1
|
Kaplan K, Hunsberger HC. Benzodiazepine-induced anterograde amnesia: detrimental side effect to novel study tool. Front Pharmacol 2023; 14:1257030. [PMID: 37781704 PMCID: PMC10536168 DOI: 10.3389/fphar.2023.1257030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Benzodiazepines (BZDs) are anxiolytic drugs that act on GABAa receptors and are used to treat anxiety disorders. However, these drugs come with the detrimental side effect of anterograde amnesia, or the inability to form new memories. In this review we discuss, behavioral paradigms, sex differences and hormonal influences affecting BZD-induced amnesia, molecular manipulations, including the knockout of GABAa receptor subunits, and regional studies utilizing lesion and microinjection techniques targeted to the hippocampus and amygdala. Additionally, the relationship between BZD use and cognitive decline related to Alzheimer's disease is addressed, as there is a lack of consensus on whether these drugs are involved in inducing or accelerating pathological cognitive deficits. This review aims to inspire new research directions, as there is a gap in knowledge in understanding the cellular and molecular mechanisms behind BZD-induced amnesia. Understanding these mechanisms will allow for the development of alternative treatments and potentially allow BZDs to be used as a novel tool to study Alzheimer's disease.
Collapse
Affiliation(s)
- Kameron Kaplan
- Center for Neurodegenerative Diseases and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL, United States
| | - Holly Christian Hunsberger
- Center for Neurodegenerative Diseases and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL, United States
| |
Collapse
|
2
|
Fernández-Teruel A, Tobeña A. Revisiting the role of anxiety in the initial acquisition of two-way active avoidance: pharmacological, behavioural and neuroanatomical convergence. Neurosci Biobehav Rev 2020; 118:739-758. [PMID: 32916193 DOI: 10.1016/j.neubiorev.2020.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/10/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
Two-way active avoidance (TWAA) acquisition constitutes a particular case of approach -avoidance conflict for laboratory rodents. The present article reviews behavioural, psychopharmacological and neuroanatomical evidence accumulated along more than fifty years that provides strong support to the contention that anxiety is critical in the transition from CS (conditioned stimulus)-induced freezing to escape/avoidance responses during the initial stages of TWAA acquisition. Thus, anxiolytic drugs of different types accelerate avoidance acquisition, anxiogenic drugs impair it, and avoidance during these initial acquisition stages is negatively associated with other typical measures of anxiety. In addition behavioural and developmental treatments that reduce or increase anxiety/stress respectively facilitate or impair TWAA acquisition. Finally, evidence for the regulation of TWAA acquisition by septo-hippocampal and amygdala-related mechanisms is discussed. Collectively, the reviewed evidence gives support to the initial acquisition of TWAA as a paradigm with considerable predictive and (in particular) construct validity as an approach-avoidance conflict-based rodent anxiety model.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain.
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
3
|
Abstract
There are 3 common physiological estrogens, of which estradiol (E2) is seen to decline rapidly over the menopausal transition. This decline in E2 has been associated with a number of changes in the brain, including cognitive changes, effects on sleep, and effects on mood. These effects have been demonstrated in both rodent and non-human preclinical models. Furthermore, E2 interactions have been indicated in a number of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, and depression. In normal brain aging, there are a number of systems that undergo changes and a number of these show interactions with E2, particularly the cholinergic system, the dopaminergic system, and mitochondrial function. E2 treatment has been shown to ameliorate some of the behavioral and morphological changes seen in preclinical models of menopause; however, in clinical populations, the effects of E2 treatment on cognitive changes after menopause are mixed. The future use of sex hormone treatment will likely focus on personalized or precision medicine for the prevention or treatment of cognitive disturbances during aging, with a better understanding of who may benefit from such treatment.
Collapse
Affiliation(s)
- Jason K Russell
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Paul A Newhouse
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Geriatric Research, Education, and Clinical Center (GRECC), Tennessee VA Health Systems, Nashville, TN, 37212, USA.
| |
Collapse
|
4
|
Atwood CS, Ekstein SF. Human versus non-human sex steroid use in hormone replacement therapies part 1: Preclinical data. Mol Cell Endocrinol 2019; 480:12-35. [PMID: 30308266 DOI: 10.1016/j.mce.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 03/12/2018] [Accepted: 10/04/2018] [Indexed: 11/24/2022]
Abstract
Prior to 2002, hormone replacement therapy (HRT) was considered to be an important component of postmenopausal healthcare. This was based on a plethora of basic, epidemiological and clinical studies demonstrating the health benefits of supplementation with human sex steroids. However, adverse findings from the Women's Health Initiative (WHI) studies that examined the 2 major forms of HRT in use in the US at that time - Premarin (conjugated equine estrogens; CEE) and Prempro (CEE + medroxyprogesterone acetate; MPA), cast a shadow over the use of any form of HRT. Here we review the biochemical and physiological differences between the non-human WHI study hormones - CEE and MPA, and their respective human counterparts 17β-estradiol (E2) and progesterone (P4). Preclinical data from the last 30 years demonstrate clear differences between human and non-human sex steroids on numerous molecular, physiological and functional parameters in brain, heart and reproductive tissue. In contrast to CEE supplementation, which is not always detrimental although certainly not as optimal as E2 supplementation, MPA is clearly not equivalent to P4, having detrimental effects on cognitive, cardiac and reproductive function. Moreover, unlike P4, MPA is clearly antagonistic of the positive effects of E2 and CEE on tissue function. These data indicate that minor chemical changes to human sex steroids result in physiologically distinct actions that are not optimal for tissue health and functioning.
Collapse
Affiliation(s)
- Craig S Atwood
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI, 53705, USA; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027, WA, Australia.
| | - Samuel F Ekstein
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, USA
| |
Collapse
|
5
|
Precision medicine and drug development in Alzheimer's disease: the importance of sexual dimorphism and patient stratification. Front Neuroendocrinol 2018; 50:31-51. [PMID: 29902481 DOI: 10.1016/j.yfrne.2018.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (ND) are among the leading causes of disability and mortality. Considerable sex differences exist in the occurrence of the various manifestations leading to cognitive decline. Alzheimer's disease (AD) exhibits substantial sexual dimorphisms and disproportionately affects women. Women have a higher life expectancy compared to men and, consequently, have more lifespan to develop AD. The emerging precision medicine and pharmacology concepts - taking into account the individual genetic and biological variability relevant for disease risk, prevention, detection, diagnosis, and treatment - are expected to substantially enhance our knowledge and management of AD. Stratifying the affected individuals by sex and gender is an important basic step towards personalization of scientific research, drug development, and care. We hypothesize that sex and gender differences, extending from genetic to psychosocial domains, are highly relevant for the understanding of AD pathophysiology, and for the conceptualization of basic/translational research and for clinical therapy trial design.
Collapse
|
6
|
Philpot RM, Ficken M, Wecker L. Doxorubicin and cyclophosphamide lead to long-lasting impairment of spatial memory in female, but not male mice. Behav Brain Res 2016; 307:165-75. [DOI: 10.1016/j.bbr.2016.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
|
7
|
Mosquera L, Shepherd L, Torrado AI, Torres-Diaz YM, Miranda JD, Segarra AC. Comparison of Two Methods of Estradiol Replacement: their Physiological and Behavioral Outcomes. ACTA ACUST UNITED AC 2015; 6:276. [PMID: 26962471 DOI: 10.4172/2157-7579.1000276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fluctuating sex steroids during the estrous or menstrual cycle of mammalian females make it difficult to determine their role on behaviors and physiology. To avoid this, many investigators ovariectomize their animals and administer progesterone, estradiol or a combination of both. Several different strategies are used to administer estradiol, which confounds interpretation of results. This study compared two methods of estradiol replacement implants: Silastic tubes filled with crystalline estradiol benzoate (E2) and commercially available estradiol benzoate pellets. Implants were placed subcutaneously in adult ovariectomized (OVX) rats and blood samples obtained weekly. Control OVX rats received empty Silastic tubes or placebo pellets. Our data shows that E2 plasma levels from rats with Silastic implants peaked after one week and decreased slowly thereafter. In contrast, plasma E2 from commercial pellets peaked after two weeks, increasing and decreasing over time. To validate hormone release, body weight was monitored. All E2 treated animals maintained a similar body weight over the four weeks period whereas an increase in body weight over time was observed in the OVX group that received empty implants, confirming E2 release and supporting the role of E2 in the regulation of body weight. Furthermore, the effects of E2 on basal locomotor activity were assessed using animal activity cages. Results showed no difference between E2 and control group in several locomotor activities. These results indicate that Silastic implants achieve more stable plasma estradiol levels than pellets and thus are a better alternative for studies of estradiol on brain function and behavior.
