1
|
Wang R, Hu B, Pan Z, Mo C, Zhao X, Liu G, Hou P, Cui Q, Xu Z, Wang W, Yu Z, Zhao L, He M, Wang Y, Fu C, Wei M, Yu L. Antibody-Drug Conjugates (ADCs): current and future biopharmaceuticals. J Hematol Oncol 2025; 18:51. [PMID: 40307936 PMCID: PMC12044742 DOI: 10.1186/s13045-025-01704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Antibody-drug conjugates (ADCs) represent a novel class of biopharmaceuticals comprising monoclonal antibodies covalently conjugated to cytotoxic agents via engineered chemical linkers. This combination enables targeted delivery of cytotoxic agents to tumor site through recognizing target antigens by antibody while minimizing off-target effects on healthy tissues. Clinically, ADCs overcome the limitations of traditional chemotherapy, which lacks target specificity, and enhance the therapeutic efficacy of monoclonal antibodies, providing higher efficacy and fewer toxicity anti-tumor biopharmaceuticals. ADCs have ushered in a new era of targeted cancer therapy, with 15 drugs currently approved for clinical use. Additionally, ADCs are being investigated as potential therapeutic candidates for autoimmune diseases, persistent bacterial infections, and other challenging indications. Despite their therapeutic benefits, the development and application of ADCs face significant challenges, including antibody immunogenicity, linker instability, and inadequate control over the release of cytotoxic agent. How can ADCs be designed to be safer and more efficient? What is the future development direction of ADCs? This review provides a comprehensive overview of ADCs, summarizing the structural and functional characteristics of the three core components, antibody, linker, and payload. Furthermore, we systematically assess the advancements and challenges associated with the 15 approved ADCs in cancer therapy, while also exploring the future directions and ongoing challenges. We hope that this work will provide valuable insights into the design and optimization of next-generation ADCs for wider clinical applications.
Collapse
Grants
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
Collapse
Affiliation(s)
- Ruili Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ziyu Pan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Chongxia Mo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Guojia Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ping Hou
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Qi Cui
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Zhao Xu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wenjia Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China
| | - Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, 110000, China.
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Xi M, Zhu J, Zhang F, Shen H, Chen J, Xiao Z, Huangfu Y, Wu C, Sun H, Xia G. Antibody-drug conjugates for targeted cancer therapy: Recent advances in potential payloads. Eur J Med Chem 2024; 276:116709. [PMID: 39068862 DOI: 10.1016/j.ejmech.2024.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a promising cancer therapy modality which specifically delivers highly toxic payloads to cancer cells through antigen-specific monoclonal antibodies (mAbs). To date, 15 ADCs have been approved and more than 100 ADC candidates have advanced to clinical trials for the treatment of various cancers. Among these ADCs, microtubule-targeting and DNA-damaging agents are at the forefront of payload development. However, several challenges including toxicity and drug resistance limit the potential of this modality. To tackle these issues, multiple innovative payloads such as immunomodulators and proteolysis targeting chimeras (PROTACs) are incorporated into ADCs to enable multimodal cancer therapy. In this review, we describe the mechanism of ADCs, highlight the importance of ADC payloads and summarize recent progresses of conventional and unconventional ADC payloads, trying to provide an insight into payload diversification as a key step in future ADC development.
Collapse
Affiliation(s)
- Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jingjing Zhu
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Fengxia Zhang
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Hualiang Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jianhui Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Ziyan Xiao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanping Huangfu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| | - Gang Xia
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| |
Collapse
|
3
|
Wang Z, Li H, Gou L, Li W, Wang Y. Antibody-drug conjugates: Recent advances in payloads. Acta Pharm Sin B 2023; 13:4025-4059. [PMID: 37799390 PMCID: PMC10547921 DOI: 10.1016/j.apsb.2023.06.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody‒drug conjugates (ADCs), which combine the advantages of monoclonal antibodies with precise targeting and payloads with efficient killing, show great clinical therapeutic value. The ADCs' payloads play a key role in determining the efficacy of ADC drugs and thus have attracted great attention in the field. An ideal ADC payload should possess sufficient toxicity, low immunogenicity, high stability, and modifiable functional groups. Common ADC payloads include tubulin inhibitors and DNA damaging agents, with tubulin inhibitors accounting for more than half of the ADC drugs in clinical development. However, due to clinical limitations of traditional ADC payloads, such as inadequate efficacy and the development of acquired drug resistance, novel highly efficient payloads with diverse targets and reduced side effects are being developed. This perspective summarizes the recent research advances of traditional and novel ADC payloads with main focuses on the structure-activity relationship studies, co-crystal structures, and designing strategies, and further discusses the future research directions of ADC payloads. This review also aims to provide valuable references and future directions for the development of novel ADC payloads that will have high efficacy, low toxicity, adequate stability, and abilities to overcome drug resistance.
Collapse
Affiliation(s)
- Zhijia Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| | - Hanxuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lantu Gou
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
4
|
Xu G, Wang C, Yu H, Li Y, Zhao Q, Zhou X, Li C, Liu M. Structural basis for high-affinity recognition of aflatoxin B1 by a DNA aptamer. Nucleic Acids Res 2023; 51:7666-7674. [PMID: 37351632 PMCID: PMC10415127 DOI: 10.1093/nar/gkad541] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
The 26-mer DNA aptamer (AF26) that specifically binds aflatoxin B1 (AFB1) with nM-level high affinity is rare among hundreds of aptamers for small molecules. Despite its predicted stem-loop structure, the molecular basis of its high-affinity recognition of AFB1 remains unknown. Here, we present the first high-resolution nuclear magnetic resonance structure of AFB1-AF26 aptamer complex in solution. AFB1 binds to the 16-residue loop region of the aptamer, inducing it to fold into a compact structure through the assembly of two bulges and one hairpin structure. AFB1 is tightly enclosed within a cavity formed by the bulges and hairpin, held in a place between the G·C base pair, G·G·C triple and multiple T bases, mainly through strong π-π stacking, hydrophobic and donor atom-π interactions, respectively. We further revealed the mechanism of the aptamer in recognizing AFB1 and its analogue AFG1 with only one-atom difference and introduced a single base mutation at the binding site of the aptamer to increase the discrimination between AFB1 and AFG1 based on the structural insights. This research provides an important structural basis for understanding high-affinity recognition of the aptamer, and for further aptamer engineering, modification and applications.
Collapse
Affiliation(s)
- Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Chen Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| |
Collapse
|
5
|
Khera E, Dong S, Huang H, de Bever L, Delft FLV, Thurber GM. Cellular-Resolution Imaging of Bystander Payload Tissue Penetration from Antibody-Drug Conjugates. Mol Cancer Ther 2021; 21:310-321. [PMID: 34911819 DOI: 10.1158/1535-7163.mct-21-0580] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
After several notable clinical failures in early generations, antibody-drug conjugates (ADCs) have made significant gains with seven new FDA-approvals within the last 3 years. These successes have been driven by a shift towards mechanistically informed ADC design, where the payload, linker, drug-to-antibody ratio, and conjugation are increasingly tailored to a specific target and clinical indication. However, fundamental aspects needed for design, such as payload distribution, remain incompletely understood. Payloads are often classified as 'bystander' or 'non-bystander' depending on their ability to diffuse out of targeted cells into adjacent cells that may be antigen negative or more distant from tumor vessels, helping to overcome heterogeneous distribution. Seven of the eleven FDA-approved ADCs employ these bystander payloads, but the depth of penetration and cytotoxic effects as a function of physicochemical properties and mechanism of action have not been fully characterized. Here, we utilized tumor spheroids and pharmacodynamic marker staining to quantify tissue penetration of the three major classes of agents: microtubule inhibitors, DNA-damaging agents, and topoisomerase inhibitors. PAMPA data and co-culture assays were performed to compare to the 3D tissue culture data. The results demonstrate a spectrum in bystander potential and tissue penetration depending on the physicochemical properties and potency of the payload. Generally, directly targeted cells show a greater response even with bystander payloads, consistent with the benefit of deeper ADC penetration. These results are compared to computational simulations to help scale the data from in vitro and preclinical animal models to the clinic.
