cardiomyopathy. The aim of the present study was to identify PRKAG2 syndrome among patients presenting with left ventricular hypertrophy (LVH). Methods and Results Nineteen unrelated subjects with unexplained LVH were clinically and genetically evaluated. Among 4 patients with bradycardia, manifestations of preexcitation were only found in a 19 year old male who also developed congestive heart failure 3 years later. Electrophysiological study of this case identified the coexistence of an AV accessory pathway and AV conduction defect. Histological analysis of his ventricular tissue isolated by biopsy confirmed excessive glycogen accumulation, prominent myofibrillar disarray and interstitial fibrosis. Direct sequencing of his DNA revealed a heterozygous mutation in PRKAG2 consisting of an A-to-G transition at nucleotide 1453 (c.1453A>G), predicting a substitution of a glutamic acid for lysine at highly-conserved residue 485 (p.Lys485Glu, K485E), which was absent in his unaffected family members and in 215 healthy controls. To assess the role of K485 in the structure and function of the protein, computational modeling calculations and conservation analyses were performed. Electrostatic calculations indicate that K485 forms a salt bridge with the conserved D248 residue in the AMPK β subunit, which is critical for proper regulation of the enzyme, and the K485E mutant disrupts the connection. Conclusions Our study identifies a novel de novo PRKAG2 mutation in a young, in which progression of the disease warrants close medical attention. It also underlines the importance of molecular screening of PRKAG2 gene in patients with unexplained LVH, ventricular preexcitation, conduction defect, and/or early onset of heart failure.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cardiovascular Department, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangzhou, China
| | - Rong Bai
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruifu Zhao
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deli Wan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinshan Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gabriel Caceres
- Department of Molecular Genetics and Experimental Cardiology, Masonic Medical Research Laboratory, Utica, New York, United States of America
| | - Daniel Barr
- Department of Chemistry and Biochemistry, Utica College, Utica, New York, United States of America
| | - Hector Barajas-Martinez
- Department of Molecular Genetics and Experimental Cardiology, Masonic Medical Research Laboratory, Utica, New York, United States of America
| | - Charles Antzelevitch
- Department of Molecular Genetics and Experimental Cardiology, Masonic Medical Research Laboratory, Utica, New York, United States of America
| | - Dan Hu
- Department of Molecular Genetics and Experimental Cardiology, Masonic Medical Research Laboratory, Utica, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Hardie DG, Ross FA, Hawley SA. AMP-activated protein kinase: a target for drugs both ancient and modern. CHEMISTRY & BIOLOGY 2012; 19:1222-36. [PMID: 23102217 PMCID: PMC5722193 DOI: 10.1016/j.chembiol.2012.08.019] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 02/07/2023]
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. It is activated, by a mechanism requiring the tumor suppressor LKB1, by metabolic stresses that increase cellular ADP:ATP and/or AMP:ATP ratios. Once activated, it switches on catabolic pathways that generate ATP, while switching off biosynthetic pathways and cell-cycle progress. These effects suggest that AMPK activators might be useful for treatment and/or prevention of type 2 diabetes and cancer. Indeed, AMPK is activated by the drugs metformin and salicylate, the latter being the major breakdown product of aspirin. Metformin is widely used to treat diabetes, while there is epidemiological evidence that both metformin and aspirin provide protection against cancer. We review the mechanisms of AMPK activation by these and other drugs, and by natural products derived from traditional herbal medicines.
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK.
| | | | | |
Collapse
|
20
|
Pinter K, Grignani RT, Czibik G, Farza H, Watkins H, Redwood C. Embryonic expression of AMPK γ subunits and the identification of a novel γ2 transcript variant in adult heart. J Mol Cell Cardiol 2012; 53:342-9. [PMID: 22683324 PMCID: PMC3477313 DOI: 10.1016/j.yjmcc.2012.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 11/16/2022]
Abstract
AMP-activated protein kinase (AMPK), the key sensor and regulator of cellular energy status, is a heterotrimeric enzyme with multiple isoforms for each subunit (α1/α 2; β1/β2; γ1/γ2/γ3). Mutations in PRKAG2, which encodes the γ2 regulatory subunit, cause a cardiomyopathy characterized by hypertrophy and conduction abnormalities. The two reported PRKAG2 transcript variants, γ2-short and γ2-long (encoding 328 and 569 amino acids respectively), are both widely expressed in adult tissues. We show that both γ2 variants are also expressed during cardiogenesis in mouse embryos; expression of the γ3 isoform was also detected unexpectedly at this stage. As neither γ2 transcript is cardiac specific nor differentially expressed during embryogenesis, it is paradoxical that the disease is largely restricted to the heart. However, a recently annotated γ2 transcript, termed γ2-3B as transcription starts at an alternative exon 3b, has been identified; it is spliced in-frame to exon 4 thus generating a protein of 443 residues in mouse with the first 32 residues being unique. It is increasingly expressed in the developing mouse heart and quantitative PCR analysis established that γ2-3B is the major PRKAG2 transcript (~ 60%) in human heart. Antibody against the novel N-terminal sequence showed that γ2-3B is predominantly expressed in the heart where it is the most abundant γ2 protein. The abundance of γ2-3B and its tissue specificity indicate that γ2-3B may have non-redundant role in the heart and hence mediate the predominantly cardiac phenotype caused by PRKAG2 mutations.