Collapse
Affiliation(s)
- Laurivette Mosquera
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Luz Shepherd
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Aranza I Torrado
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Yvonne M Torres-Diaz
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Jorge D Miranda
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Annabell C Segarra
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| |
Collapse
|
8
|
de Macêdo Medeiros A, Izídio GS, Sousa DS, Macedo PT, Silva AF, Shiramizu VKM, Cabral A, Ribeiro AM, Silva RH. Estrogen levels modify scopolamine-induced amnesia in gonadally intact rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53:99-108. [PMID: 24657885 DOI: 10.1016/j.pnpbp.2014.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 12/23/2022]
Abstract
Previous studies suggested that estrogen plays a role in cognitive function by modulating the cholinergic transmission. However, most of the studies dealing with this subject have been conducted using ovariectomized rats. In the present study we evaluated the effects of physiological and supra-physiological variation of estrogen levels on scopolamine-induced amnesia in gonadally intact female rats. We used the plus-maze discriminative avoidance task (PMDAT) in order to evaluate anxiety levels and motor activity concomitantly to the memory performance. In experiment 1, female Wistar rats in each estrous cycle phase received scopolamine (1 mg/kg) or saline i.p. 20 min before the training session in the PMDAT. In experiment 2, rats in diestrus received estradiol valerate (1 mg/kg) or sesame oil i.m., and scopolamine (1 mg/kg) or saline i.p., 45 min and 20 min before the training, respectively. In experiment 3, rats in diestrus received scopolamine (1 mg/kg) or saline i.p. 20 min before the training, and estradiol valerate (1 mg/kg) or sesame oil i.m. immediately after the training session. In all experiments, a test session was performed 24 h later. The main results showed that: (1) scopolamine impaired retrieval and induced anxiolytic and hyperlocomotor effects in all experiments; (2) this cholinergic antagonist impaired acquisition only in animals in diestrus; (3) acute administration of estradiol valerate prevented the learning impairment induced by scopolamine and (4) interfered with memory consolidation process. The results suggest that endogenous variations in estrogen levels across the estrous cycle modulate some aspects of memory mediated by the cholinergic system. Indeed, specifically in diestrus, a stage with low estrogen levels, the impairment produced by scopolamine on the acquisition was counteracted by exogenous administration of the hormone, whereas the posttraining treatment potentiated the negative effects of scopolamine during the consolidation phase of memory.
Collapse
Affiliation(s)
| | - Geison Souza Izídio
- Behavioral Genetics Laboratory, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Diego Silveira Sousa
- Memory Studies Laboratory, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Alicia Cabral
- Memory Studies Laboratory, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Regina Helena Silva
- Memory Studies Laboratory, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
9
|
Birbeck JA, Khalid M, Mathews TA. Potentiated striatal dopamine release leads to hyperdopaminergia in female brain-derived neurotrophic factor heterozygous mice. ACS Chem Neurosci 2014; 5:275-81. [PMID: 24517838 DOI: 10.1021/cn400157b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The goal of this study was to determine whether a reduction in brain-derived neurotrophic factor (BDNF) levels in female mice leads to dopaminergic system dysregulation. Through a series of in vivo brain microdialysis and slice voltammetry experiments, we discerned that female BDNF heterozygous (BDNF(+/-)) mice are hyperdopaminergic, similar to their male BDNF(+/-) counterparts. Zero-net flux microdialysis results showed that female BDNF(+/-) mice had increased striatal extracellular dopamine levels, while stimulated regional release by high potassium concentrations potentiated dopamine release through vesicular-mediated depolarization. Using the complementary technique of fast scan cyclic voltammetry, electrical stimulation evoked greater dopamine release in the female BDNF(+/-) mice, whereas dopamine uptake remained unchanged relative to that of female wildtype mice. Following psychostimulant methamphetamine administration, female BDNF(+/-) mice showed potentiated dopamine release compared to their wildtype counterparts. Taken together, these dopamine release impairments in female mice appear to result in a hyperdopaminergic phenotype without concomitant alterations in dopamine uptake.
Collapse
Affiliation(s)
- Johnna A. Birbeck
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Madiha Khalid
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Tiffany A. Mathews
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
10
|
Mennenga S, Bimonte-Nelson H. Translational cognitive endocrinology: designing rodent experiments with the goal to ultimately enhance cognitive health in women. Brain Res 2013; 1514:50-62. [PMID: 23391594 PMCID: PMC3936018 DOI: 10.1016/j.brainres.2013.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/12/2013] [Indexed: 02/08/2023]
Abstract
Understanding the cognitive impact of endogenously derived, and exogenously administered, hormone alterations is necessary for developing hormone treatments to support healthy brain function in women, especially during aging. The increasing number of studies in the burgeoning area of translational cognitive neuroendocrinology has revealed numerous factors that influence the extent and direction of female steroid effects on cognition. Here, we discuss the decision processes underlying the design of rodent hormone manipulation experiments evaluating learning and memory. It is noted that even when beginning with a clear hypothesis-driven question, there are numerous factors to consider in order to solidify a sound experimental design that will yield clean, interpretable results. Decisions and considerations include: age of animals at hormone administration and test, ovariectomy implementation, when to administer hormones relative to ovarian hormone loss, how and whether to monitor the estrous cycle if animals are ovary-intact, dose of hormone, administration route of hormone, hormone treatment confirmation protocols, handling procedures required for hormone administration and treatment confirmation, cognitive domains to be tested and which mazes should be utilized to test these cognitive domains, and control measures to be used. A balanced view of optimal design and realistic experimental practice and protocol is presented. The emerging results from translational cognitive neuroendocrinology studies have been diverse, but also enlightening and exciting as we realize the broad scope and powerful nature of ovarian hormone effects on the brain and its function. We must design, implement, and interpret hormone and cognition experiments with sensitivity to these tenets, acknowledging and respecting the breadth and depth of the impact gonadal hormones have on brain functioning and its rich plasticity. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
Affiliation(s)
- S.E. Mennenga
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer’s Consortium, USA
| | - H.A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer’s Consortium, USA
| |
Collapse
|
11
|
Estrogen enhances the retention of spatial reference memory in the open field tower task, but disrupts the expression of spatial memory following a novel start position. Neurobiol Learn Mem 2013. [DOI: 10.1016/j.nlm.2012.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Abstract
Wider use of pharmacological models would facilitate the development of new drugs for Alzheimer's disease (AD), The two main models currently used are based on the cholinergic and glutamatergic hypotheses of AD, Although they lead to some of the attention and memory impairment observed in AD, they do not fully reproduce the AD pattern. The few studies that used a combination modeling approach, ie, the simultaneous administration of several drugs with the aim of impairing several neurotransmitters or different aspects of a single system, have reported no or marginal cumulative effect. On the basis of current understanding of glutamate and acetylcholine involvement in AD pathophysiology, we suggest that models using selective muscarinic-1 (M(1)) receptor blockers would better mimic the status of the cholinergic system in AD, This kind of model might be suitable for the assessment of drugs that do not act directly on the cholinergic system.
Collapse
Affiliation(s)
- C Gilles
- CNS Aging Research, FORENAP - Institute for Research in Neuroscience and Neuropsychiatry, Rouffach, France
| | | |
Collapse
|
13
|
Smith YR, Bowen L, Love TM, Berent-Spillson A, Frey KA, Persad CC, Reame NK, Koeppe RA, Zubieta JK. Early initiation of hormone therapy in menopausal women is associated with increased hippocampal and posterior cingulate cholinergic activity. J Clin Endocrinol Metab 2011; 96:E1761-70. [PMID: 21865354 PMCID: PMC3205894 DOI: 10.1210/jc.2011-0351] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONTEXT The role of ovarian hormones in maintaining neuronal integrity and cognitive function is still debated. This study was undertaken to clarify the potential relationship between postmenopausal hormone use and the cholinergic system. OBJECTIVE We hypothesized that early initiated hormone therapy (HT) preserves the cholinergic system and that estrogen therapy (ET) would be associated with higher levels of acetylcholinesterase activity in the posterior cingulate cortex and hippocampus compared to estrogen plus progestin therapy (EPT) or no HT. DESIGN AND SETTING We conducted a cross-sectional study at a university teaching hospital. PATIENTS Fifty postmenopausal women (age, 65.2 ± 0.7 yr) with early long-term HT (n = 34; 13 ET and 21 EPT) or no HT (n = 16) participated in the study. INTERVENTIONS There were no interventions. MAIN OUTCOME MEASURE We measured cholinergic activity (acetylcholinesterase) in the hippocampus and posterior cingulate brain regions as measured by N-[(11)C]methylpiperidin-4-yl propionate and positron emission tomography as a marker of cholinergic function. RESULTS Significant effects of treatment on cholinergic activity measures were obtained in the left hippocampus (F = 3.56; P = 0.04), right hippocampus (F = 3.42; P = 0.04), and posterior cingulate (F = 3.76; P = 0.03). No significant effects were observed in a cortical control region. Post hoc testing identified greater cholinergic activity in the EPT group compared to the no-HT group in the left hippocampus (P = 0.048) and posterior cingulate (P = 0.045), with a nonstatistically significant trend in the right hippocampus (P = 0.073). CONCLUSIONS A differential effect of postmenopausal ET and EPT on cholinergic neuronal integrity was identified in postmenopausal women. The findings are consistent with a preservation of cholinergic neuronal integrity in the EPT group.
Collapse
Affiliation(s)
- Yolanda R Smith
- Department of Obstetrics and Gynecology, University of Michigan Health Systems, 1500 East Medical Center Drive, Room L4224 Women's Hospital, Ann Arbor, Michigan 48109-0276, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Counts SE, Che S, Ginsberg SD, Mufson EJ. Gender differences in neurotrophin and glutamate receptor expression in cholinergic nucleus basalis neurons during the progression of Alzheimer's disease. J Chem Neuroanat 2011; 42:111-7. [PMID: 21397006 DOI: 10.1016/j.jchemneu.2011.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/28/2011] [Indexed: 12/11/2022]
Abstract
The higher incidence rate of Alzheimer's disease (AD) in elderly women indicates that gender plays a role in AD pathogenesis. Evidence from clinical and pharmacologic studies, neuropathological examinations, and models of hormone replacement therapy suggest that cholinergic basal forebrain (CBF) cortical projection neurons within the nucleus basalis (NB), which mediate memory and attention and degenerate in AD, may be preferentially vulnerable in elderly women compared to men. CBF neurons depend on nerve growth factor (NGF) and their cognate receptors (trkA and p75(NTR)) for their survival and maintenance. We recently demonstrated a shift in the balance of NGF and its receptors toward cell death mechanisms during the progression of AD. To address whether gender affects NGF signaling system expression within the CBF, we used single cell RNA amplification and custom microarray technologies to compare gene expression profiles of single cholinergic NB neurons in tissue specimens from male and female members of the Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or mild/moderate AD. p75(NTR) expression within male cholinergic NB neurons was unchanged across clinical diagnosis, whereas p75(NTR) mRNA levels in female NB neurons exhibited a ∼40% reduction in AD compared to NCI. Male AD subjects displayed a ∼45% reduction in trkA mRNA levels within NB neurons compared to NCI and MCI. In contrast, NB neuronal trkA expression in females was reduced ∼50% in both MCI and AD compared to NCI. Reduced trkA mRNA levels were associated with poorer global cognitive performance and higher Braak scores in the female subjects. In addition, we found a female-selective reduction in GluR2 AMPA glutamate receptor subunit expression in NB neurons in AD. These data suggest that cholinergic NB neurons in females may be at greater risk for degeneration during the progression of AD and support the concept of gender-specific therapeutic interventions during the preclinical stages of the disease.