Collapse
Affiliation(s)
- Eshita Khera
- Chemical Engineering, University of Michigan–Ann Arbor
| | - Shujun Dong
- Chemical Engineering, University of Michigan–Ann Arbor
| | - Haolong Huang
- Chemical Engineering, University of Michigan–Ann Arbor
| | | | | | - Greg M Thurber
- Chemical Engineering, Biomedical Engineering, University of Michigan–Ann Arbor
| |
Collapse
|
6
|
Mills A, Gago F. Structural and mechanistic insight into DNA bending by antitumour calicheamicins. Org Biomol Chem 2021; 19:6707-6717. [PMID: 34297027 DOI: 10.1039/d1ob01077h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Among the class of enediyne antibiotics endowed with potent antitumour activities, the calicheamicin derivative known as ozogamicin is selectively targeted to several leukaemia cell types by means of tailor-made immunoconjugates. Binding of these drugs to the DNA minor groove in a sequence-specific fashion eventually causes double-stranded cleavage that results in cell death. Use of calicheamicin ε, an unreactive analogue of calicheamicin γ1I, has demonstrated that these structurally sophisticated molecules inflict bending on certain DNA oligonucleotides of defined sequence to the extent that they increase their circularization ratio upon ligation into multimers. By modelling and simulating several linear and circular DNA constructs containing high-affinity 5'-TCCT-3' and low-affinity 5'-TTGT-3' target sites in the presence and absence of calicheamicin ε, we have shed light into the structural distortions introduced by the drug upon binding to DNA. This new insight not only informs about the direction and magnitude of the DNA curvature but also provides a rationale for an improved understanding of the preferred structural and dynamic features associated with DNA target selection by calicheamicins.
Collapse
Affiliation(s)
- Alberto Mills
- Departamento de Ciencias Biomédicas y "Unidad Asociada IQM-CSIC", Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain.
| | - Federico Gago
- Departamento de Ciencias Biomédicas y "Unidad Asociada IQM-CSIC", Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
7
|
de Almeida LC, Calil FA, Machado-Neto JA, Costa-Lotufo LV. DNA damaging agents and DNA repair: From carcinogenesis to cancer therapy. Cancer Genet 2021; 252-253:6-24. [DOI: 10.1016/j.cancergen.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/09/2023]
|
8
|
Adhikari A, Shen B, Rader C. Challenges and Opportunities to Develop Enediyne Natural Products as Payloads for Antibody-Drug Conjugates. Antib Ther 2021; 4:1-15. [PMID: 33554043 PMCID: PMC7850032 DOI: 10.1093/abt/tbab001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calicheamicin, the payload of the antibody-drug-conjugates (ADCs) gemtuzumab ozogamicin (Mylotarg®) and inotuzumab ozogamicin (Besponsa®), belongs to the class of enediyne natural products. Since the isolation and structural determination of the neocarzinostatin chromophore in 1985, the enediynes have attracted considerable attention for their value as DNA damaging agents in cancer chemotherapy. Due to their non-discriminatory cytotoxicity towards both cancer and healthy cells, the clinical utilization of enediyne natural products relies on conjugation to an appropriate delivery system, such as an antibody. Here we review the current landscape of enediynes as payloads of first-generation and next-generation ADCs.
Collapse
Affiliation(s)
- Ajeeth Adhikari
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA.,Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, FL, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
9
|
Xu G, Zhao J, Liu N, Yang M, Zhao Q, Li C, Liu M. Structure-guided post-SELEX optimization of an ochratoxin A aptamer. Nucleic Acids Res 2019; 47:5963-5972. [PMID: 31062016 PMCID: PMC6582339 DOI: 10.1093/nar/gkz336] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/30/2019] [Accepted: 04/26/2019] [Indexed: 01/10/2023] Open
Abstract
SELEX is the cornerstone for aptamer research with broad applications in biosensors and medicine. To improve the affinity of selected aptamers, we propose a structure-guided post-SELEX approach, an optimization method based on the precise secondary structure of the aptamer–ligand complex. We demonstrate this approach using the Ochratoxin A (OTA) aptamer. Guided by the structure, we designed a new aptamer whose affinity is improved by more than 50-fold. We also determined the high-resolution NMR structure of the new aptamer-OTA complex and elucidated the discriminatory recognition mechanism of one atomic difference between two analogs, OTA and OTB. The aptamer forms an unusual hairpin structure containing an intramolecular triple helix, which is not seen in the previously determined aptamer complex. The π–π stacking, the hydrophobic interaction, hydrogen bonds and halogen bonds between OTA and the aptamer contribute to the recognition of OTA, and the halogen bonds play an important role in discriminating between OTA and OTB. Our results demonstrate that the structure-guided post-SELEX approach improves aptamers affinity. An improved OTA biosensor system might be developed using this new strategy.
Collapse
Affiliation(s)
- Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Jiajing Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China.,University of Chinese Academy of Sciences, Beijing 100029, P.R. China
| | - Na Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China.,University of Chinese Academy of Sciences, Beijing 100029, P.R. China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Qiang Zhao
- University of Chinese Academy of Sciences, Beijing 100029, P.R. China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China.,University of Chinese Academy of Sciences, Beijing 100029, P.R. China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China.,University of Chinese Academy of Sciences, Beijing 100029, P.R. China
| |
Collapse
|
10
|
Zhang H, Li R, Ba S, Lu Z, Pitsinos EN, Li T, Nicolaou KC. DNA Binding and Cleavage Modes of Shishijimicin A. J Am Chem Soc 2019; 141:7842-7852. [DOI: 10.1021/jacs.9b01800] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hao Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Ruofan Li
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Sai Ba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zhaoyong Lu
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Emmanuel N. Pitsinos
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory of Natural Products Synthesis & Bioorganic Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, 153 10 Agia Paraskevi, Greece
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - K. C. Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Nicolaou KC, Li R, Lu Z, Pitsinos EN, Alemany LB, Aujay M, Lee C, Sandoval J, Gavrilyuk J. Streamlined Total Synthesis of Shishijimicin A and Its Application to the Design, Synthesis, and Biological Evaluation of Analogues thereof and Practical Syntheses of PhthNSSMe and Related Sulfenylating Reagents. J Am Chem Soc 2018; 140:12120-12136. [PMID: 30216054 DOI: 10.1021/jacs.8b06955] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Shishijimicin A is a scarce marine natural product with highly potent cytotoxicities, making it a potential payload or a lead compound for designed antibody-drug conjugates. Herein, we describe an improved total synthesis of shishijimicin A and the design, synthesis, and biological evaluation of a series of analogues. Equipped with appropriate functionalities for linker attachment, a number of these analogues exhibited extremely potent cytotoxicities for the intended purposes. The synthetic strategies and tactics developed and employed in these studies included improved preparation of previously known and new sulfenylating reagents such as PhthNSSMe and related compounds.