Collapse
Affiliation(s)
- Katalin Pinter
- Department of Cardiovascular Medicine, University of Oxford, West Wing Level 6, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | | | | | |
Collapse
|
21
|
Kim M, Shen M, Ngoy S, Karamanlidis G, Liao R, Tian R. AMPK isoform expression in the normal and failing hearts. J Mol Cell Cardiol 2012; 52:1066-73. [PMID: 22314372 DOI: 10.1016/j.yjmcc.2012.01.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 12/27/2022]
Abstract
AMP-activated protein kinase (AMPK) is a master metabolic switch that plays an important role in energy homeostasis at the cellular and whole body level, hence a promising drug target. AMPK is a heterotrimeric complex composed of catalytic α-subunit and regulatory β- and γ-subunits with multiple isoforms for each subunit. It has been shown that AMPK activity is increased in cardiac hypertrophy and failure but it is unknown whether changes in subunit composition of AMPK contribute to the altered AMPK activity. In this study, we determined the protein expression pattern of AMPK subunit isoforms during cardiac development as well as during cardiac hypertrophy and heart failure in mouse heart. We also compared the findings in failing mouse heart to that of the human failing hearts in order to determine whether the mouse heart is a good model of AMPK in human diseases. In mouse developmental hearts, AMPK was highly expressed in the fetal stages and fell back to the adult level after birth. In the failing mouse heart, there was a significant increase in α2, β2, and γ2 subunits both at the mRNA and protein levels. In contrary, we found significant increases in the protein level of α1, β1 and γ2c subunits in human failing hearts with no change in the mRNA level. We also compared isoform-specific AMPK activity in the mouse and human failing hearts. Consistent with the literature, in the failing mouse heart, the α2 complexes accounted for ~2/3 of total AMPK activity while the α1 complexes accounted for the remaining 30-35%. In the human hearts, however, the contribution of α1-AMPK activity was significantly higher (>40%) in the non-failing hearts, and it further increased to 50% in the failing hearts. Thus, the human hearts have a greater amount of α1-AMPK activity compared to the rodent hearts. In summary, the protein level and the isoform distribution of AMPK in the heart change significantly during normal development as well as in heart failure. These observations provide a basis for future development of therapeutic strategies for targeting AMPK.
Collapse
Affiliation(s)
- Maengjo Kim
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hallows KR, Mount PF, Pastor-Soler NM, Power DA. Role of the energy sensor AMP-activated protein kinase in renal physiology and disease. Am J Physiol Renal Physiol 2010; 298:F1067-77. [PMID: 20181668 PMCID: PMC2867412 DOI: 10.1152/ajprenal.00005.2010] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 02/18/2010] [Indexed: 11/22/2022] Open
Abstract
The ultrasensitive energy sensor AMP-activated protein kinase (AMPK) orchestrates the regulation of energy-generating and energy-consuming pathways. AMPK is highly expressed in the kidney where it is reported to be involved in a variety of physiological and pathological processes including ion transport, podocyte function, and diabetic renal hypertrophy. Sodium transport is the major energy-consuming process in the kidney, and AMPK has been proposed to contribute to the coupling of ion transport with cellular energy metabolism. Specifically, AMPK has been identified as a regulator of several ion transporters of significance in renal physiology, including the cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial sodium channel (ENaC), the Na(+)-K(+)-2Cl(-) cotransporter (NKCC), and the vacuolar H(+)-ATPase (V-ATPase). Identified regulators of AMPK in the kidney include dietary salt, diabetes, adiponectin, and ischemia. Activation of AMPK in response to adiponectin is described in podocytes, where it reduces albuminuria, and in tubular cells, where it reduces glycogen accumulation. Reduced AMPK activity in the diabetic kidney is associated with renal accumulation of triglyceride and glycogen and the pathogenesis of diabetic renal hypertrophy. Acute renal ischemia causes a rapid and powerful activation of AMPK, but the functional significance of this observation remains unclear. Despite the recent advances, there remain significant gaps in the present understanding of both the upstream regulating pathways and the downstream substrates for AMPK in the kidney. A more complete understanding of the AMPK pathway in the kidney offers potential for improved therapies for several renal diseases including diabetic nephropathy, polycystic kidney disease, and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Kenneth R Hallows
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
23
|
Renz B, Davies JK, Carling D, Watkins H, Redwood C. Determination of AMP-activated protein kinase phosphorylation sites in recombinant protein expressed using the pET28a vector: a cautionary tale. Protein Expr Purif 2009; 66:181-4. [PMID: 19269329 PMCID: PMC2691924 DOI: 10.1016/j.pep.2009.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 02/20/2009] [Accepted: 02/20/2009] [Indexed: 11/28/2022]
Abstract
AMP-activated protein kinase (AMPK) is responsible for sensing of the cell's energetic status and it phosphorylates numerous substrates involved in anabolic and catabolic processes as well as interacting with signaling cascades. Mutations in the gene encoding the gamma 2 regulatory subunit have been shown to cause hypertrophic cardiomyopathy (HCM) with conduction abnormalities. As part of a study to examine the role of AMPK in the heart, we tested whether specific domains of the thick filament component cardiac myosin binding protein-C (cMyBP-C) were good in vitro AMPK substrates. The commercially available pET28a expression vector was used to generate a recombinant form of the cMyBP-C C8 domain as a fusion protein with a hexahistidine tag. In vitro phosphorylation with activated kinase showed that the purified fusion protein was a good AMPK substrate, phosphorylated at a similar rate to the control SAMS peptide and with phosphate incorporation specifically in serine residues. However, subsequent analysis of alanine replacement mutants and thrombin digestion revealed that the strong AMPK phosphorylation site was contained within the thrombin cleavage sequence encoded by the vector. As this sequence is common to many commercial pET vectors, caution is advised in the mapping of AMPK phosphorylation sites when this sequence is present.