Collapse
Affiliation(s)
- Scott E Counts
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
15
|
Sex-dependent antipsychotic capacity of 17β-estradiol in the latent inhibition model: a typical antipsychotic drug in both sexes, atypical antipsychotic drug in males. Neuropsychopharmacology 2010; 35:2179-92. [PMID: 20613719 PMCID: PMC3055319 DOI: 10.1038/npp.2010.89] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The estrogen hypothesis of schizophrenia suggests that estrogen is a natural neuroprotector in women and that exogenous estrogen may have antipsychotic potential, but results of clinical studies have been inconsistent. We have recently shown using the latent inhibition (LI) model of schizophrenia that 17β-estradiol exerts antipsychotic activity in ovariectomized (OVX) rats. The present study sought to extend the characterization of the antipsychotic action of 17β-estradiol (10, 50 and 150 μg/kg) by testing its capacity to reverse amphetamine- and MK-801-induced LI aberrations in gonadally intact female and male rats. No-drug controls of both sexes showed LI, ie, reduced efficacy of a previously non-reinforced stimulus to gain behavioral control when paired with reinforcement, if conditioned with two but not five tone-shock pairings. In both sexes, amphetamine (1 mg/kg) and MK-801 (50 μg/kg) produced disruption (under weak conditioning) and persistence (under strong conditioning) of LI, modeling positive and negative/cognitive symptoms, respectively. 17β-estradiol at 50 and 150 μg/kg potentiated LI under strong conditioning and reversed amphetamine-induced LI disruption in both males and females, mimicking the action of typical and atypical antipsychotic drugs (APDs) in the LI model. 17β-estradiol also reversed MK-induced persistent LI, an effect mimicking atypical APDs and NMDA receptor enhancers, but this effect was observed in males and OVX females but not in intact females. These findings indicate that in the LI model, 17β-estradiol exerts a clear-cut antipsychotic activity in both sexes and, remarkably, is more efficacious in males and OVX females where it also exerts activity considered predictive of anti-negative/cognitive symptoms.
Collapse
|
16
|
Craig MC, Brammer M, Maki PM, Fletcher PC, Daly EM, Rymer J, Giampietro V, Picchioni M, Stahl D, Murphy DGM. The interactive effect of acute ovarian suppression and the cholinergic system on visuospatial working memory in young women. Psychoneuroendocrinology 2010; 35:987-1000. [PMID: 20102786 DOI: 10.1016/j.psyneuen.2009.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/19/2009] [Accepted: 12/20/2009] [Indexed: 10/19/2022]
Abstract
Women have an increased risk of developing Alzheimer's Dementia (AD) compared to men. It has been postulated that this risk may be modulated by a reduction in the neuroprotective effects of estrogen on the brain in the early postmenopausal period. This view is supported by, for example, findings that ovariectomy in younger women (i.e. prior to menopause) significantly increases the risk for the development of memory problems and AD in later life. However, the biological basis underlying these cognitive changes is still poorly understood. Our aim in the current study was to understand the interactive effects of acute, pharmacological-induced menopause (after Gonadotropin Hormone Releasing Hormone agonist (GnRHa) treatment) and scopolamine (a cholinergic antagonist used to model the memory decline associated with aging and AD) on brain functioning. To this end we used fMRI to study encoding during a Delayed Match to Sample (DMTS) (visual working memory) task. We report a relative attenuation in BOLD response brought about by scopolamine in regions that included bilateral prefrontal cortex and the left parahippocampal gyrus. Further, this was greater in women post-GnRHa than in women whose ovaries were functional. Our results also indicate that following pharmacological-induced menopause, cholinergic depletion produces a more significant behavioural deficit in overall memory performance, as manifest by increased response time. These findings suggest that acute loss of ovarian hormones exacerbate the effects of cholinergic depletion on a memory-related, behavioural measure, which is dependent on fronto-temporal brain regions. Overall, our findings point to a neural network by which acute loss of ovarian function may interact to negatively impact encoding.
Collapse
Affiliation(s)
- M C Craig
- Department of Psychological Medicine, Institute of Psychiatry, Kings College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Contrasting effects of increased and decreased dopamine transmission on latent inhibition in ovariectomized rats and their modulation by 17beta-estradiol: an animal model of menopausal psychosis? Neuropsychopharmacology 2010; 35:1570-82. [PMID: 20237462 PMCID: PMC3055453 DOI: 10.1038/npp.2010.28] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Women with schizophrenia have later onset and better response to antipsychotic drugs (APDs) than men during reproductive years, but the menopausal period is associated with increased symptom severity and reduced treatment response. Estrogen replacement therapy has been suggested as beneficial but clinical data are inconsistent. Latent inhibition (LI), the capacity to ignore irrelevant stimuli, is a measure of selective attention that is disrupted in acute schizophrenia patients and in rats and humans treated with the psychosis-inducing drug amphetamine and can be reversed by typical and atypical APDs. Here we used amphetamine (1 mg/kg)-induced disrupted LI in ovariectomized rats to model low levels of estrogen along with hyperfunction of the dopaminergic system that may be occurring in menopausal psychosis, and tested the efficacy of APDs and estrogen in reversing disrupted LI. 17beta-Estradiol (50, 150 microg/kg), clozapine (atypical APD; 5, 10 mg/kg), and haloperidol (typical APD; 0.1, 0.3 mg/kg) effectively reversed amphetamine-induced LI disruption in sham rats, but were much less effective in ovariectomized rats; 17beta-estradiol and clozapine were effective only at high doses (150 microg/kg and 10 mg/kg, respectively), whereas haloperidol failed at both doses. Haloperidol and clozapine regained efficacy if coadministered with 17beta-estradiol (50 microg/kg, an ineffective dose). Reduced sensitivity to dopamine (DA) blockade coupled with spared/potentiated sensitivity to DA stimulation after ovariectomy may provide a novel model recapitulating the combination of increased vulnerability to psychosis with reduced response to APD treatment in female patients during menopause. In addition, our data show that 17beta-estradiol exerts antipsychotic activity.
Collapse
|
18
|
Zhang H, Han T, Yu CH, Rahman K, Qin LP, Peng C. Ameliorating effects of essential oil from Acori graminei rhizoma on learning and memory in aged rats and mice. J Pharm Pharmacol 2010; 59:301-9. [PMID: 17270083 DOI: 10.1211/jpp.59.2.0016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Although there are normal cognitive changes that take place as a person becomes older, ageing in humans is generally associated with a deterioration of cognitive performance, in particular of learning and memory. There are a number of herbal medicines that are reported to improve brain function and intelligence. In the present study, the ameliorating effects of an essential oil extracted from Acori graminei rhizoma on learning and memory in aged, dysmnesia rats and mice were determined using the step-down passive avoidance test and Y maze. Oral administration of the essential oil (0.02, 0.04 and 0.08 g kg−1) to rats for 30 days and to mice for 15 days improved the latency and number of errors in aged, dysmnesia rats and mice. The cerebral neurotransmitters in aged rats given the essential oil (0.02, 0.04, 0.08 g kg−1) for 30 days were also investigated, and increased levels of norepinephrine, dopamine and serotonin, and decreased levels of acetylcholinesterase activity were found. The results suggest that the essential oil improves cognitive function in aged animals possibly by increasing norepinephrine, dopamine and serotonin relative levels, and by decreasing the activity of acetylcholinesterase in the cerebra.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
19
|
Craig MC, Murphy DG. Estrogen: effects on normal brain function and neuropsychiatric disorders. Climacteric 2009; 10 Suppl 2:97-104. [PMID: 17882683 DOI: 10.1080/13697130701598746] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Many women complain of memory and other cognitive/emotional difficulties at times that are associated with changes in estrogen levels. However, the biological mechanisms through which estrogen may exert these effects remain poorly understood. The effect of estrogen treatment on cognition and brain function in healthy women, and those with Alzheimer's disease, is controversial. Here we review the evidence that, in healthy women, estrogen affects the dopaminergic, serotonergic, and cholinergic systems, and brain regions crucial to higher cognitive function and mood. We will also present results from recent in vivo randomized-controlled neuroimaging experiments in our laboratory demonstrating that, in young females, and those in mid-life: (1) brain function is modulated by normal variation in ovarian function; (2) acute loss of ovarian hormones increases neuronal membrane breakdown; and (3) acute suppression of ovarian function is associated with reduced activation of brain regions critical to memory.