Collapse
Affiliation(s)
| | | | | | - Emmanuel N Pitsinos
- Laboratory of Natural Products Synthesis & Bioorganic Chemistry, Institute of Nanoscience and Nanotechnology , National Centre for Scientific Research "Demokritos" , 153 10 Agia Paraskevi , Greece
| | | | - Monette Aujay
- AbbVie Stemcentrx, LLC , 450 East Jamie Court , South San Francisco , California 94080 , United States
| | - Christina Lee
- AbbVie Stemcentrx, LLC , 450 East Jamie Court , South San Francisco , California 94080 , United States
| | - Joseph Sandoval
- AbbVie Stemcentrx, LLC , 450 East Jamie Court , South San Francisco , California 94080 , United States
| | - Julia Gavrilyuk
- AbbVie Stemcentrx, LLC , 450 East Jamie Court , South San Francisco , California 94080 , United States
| |
Collapse
|
12
|
Proni G, Tami K, Berova N, Ellestad GA. Circular dichroism analysis of the calicheamicin-DNA interaction revisited. J Pharm Biomed Anal 2017; 144:1-5. [DOI: 10.1016/j.jpba.2017.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/04/2017] [Accepted: 05/04/2017] [Indexed: 01/14/2023]
|
13
|
Abstract
Through years of evolutionary selection pressures, organisms have developed potent toxins that coincidentally have marked antineoplastic activity. These natural products have been vital for the development of multiagent treatment regimens currently employed in cancer chemotherapy, and are used in the treatment of a variety of malignancies. Therefore, this review catalogs recent advances in natural product-based drug discovery via the examination of mechanisms of action and available clinical data to highlight the utility of these novel compounds in the burgeoning age of precision medicine. The review also highlights the recent development of antibody-drug conjugates and other immunotoxins, which are capable of delivering highly cytotoxic agents previously deemed too toxic to elicit therapeutic benefit preferentially to neoplastic cells. Finally, the review examines natural products not currently used in the clinic that have novel mechanisms of action, and may serve to supplement current chemotherapeutic protocols.
Collapse
|
14
|
Sissi C, Moro S, Crothers DM. Novel insights on the DNA interaction of calicheamicin γ₁(I). Biopolymers 2016; 103:449-59. [PMID: 25411012 DOI: 10.1002/bip.22591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022]
Abstract
Calicheamicin γ1(I) (Cal) is a unique molecule in which a DNA binding motif (aryl-tetrasaccharide) is linked to a DNA cleaving moiety (calicheamicinone). The hallmark of this natural product rests in the impressive optimization of these two mechanisms leading to a drug that is extremely efficient in cleaving DNA at well-defined sites. However, the relative contributions of these two structurally distinct domains to the overall process have not been fully elucidated yet. Here, we used different experimental approaches to better dissect the role of the aryl-tetrasaccharide and the enediyne moieties in the DNA sequence selective binding step as well as the in the cleavage reaction. Our results highlight the remarkable cooperation of the two components in producing an amazing molecular machine. The herein presented molecular details of this concerted mechanism of action can be further applied to rationally design more druggable compounds.
Collapse
Affiliation(s)
- Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Stefano Moro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Donald M Crothers
- Chemistry Department, Yale University, 225 Prospect Street, New Haven, CT, 06511
| |
Collapse
|
15
|
Cao H, Tan K, Wang F, Bigelow L, Yennamalli RM, Jedrzejczak R, Babnigg G, Bingman CA, Joachimiak A, Kharel MK, Singh S, Thorson JS, Phillips GN. Structural dynamics of a methionine γ-lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:034702. [PMID: 27191010 PMCID: PMC4851618 DOI: 10.1063/1.4948539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/21/2016] [Indexed: 06/05/2023]
Abstract
CalE6 from Micromonospora echinospora is a (pyridoxal 5' phosphate) PLP-dependent methionine γ-lyase involved in the biosynthesis of calicheamicins. We report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acid complex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structural analysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis and holoenzyme maturation.
Collapse
Affiliation(s)
- Hongnan Cao
- Biosciences at Rice, Rice University , 6100 Main St., Houston, Texas 77005, USA
| | - Kemin Tan
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory , Bldg. 446/Rm. A104, 970 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Fengbin Wang
- Biosciences at Rice, Rice University , 6100 Main St., Houston, Texas 77005, USA
| | - Lance Bigelow
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory , Bldg. 446/Rm. A104, 970 South Cass Avenue, Argonne, Illinois 60439, USA
| | | | - Robert Jedrzejczak
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory , Bldg. 446/Rm. A104, 970 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Gyorgy Babnigg
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory , Bldg. 446/Rm. A104, 970 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, USA
| | - Andrzej Joachimiak
- Biosciences Division, Midwest Center for Structural Genomics, Argonne National Laboratory , Bldg. 446/Rm. A104, 970 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Madan K Kharel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536, USA
| | - Shanteri Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536, USA
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536, USA
| | - George N Phillips
- Biosciences at Rice, Rice University , 6100 Main St., Houston, Texas 77005, USA
| |
Collapse
|
16
|
Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. A comprehensive review of glycosylated bacterial natural products. Chem Soc Rev 2015; 44:7591-697. [PMID: 25735878 PMCID: PMC4560691 DOI: 10.1039/c4cs00426d] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A systematic analysis of all naturally-occurring glycosylated bacterial secondary metabolites reported in the scientific literature up through early 2013 is presented. This comprehensive analysis of 15 940 bacterial natural products revealed 3426 glycosides containing 344 distinct appended carbohydrates and highlights a range of unique opportunities for future biosynthetic study and glycodiversification efforts.
Collapse
Affiliation(s)
- Sherif I Elshahawi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Khaled A Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Madan K Kharel
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
17
|
Goff RD, Thorson JS. Neoglycosylation and neoglycorandomization: Enabling tools for the discovery of novel glycosylated bioactive probes and early stage leads. MEDCHEMCOMM 2014; 5:1036-1047. [PMID: 25071927 PMCID: PMC4111257 DOI: 10.1039/c4md00117f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review focuses upon the development, scope, and utility of the highly versatile chemoselective alkoxyamine-based 'neoglycosylation' reaction first described by Peri and Dumy. The fundamentals of neoglycosylation and the subsequent development of a 'neoglycorandomization' platform to afford differentially-glycosylated libraries of plant-based natural products, microbial-based natural products, and small molecule-based drugs for drug discovery applications are discussed.