Collapse
Affiliation(s)
- Bernhard Renz
- Department of Cardiovascular Medicine, University of Oxford, West Wing Level 6, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | - David Carling
- MRC Clinical Sciences Centre, Imperial College London, UK
| | - Hugh Watkins
- Department of Cardiovascular Medicine, University of Oxford, West Wing Level 6, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Charles Redwood
- Department of Cardiovascular Medicine, University of Oxford, West Wing Level 6, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
24
|
Louden E, Chi MM, Moley KH. Crosstalk between the AMP-activated kinase and insulin signaling pathways rescues murine blastocyst cells from insulin resistance. Reproduction 2008; 136:335-44. [PMID: 18577554 PMCID: PMC3711107 DOI: 10.1530/rep-08-0161] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Maternal insulin resistance results in poor pregnancy outcomes. In vivo and in vitro exposure of the murine blastocyst to high insulin or IGF1 results in the down-regulation of the IGF1 receptor (IGF1R). This in turn leads to decreased glucose uptake, increased apoptosis, as well as pregnancy resorption and growth restriction. Recent studies have shown that blastocyst activation of AMP-activated protein kinase (AMPK) reverses these detrimental effects; however, the mechanism was not clear. The objective of this study was to determine how AMPK activation rescues the insulin-resistant blastocyst. Using trophoblast stem (TS) cells derived from the blastocyst, insulin resistance was recreated by transfecting with siRNA to Igf1r and down-regulating expression of the protein. These cells were then exposed to AMPK activators 5-aminoimidazole-4-carboxamide riboside and phenformin, and evaluated for apoptosis, insulin-stimulated 2-deoxyglucose uptake, PI3-kinase activity, and levels of phospho-AKT, phospho-mTor, and phospho-70S6K. Surprisingly, disrupted insulin signaling led to decreased AMPK activity in TS cells. Activators reversed these effects by increasing the AMP/ATP ratio. Moreover, this treatment increased insulin-stimulated 2-deoxyglucose transport and cell survival, and led to an increase in PI3-kinase activity, as well as increased P-mTOR and p70S6K levels. This study is the first to demonstrate significant crosstalk between the AMPK and insulin signaling pathways in embryonic cells, specifically the enhanced response of PI3K/AKT/mTOR to AMPK activation. Decreased insulin signaling also resulted in decreased AMPK activation. These findings provide mechanistic targets in the AMPK signaling pathway that may be essential for improved pregnancy success in insulin-resistant states.
Collapse
Affiliation(s)
- Erica Louden
- Department of OB/GYN, Washington University School of Medicine, 7th Floor McDonnell Science, 660 S. Euclid Avenue, Campus Box 8064, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
25
|
Winder WW, Thomson DM. Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochem Biophys 2007; 47:332-47. [PMID: 17652779 DOI: 10.1007/s12013-007-0008-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) is an energy sensing/signaling protein that, when activated, increases ATP production by stimulating glucose uptake and fatty acid oxidation while at the same time inhibiting ATP = consuming processes such as protein synthesis. Chronic activation of AMPK inhibits expression of lipogenic enzymes in the liver and enhances expression of mitochondrial oxidative enzymes in skeletal muscle. Deficiency of muscle LKB1, the upstream kinase of AMPK, results in greater fluctuation in energy charge during muscle contraction and decreased capacity for exercise at higher work rates. Because AMPK enhances both glucose uptake and fatty acid oxidation in skeletal muscle, it has become a target for prevention and treatment of type 2 diabetes and obesity.
Collapse
Affiliation(s)
- William W Winder
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | | |
Collapse
|
26
|
Vasan RS, Larson MG, Aragam J, Wang TJ, Mitchell GF, Kathiresan S, Newton-Cheh C, Vita JA, Keyes MJ, O'Donnell CJ, Levy D, Benjamin EJ. Genome-wide association of echocardiographic dimensions, brachial artery endothelial function and treadmill exercise responses in the Framingham Heart Study. BMC MEDICAL GENETICS 2007; 8 Suppl 1:S2. [PMID: 17903301 PMCID: PMC1995617 DOI: 10.1186/1471-2350-8-s1-s2] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Echocardiographic left ventricular (LV) measurements, exercise responses to standardized treadmill test (ETT) and brachial artery (BA) vascular function are heritable traits that are associated with cardiovascular disease risk. We conducted a genome-wide association study (GWAS) in the community-based Framingham Heart Study. METHODS We estimated multivariable-adjusted residuals for quantitative echocardiography, ETT and BA function traits. Echocardiography residuals were averaged across 4 examinations and included LV mass, diastolic and systolic dimensions, wall thickness, fractional shortening, left atrial and aortic root size. ETT measures (single exam) included systolic blood pressure and heart rate responses during exercise stage 2, and at 3 minutes post-exercise. BA measures (single exam) included vessel diameter, flow-mediated dilation (FMD), and baseline and hyperemic flow responses. Generalized estimating equations (GEE), family-based association tests (FBAT) and variance-components linkage were used to relate multivariable-adjusted trait residuals to 70,987 SNPs (Human 100K GeneChip, Affymetrix) restricted to autosomal SNPs with minor allele frequency > or =0.10, genotype call rate > or =0.80, and Hardy-Weinberg equilibrium p > or = 0.001. RESULTS We summarize results from 17 traits in up to 1238 related middle-aged to elderly men and women. Results of all association and linkage analyses are web-posted at http://ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007 webcite. We confirmed modest-to-strong heritabilities (estimates 0.30-0.52) for several Echo, ETT and BA function traits. Overall, p < 10(-5) in either GEE or FBAT models were observed for 21 SNPs (nine for echocardiography, eleven for ETT and one for BA function). The top SNPs associated were (GEE results): LV diastolic dimension, rs1379659 (SLIT2, p = 1.17*10(-7)); LV systolic dimension, rs10504543 (KCNB2, p = 5.18*10(-6)); LV mass, rs10498091 (p = 5.68*10(-6)); Left atrial size, rs1935881 (FAM5C, p = 6.56*10(-6)); exercise heart rate, rs6847149 (NOLA1, p = 2.74*10(-6)); exercise systolic blood pressure, rs2553268 (WRN, p = 6.3*10(-6)); BA baseline flow, rs3814219 (OBFC1, 9.48*10(-7)), and FMD, rs4148686 (CFTR, p = 1.13*10(-5)). Several SNPs are reasonable biological candidates, with some being related to multiple traits suggesting pleiotropy. The peak LOD score was for LV mass (4.38; chromosome 5); the 1.5 LOD support interval included NRG2. CONCLUSION In hypothesis-generating GWAS of echocardiography, ETT and BA vascular function in a moderate-sized community-based sample, we identified several SNPs that are candidates for replication attempts and we provide a web-based GWAS resource for the research community.