Collapse
Affiliation(s)
- M C Craig
- Section of Brain Maturation, Department of Psychological Medicine, Institute of Psychiatry, London, UK
| | | |
Collapse
|
20
|
Gibbs R, Mauk R, Nelson D, Johnson D. Donepezil treatment restores the ability of estradiol to enhance cognitive performance in aged rats: evidence for the cholinergic basis of the critical period hypothesis. Horm Behav 2009; 56:73-83. [PMID: 19303882 PMCID: PMC2737520 DOI: 10.1016/j.yhbeh.2009.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/27/2009] [Accepted: 03/06/2009] [Indexed: 11/18/2022]
Abstract
Recent studies suggest that the ability of estradiol to enhance cognitive performance diminishes with age and/or time following loss of ovarian function. We hypothesize that this is due, in part, to a decrease in basal forebrain cholinergic function. This study tested whether donepezil, a cholinesterase inhibitor, could restore estradiol effects on cognitive performance in aged rats that had been ovariectomized as young adults. Rats were ovariectomized at 3 months of age, and then trained on a delayed matching to position (DMP) T-maze task, followed by a configural association (CA) operant condition task, beginning at 12-17 or 22-27 months of age. Three weeks prior to testing, rats started to receive either donepezil or vehicle. After one week, half of each group also began receiving estradiol. Acclimation and testing began seven days later and treatment continued throughout testing. Estradiol alone significantly enhanced DMP acquisition in middle-aged rats, but not in aged rats. Donepezil alone had no effect on DMP acquisition in either age group; however, donepezil treatment restored the ability of estradiol to enhance DMP acquisition in aged rats. This effect was due largely to a reduction in the predisposition to adopt a persistent turn strategy during acquisition. These same treatments did not affect acquisition of the CA task in middle-aged rats, but did have small but significant effects on response time in aged rats. The data are consistent with the idea that estrogen effects on cognitive performance are task specific, and that deficits in basal forebrain cholinergic function are responsible for the loss of estradiol effect on DMP acquisition in aged ovariectomized rats. In addition, the data suggest that enhancing cholinergic function pharmacologically can restore the ability of estradiol to enhance acquisition of the DMP task in very old rats following long periods of hormone deprivation. Whether donepezil has similar restorative effects on other estrogen-sensitive tasks needs to be explored.
Collapse
Affiliation(s)
- R.B. Gibbs
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, TEL: 412-624-8185, Fax: 412-624-1850,
- Correspondence: Robert Gibbs, Ph.D., University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261. TEL: 412-624-8185, FAX: 412-383-7436,
| | - R. Mauk
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, TEL: 412-624-8185, Fax: 412-624-1850,
| | - D. Nelson
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, TEL: 412-624-8185, Fax: 412-624-1850,
| | - D.A. Johnson
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282
| |
Collapse
|
21
|
Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Rev 2009; 33:631-46. [PMID: 18835296 DOI: 10.1016/j.neubiorev.2008.08.016] [Citation(s) in RCA: 591] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/31/2008] [Accepted: 08/17/2008] [Indexed: 11/20/2022]
|
22
|
Acosta JI, Mayer L, Talboom JS, Zay C, Scheldrup M, Castillo J, Demers LM, Enders CK, Bimonte-Nelson HA. Premarin improves memory, prevents scopolamine-induced amnesia and increases number of basal forebrain choline acetyltransferase positive cells in middle-aged surgically menopausal rats. Horm Behav 2009; 55:454-64. [PMID: 19101559 PMCID: PMC2775815 DOI: 10.1016/j.yhbeh.2008.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 11/15/2008] [Accepted: 11/19/2008] [Indexed: 11/28/2022]
Abstract
Conjugated equine estrogen (CEE) is the most commonly prescribed estrogen therapy, and is the estrogen used in the Women's Health Initiative study. While in-vitro studies suggest that CEE is neuroprotective, no study has evaluated CEE's effects on a cognitive battery and brain immunohistochemistry in an animal model. The current experiment tested whether CEE impacted: I) spatial learning, reference memory, working memory and long-term retention, as well as ability to handle mnemonic delay and interference challenges; and, II) the cholinergic system, via pharmacological challenge during memory testing and ChAT-immunoreactive cell counts in the basal forebrain. Middle-aged ovariectomized (Ovx) rats received chronic cyclic injections of either Oil (vehicle), CEE-Low (10 microg), CEE-Medium (20 microg) or CEE-High (30 microg) treatment. Relative to the Oil group, all three CEE groups showed less overnight forgetting on the spatial reference memory task, and the CEE-High group had enhanced platform localization during the probe trial. All CEE groups exhibited enhanced learning on the spatial working memory task, and CEE dose-dependently protected against scopolamine-induced amnesia with every rat receiving the highest CEE dose maintaining zero errors after scopolamine challenge. CEE also increased number of ChAT-immunoreactive neurons in the vertical diagonal band of the basal forebrain. Neither the ability to remember after a delay nor interference, nor long-term retention, was influenced by the CEE regimen used in this study. These findings are similar to those reported previously for 17 beta-estradiol, and suggest that CEE can provide cognitive benefits on spatial learning, reference and working memory, possibly through cholinergic mechanisms.
Collapse
Affiliation(s)
- Jazmin I. Acosta
- Department of Psychology, Arizona State University, Tempe, AZ 85287
| | - Loretta Mayer
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ
| | | | - Cynthia Zay
- Department of Psychology, Arizona State University, Tempe, AZ 85287
| | | | | | - Laurence M. Demers
- Department of Pathology, Pennsylvania State College of Medicine, Hershey, PA
| | - Craig K. Enders
- Department of Psychology, Arizona State University, Tempe, AZ 85287
| | | |
Collapse
|
23
|
|
24
|
Browne C, Tobin JR, Voytko ML. Effects of two years of conjugated equine estrogens on cholinergic neurons in young and middle-aged ovariectomized monkeys. Brain Res 2009; 1264:13-23. [PMID: 19401167 DOI: 10.1016/j.brainres.2009.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 01/09/2009] [Accepted: 01/11/2009] [Indexed: 01/13/2023]
Abstract
The effect of estrogen on the number and size of cholinergic neurons in the basal forebrain was examined in surgically menopausal young and middle-aged cynomolgus monkeys. Young and middle-aged female monkeys were ovariectomized and treated with conjugated equine estrogens (Premarin) at doses that are equivalent to those currently prescribed to postmenopausal women. In the medial septum/diagonal band (MS/DB), no effect of treatment with Premarin was observed in the cholinergic neurons in either ovariectomized young or middle-aged monkeys. However, the number and size of cholinergic neurons in the MS/DB of middle-aged monkeys was greater than that in the young monkeys. In the nucleus basalis of Meynert (NBM) of middle-aged monkeys, the number of cholinergic neurons in the intermediate region (Ch4i) was greater in Premarin-treated monkeys as compared to controls and numbers of neurons in this region were greater at higher levels of estrogen. No effects of estrogen were observed in other NBM regions in the middle-aged monkeys and the size of cholinergic neurons was unaffected by Premarin. These findings suggest that treatment with Premarin has selective beneficial effects on cholinergic neurons in the basal forebrain but that these effects are both age and region specific.
Collapse
Affiliation(s)
- Carole Browne
- Department of Biology, Wake Forest University, Winston-Salem, NC 27106, USA
| | | | | |
Collapse
|
25
|
Menstrual cycle phase modulates cognitive control over male but not female stimuli. Brain Res 2008; 1224:79-87. [DOI: 10.1016/j.brainres.2008.05.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/16/2008] [Accepted: 05/18/2008] [Indexed: 11/21/2022]
|
26
|
Sherwin BB, Henry JF. Brain aging modulates the neuroprotective effects of estrogen on selective aspects of cognition in women: a critical review. Front Neuroendocrinol 2008; 29:88-113. [PMID: 17980408 DOI: 10.1016/j.yfrne.2007.08.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/17/2007] [Accepted: 08/14/2007] [Indexed: 11/28/2022]
Abstract
Although there is now a substantial literature on the putative neuroprotective effects of estrogen on cognitive functioning in postmenopausal women, it is replete with inconsistencies. The critical period hypothesis, posited several years ago, attempts to account for the discrepancies in this literature by positing that estrogen treatment (ET) will protect aspects of cognition in older women only when treatment is initiated soon after the menopause. Indeed, evidence from basic neuroscience and from the animal and human literature reviewed herein provides compelling support for the critical period hypothesis. Although it is not known with certainty why estrogen does not protect cognition and may even cause harm when administered to women over the age of 65years, it is likely that the events that characterize brain aging, such as a reduction in brain volume and in neuronal size, alterations in neurotransmitter systems, and a decrease in dendritic spine numbers, form an unfavorable background that precludes a neuroprotective effects of exogenous estrogen on the brain. Other factors that have likely contributed to the discrepancies in the estrogen-cognition literature include differences in the estrogen compounds used, their route of administration, cyclic versus continuous regimens, and the concomitant use of progestins. This critical analysis attempts to define conditions under which ET may protect aspects of cognition in aging women while also considering the cost/benefit ratio for the treatment of women aged 50-59years. Suggestions for specific future research questions are also addressed.
Collapse
Affiliation(s)
- Barbara B Sherwin
- McGill University, Department of Psychology, 1205 Dr. Penfield Avenue, Montreal, Que., Canada.
| | | |
Collapse
|
27
|
Dumas J, Hancur-Bucci C, Naylor M, Sites C, Newhouse P. Estradiol interacts with the cholinergic system to affect verbal memory in postmenopausal women: evidence for the critical period hypothesis. Horm Behav 2008; 53:159-69. [PMID: 17964576 PMCID: PMC2435492 DOI: 10.1016/j.yhbeh.2007.09.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 08/31/2007] [Accepted: 09/18/2007] [Indexed: 11/17/2022]
Abstract
Estradiol has been shown to interact with the cholinergic system to affect cognition in postmenopausal women. This study further investigated the interaction of estradiol and cholinergic system functioning on verbal memory and attention in two groups of healthy younger (ages 50-62) and older (ages 70-81) postmenopausal women. Twenty-two postmenopausal women were randomly and blindly placed on 1 mg of 17-beta estradiol orally for 1 month then 2 mg for 2 months or matching placebo pills after which they participated in three anticholinergic challenge sessions when verbal memory and attention were assessed. Subjects were administered either the antimuscarinic drug scopolamine (SCOP), the antinicotinic drug mecamylamine (MECA), or placebo. After the first challenge phase, they were crossed over to the other hormone treatment for another 3 months and repeated the challenges. Results showed that estradiol pretreatment significantly attenuated the anticholinergic drug-induced impairments on a test of episodic memory (the Buschke Selective Reminding Task) for the younger group only, while estradiol treatment impaired performance of the older group. The results suggest that younger subjects may experience more cholinergic benefit from estradiol treatment than older subjects, supporting the concept of a critical period for postmenopausal estrogen use.