Collapse
Affiliation(s)
- Randal D. Goff
- Western Wyoming Community College, 2500 College Dr. Rock Springs, WY 82902-0428, USA
| | - Jon. S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
18
|
Ellestad GA. Structural and conformational features relevant to the anti-tumor activity of calicheamicin γ 1I. Chirality 2011; 23:660-71. [DOI: 10.1002/chir.20990] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Goff RD, Singh S, Thorson JS. Glycosyloxyamine neoglycosylation: a model study using calicheamicin. ChemMedChem 2011; 6:774-6. [PMID: 21520418 PMCID: PMC3081727 DOI: 10.1002/cmdc.201100028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Randal D. Goff
- Wisconsin Center for Natural Products Research, UW National Cooperative Drug Discovery Group, University of Wisconsin-Madison, School of Pharmacy, 777 Highland Avenue, Madison, WI 53705
| | - Shanteri Singh
- Wisconsin Center for Natural Products Research, UW National Cooperative Drug Discovery Group, University of Wisconsin-Madison, School of Pharmacy, 777 Highland Avenue, Madison, WI 53705
| | - Jon S. Thorson
- Wisconsin Center for Natural Products Research, UW National Cooperative Drug Discovery Group, University of Wisconsin-Madison, School of Pharmacy, 777 Highland Avenue, Madison, WI 53705
| |
Collapse
|
20
|
Chang A, Singh S, Bingman CA, Thorson JS, Phillips GN. Structural characterization of CalO1: a putative orsellinic acid methyltransferase in the calicheamicin-biosynthetic pathway. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:197-203. [PMID: 21358050 PMCID: PMC3046457 DOI: 10.1107/s090744491100360x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 01/28/2011] [Indexed: 11/10/2022]
Abstract
The X-ray structure determination at 2.4 Å resolution of the putative orsellinic acid C3 O-methyltransferase (CalO1) involved in calicheamicin biosynthesis is reported. Comparison of CalO1 with a homology model of the functionally related calicheamicin orsellinic acid C2 O-methyltransferase (CalO6) implicates several residues that are likely to contribute to the regiospecificity of alkylation. Consistent with the proposed requirement of an acyl-carrier-protein-bound substrate, this structural study also reveals structural determinants within CalO1 that are anticipated to accommodate an association with an acyl carrier protein.
Collapse
Affiliation(s)
- Aram Chang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, USA
- Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, USA
| | - Shanteri Singh
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, National Cooperative Drug Discovery Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Craig A. Bingman
- Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, USA
| | - Jon S. Thorson
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, National Cooperative Drug Discovery Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, USA
| | - George N. Phillips
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, USA
- Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, USA
| |
Collapse
|
21
|
Breccia M, Lo-Coco F. Gemtuzumab ozogamicin for the treatment of acute promyelocytic leukemia: mechanisms of action and resistance, safety and efficacy. Expert Opin Biol Ther 2010; 11:225-34. [PMID: 21142804 DOI: 10.1517/14712598.2011.543895] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Acute promyelocytic leukemia (APL) is characterized by peculiar biological features and high sensitivity to therapeutic agents such as anthracyclines, all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). Because cure rates of up to 80 - 90% have been reported using various combinations of the above agents, future strategies will probably aim at reducing therapy-related toxicity while maintaining therapeutic efficacy. Gemtuzumab ozogamicin (GO) is a calicheamicin-conjugated mAb directed against CD33, a surface antigen highly expressed on APL blasts. GO has been shown to be effective in this disease and better tolerated than conventional chemotherapy. AREAS COVERED This review looks at the mechanism of action, pathways associated with resistance and toxicity profile of GO. Reported experience on the use of GO for relapsed or newly diagnosed APL is also discussed along with evidence on its efficacy and relative tolerability in APL management. In addition to its activity in advanced disease, data suggest that GO in various combinations may replace chemotherapy in APL front-line therapy. This should apply in particular to some subsets such as elderly patients or those unfit to receive conventional chemotherapy. EXPERT OPINION GO has proven effective and relatively safe as a single agent in advanced APL. In combinations with ATRA and/or ATO, GO may substitute for conventional chemotherapy of APL, particularly in unfit patients.
Collapse
Affiliation(s)
- Massimo Breccia
- Sapienza University, Department of Cellular Biotechnologies and Hematology, Via Benevento 6, 00161 Roma, Rome, Italy.
| | | |
Collapse
|
22
|
Chakhtoura M, Abdelnoor AM. Monoclonal antibodies used as prophylactic, therapeutic and diagnostic agents. Immunopharmacol Immunotoxicol 2010; 32:533-42. [DOI: 10.3109/08923971003646597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Szpilman AM, Carreira EM. Probing the Biology of Natural Products: Molecular Editing by Diverted Total Synthesis. Angew Chem Int Ed Engl 2010; 49:9592-628. [DOI: 10.1002/anie.200904761] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Szpilman AM, Carreira EM. Untersuchung der Biologie von Naturstoffen: systematische Strukturvariation durch umgelenkte Totalsynthese. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904761] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Liang ZX. Complexity and simplicity in the biosynthesis of enediyne natural products. Nat Prod Rep 2010; 27:499-528. [DOI: 10.1039/b908165h] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
McCoy JG, Johnson HD, Singh S, Bingman CA, Lei IK, Thorson JS, Phillips GN. Structural characterization of CalO2: a putative orsellinic acid P450 oxidase in the calicheamicin biosynthetic pathway. Proteins 2009; 74:50-60. [PMID: 18561189 PMCID: PMC2742692 DOI: 10.1002/prot.22131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although bacterial iterative Type I polyketide synthases are now known to participate in the biosynthesis of a small set of diverse natural products, the subsequent downstream modification of the resulting polyketide products remains poorly understood. Toward this goal, we report the X-ray structure determination at 2.5 A resolution and preliminary characterization of the putative orsellenic acid P450 oxidase (CalO2) involved in calicheamicin biosynthesis. These studies represent the first crystal structure for a P450 involved in modifying a bacterial iterative Type I polyketide product and suggest the CalO2-catalyzed step may occur after CalO3-catalyzed iodination and may also require a coenzyme A- (CoA) or acyl carrier protein- (ACP) bound substrate. Docking studies also reveal a putative docking site within CalO2 for the CLM orsellinic acid synthase (CalO5) ACP domain which involves a well-ordered helix along the CalO2 active site cavity that is unique compared with other P450 structures.
Collapse
Affiliation(s)
- Jason G. McCoy
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544
| | - Heather D. Johnson
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, National Cooperative Drug Discovery Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison
| | - Shanteri Singh
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, National Cooperative Drug Discovery Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison
| | - Craig A. Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544
| | - In-Kyoung Lei
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, National Cooperative Drug Discovery Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison
| | - Jon S. Thorson
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, National Cooperative Drug Discovery Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison
| | - George N. Phillips
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544
| |
Collapse
|
27
|
Johnson HD, Thorson JS. Characterization of CalE10, the N-oxidase involved in calicheamicin hydroxyaminosugar formation. J Am Chem Soc 2008; 130:17662-3. [PMID: 19055330 PMCID: PMC2704561 DOI: 10.1021/ja807557a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As the first in vitro characterization of a sugar N-oxidase, this study establishes CalE10 as the key oxidase involved in calicheamicin hydroxylamino glycoside formation. This study confirms that oxidation occurs at the sugar nucleotide stage prior to glycosyltransfer, and substrate specificity studies reveal CalE10-catalyzed oxidation to be regiospecific and to present trace amounts of the corresponding nitrosugar in vitro. This work also sets a precedent for the future study of other N-oxidases involved in hydroxylamino-, nitroso-, and/or nitrosugar formation.