Collapse
Affiliation(s)
- Ramachandran S Vasan
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Martin G Larson
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | | | - Thomas J Wang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sekar Kathiresan
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Christopher Newton-Cheh
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Joseph A Vita
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Michelle J Keyes
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Christopher J O'Donnell
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Levy
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emelia J Benjamin
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
27
|
Costford SR, Kavaslar N, Ahituv N, Chaudhry SN, Schackwitz WS, Dent R, Pennacchio LA, McPherson R, Harper ME. Gain-of-function R225W mutation in human AMPKgamma(3) causing increased glycogen and decreased triglyceride in skeletal muscle. PLoS One 2007; 2:e903. [PMID: 17878938 PMCID: PMC1964808 DOI: 10.1371/journal.pone.0000903] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 08/14/2007] [Indexed: 12/25/2022] Open
Abstract
Background AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that is evolutionarily conserved from yeast to mammals and functions to maintain cellular and whole body energy homeostasis. Studies in experimental animals demonstrate that activation of AMPK in skeletal muscle protects against insulin resistance, type 2 diabetes and obesity. The regulatory γ3 subunit of AMPK is expressed exclusively in skeletal muscle; however, its importance in controlling overall AMPK activity is unknown. While evidence is emerging that gamma subunit mutations interfere specifically with AMP activation, there remains some controversy regarding the impact of gamma subunit mutations [1]–[3]. Here we report the first gain-of-function mutation in the muscle-specific regulatory γ3 subunit in humans. Methods and Findings We sequenced the exons and splice junctions of the AMPK γ3 gene (PRKAG3) in 761 obese and 759 lean individuals, identifying 87 sequence variants including a novel R225W mutation in subjects from two unrelated families. The γ3 R225W mutation is homologous in location to the γ2R302Q mutation in patients with Wolf-Parkinson-White syndrome and to the γ3R225Q mutation originally linked to an increase in muscle glycogen content in purebred Hampshire Rendement Napole (RN-) pigs. We demonstrate in differentiated muscle satellite cells obtained from the vastus lateralis of R225W carriers that the mutation is associated with an approximate doubling of both basal and AMP-activated AMPK activities. Moreover, subjects bearing the R225W mutation exhibit a ∼90% increase of skeletal muscle glycogen content and a ∼30% decrease in intramuscular triglyceride (IMTG). Conclusions We have identified for the first time a mutation in the skeletal muscle-specific regulatory γ3 subunit of AMPK in humans. The γ3R225W mutation has significant functional effects as demonstrated by increases in basal and AMP-activated AMPK activities, increased muscle glycogen and decreased IMTG. Overall, these findings are consistent with an important regulatory role for AMPK γ3 in human muscle energy metabolism.
Collapse
Affiliation(s)
- Sheila R. Costford
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nihan Kavaslar
- Division of Cardiology and Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Nadav Ahituv
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Shehla N. Chaudhry
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Wendy S. Schackwitz
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- United States Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Robert Dent
- Ottawa Hospital Weight Management Clinic, Ottawa, Ontario, Canada
| | - Len A. Pennacchio
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Ruth McPherson
- Division of Cardiology and Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Proszkowiec-Weglarz M, Richards MP, McMurtry JP. Molecular cloning, genomic organization, and expression of three chicken 5'-AMP-activated protein kinase gamma subunit genes. Poult Sci 2006; 85:2031-41. [PMID: 17032841 DOI: 10.1093/ps/85.11.2031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The 5'-AMP-activated protein kinase (AMPK) plays a key role in regulating cellular energy homeostasis. The AMPK is a heterotrimeric enzyme complex that consists of 1 catalytic (alpha) and 2 regulatory (beta and gamma) subunits. Mutations of the gamma subunit genes are known to affect AMPK functioning. In this study, we characterized the genomic organization and expression of 3 chicken AMPK gamma subunit genes (cPRKAG). Alternative splicing of the second exon of the cPRKAG1 gene resulted in 2 transcript variants that code for predicted proteins of 298 and 276 amino acids. Use of an alternate promoter and alternative splicing of the cPRKAG2 gene resulted in 4 transcript variants that code for predicted proteins of 567, 452, 328, and 158 amino acids. Alternative splicing of exon 3 of the cPRKAG3 gene resulted in the production of "long" and "short" transcript variants that code for predicted proteins of 382 and 378 amino acids, respectively. We found evidence for differential expression of individual gamma subunit gene transcript variants and, in some cases, tissue-specific expression was observed. The cPRKAG subunit genes displayed similar structural features and high sequence homology compared with corresponding mammalian gamma subunit gene homologues.