Collapse
Affiliation(s)
- Julie Dumas
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine
| | - Catherine Hancur-Bucci
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine
| | - Magdalena Naylor
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine
| | - Cynthia Sites
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Alabama School of Medicine
| | - Paul Newhouse
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine
- Address for Correspondence (PN): Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine, 1 South Prospect St., Burlington, VT 05401, Voice: (802) 847-4560, Fax: (802) 847-7889,
| |
Collapse
|
28
|
Andreescu CE, Milojkovic BA, Haasdijk ED, Kramer P, De Jong FH, Krust A, De Zeeuw CI, De Jeu MTG. Estradiol improves cerebellar memory formation by activating estrogen receptor beta. J Neurosci 2007; 27:10832-9. [PMID: 17913916 PMCID: PMC6672828 DOI: 10.1523/jneurosci.2588-07.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Learning motor skills is critical for motor abilities such as driving a car or playing piano. The speed at which we learn those skills is subject to many factors. Yet, it is not known to what extent gonadal hormones can affect the achievement of accurate movements in time and space. Here we demonstrate via different lines of evidence that estradiol promotes plasticity in the cerebellar cortex underlying motor learning. First, we show that estradiol enhances induction of long-term potentiation at the parallel fiber to Purkinje cell synapse, whereas it does not affect long-term depression; second, we show that estradiol activation of estrogen receptor beta receptors in Purkinje cells significantly improves gain-decrease adaptation of the vestibulo-ocular reflex, whereas it does not affect general eye movement performance; and third, we show that estradiol increases the density of parallel fiber to Purkinje cell synapses, whereas it does not affect the density of climbing fiber synapses. We conclude that estradiol can improve motor skills by potentiating cerebellar plasticity and synapse formation. These processes may be advantageous during periods of high estradiol levels of the estrous cycle or pregnancy.
Collapse
Affiliation(s)
| | | | | | - Piet Kramer
- Internal Medicine, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands
| | - Frank H. De Jong
- Internal Medicine, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands
| | - Andrée Krust
- Institut de Genetique et de Biologie Moleculaire et Cellulaire, Centre National de la Recherche Scientifique/Inserm/University Louis Pasteur, College de France, 67070 Strasbourg, France, and
| | - Chris I. De Zeeuw
- Departments of Neuroscience and
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Sciences, 1000 GC Amsterdam, The Netherlands
| | | |
Collapse
|
29
|
Toufexis DJ, Myers KM, Bowser ME, Davis M. Estrogen disrupts the inhibition of fear in female rats, possibly through the antagonistic effects of estrogen receptor alpha (ERalpha) and ERbeta. J Neurosci 2007; 27:9729-35. [PMID: 17804633 PMCID: PMC6672956 DOI: 10.1523/jneurosci.2529-07.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 12/31/2022] Open
Abstract
The ambiguous role of estrogen in emotional learning may result from opposing actions of estrogen receptor alpha (ERalpha) and ERbeta. Using a fear-conditioning paradigm called the AX+, BX- discrimination, in which cue A comes to elicit fear and cue B becomes a safety signal, we examined the effect of 17beta-estradiol (E) and selective ERalpha and ERbeta agonists on excitatory and inhibitory fear learning. Gonadectomized (GDX) male and female rats implanted with E or selective ERalpha or ERbeta agonists were trained on the AX+, BX- discrimination and tested periodically to A, B, and AB. GDX sham-implanted male and female rats and GDX E-implanted males, but not GDX E-implanted females, exhibited less fear to AB than to A, suggesting that estrogen interferes with generalization of safety signals in female rats. ERalpha and ERbeta agonists disrupted discrimination learning in both sexes. ERalpha-implanted groups had higher fear responses to all cues than did ERbeta-implanted groups, suggesting that these two receptors have opposing effects in aversive discrimination learning. In contrast, neither E nor ERalpha and ERbeta agonists affected single-cue fear conditioning in either sex. These data suggest that E does not enhance fear in emotional learning but acts to disrupt the inhibition of fear in females only.
Collapse
Affiliation(s)
- Donna J Toufexis
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, and The Center for Behavioral Neuroscience, Atlanta, Georgia 30329, USA.
| | | | | | | |
Collapse
|
30
|
Gibbs RB. Estradiol enhances DMP acquisition via a mechanism not mediated by turning strategy but which requires intact basal forebrain cholinergic projections. Horm Behav 2007; 52:352-9. [PMID: 17583704 DOI: 10.1016/j.yhbeh.2007.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/14/2007] [Accepted: 05/19/2007] [Indexed: 11/30/2022]
Abstract
This study examined whether effects on turning strategy, use of an allocentric strategy, and/or short-term spatial memory account for the effects of estradiol treatment on acquisition of a delayed matching-to-position (DMP) T-maze task, in rats with and without basal forebrain cholinergic lesions. Ovariectomized rats received either 192IgG saporin (SAP) or saline injected into the medial septum. Two weeks later, half of each group received either continuous estradiol treatment (5-mm silastic capsule containing 17-beta-estradiol implanted s.c.) or implantation of an empty capsule. All rats were trained on the DMP task. Results show that estradiol enhanced, and SAP lesions impaired, learning on the DMP task. SAP lesions impaired learning primarily by increasing the use of a persistent turning strategy early on during training. In contrast, estradiol had no apparent effect on turning strategy, and enhanced learning only in non-lesioned rats. There was no evidence that any of these effects were due primarily to an effect on ultimate strategy selection (e.g., allocentric vs. egocentric, evaluated with a probe trial in which the maze was rotated 180 degrees), or on short-term spatial memory (evaluated by increasing the intertrial delay). We conclude that estradiol enhances DMP acquisition via a mechanism independent of effects on turning strategy and short-term memory, but nevertheless dependent on cholinergic neurons in the MS and VDB. We hypothesize that estradiol may affect the facility with which female rats are able to extract and incorporate extramaze information into an effective navigational strategy, and that this may be mediated by effects in prefrontal cortex.
Collapse
Affiliation(s)
- Robert B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| |
Collapse
|
31
|
Hruska Z, Dohanich GP. The effects of chronic estradiol treatment on working memory deficits induced by combined infusion of beta-amyloid (1-42) and ibotenic acid. Horm Behav 2007; 52:297-306. [PMID: 17583706 DOI: 10.1016/j.yhbeh.2007.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 05/07/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Estrogen limits in vitro neuron death induced by application of beta-amyloid, the cytotoxic peptide linked to Alzheimer's disease. However, the ability of estrogen to protect neurons and preserve cognitive function in vivo following exposure to beta-amyloid has not been demonstrated. Our objective was to evaluate the potential of estrogen to reduce spatial working memory deficits in female rats induced by administration of a neurotoxic form of beta-amyloid in combination with the excitotoxin, ibotenic acid. The interaction of beta-amyloid with excitotoxic factors may underlie cognitive deficits associated with Alzheimer's disease. Therefore, to create an experimental model typical of early Alzheimer's disease a low dose of ibotenic acid was administered with beta-amyloid into the dorsal hippocampus. Ovariectomized rats were implanted subcutaneously with Silastic capsules that produce physiological levels of 17beta-estradiol 10 days before bilateral intrahippocampal injections of aggregated beta-amyloid (1-42) and ibotenic acid. Capsules remained in situ throughout behavioral testing. When tested 3-10 weeks after neurotoxin treatment, females without estrogen capsules exhibited delay-dependent impairments in working memory performance on a water maze and a radial arm maze. Females treated with estrogen and combined neurotoxins displayed working memory performance comparable to unlesioned females on both tasks. Neurotoxin treatment increased immunoreactivity for glial fibrillary acidic protein but this measure was unaffected by estradiol treatment indicating that estrogen did not limit glial proliferation. Results indicate that estrogen prevented deficits in spatial working memory induced by neurotoxin treatments intended to mimic the pathology of early Alzheimer's disease.
Collapse
Affiliation(s)
- Zuzana Hruska
- Neuroscience Program, Tulane University, New Orleans, LA 70118, USA
| | | |
Collapse
|
32
|
Norbury R, Travis MJ, Erlandsson K, Waddington W, Ell PJ, Murphy DGM. Estrogen therapy and brain muscarinic receptor density in healthy females: a SPET study. Horm Behav 2007; 51:249-57. [PMID: 17173920 DOI: 10.1016/j.yhbeh.2006.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 10/23/2006] [Accepted: 10/23/2006] [Indexed: 11/17/2022]
Abstract
Estrogen Therapy (ET) may protect against age-related cognitive decline and neuropsychiatric disorders (e.g. Alzheimer's disease). The biological basis for this putative neuroprotective effect is not fully understood, but may include modulation of cholinergic systems. Cholinergic dysfunction has been implicated in age-related memory impairment and Alzheimer's disease. However, to date no one has investigated the effect of long-term ET on brain cholinergic muscarinic receptor aging, and related this to cognitive function. We used Single Photon Emission Tomography (SPET) and (R,R)[(123)I]-I-QNB, a novel ligand with high affinity for m(1)/m(4) muscarinic receptors, to examine the effect of long-term ET and age on brain m(1)/m(4) receptors in healthy females. We included 10 younger premenopausal subjects and 22 postmenopausal women; 11 long-term ET users (all treated following surgical menopause) and 11 ET never-users (surgical menopause, n=2). Also, verbal memory and executive function was assessed in all postmenopausal subjects. Compared to young women, postmenopausal women (ET users and never-users combined) had significantly lower muscarinic receptor density in all brain regions examined. ET users also had higher muscarinic receptor density than ET never-users in all the brain regions, and this reached statistical significance in left striatum and hippocampus, lateral frontal cortex and thalamus. Moreover, in ET users, (R,R)[(123)I]-I-QNB binding in left hippocampus and temporal cortex was significantly positively correlated with plasma estradiol levels. We also found evidence for improved executive function in ET users as compared to ET never-users. However, there was no significant relationship between receptor binding and cognitive function within any of the groups. In healthy postmenopausal women use of long-term ET is associated with reduced age-related differences in muscarinic receptor binding, and this may be related to serum estradiol levels.