Collapse
Affiliation(s)
- Heather D. Johnson
- Division of Pharmaceutical Sciences and University of Wisconsin National Drug Discovery Group, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jon S. Thorson
- Division of Pharmaceutical Sciences and University of Wisconsin National Drug Discovery Group, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
28
|
Sherer EC, Kirschner KN, Pickard FC, Rein C, Feldgus S, Shields GC. Efficient and accurate characterization of the Bergman cyclization for several enediynes including an expanded substructure of esperamicin A1. J Phys Chem B 2008; 112:16917-34. [PMID: 19053814 PMCID: PMC2854586 DOI: 10.1021/jp807341t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Incorporation of enediynes into anticancer drugs remains an intriguing yet elusive strategy for the design of therapeutically active agents. Density functional theory was used to locate reactants, products, and transition states along the Bergman cyclization pathways connecting enediynes to reactive para-biradicals. Sum method correction to low-level calculations confirmed B3LYP/6-31G(d,p) as the method of choice in investigating enediynes. Herein described as MI:Sum, calculated reaction enthalpies differed from experiment by an average of 2.1 kcal x mol(-1) (mean unsigned error). A combination of strain energy released across the reaction coordinate and the critical intramolecular distance between reacting diynes explains reactivity differences. Where experimental and calculated barrier heights are in disagreement, higher level multireference treatment of the enediynes confirms lower level estimates. Previous work concerning the chemically reactive fragment of esperamcin, MTC, is expanded to our model system MTC2.
Collapse
Affiliation(s)
| | | | - Frank C. Pickard
- Department of Chemistry Center for Molecular Design Hamilton College Clinton, NY 13323
| | - Chantelle Rein
- Department of Chemistry Center for Molecular Design Hamilton College Clinton, NY 13323
| | - Steven Feldgus
- Department of Chemistry Center for Molecular Design Hamilton College Clinton, NY 13323
| | | |
Collapse
|
29
|
Zhang C, Bitto E, Goff RD, Singh S, Bingman CA, Griffith BR, Albermann C, Phillips GN, Thorson JS. Biochemical and structural insights of the early glycosylation steps in calicheamicin biosynthesis. CHEMISTRY & BIOLOGY 2008; 15:842-53. [PMID: 18721755 PMCID: PMC2965851 DOI: 10.1016/j.chembiol.2008.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/12/2008] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
Abstract
The enediyne antibiotic calicheamicin (CLM) gamma(1)(I) is a prominent antitumor agent that is targeted to DNA by a novel aryltetrasaccharide comprised of an aromatic unit and four unusual carbohydrates. Herein we report the heterologous expression and the biochemical characterization of the two "internal" glycosyltransferases CalG3 and CalG2 and the structural elucidation of an enediyne glycosyltransferase (CalG3). In conjunction with the previous characterization of the "external" CLM GTs CalG1 and CalG4, this study completes the functional assignment of all four CLM GTs, extends the utility of enediyne GT-catalyzed reaction reversibility, and presents conclusive evidence of a sequential glycosylation pathway in CLM biosynthesis. This work also reveals the common GT-B structural fold can now be extended to include enediyne GTs.
Collapse
Affiliation(s)
- Changsheng Zhang
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, UW-National Cooperative Drug Discovery Group Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | - Eduard Bitto
- Department of Biochemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53706-1544, USA
| | - Randal D. Goff
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, UW-National Cooperative Drug Discovery Group Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | - Shanteri Singh
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, UW-National Cooperative Drug Discovery Group Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | - Craig A. Bingman
- Department of Biochemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53706-1544, USA
| | - Byron R. Griffith
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, UW-National Cooperative Drug Discovery Group Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | - Christoph Albermann
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, UW-National Cooperative Drug Discovery Group Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | - George N. Phillips
- Department of Biochemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53706-1544, USA
| | - Jon S. Thorson
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, UW-National Cooperative Drug Discovery Group Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| |
Collapse
|
30
|
Timmons SC, Thorson JS. Increasing carbohydrate diversity via amine oxidation: aminosugar, hydroxyaminosugar, nitrososugar, and nitrosugar biosynthesis in bacteria. Curr Opin Chem Biol 2008; 12:297-305. [PMID: 18424273 PMCID: PMC2517148 DOI: 10.1016/j.cbpa.2008.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 03/19/2008] [Accepted: 03/19/2008] [Indexed: 12/14/2022]
Abstract
Bacterial secondary metabolites often contain carbohydrate attachments that play a significant role in conferring biological activity. A small proportion of these bioactive sugars are derived from aminosugar oxidation to ultimately provide hydroxyaminosugars, nitrososugars, and nitrosugars. Recent advances in the elucidation of hydroxyaminosugar-, nitrososugar-, and nitrosugar-containing natural product gene clusters have enabled the proposal of biosynthetic pathways, the in vitro characterization of aminosugar oxidases, and the structure determination of key enzymes. This article focuses upon the key enzymatic transformations in aminosugar, hydroxyaminosugar, nitrososugar, and nitrosugar biosynthesis, as well as the unique chemical reactivity of alkoxyaminosugars, with a particular focus upon developments within the past two years.
Collapse
Affiliation(s)
- Shannon C. Timmons
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705; University of Wisconsin National Cooperative Drug Discovery Group Program
| | - Jon S. Thorson
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705; University of Wisconsin National Cooperative Drug Discovery Group Program
| |
Collapse
|
31
|
Kraka E, Tuttle T, Cremer D. The Reactivity of Calicheamicin γ1I in the Minor Groove of DNA: The Decisive Role of the Environment. Chemistry 2007; 13:9256-69. [PMID: 17694527 DOI: 10.1002/chem.200700504] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Triggering and Bergman cyclization of calicheamicin gamma(1) (I) outside and inside the minor groove of the duplex 9mer-B-DNA sequence d(CACTCCTGG).d(CCAGGAGTG) were investigated by using density functional theory and molecular mechanics (DFT and MM) descriptions in which the ligand is completely described at the DFT and the receptor at the MM level. The calculated docking energy of calicheamicin gamma(1) (I) (-12.5 kcal mol(-1)) is close to the measured value of -9.7 kcal mol(-1) and the site specificity is in line with experimental observations. Calicheamicin is triggered in the minor groove in such a way that out of a cyclohexenone by Michael addition an E rather than a Z form of a cyclohexanone is formed, which in turn adopts a chair rather than a twistboat form. Decisive for the stereochemistry of the Michael addition is the orientation of the carbamate substituent at the headgroup of calicheamicin. Triggered calicheamicin can undergo the Bergman cyclization at body temperature only if present in its E chair form (activation enthalpy 16.4 kcal mol(-1)). An intermediate biradical is formed (docking energy -13.6 kcal mol(-1)), which has a sufficient lifetime to abstract two hydrogen atoms. Hydrogen abstraction is a two- rather than one-step process and involves the C5(H5') atom first and then the T22(H4') atom in line with experimental observations. The decisive role of using a DFT rather than an MM description for the ligand is documented.
Collapse
Affiliation(s)
- Elfi Kraka
- Department of Chemistry and Department of Physics, University of the Pacific, Stockton, CA 95211-0110, USA.
| | | | | |
Collapse
|
32
|
Stasi R, Evangelista ML, Buccisano F, Venditti A, Amadori S. Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia. Cancer Treat Rev 2007; 34:49-60. [PMID: 17942233 DOI: 10.1016/j.ctrv.2007.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 09/03/2007] [Indexed: 01/24/2023]
Abstract
Gemtuzumab ozogamicin (GO) is a chemotherapeutic agent that consists of a humanized anti-CD33 antibody (hP67.6) linked to N-acetyl-calicheamicin 1,2-dimethyl hydrazine dichloride, a potent enediyne antitumor antibiotic. GO was approved conditionally by the Federal Drug Administration in May 2000 as single-agent therapy for first recurrence of acute myeloid leukemia (AML) in patients over the age of 60 years who are unfit for conventional cytotoxic therapy. In this setting, it produces a complete response (CR) rate of 13%, with another 13% achieving CR with inadequate platelet recovery (CRp). The most common adverse effects associated with GO are infusion-related reactions and myelosuppression. GO monotherapy at the dose of 9 mg/m(2) is complicated with hepatic veno-occlusive disease in approximately 5% of cases, particularly prior to or following stem cell transplantation. Attenuated doses of GO or fractionated doses appear to be equally effective and better tolerated. GO has shown remarkable activity in acute promyelocytic leukemia, particularly for the elimination of minimal residual disease. Combinations of GO with chemotherapy as induction or post-remission therapy are promising, and phase III trials are ongoing.