Collapse
Affiliation(s)
- M Proszkowiec-Weglarz
- Growth Biology Laboratory, Animal and Natural Resources Institute, USDA-ARS, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
29
|
Abstract
The heart is capable of utilizing a variety of substrates to produce the necessary ATP for cardiac function. AMP-activated protein kinase (AMPK) has emerged as a key regulator of cellular energy homeostasis and coordinates multiple catabolic and anabolic pathways in the heart. During times of acute metabolic stresses, cardiac AMPK activation seems to be primarily involved in increasing energy-generating pathways to maintain or restore intracellular ATP levels. In acute situations such as mild ischemia or short durations of severe ischemia, activation of cardiac AMPK appears to be necessary for cardiac myocyte function and survival by stimulating ATP generation via increased glycolysis and accelerated fatty acid oxidation. Whereas AMPK activation may be essential for adaptation of cardiac energy metabolism to acute and/or minor metabolic stresses, it is unknown whether AMPK activation becomes maladaptive in certain chronic disease states and/or extreme energetic stresses. However, alterations in cardiac AMPK activity are associated with a number of cardiovascular-related diseases such as pathological cardiac hypertrophy, myocardial ischemia, glycogen storage cardiomyopathy, and Wolff-Parkinson-White syndrome, suggesting the possibility of a maladaptive role. Although the precise role AMPK plays in the diseased heart is still in question, it is clear that AMPK is a major regulator of cardiac energy metabolism. The consequences of alterations in AMPK activity and subsequent cardiac energy metabolism in the healthy and the diseased heart will be discussed.
Collapse
Affiliation(s)
- Vernon W Dolinsky
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | |
Collapse
|
30
|
Abstract
AMP-activated protein kinase (AMPK) has emerged as a key regulator of energy metabolism in the heart. The high energy demands of the heart are primarily met by the metabolism of both fatty acids and glucose, both processes being regulated by AMPK. During myocardial ischaemia a rapid activation of AMPK occurs, resulting in an activation of both glucose uptake and glycolysis, as well as an increase in fatty acid oxidation. This activation of AMPK has the potential to increase energy production and to inhibit apoptosis, thereby protecting the heart during the ischaemic stress. However, at clinically relevant high levels of fatty acids, ischaemic-induced activation of AMPK also stimulates fatty acid oxidation during and following ischaemia. This can contribute to ischaemic injury secondary to an inhibition of glucose oxidation, which results in a decrease in cardiac efficiency. In a number of other non-cardiac tissues, AMPK has been shown to have pro-apoptotic effects. As a result, the question of whether AMPK activation benefits or harms the ischaemic heart remains controversial. The role of AMPK in cardiac hypertrophy is also controversial. Activation of AMPK inhibits protein synthesis, and may be an adaptive response to pathological cardiac hypertrophy. However, none of mouse models of AMPK deficiency (excluding those that may involve the gamma2 subunit mutations) demonstrate increased cardiac mass, suggesting that AMPK is not essential for restriction of cardiac growth. In addition to the potential effects of AMPK on myofibrillar hypertrophy associated with pressure overload, there is also controversy with respect to the cardiac hypertrophy associated with the gamma2 subunit mutations. In the cardiac hypertrophy associated with glycogen overload, both activating and inactivating mutations of AMPK in mice are associated with a marked cardiac hypertrophy. This review will address the issue of whether AMPK activation acts as an enemy or ally to the ischaemic and hypertrophied heart. Resolving this issue has important implications as to whether therapeutic approaches to protect the ischaemic heart should be developed which either activate or inhibit AMPK.
Collapse
Affiliation(s)
- Jason R B Dyck
- Cardiovascular Research Group, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
31
|
Light PE. Familial Wolff-Parkinson-White Syndrome: A Disease of Glycogen Storage or Ion Channel Dysfunction? J Cardiovasc Electrophysiol 2006; 17 Suppl 1:S158-S161. [PMID: 16686673 DOI: 10.1111/j.1540-8167.2006.00399.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wolff-Parkinson-White (WPW) syndrome is the most common cause of ventricular pre-excitation, a condition where, due to defects in the conduction pathway, all or part of the ventricle is excited earlier than would normally be expected, often leading to ventricular fibrillation and sudden cardiac death. It was recently discovered that many of the underlying mutations responsible for the familial form of WPW syndrome are located in the gene encoding for the regulatory gamma(2)-subunit (PRKAG2) of the AMP-activated protein kinase. The cellular mechanisms for the observed arrhythmias are currently being studied and may involve glycogen storage with associated hypertrophy as well as alterations in the properties of cardiac ion channels such as voltage-gated sodium channel. It is the aim of this review to discuss our current knowledge of the cellular disturbances underlying the induction of arrhythmias in patients with PRKAG2 mutations.