Collapse
Affiliation(s)
- Ray Norbury
- Psychopharmacology and Emotion Research Laboratory, University of Oxford, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Many women complain of memory and other cognitive difficulties at times that are associated with changes in ovarian steroid levels. However, the biological mechanisms through which ovarian steroids exert these effects remains poorly understood. Furthermore, the effect of hormone therapy, especially oestrogen therapy, on cognition and brain function in healthy women, and its role in the prevention of Alzheimer's disease, remains controversial. Here, we review the evidence that, in healthy women, ovarian steroids/oestrogen affects brain regions crucial to higher cognitive function at the macroscopic, microscopic, functional and neurotransmitter levels.
Collapse
Affiliation(s)
- M C Craig
- Section of Brain Maturation, Department of Psychological Medicine, Institute of Psychiatry, 16 De Crespigny Park, London, UK.
| | | |
Collapse
|
34
|
Toufexis DJ, Myers KM, Davis M. The effect of gonadal hormones and gender on anxiety and emotional learning. Horm Behav 2006; 50:539-49. [PMID: 16904674 DOI: 10.1016/j.yhbeh.2006.06.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/20/2006] [Accepted: 06/21/2006] [Indexed: 10/24/2022]
Abstract
Disorders of anxiety and fear dysregulation are highly prevalent. These disorders affect women approximately 2 times more than they affect men, occur predominately during a woman's reproductive years, and are especially prevalent at times of hormonal flux. This implies that gender differences and sex steroids play a key role in the regulation of anxiety and fear. However, the underlying mechanism by which these factors regulate emotional states in either sex is still largely unknown. This review discusses animal studies describing sex-differences in and gonadal steroid effects on affect and emotional learning. The effects of gonadal hormones on the modulation of anxiety, with particular emphasis on progesterone's ability to reduce the responsiveness of female rats to corticotropin releasing factor and the sex-specific effect of testosterone in the reduction of anxiety in male rats, is discussed. In addition, gonadal hormone and gender modulation of emotional learning is considered and preliminary data are presented showing that estrogen (E2) disrupts fear learning in female rats, probably through the antagonistic effect of ERalpha and ERbeta activation.
Collapse
Affiliation(s)
- Donna J Toufexis
- Emory University, Department of Psychiatry, Yerkes National Primate Center, 954 Gatewood Drive NE, Atlanta, GA 30329, USA.
| | | | | |
Collapse
|
35
|
Dumas J, Hancur-Bucci C, Naylor M, Sites C, Newhouse P. Estrogen treatment effects on anticholinergic-induced cognitive dysfunction in normal postmenopausal women. Neuropsychopharmacology 2006; 31:2065-78. [PMID: 16482084 DOI: 10.1038/sj.npp.1301042] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estrogen has been shown to interact with the cholinergic system and influence cognition in animal models. This study investigated the interaction of estrogen and cholinergic system functioning and the effects of this interaction on cognitive task performance in healthy older women. Fifteen post-menopausal women were randomly and blindly placed on 1 mg of 17-beta estradiol or placebo for 3 months after which they participated in five anticholinergic challenge sessions, where they were administered one of two doses of the antimuscarinic drug scopolamine (SCOP) or the antinicotinic drug mecamylamine (MECA) or placebo. After the first challenge phase, they were crossed over to the other hormone treatment for another 3 months and repeated the challenges. Performance in multiple domains of cognition was assessed during anticholinergic drug challenge, including attention and verbal and nonverbal learning and memory. Results showed that estrogen pretreatment attenuated the anticholinergic drug-induced impairments on tests of attention and tasks with speed components. This study is the first to demonstrate the interaction of estrogen and the cholinergic system and the effects on cognitive performance in humans. The results suggest that estrogen status may affect cholinergic system tone and may be important for cholinergic system integrity.
Collapse
Affiliation(s)
- Julie Dumas
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | | | | | | | | |
Collapse
|
36
|
Robusto-Leitao O, Ferreira H. Hormones and dementia - a comparative study of hormonal impairment in post-menopausal women, with and without dementia. Neuropsychiatr Dis Treat 2006; 2:199-206. [PMID: 19412464 PMCID: PMC2671783 DOI: 10.2147/nedt.2006.2.2.199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Women seem to be more vulnerable to dementia, particularly Alzheimer's disease (AD), than men. There is controversy among studies correlating estrogen deficit to cognitive impairment. Because of the sudden drop of estrogens in menopause, this hormonal deficit could represent one of the risk factors for the larger incidence and prevalence of AD in post-menopausal women. RATIONALE We therefore wanted to find out if post-menopausal women with dementia, or even in a prior stage, mild cognitive impairment (MCI), would have a more significant deficit of estrogens than post-menopausal women without dementia, or any other type of cognitive problem. OBJECTIVES The aim of this study was to detect possible differences of the sex hormone levels among post-menopausal women, simultaneously affected by MCI or dementia, in comparison with a control group without cognitive impairment. DESIGN, SETTING, AND PARTICIPANTS A small, multicenter, prospective study was performed on 82 post-menopausal women (41 cases, 41 controls), aged 45-81 years, to investigate their sex hormone balance. The diagnosis of dementia was made according to ICD 9 or 10 and DSM III-R or IV appropriate to the time interval. The diagnosis of probable AD followed the NINCDS-ADRDA criteria. MCI met the Paquid-study criteria. Blood was analyzed in qualified centers for LH, FSH, and 17-beta-estradiol. All women went through a thorough psychiatric examination and those with a suspected hormonal impairment were examined by a gynecologist. RESULTS 15 cases (36.6%) had impaired hormonal function, compared with 8 controls (19.5%). Of the 15 cases with hormonal impairment, 9 had MCI. CONCLUSIONS These preliminary data stress a considerable difference between the sex hormone status of these two populations, showing a tendency towards a more accentuated estrogen deficit linked to cognitive deficit. Enlarging the sample and following the evolution could bring more interesting data.
Collapse
|
37
|
Walf AA, Rhodes ME, Frye CA. Ovarian steroids enhance object recognition in naturally cycling and ovariectomized, hormone-primed rats. Neurobiol Learn Mem 2006; 86:35-46. [PMID: 16529958 PMCID: PMC3625951 DOI: 10.1016/j.nlm.2006.01.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 01/24/2006] [Accepted: 01/24/2006] [Indexed: 11/20/2022]
Abstract
Learning and memory processes may be influenced by fluctuations in steroid hormones, such as estrogens and progestins. In this study, we have used an animal model to investigate the effects of endogenous fluctuations in ovarian steroids in intact female rats and effects of administration of ovarian steroids to ovariectomized rats for non-spatial, working memory using the object recognition task. Performance in this task relies on cortical and hippocampal function. As such, serum, cortical, and hippocampal concentrations of estradiol (E2), progesterone (P4), and P4's metabolite, 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP), were measured by radioimmunoassay. Experiment 1: Rats in behavioral estrus, compared to those in diestrus or estrus, spent a greater percentage of time exploring a novel object concomitant with increases in serum E2, P4, and 3alpha,5alpha-THP levels. Regression analyses revealed that there was a significant positive relationship between E2 levels in the hippocampus and 3alpha,5alpha-THP levels in the hippocampus and cortex and performance in this task. Experiment 2: Administration of E2 and/or P4 immediately post-training increased the percentage of time spent exploring the novel object and produced levels of E2, P4, and 3alpha,5alpha-THP akin to that of rats in behavioral estrus. Experiment 3: Post-training administration of selective estrogen receptor modulators, including 17beta-E2, propyl pyrazole triol, and diarylpropionitrile increased the percentage of time spent exploring the novel object compared to vehicle-administration. Experiment 4: Post-training P4 or 3alpha,5alpha-THP administration, compared to vehicle, increased the percentage of time spent exploring the novel object and produced P4 and/or 3alpha,5alpha-THP levels within the physiological range typically observed for rats in behavioral estrus. Experiment 5: If post-training administration of E2 and/or P4 was delayed one hour, no enhancement in object recognition was observed. Together, these results suggest that E2 and progestins can have mnemonic effects through actions in the cortex and/or hippocampus.