Collapse
Affiliation(s)
- Roberto Stasi
- Department of Medical Sciences, Ospedale Regina Apostolorum, Regina Apostolorum Hospital, Via S Francesco, 50, Albano Laziale, Italy.
| | | | | | | | | |
Collapse
|
33
|
Amadori S, Stasi R. Monoclonal antibodies and immunoconjugates in acute myeloid leukemia. Best Pract Res Clin Haematol 2006; 19:715-36. [PMID: 16997179 DOI: 10.1016/j.beha.2006.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The use of monoclonal antibodies for patients with acute myeloid leukemia is based on targeting cell-surface antigens preferentially expressed on leukemic blasts while sparing normal cells and tissues. The majority of studies performed to date have used antibodies reactive with the CD33 antigen. Phase II studies have demonstrated antileukemic responses with all agents, although less so with unlabeled antibodies. The most promising results have been obtained in the treatment of minimal residual disease in patients with acute promyelocytc leukemia. Antibody-targeted chemotherapy with gemtuzumab ozogamicin has also shown significant activity in patients with relapsed acute myeloid leukemia. Radioimmunotherapy with beta-particle emitters may be most effective for the treatment of bulky disease or as part of a conditioning regimen for hematopoietic stem-cell transplantation, whereas radioimmunotherapy with alpha-particle emitters may be better suited to the treatment of small-volume or minimal residual leukemia. Whether or not monoclonal antibody therapy will improve disease outcome compared with conventional treatment regimens remains to be demonstrated by well-designed clinical trials.
Collapse
Affiliation(s)
- Sergio Amadori
- Department of Hematology, Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy.
| | | |
Collapse
|
34
|
Singh S, Hager MH, Zhang C, Griffith BR, Lee MS, Hallenga K, Markley JL, Thorson JS. Structural insight into the self-sacrifice mechanism of enediyne resistance. ACS Chem Biol 2006; 1:451-60. [PMID: 17168523 DOI: 10.1021/cb6002898] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recent discovery of the first "self-sacrifice" mechanism for bacterial resistance to the enediyne antitumor antibiotics, where enediyne-induced proteolysis of the resistance protein CalC inactivates both the highly reactive metabolite and the resistance protein, revealed yet another ingenious bacterial mechanism for controlling reactive metabolites. As reported herein, the first 3D structures of CalC and CalC in complex with calicheamicin (CLM) divulge CalC to be a member of the steroidogenic acute regulatory protein (StAR)-related transfer (START) domain superfamily. In contrast to previous studies of proteins known to bind DNA-damaging natural products ( e.g ., bleomycins, mitomycins, and nine-membered chromoprotein enediynes), this is the first demonstrated involvement of a START domain fold. Consistent with the CalC self-sacrifice mechanism, CLM in complex with CalC is positioned for direct hydrogen abstraction from Gly113 to initiate the oxidative proteolysis-based resistance mechanism. These structural studies also illuminate, for the first time, a small DNA-binding region within CalC that may serve to localize CalC to the enediyne target (DNA). Given the role of START domains in nuclear/cytosolic transport and translocation, this structural study also may implicate START domains as post-endocytotic intracellular chaperones for enediyne-based therapeutics such as MyloTarg.
Collapse
Affiliation(s)
- Shanteri Singh
- Center for Eukaryotic Structural Genomics, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Gemtuzumab ozogamicin (GO) is a chemotherapeutic agent that consists of a humanized anti-CD33 antibody (hP67.6) linked to N-acetyl-gamma calicheamicin 1,2-dimethyl hydrazine dichloride, a potent enediyne antitumor antibiotic. GO was approved conditionally by the Federal Drug Administration in May 2000 as single-agent therapy for first recurrence of acute myeloid leukemia (AML) in a subset of older patients. Data on studies in AML with GO-based regimens have been reported rapidly in addition to new observations on the target antigen, CD33. These data indicate promising new areas of investigation with GO, including its application as maintenance therapy in patients with AML and as an induction and/or maintenance agent in patients with acute promyelocytic leukemia;, and they also have highlighted challenges in the development of GO, particularly its association with hepatic venoocclusive disease. In vitro data on the mechanism of action of GO may be particularly helpful in the design of future clinical studies.
Collapse
Affiliation(s)
- Francis Giles
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
36
|
Carrasco C, Facompré M, Chisholm JD, Van Vranken DL, Wilson WD, Bailly C. DNA sequence recognition by the indolocarbazole antitumor antibiotic AT2433-B1 and its diastereoisomer. Nucleic Acids Res 2002; 30:1774-81. [PMID: 11937631 PMCID: PMC113207 DOI: 10.1093/nar/30.8.1774] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The antibiotic AT2433-B1 belongs to a therapeutically important class of antitumor agents. This natural product contains an indolocarbazole aglycone connected to a unique disaccharide consisting of a methoxyglucose and an amino sugar subunit, 2,4-dideoxy-4-methylamino-L-xylose. The configuration of the amino sugar distinguishes AT2433-B1 from its diastereoisomer iso-AT2433-B1. Here we have investigated the interaction of these two disaccharide indolocarbazole derivatives with different DNA sequences by means of DNase I footprinting and surface plasmon resonance (SPR). Accurate binding measurements performed at 4 and 25 degrees C using the BIAcore SPR method revealed that AT2433-B1 binds considerably more tightly to a hairpin oligomer containing a [CG](4) block than to an oligomer with a central [AT](4) tract. The kinetic analysis shows that the antibiotic dissociates much more slowly from the GC sequence compared to the AT one. Preferential binding of AT2433-B1 to GC-rich sequences in DNA was independently confirmed by DNase I footprinting experiments performed with a 117 bp DNA restriction fragment. The specific binding sequence 5'-AACGCCAG identified from the footprints was then converted into a biotin-labeled DNA hairpin duplex and compound interactions with this specific sequence were characterized by high resolution BIAcore SPR experiments. Such a combined approach provided a detailed understanding of the molecular basis of DNA recognition. The discovery that the glycosyl antibiotic AT2433-B1 preferentially recognizes defined sequences offers novel opportunities for the future design of sequence-specific DNA-reading small molecules.