Collapse
Affiliation(s)
- Peter E Light
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
32
|
Xu M, Li X, Wang JG, Du P, Hong J, Gu W, Zhang Y, Ning G. Glucose and lipid metabolism in relation to novel polymorphisms in the 5'-AMP-activated protein kinase gamma2 gene in Chinese. Mol Genet Metab 2005; 86:372-8. [PMID: 16115789 DOI: 10.1016/j.ymgme.2005.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 06/27/2005] [Accepted: 06/28/2005] [Indexed: 11/25/2022]
Abstract
The 5'-AMP-activated protein kinase (AMPK) behaves as a fuel sensor in glucose and lipid metabolism. We sequenced exon 1 and flanking regions of the gene encoding for the gamma2 subunit of AMPK (AMPKgamma2) and identified two novel common polymorphisms at position -26 and IVS1+43. We then studied these two polymorphisms in relation to plasma glucose, insulin resistance, beta-cell function, and serum lipids in 290 Han Chinese undergoing an oral glucose tolerance test and a frequently sampled intravenous glucose tolerance test. The -26C/T and IVS1+43C/T polymorphisms were in tight linkage disequilibrium (P=0.0002). In adjusted categorical analyses, the -26TT genotype tended to be associated with a higher risk of type 2 diabetes (odds ratio 4.52, P=0.07). The adjusted continuous analyses were confirmatory. -26TT subjects, compared with -26C allele carriers, had higher concentrations of plasma glucose, both fasting (7.3 vs. 6.1 mmol/L, P=0.02) and after oral glucose loading (area under the curve for glucose, 1984 vs. 1596 minmmol/L, P=0.002), and had lower acute insulin response to glucose (143 vs. 404, P=0.0005) and disposition index (151 vs. 459, P=0.008). In further adjusted analyses, we observed that IVS1+43TT subjects, compared with IVS1+43C allele carriers, had significantly higher serum concentrations of triglycerides (4.20 vs. 2.00 mmol/L, P<0.0001) and total cholesterol (5.88 vs. 4.99 mmol/L, P=0.01). In conclusion, in Chinese, the AMPKgamma2 polymorphisms might be associated with glucose and lipid metabolism.
Collapse
Affiliation(s)
- Min Xu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Second Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
McKay SD, White SN, Kata SR, Loan R, Womack JE. The bovine 5' AMPK gene family: mapping and single nucleotide polymorphism detection. Mamm Genome 2004; 14:853-8. [PMID: 14724738 DOI: 10.1007/s00335-003-2276-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2003] [Accepted: 07/18/2003] [Indexed: 10/26/2022]
Abstract
The 5'-AMP-activated protein kinase (AMPK) family is an ancient stress response system whose primary function is regulation of cellular ATP. Activation of AMPK, which is instigated by environmental and nutritional stresses, initiates energy-conserving measures that protect the cell by inhibition and phosphorylation of key enzymes in energy-consuming biochemical pathways. The seven genes that comprise the bovine AMPK family were mapped in cattle by using a radiation hybrid panel. The seven genes mapped to six different cattle chromosomes, each with a LOD score greater than 10.0. PRKAA1 mapped to BTA 20, PRKAA2 and PRKAB2 to BTA 3, PRKAB1 to BTA 17, PRKAG1 to BTA 5, PRKAG2 to BTA 4, and PRKAG3 to BTA 2. Five of the seven genes mapped to regions expected from human/cattle comparative maps. PRKAB2 and PRKAG3, however, have not been mapped in humans. We predict these genes to be located on HSA 1 and 2, respectively. Additionally, one synonymous and one non-synonymous single nucleotide polymorphism (SNP) were detected in PRKAG3 in Bos taurus cattle. In an effort to determine ancestral origins, various herds of mixed breed cattle as well as other ruminant species were characterized for sequence variation in this region of PRKAG3. Owing to the physiological importance of this gene family, we believe that its individual genes are candidate genes for conferring resistance to diseases in cattle.
Collapse
Affiliation(s)
- Stephanie D McKay
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | | | | | | | | |
Collapse
|
34
|
Demeure O, Liaubet L, Riquet J, Milan D. Determination of PRKAG1 coding sequence and mapping of PRKAG1 and PRKAG2 relatively to porcine back fat thickness QTL. Anim Genet 2004; 35:123-5. [PMID: 15025572 DOI: 10.1111/j.1365-2052.2004.01102.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PRKAG1, PRKAG2 and PRKAG3 encode three isoforms of AMP-activated protein kinase gamma chain. A major effect on meat quality and a medium effect on back fat thickness of the RN- mutation in the PRKAG3 gene has previously been reported. We have now mapped PRKAG1 and PRKAG2 at expected locations on SSC5 and SSC18 by analysis of radiation hybrids (IMpRH panel). PRKAG2 has been mapped in a region where no quantitative trait loci (QTL) has been reported. PRKAG1 has been mapped close to (but probably outside) a region containing a QTL influencing fatness traits. We have determined the full coding sequence of PRKAG1. No missense mutation was identified when comparing the coding sequence of one Meishan and one Large White boars. Further work is, however, required to determine if a polymorphism in PRKAG1 could be responsible for a part of the variability observed on fatness traits.
Collapse
Affiliation(s)
- O Demeure
- Laboratoire de Génétique Cellulaire, INRA, BP 27, 31326 Castanet-Tolosan, France
| | | | | | | |
Collapse
|
35
|
Mahlapuu M, Johansson C, Lindgren K, Hjälm G, Barnes BR, Krook A, Zierath JR, Andersson L, Marklund S. Expression profiling of the gamma-subunit isoforms of AMP-activated protein kinase suggests a major role for gamma3 in white skeletal muscle. Am J Physiol Endocrinol Metab 2004; 286:E194-200. [PMID: 14559719 DOI: 10.1152/ajpendo.00147.2003] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression patterns of the three isoforms of the regulatory gamma-subunit of AMP-activated protein kinase (AMPK) were determined in various tissues from adult humans, mice, and rats, as well as in human primary muscle cells. Real-time PCR-based quantification of mRNA showed similar expression patterns in the three species and a good correlation with protein expression in mice and rats. The gamma3-isoform appeared highly specific to skeletal muscle, whereas gamma1 and gamma2 showed broad tissue distributions. Moreover, the proportion of white, type IIb fibers in the mouse and rat muscle samples, as indicated by real-time PCR quantification of Atp1b2 mRNA, showed a strong positive correlation with the expression of gamma3. In samples of white skeletal muscle, gamma3 clearly appeared to be the most abundant gamma-isoform. Differentiation of human primary muscle cells from myoblasts into multinucleated myotubes was accompanied by upregulation of gamma3 mRNA expression, whereas levels of gamma1 and gamma2 remained largely unchanged. However, even in these cultured myotubes, gamma2 was the most highly expressed isoform, indicating a considerable difference compared with adult skeletal muscle. Immunoblot analysis of mouse gastrocnemius and quadriceps muscle extracts precipitated with a gamma3-specific antibody showed that gamma3 was exclusively associated with the alpha2- and beta2-subunit isoforms. The observation that the AMPKgamma3 isoform is expressed primarily in white skeletal muscle, in which it is the predominant gamma-isoform, strongly suggests that gamma3 has a key role in this tissue.