Collapse
Affiliation(s)
- Alicia A. Walf
- Department of Psychology, The University at Albany-SUNY, Albany, NY, USA
| | - Madeline E. Rhodes
- Department of Psychology, The University at Albany-SUNY, Albany, NY, USA
| | - Cheryl A. Frye
- Department of Psychology, The University at Albany-SUNY, Albany, NY, USA
- Department of Biological Sciences, The University at Albany-SUNY, Albany, NY, USA
- Center for Neuroscience, The University at Albany-SUNY, Albany, NY, USA
- Center for Life Science Research, The University at Albany-SUNY, Albany, NY, USA
- Corresponding author. Fax: +1 518 591 8848. (C.A. Frye)
| |
Collapse
|
38
|
Smith CC, McMahon LL. Estrogen-induced increase in the magnitude of long-term potentiation occurs only when the ratio of NMDA transmission to AMPA transmission is increased. J Neurosci 2006; 25:7780-91. [PMID: 16120779 PMCID: PMC6725261 DOI: 10.1523/jneurosci.0762-05.2005] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Elevated levels of estradiol enhance learning in mammals, including humans, likely a result of hormone-induced heightened plasticity at CA3-CA1 synapses. The increase in long-term potentiation (LTP) magnitude is considered to be a consequence of the estradiol-induced increase in dendritic spine density and NMDA receptor (NMDAR)-mediated transmission; however, direct evidence linking these changes together is lacking. Alternatively, alterations in GABAergic inhibition or presynaptic release probability could contribute. Here, we show in time course studies using hippocampal slices from estradiol-treated ovariectomized rats that the LTP magnitude is increased only when spine density is increased simultaneously with an increase in NMDAR transmission relative to AMPA receptor (AMPAR) transmission, with no role for alterations in GABAergic inhibition or release probability. With time after hormone treatment, AMPAR transmission gradually increases during the maintained increase in spine density and NMDAR transmission. Eventually, the balance between NMDAR and AMPAR transmission is reestablished, and the LTP magnitude is no longer increased. Blocking genomic estrogen receptors prevents the heightened spine density, NMDAR transmission, and LTP magnitude, suggesting a tight mechanistic coupling between these morphological and functional changes. Thus, we propose that the hormone-induced increase in functional synapse density alone is not sufficient to support heightened plasticity. Rather, estradiol increases LTP via enhancing NMDAR transmission, likely through receptor insertion into newly formed or preexisting synapses. Later, when excitability in the circuit is at its highest and spine density remains elevated, the LTP magnitude is no longer increased, probably as a consequence of the delayed increase in AMPAR transmission that resets the balance between NMDAR and AMPAR transmission.
Collapse
Affiliation(s)
- Caroline C Smith
- Department of Physiology and Biophysics, University of Alabama, Birmingham, Alabama 35294-0005, USA
| | | |
Collapse
|
39
|
Frye CA, Rhodes ME. Administration of estrogen to ovariectomized rats promotes conditioned place preference and produces moderate levels of estrogen in the nucleus accumbens. Brain Res 2006; 1067:209-15. [PMID: 16388786 DOI: 10.1016/j.brainres.2005.10.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 10/13/2005] [Accepted: 10/14/2005] [Indexed: 10/25/2022]
Abstract
Estrogen (E2) can modulate a variety of functional processes, including conditioning. However, the precise relationship between E2 and these processes is not entirely understood. Indeed, the nature of E2's effects on conditioning may depend upon several factors, including, but not limited to, the task examined, route of E2 administration, bioavailability of E2 administered, and/or duration of E2 exposure. The present studies examined the effects of E2 on conditioned place preference (CPP), and E2 levels produced in plasma and the nucleus accumbens. In Experiment 1, ovariectomized, Long-Evans rats were subcutaneously (SC) administered sesame oil vehicle (n = 12), 10 microg (n = 12), or 1 mg (n = 10), E2 immediately prior to placement in the CPP apparatus on conditioning days. Only rats administered 10 microg E2 exhibited a CPP. This regimen of E2 (n = 5/group) also produced moderate levels of E2 in the nucleus accumbens (significantly greater than vehicle and less than 1 mg E2). In Experiment 2, ovariectomized rats were SC administered propylene glycol vehicle (n = 11), 10 microg (n = 13), or 1 mg (n = 14), E2 immediately prior to conditioning. Administration of 1 mg E2 in propylene glycol produced a CPP. Notably, 1 mg E2 in propylene glycol produced moderate levels of E2 in the nucleus accumbens (significantly greater than vehicle or 10 microg E2) that were similar to those produced by 10 microg E2 in sesame oil (n = 5/group). Together, these data suggest that regimen of E2 that can produce a CPP result in moderate levels of E2 in the nucleus accumbens.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany, 1400 Washington Avenue, Life Sciences Research Building 1058, Albany, NY 12222, USA.
| | | |
Collapse
|
40
|
Garza-Meilandt A, Cantu RE, Claiborne BJ. Estradiol's effects on learning and neuronal morphology vary with route of administration. Behav Neurosci 2006; 120:905-16. [PMID: 16893296 DOI: 10.1037/0735-7044.120.4.905] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estrogen's effects on performance and neuronal morphology are variable, and the reasons for this variability are not yet understood. In this study, the authors compared the effects of 2 delivery routes of 17 beta-estradiol on spatial learning and dendritic spine densities in young ovariectomized rats; estradiol was administered by implanted capsules or by daily oral gavage. Estradiol treatment via capsules improved performance in the radial-arm water maze and increased spine densities on dendrites of CA1 pyramidal neurons in the hippocampal formation. In contrast, daily oral administration of estradiol did not affect either measure. These data demonstrate that estradiol delivery is a critical variable in animal studies and that clinical studies comparing the effects of different estradiol treatment routes on cognition are warranted.
Collapse
|
41
|
McElroy MW, Korol DL. Intrahippocampal muscimol shifts learning strategy in gonadally intact young adult female rats. Learn Mem 2005; 12:150-8. [PMID: 15805313 PMCID: PMC1074333 DOI: 10.1101/lm.86205] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Learning strategy preferences depend upon circulating estrogen levels, with enhanced hippocampus-sensitive place learning coinciding with elevated estrogen levels. The effects of estrogen on strategy may be mediated by fluctuations in GABAergic function, given that inhibitory tone in the hippocampus is low when estrogen is high. We investigated the effects on learning strategy of intrahippocampal injections of a GABA(A) agonist in gonadally intact female rats. On the day of training, rats received 0.3 microL intrahippocampal infusions of muscimol (0.26 nmol or 2.6 nmol) or saline 20 min prior to training on a T-maze in which place (hippocampus-sensitive) or response (striatum-sensitive) strategies offer effective solutions. Muscimol treatment increased the use of the response strategy in a dose-dependent manner without influencing learning speed, indicating that muscimol modulated strategy and not learning ability. Furthermore, the muscimol-related shift to response strategies varied across the estrous cycle. The results indicate that increasing inhibition in the hippocampus biases rats away from hippocampus-sensitive place learning strategies and toward hippocampus-insensitive response learning strategies without a learning deficit. Furthermore, rats at proestrus demonstrated the most dramatic shift in learning strategy following muscimol treatment compared with control conditions, while rats at estrus demonstrated the most complete bias toward response strategies. The enhanced use of hippocampus-sensitive strategies at proestrus likely results from reduced hippocampal inhibition.
Collapse
Affiliation(s)
- Molly W McElroy
- Neuroscience Program and Department of Psychology, University of Illinois, Urbana-Champaign, Champaign, Illinois 61820, USA
| | | |
Collapse
|
42
|
Anderer P, Saletu B, Gruber D, Linzmayer L, Semlitsch HV, Saletu-Zyhlarz G, Brandstätter N, Metka M, Huber J. Age-related cognitive decline in the menopause: effects of hormone replacement therapy on cognitive event-related potentials. Maturitas 2005; 51:254-69. [PMID: 15978969 DOI: 10.1016/j.maturitas.2004.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Revised: 07/29/2004] [Accepted: 08/03/2004] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Although epidemiological and clinical studies suggest that hormone replacement therapy (HRT) may protect against cognitive disorders and neurodegenerative diseases, the relation between estrogen and cognition in postmenopausal women remains controversial. METHODS In a double-blind placebo-controlled, parallel group design study the effects of HRT with the estrogen-progestogen combination Presomen 1.25 compositum((R)) (1.25mg equine conjugated estrogens administered for 21 days plus the progestogen 5mg medrogeston given for 11 days) on event-related potentials (ERPs) in postmenopausal patients with age-related cognitive decline (DSM-IV code 780.9, ICD-10 code R 41.8) were investigated. After a pre-drug comparison with age-matched normal postmenopausal controls, 48 psychotropic drug-free patients aged 60 +/- 6 years were randomized to receive either placebo or verum for 4 months. ERPs were recorded before as well as on the 91-92 days of the study, which thus fell into the estrogen phase of the treatment during the fourth cycle. RESULTS At baseline, patients showed a lengthening of P300 latency and an attenuation of P300 amplitudes as compared with normal controls. After HRT with Presomen, a significant shortening of P300 latency as compared with placebo was observed. CONCLUSIONS The baseline P300 differences suggest that in the patient group the aging process was advanced, while after HRT with Presomen a significant improvement and normalization of information processing as indexed by P300 was observed.
Collapse
Affiliation(s)
- Peter Anderer
- Department of Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Frye CA, Rhodes ME, Dudek B. Estradiol to aged female or male mice improves learning in inhibitory avoidance and water maze tasks. Brain Res 2005; 1036:101-8. [PMID: 15725406 PMCID: PMC3619722 DOI: 10.1016/j.brainres.2004.12.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 11/29/2004] [Accepted: 12/04/2004] [Indexed: 12/29/2022]
Abstract
Although 17beta-Estradiol (E2) improves cognitive performance of aged female mice, its mnemonic effects when administered post-training to aged male mice have not been examined. E2 (10 microg, SC) or oil vehicle was administered to intact, 24-month-old female or male congenic (primarily C57BL/6 background) mice immediately after training in the inhibitory avoidance or water maze tasks. Following behavioral testing, effects of 1 or 24 h of E2 exposure on hippocampal levels of E2 and brain-derived neurotrophic factor (BDNF) were examined. Female and male mice administered E2 showed significantly better performance in the inhibitory avoidance task than did vehicle-administered mice. When tested 24 h after training, mice that received E2 had significantly longer latencies to cross-over to the shock-associated side of the chamber than did vehicle-administered mice. Female or male mice administered E2 showed significantly better performance in the reference memory aspect of the spatial water maze task. When tested 30 min after training, mice administered E2 had shorter latencies to, and spent longer swimming in, the quadrant that the hidden platform had previously been located in. E2 administration produced physiological levels of E2 in the hippocampus 1 and 24 h after E2. BDNF levels in the hippocampus were decreased following 1 h of E2 exposure compared to vehicle. These findings suggest that E2 to female and male mice may overcome age-related deficits in reference memory in an emotional or spatial learning task.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA.
| | | | | |
Collapse
|
44
|
Abstract
Aging is associated with a progressive decline in physical and cognitive functions. The impact of age-dependent endocrine changes regulated by the central nervous system on the dynamics of neuronal behavior, neurodegeneration, cognition, biological rhythms, sexual behavior, and metabolism are reviewed. We also briefly review how functional deficits associated with increases in glucocorticoids and cytokines and declining production of sex steroids, GH, and IGF are likely exacerbated by age-dependent molecular misreading and alterations in components of signal transduction pathways and transcription factors.