Collapse
Affiliation(s)
- Carolina Carrasco
- Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret and INSERM U-524, IRCL, Place de Verdun, 59045 Lille, France
| | | | | | | | | | | |
Collapse
|
37
|
Rojo J, Morales JC, Penadés S. Carbohydrate-Carbohydrate Interactions in Biological and Model Systems. HOST-GUEST CHEMISTRY 2002. [DOI: 10.1007/3-540-45010-6_2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Feldgus S, Shields GC. An ONIOM study of the Bergman reaction: a computationally efficient and accurate method for modeling the enediyne anticancer antibiotics. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)01064-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Giles FJ, Kantarjian HM, Kornblau SM, Thomas DA, Garcia-Manero G, Waddelow TA, David CL, Phan AT, Colburn DE, Rashid A, Estey EH. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 2001; 92:406-13. [PMID: 11466696 DOI: 10.1002/1097-0142(20010715)92:2<406::aid-cncr1336>3.0.co;2-u] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Mylotarg (Wyeth-Ayerst Laboratories, St. Davids, PA) is the brand name for a calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab ozogamicin, CMA-676) and has been approved recently for the treatment of a subset of elderly patients who have relapsed acute myeloid leukemia (AML). Mylotarg is associated with an incidence of approximately 20% Grade 3 or 4 hyperbilirubinemia and liver transaminitis in this patient population. Hepatic venoocclusive disease (VOD) has been reported in patients who have undergone stem cell transplantation (SCT) after Mylotarg therapy. Outside of the SCT setting, VOD has been associated very rarely with cytotoxic therapy. METHODS The authors assessed the incidence of VOD in 119 patients who were receiving Mylotarg-containing non-SCT regimens. VOD was diagnosed through the use of standard Seattle and Baltimore criteria. RESULTS A cohort of 119 (61 previously untreated, 58 with relapsed disease) patients with AML (92 patients), advanced myelodysplastic syndrome (25 patients), or chronic myeloid leukemia in blast phase (2 patients), received Mylotarg-based regimens. Fourteen (12%) developed VOD. The diagnosis of VOD was supported by histology in 2 patients and radiologic studies in a further 10 patients. Five (36%) of 14 patients with VOD had received no prior antileukemic cytotoxic therapy, including 2 patients who received single-agent Mylotarg therapy. CONCLUSIONS Mylotarg was shown to be associated with the development of potentially fatal VOD in patients with leukemia who had not received SCT. VOD occurred when Mylotarg was used either as a single agent or when it was given with other cytotoxic agents. VOD occurred in Mylotarg-treated patients who had received no prior cytotoxic therapy. The current study concluded that risk factors for VOD should be assessed when considering Mylotarg therapy, and that attempts to avoid and treat VOD are warranted in patients who receive Mylotarg therapy.
Collapse
Affiliation(s)
- F J Giles
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Biggins JB, Prudent JR, Marshall DJ, Ruppen M, Thorson JS. A continuous assay for DNA cleavage: the application of "break lights" to enediynes, iron-dependent agents, and nucleases. Proc Natl Acad Sci U S A 2000; 97:13537-42. [PMID: 11095715 PMCID: PMC17611 DOI: 10.1073/pnas.240460997] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although extensive effort has been applied toward understanding the mechanism by which enediynes cleave DNA, a continuous assay for this phenomenon is still lacking. In fact, with the exception of assays for DNase, continuous assays for most DNA cleavage events are unavailable. This article describes the application of "molecular break lights" (a single-stranded oligonucleotide that adopts a stem-and-loop structure and carries a 5'-fluorescent moiety, a 3'-nonfluorescent quenching moiety, and an appropriate cleavage site within the stem) to develop the first continuous assay for cleavage of DNA by enediynes. Furthermore, the generality of this approach is demonstrated by using the described assay to directly compare the DNA cleavage by naturally occurring enediynes [calicheamicin and esperamicin), non-enediyne small molecule agents (bleomycin, methidiumpropyl-EDTA-Fe(II), and EDTA-Fe(II]), as well as the restriction endonuclease BamHI. Given the simplicity, speed, and sensitivity of this approach, the described methodology could easily be extended to a high throughput format and become a new method of choice in modern drug discovery to screen for novel protein-based or small molecule-derived DNA cleavage agents.
Collapse
Affiliation(s)
- J B Biggins
- Laboratory for Biosynthetic Chemistry, Memorial Sloan-Kettering Cancer Center and the Sloan-Kettering Division, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Elfi Kraka
- Contribution from the Department of Theoretical Chemistry, Göteborg University, Reutersgatan 2, S-401320 Göteborg, Sweden
| | - Dieter Cremer
- Contribution from the Department of Theoretical Chemistry, Göteborg University, Reutersgatan 2, S-401320 Göteborg, Sweden
| |
Collapse
|
42
|
Sissi C, Aiyar J, Boyer S, Depew K, Danishefsky S, Crothers DM. Interaction of calicheamicin gamma1(I) and its related carbohydrates with DNA-protein complexes. Proc Natl Acad Sci U S A 1999; 96:10643-8. [PMID: 10485879 PMCID: PMC17936 DOI: 10.1073/pnas.96.19.10643] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report studies of the contribution of DNA structure, holding the sequence constant, to the affinity of calicheamicin gamma(1)(I) and its aryltetrasaccharide moiety for DNA. We used polynucleotide chains as models of known protein-binding sequences [the catabolite activator protein (CAP) consensus sequence, AP-1 and cAMP response element (CRE) sites] in their free and protein-bound forms. The proteins were selected to provide examples in which the minor-groove binding site for the carbohydrate is (CAP) or is not (GCN4) covered by the protein. Additionally, peptides related to the GCN4 and CREB families, which have different bending effects on their DNA-binding sites, were used. We observe that proteins of the CREB class, which induce a tendency to bend toward the minor groove at the center of the site, inhibit drug-cleavage sites located at the center of the free AP-1 or CRE DNA sites. In the case of GCN4, which does not induce DNA bending, there is no effect on calicheamicin cleavage of the CRE site, but we observe a GCN4-induced rearrangement of the cutting pattern in the AP-1 site. This effect may arise from either a subtle local conformational rearrangement not accompanied by bending or a localized reduction in DNA flexibility. Whereas GCN4 binding is not inhibited by the calicheamicin aryltetrasaccharide, binding of CAP to its DNA target is significantly inhibited, and calicheamicin cutting of DNA at the center of the CAP-DNA complex site is strongly reduced by protein binding. This result probably reflects steric inhibition of drug binding by the protein.
Collapse
Affiliation(s)
- C Sissi
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 Padua, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Bailly C, Qu X, Graves DE, Prudhomme M, Chaires JB. Calories from carbohydrates: energetic contribution of the carbohydrate moiety of rebeccamycin to DNA binding and the effect of its orientation on topoisomerase I inhibition. CHEMISTRY & BIOLOGY 1999; 6:277-86. [PMID: 10322124 DOI: 10.1016/s1074-5521(99)80073-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Only a few antitumor drugs inhibit the DNA breakage-reunion reaction catalyzed by topoisomerase. One is the camptothecin derivative topotecan that has recently been used clinically. Others are the glycosylated antibiotic rebeccamycin and its synthetic analog NB-506, which is presently in phase I of clinical trials. Unlike the camptothecins, rebeccamycin-type compounds bind to DNA. We set out to elucidate the molecular basis of their interaction with duplex DNA, with particular emphasis on the role of the carbohydrate residue. RESULTS We compared the DNA-binding and topoisomerase-I-inhibition activities of two isomers of rebeccamycin that contain a galactose residue attached to the indolocarbazole chromophore via an alpha (axial) or a beta (equatorial) glycosidic linkage. The modification of the stereochemistry of the chromophore-sugar linkage results in a marked change of the DNA-binding and topoisomerase-I- poisoning activities. The inverted configuration at the C-1' of the carbohydrate residue abolishes intercalative binding of the drug to DNA thereby drastically reducing the binding affinity. Consequently, the alpha isomer has lost the capacity to induce topoisomerase-I-mediated cleavage of DNA. Comparison with the aglycone allowed us to determine the energetic contribution of the sugar residue. CONCLUSIONS The optimal interaction of rebeccamycin analogs with DNA is controlled to a large extent by the stereochemistry of the sugar residue. The results clarify the role of carbohydrates in stereospecific drug-DNA interactions and provide valuable information for the rational design of new rebeccamycin-type antitumor agents.