Collapse
|
36
|
He H, Dang Y, Dai F, Guo Z, Wu J, She X, Pei Y, Chen Y, Ling W, Wu C, Zhao S, Liu JO, Yu L. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 2003; 278:29278-87. [PMID: 12740394 DOI: 10.1074/jbc.m303800200] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular machinery required for autophagy is highly conserved in all eukaryotes as seen by the high degree of conservation of proteins involved in the formation of the autophagosome membranes. Recently, both yeast Apg8p and its rat homologue Map1lc3 were identified as essential constituents of autophagosome membrane as a processed form. In addition, both the yeast and human proteins exist in two modified forms produced by a series of post-translational modifications including a critical C-terminal cleavage after a conserved Gly residue, and the smaller processed form is associated with the autophagosome membranes. Herein, we report the identification and characterization of three human orthologs of the rat Map1LC3, named MAP1LC3A, MAP1LC3B, and MAP1LC3C. We show that the three isoforms of human MAP1LC3 exhibit distinct expression patterns in different human tissues. Importantly, we found that the three isoforms of MAP1LC3 differ in their post-translation modifications. Although MAP1LC3A and MAP1LC3C are produced by the proteolytic cleavage after the conserved C-terminal Gly residue, like their rat counterpart, MAP1LC3B does not undergo C-terminal cleavage and exists in a single modified form. The essential site for the distinct post-translation modification of MAP1LC3B is Lys-122 rather than the conserved Gly-120. Subcellular localization by cell fractionation and immunofluorescence revealed that three human isoforms are associated with membranes involved in the autophagic pathway. These results revealed different regulation of the three human isoforms of MAP1LC3 and implicate that the three isoforms may have different physiological functions.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Light PE, Wallace CHR, Dyck JRB. Constitutively active adenosine monophosphate-activated protein kinase regulates voltage-gated sodium channels in ventricular myocytes. Circulation 2003; 107:1962-5. [PMID: 12682004 DOI: 10.1161/01.cir.0000069269.60167.02] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Some PRKAG2 mutations in the human gene encoding for the gamma-subunit of the adenosine monophosphate-activated protein kinase (AMPK) recently have been shown to cause rhythm disturbances (often fatal) in affected patients. METHODS AND RESULTS Rat ventricular myocytes were infected with an adenoviral vector designed to express a truncated constitutively active mutant (T172D) of the AMPK alpha1-subunit (CA-AMPK). The human cardiac sodium channel hH1 and CA-AMPK were also coexpressed in a mammalian cell line. Patch-clamp techniques were used to measure myocyte action potentials and recombinant hH1 sodium channel currents. Our results demonstrate that action potential duration is significantly prolonged in myocytes expressing the CA-AMPK construct, leading to the production of potentially arrhythmogenic early afterdepolarizations. Recombinant sodium channel current analysis revealed that expression of CA-AMPK significantly slowed open-state inactivation and shifted the voltage-activation curve in a hyperpolarizing direction. CONCLUSIONS We propose that sodium channels may be substrates for AMPK, possibly contributing to the observed arrhythmogenic activity in patients with some PRKAG2 mutations.
Collapse
Affiliation(s)
- Peter E Light
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
38
|
Vaughan CJ, Hom Y, Okin DA, McDermott DA, Lerman BB, Basson CT. Molecular genetic analysis of PRKAG2 in sporadic Wolff-Parkinson-White syndrome. J Cardiovasc Electrophysiol 2003; 14:263-8. [PMID: 12716108 DOI: 10.1046/j.1540-8167.2003.02394.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Mutations in the PRKAG2 gene that encodes the gamma2 regulatory subunit of AMP-activated protein kinase have been shown to cause autosomal dominant Wolff-Parkinson-White (WPW) syndrome associated with hypertrophic cardiomyopathy. Prior studies focused on familial WPW syndrome associated with other heart disease such as hypertrophic cardiomyopathy. However, such disease accounts for only a small fraction of WPW cases, and the contribution of PRKAG2 mutations to sporadic isolated WPW syndrome is unknown. METHODS AND RESULTS Subjects presented for clinical electrophysiologic evaluation of suspected WPW syndrome. WPW syndrome was diagnosed by ECG findings and/or by clinically indicated electrophysiologic study prior to enrollment. Echocardiography excluded hypertrophic cardiomyopathy. Denaturing high-performance liquid chromatography and automated sequencing were used to search for PRKAG2 mutations. Twenty-six patients without a family history of WPW syndrome were studied. No subject had cardiac hypertrophy, and only one patient had associated congenital heart disease. Accessory pathways were detected at diverse locations within the heart. Two polymorphisms in PRKAG2 were detected. [inv6+36insA] occurred in intron 6 in 4 WPW patients and [inv10+10delT] in intron 10 in 1 WPW patient. Both occurred in normal unrelated chromosomes. No PRKAG2 mutations were detected. CONCLUSION This study shows that, unlike familial WPW syndrome, constitutional mutation of PRKAG2 is not commonly associated with sporadic WPW syndrome. Although polymorphisms within the PRKAG2 introns were identified, there is no evidence that these polymorphisms predispose to accessory pathway formation because their frequency is similarly high in both WPW patients and normal individuals. Further studies are warranted to identify the molecular basis of common sporadic WPW syndrome.