Collapse
Affiliation(s)
- Roy G Smith
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, M320, Houston, TX 77030, USA.
| | | | | |
Collapse
|
45
|
Rücker B, Pereira GS, Fürstenau CR, Izquierdo I, Bonan CD, Sarkis JJF. Inhibitory avoidance task reveals differences in ectonucleotidase activities between male and female rats. Neurochem Res 2005; 29:2231-7. [PMID: 15672544 DOI: 10.1007/s11064-004-7030-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Studies demonstrated that endogenous levels of estrogen affect the long-term potentiation (LTP) and long-term depression (LTD). ATP and adenosine may play a role in the modulation of LTP. Our laboratory observed in previous studies that inhibitory avoidance task is associated with a decrease in hippocampal ectonucleotidase activities in adult male rats. To explore if ectonucleotidases are modulated in memory formation in female rats, as observed in males, we evaluated the effect of inhibitory avoidance training on synaptosomal NTP Dase and 5'-nucleotidase activities in rat hippocampus from both sexes. The results demonstrated a decrease in ATP, ADP and AMP hydrolysis (37%, 38% and 32%, respectively) immediately after training and a significant inhibition only in ATP hydrolysis (36%) 30 min post-training in male rats. There were no changes in ectonucleotidase activities from female rats. These findings provide support for the view that could exist biochemical differences in ectonucleotidase activities between males and females.
Collapse
Affiliation(s)
- Bárbara Rücker
- Departamento de Bioquimica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Gibbs RB, Gabor R, Cox T, Johnson DA. Effects of raloxifene and estradiol on hippocampal acetylcholine release and spatial learning in the rat. Psychoneuroendocrinology 2004; 29:741-8. [PMID: 15110923 DOI: 10.1016/s0306-4530(03)00118-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Revised: 04/30/2003] [Accepted: 06/03/2003] [Indexed: 10/27/2022]
Abstract
The effects of raloxifene on acquisition of a delayed matching to position (DMP) T-maze task and on hippocampal acetylcholine release were evaluated and compared with estradiol, to determine whether raloxifene has estrogenic effects on cognitive performance and hippocampal cholinergic activity. Ovariectomized rats received continuous treatment with raloxifene (one of two doses), estradiol, or vehicle for 30 days, followed by behavioral training, and then in vivo microdialysis assessment of basal and potassium-stimulated acetylcholine release. The data show that estradiol significantly enhanced DMP acquisition, whereas raloxifene did not. In contrast, both estradiol and the higher dose of raloxifene significantly increased potassium-stimulated acetylcholine release in the hippocampus. These data suggest that, despite increasing evidence for estrogenic effects of raloxifene in brain, raloxifene does not mimic the effects of estrogen on cognitive performance as assessed by acquisition of a simple spatial memory task in ovariectomized rats.
Collapse
Affiliation(s)
- Robert B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
47
|
Frick KM, Fernandez SM, Bennett JC, Prange-Kiel J, MacLusky NJ, Leranth C. Behavioral training interferes with the ability of gonadal hormones to increase CA1 spine synapse density in ovariectomized female rats. Eur J Neurosci 2004; 19:3026-32. [PMID: 15182310 PMCID: PMC1482789 DOI: 10.1111/j.0953-816x.2004.03427.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Estradiol benzoate (EB) has repeatedly been shown to increase hippocampal CA1 spine synapse density in ovariectomized female rats. Although this increase has been assumed to enhance memory, a direct link between increased spine synapse density and memory has not been demonstrated. Furthermore, while androgens, such as testosterone propionate (TP) and dihydrotestosterone (DHT), also increase spine synapse density in females, their effects on memory have yet to be investigated. In the present study, ovariectomized female rats were given two injections, 24 h apart, of sesame oil (control), 10 microg EB, 500 microg TP or 500 microg DHT. Forty-eight hours after the second injection, rats were tested in a 1-day spatial Morris water maze task and then immediately perfused for analysis of CA1 spine synapse density (using electron microscopy and unbiased stereology). In the spatial acquisition phase of testing, EB, but not TP or DHT, significantly impaired memory relative to controls. Hormone treatment did not affect spatial retention or performance in the non-spatial phase of testing. In contrast to previous work, spine synapse density was not increased by EB, TP or DHT. We therefore examined a new set of EB-treated females, only half of which were water maze tested. Consistent with previous work, EB significantly increased spine synapse density among behaviorally naïve females. In contrast, spine synapse densities did not differ among behaviorally tested control and EB females, although they were higher than behaviorally naïve controls. These data indicate that 1-day water maze testing can eliminate the hormone-induced increases in CA1 spine synapse density typically observed in behaviorally naïve females.
Collapse
Affiliation(s)
- Karyn M. Frick
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | | | | | - Janine Prange-Kiel
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
- Institute of Anatomy, University of Hamburg, D-20246 Hamburg, Germany
| | - Neil J. MacLusky
- Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Csaba Leranth
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: Dr C. Leranth, Department of Obstetrics, Gynecology & Reproductive Sciences, as above. E-mail:
| |
Collapse
|
48
|
Morgan MA, Schulkin J, Pfaff DW. Estrogens and non-reproductive behaviors related to activity and fear. Neurosci Biobehav Rev 2004; 28:55-63. [PMID: 15036933 DOI: 10.1016/j.neubiorev.2003.11.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2002] [Revised: 09/30/2003] [Accepted: 11/07/2003] [Indexed: 11/22/2022]
Abstract
Estrogens affect a variety of behaviors in addition to sexual responses, some of them related to motor activity and emotional reactivity. This is true in experimental animals and in humans. The literatures on these subjects are confusing because not all of the experimental results point in the same direction. Here we propose the following theoretical suggestion, hoping to account for the variety of reports extant: following the generally arousing effects of estrogens, their hormonal actions on motor activity and fear depend on context. In a safe environment, estrogen treatment causes increased activity. But in a novel environment or in contexts otherwise perceived as threatening, activity is reduced by estrogen, due to the hormone's arousing action, which heightens fear. Many hormone-dependent neural circuits involving several neuropeptides could provide mechanisms for this dynamic. We suggest a causal route could involve the activation of corticotropin releasing hormone gene expression in the brain. In sum, estrogenic effects on arousal states, as manifest differently according to details of the environmental context during behavioral test, could account for some of the discrepancies in the literature.
Collapse
Affiliation(s)
- M A Morgan
- Department of Research, american College of Obstetricians and Gynecologists, Washington DC 20024, USA.
| | | | | |
Collapse
|
49
|
Tinkler GP, Tobin JR, Voytko ML. Effects of two years of estrogen loss or replacement on nucleus basalis cholinergic neurons and cholinergic fibers to the dorsolateral prefrontal and inferior parietal cortex of monkeys. J Comp Neurol 2004; 469:507-21. [PMID: 14755532 DOI: 10.1002/cne.11028] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study examined the long-term (2 years) effects of estrogen loss or estrogen replacement therapy (ERT) on cholinergic neurons in the nucleus basalis of Meynert and on cholinergic fibers in the prefrontal and parietal cortex of adult female cynomolgus monkeys. Cholinergic fiber density in layer II of the prefrontal cortex was decreased in monkeys who were ovariectomized and treated with placebo for 2 years. In contrast, ovariectomized monkeys receiving ERT for 2 years had fiber densities that were comparable to those of intact controls. No differences in parietal cholinergic fiber density or nucleus basalis cholinergic neuron number or volume were found among intact, ovariectomized, or ERT monkeys. Our results suggest that ERT is effective in preventing region-specific changes in cortical cholinergic fibers that result from the loss of circulating ovarian hormones. These modest but appreciable effects on cholinergic neurobiology following long-term estrogen loss and ERT may contribute to changes in visuospatial attention function that is mediated by the prefrontal cortex.
Collapse
Affiliation(s)
- Gregory Paul Tinkler
- Interdisciplinary Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
50
|
Frick KM, Gresack JE. Sex differences in the behavioral response to spatial and object novelty in adult C57BL/6 mice. Behav Neurosci 2004; 117:1283-91. [PMID: 14674847 DOI: 10.1037/0735-7044.117.6.1283] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present studies examined sex differences in object localization and recognition in C57BL/6 mice. Experiment 1 measured responses to spatial novelty (object displacement) and object novelty (object substitution). Males strongly preferred displaced and substituted objects over unchanged objects, whereas females showed a preference in only 1 measure of object novelty. Experiment 2 further examined object recognition by presenting mice with 2 identical objects, followed 24 hr or 7 days later by testing with a familiar and a novel object. After 24 hr, males preferentially explored the novel object, whereas females exhibited no such preference. Neither sex displayed a preference for the novel object after 7 days. The data suggest that male mice are superior to females at localizing and recognizing objects.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA. karyn.frick @ yale.edu
| | | |
Collapse
|