Collapse
Affiliation(s)
- Carl J Vaughan
- Molecular Cardiology Laboratory, Department of Medicine, Weill Medical College of Cornell University, The New York-Presbyterian Hospital, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
39
|
Prochazka M, Farook VS, Ossowski V, Wolford JK, Bogardus C. Variant screening of PRKAB2, a type 2 diabetes mellitus susceptibility candidate gene on 1q in Pima Indians. Mol Cell Probes 2002; 16:421-7. [PMID: 12490143 DOI: 10.1006/mcpr.2002.0439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The AMP-activated protein kinase (AMPK) is a key enzyme involved in the regulation of lipid and glucose metabolism. There are multiple isoforms of the three subunits of this enzymatic complex, each encoded by a different gene in humans. We have investigated the PRKAB2 gene encoding the beta2 subunit, which is located on chromosome 1q within a region linked with type 2 diabetes mellitus (T2DM) in the Pima Indians and four different Caucasian populations. The gene consists of eight exons spanning about 15 kb, and we detected nine variants in the introns and 3' UTR, including eight informative single nucleotide polymorphisms (SNPs) and one rare 4 bp insertion/deletion. In an analysis of representative markers in selected Pima Indians including 149 diabetic cases (onset age < 25 years) and 150 controls (at least 45 years old, with normal glucose tolerance), we found no evidence for association of this locus with T2DM. We conclude that variants in PRKAB2 are unlikely to contribute to the disease susceptibility in Pima Indians.
Collapse
Affiliation(s)
- M Prochazka
- Clinical Diabetes and Nutrition Section, Phoenix Epidemiology and Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 N 16th Street, Phoenix, AZ 85016, USA.
| | | | | | | | | |
Collapse
|
40
|
Gollob MH, Green MS, Tang ASL, Roberts R. PRKAG2 cardiac syndrome: familial ventricular preexcitation, conduction system disease, and cardiac hypertrophy. Curr Opin Cardiol 2002; 17:229-34. [PMID: 12015471 DOI: 10.1097/00001573-200205000-00004] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genetic studies of families with inherited cardiac rhythm disturbances have established a molecular basis for ventricular arrhythmogenic disorders. Genes responsible for the long QT syndrome, Brugada syndrome, and polymorphic ventricular tachycardia have been identified. The elucidation of genetic defects responsible for more commonly occurring supraventricular rhythm disturbances have not been as forthcoming, with the exception of SCN5A mutations known to cause conduction system disease. Recently, we identified the genetic cause of a familial arrhythmogenic syndrome characterized by ventricular preexcitation and tachyarrhythmias (Wolff-Parkinson-White syndrome), progressive conduction system disease, and cardiac hypertrophy. The causative gene was shown to be the gamma-2 regulatory subunit (PRKAG2) of AMP-activated protein kinase. The role of AMP-activated protein kinase in the regulation of the glucose metabolic pathway in muscle suggests that genetic defects in PRKAG2 may induce a previously undescribed cardiac glycogenosis syndrome.
Collapse
Affiliation(s)
- Michael H Gollob
- Division of Cardiology, University of Western Ontario, London Health Sciences Center, Ontario, Canada.
| | | | | | | |
Collapse
|
41
|
Gollob MH, Seger JJ, Gollob TN, Tapscott T, Gonzales O, Bachinski L, Roberts R. Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation 2001; 104:3030-3. [PMID: 11748095 DOI: 10.1161/hc5001.102111] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We recently reported a mutation in the PRKAG2 gene to be responsible for a familial syndrome of ventricular preexcitation, atrial fibrillation, conduction defects, and cardiac hypertrophy. We now report a novel mutation in PRKAG2 causing Wolff-Parkinson-White syndrome and conduction system disease with onset in childhood and the absence of cardiac hypertrophy. METHODS AND RESULTS DNA was extracted from white blood cells obtained from family members. PRKAG2 exons were amplified by polymerase chain reaction and were screened for mutations by direct sequencing. The genomic organization of the PRKAG2 gene was determined using inter-exon long-range polymerase chain reaction for cDNA sequence not available in the genome database. A missense mutation, Arg531Gly, was identified in all affected individuals but was absent in 150 unrelated individuals. The PRKAG2 gene was determined to consist of 16 exons and is at least 280 kb in size. CONCLUSIONS We identified a novel mutation (Arg531Gly) in the gamma-2 regulatory subunit (PRKAG2) of AMP-activated protein kinase (AMPK) to be responsible for a syndrome associated with ventricular preexcitation and early onset of atrial fibrillation and conduction disease. These observations confirm an important functional role of AMPK in the regulation of ion channels specific to cardiac tissue. The identification of the cardiac ion channel(s) serving as substrate for AMPK not only would provide insight into the molecular basis of atrial fibrillation and heart block but also may suggest targets for the development of more specific therapy for these common rhythm disturbances.
Collapse
Affiliation(s)
- M H Gollob
- Section of Cardiology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|