Collapse
Affiliation(s)
- C Bailly
- Centre Oscar Lambret et INSERM U-524 Lille, 59045, France.
| | | | | | | | | |
Collapse
|
44
|
Abstract
A groundswell of interest in chromatin structure and its role in regulating the function of DNA in transcription, replication, recombination and repair has developed in the past decade. Fueled by genetic observations of effects of histone mutations on transcription and identification of genes whose products must alter chromatin structure as they affect gene activity, this subject leapt to the forefront in the past two years with the correlation of certain transcription factors with enzymes that post-translationally modify histones and are presumed to alter chromatin structure thereby. Surprisingly few experimental reports have actually addressed chromatin structure. In part, this may be related to the technical difficulties of traditional approaches to structure inference. Methods have become available recently for assessment of various aspects of chromatin structure in vivo. Study in intact cells may limit potential problems resulting from loss of components or rearrangement of structures and simplify analysis by eliminating the need for isolation of organelles.
Collapse
Affiliation(s)
- R T Simpson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 308 Althouse, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
45
|
Bailly C, Qu X, Anizon F, Prudhomme M, Riou JF, Chaires JB. Enhanced binding to DNA and topoisomerase I inhibition by an analog of the antitumor antibiotic rebeccamycin containing an amino sugar residue. Mol Pharmacol 1999; 55:377-85. [PMID: 9927631 DOI: 10.1124/mol.55.2.377] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many antitumor agents contain a carbohydrate side chain appended to a DNA-intercalating chromophore. This is the case with anthracyclines such as daunomycin and also with indolocarbazoles including the antibiotic rebeccamycin and its tumor active analog, NB506. In each case, the glycoside residue plays a significant role in the interaction of the drug with the DNA double helix. In this study we show that the DNA-binding affinity and sequence selectivity of a rebeccamycin derivative can be enhanced by replacing the glucose residue with a 2'-aminoglucose moiety. The drug-DNA interactions were studied by thermal denaturation, fluorescence, and footprinting experiments. The thermodynamic parameters indicate that the newly introduced amino group on the glycoside residue significantly enhanced binding to DNA by increasing the contribution of the polyelectrolyte effect to the binding free energy, but does not appear to participate in any specific molecular contacts. The energetic contribution of the amino group of the rebeccamycin analog was found to be weaker than that of the sugar amino group of daunomycin, possibly because the indolocarbazole derivative is only partially charged at neutral pH. Topoisomerase I-mediated DNA cleavage studies reveal that the OH-->NH2 substitution does not affect the capacity of the drug to stabilize enzyme-DNA covalent complexes. Cytotoxicity studies with P388 leukemia cells sensitive or resistant to camptothecin suggest that topoisomerase I represents a privileged intracellular target for the studied compounds. The role of the sugar amino group is discussed. The study provides useful guidelines for the development of a new generation of indolocarbazole-based antitumor agents.
Collapse
Affiliation(s)
- C Bailly
- Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret et Institut National de la Santé et de la Recherche Médicale U-124, Lille, France
| | | | | | | | | | | |
Collapse
|
46
|
Bifulco G, Galeone A, Nicolaou KC, Chazin WJ, Gomez-Paloma L. Solution Structure of the Complex between the Head-to-Tail Dimer of Calicheamicin γ1I Oligosaccharide and a DNA Duplex Containing d(ACCT) and d(TCCT) High-Affinity Binding Sites. J Am Chem Soc 1998. [DOI: 10.1021/ja973910y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giuseppe Bifulco
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, and Dipartimento di Chimica delle Sostanze Naturali, Universita' degli studi di Napoli “Federico II”, via D. Montesano 49, Napoli 80131, Italy
| | - Aldo Galeone
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, and Dipartimento di Chimica delle Sostanze Naturali, Universita' degli studi di Napoli “Federico II”, via D. Montesano 49, Napoli 80131, Italy
| | - K. C. Nicolaou
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, and Dipartimento di Chimica delle Sostanze Naturali, Universita' degli studi di Napoli “Federico II”, via D. Montesano 49, Napoli 80131, Italy
| | - Walter J. Chazin
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, and Dipartimento di Chimica delle Sostanze Naturali, Universita' degli studi di Napoli “Federico II”, via D. Montesano 49, Napoli 80131, Italy
| | - Luigi Gomez-Paloma
- Contribution from the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, and Dipartimento di Chimica delle Sostanze Naturali, Universita' degli studi di Napoli “Federico II”, via D. Montesano 49, Napoli 80131, Italy
| |
Collapse
|
47
|
Abstract
Significant progress has been made over the past few years in studies of drug-DNA interactions. Structure-based design strategies have yielded new DNA-binding agents with clinical promise. The hairpin polyamides represent the result of a design strategy with outstanding potential. One specific molecule of this class has now been proven to inhibit the expression of a specific gene in vivo. A new bisintercalating anthracycline antibiotic binds with high affinity to DNA, and appears to overcome a specific form of multidrug resistance. Progress in fundamental studies of drug binding to DNA continues, with detailed thermodynamic studies providing new insights into the forces that drive complex formation. New tools have been developed in order to characterize both the binding mode and the sequence specificity of drug binding to DNA, tools that will enable the fundamental aspects of these biologically important reactions to be understood in more detail.
Collapse
Affiliation(s)
- J B Chaires
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216-4505, USA.
| |
Collapse
|
48
|
Bailly C, Colson P, Houssier C, Rodrigues-Pereira E, Prudhomme M, Waring MJ. Recognition of specific sequences in DNA by a topoisomerase I inhibitor derived from the antitumor drug rebeccamycin. Mol Pharmacol 1998; 53:77-87. [PMID: 9443934 DOI: 10.1124/mol.53.1.77] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We investigated the interaction with DNA of two synthetic derivatives of the antitumor antibiotic rebeccamycin: R-3, which is a potent topoisomerase I inhibitor and contains a methoxyglucose moiety appended to the indolocarbazole chromophore, and its aglycone, R-4. Spectroscopic measurements indicate that R-3 intercalates into DNA and that its carbohydrate domain contributes significantly to reinforce the affinity for DNA. Two complementary ligation assays concur that R-3, but not its aglycone counterpart, exerts a significant effect on the curvature and/or the flexibility of DNA. The sugar moiety may be responsible for preferential binding of R-3 to circular (or bent) DNA molecules as opposed to linear DNA fragments. The sequence selectivity of binding to DNA has been studied thoroughly by footprinting with DNase I and two other nucleases. The glycosylated compound is highly selective for nucleotide sequences containing GpT (ApC) and TpG (CpA) steps. The derivative lacking the sugar moiety on the indolocarbazole chromophore binds at essentially identical sites but with considerably lower affinity, so it seems that the chromophore rather than the carbohydrate is responsible for the preferential binding to sequences surrounding GpT and TpG steps. The influence of the exocyclic substituents present on the bases at the recognition sites (i.e., the 2-amino group of guanine and the 5-methyl group of thymine) was evaluated using two series of modified DNA molecules prepared by polymerase chain reaction containing inosine and/or 2,6-diaminopurine and uridine and/or 5-methylcytosine residues. The introduction of the amino group onto purine residues or the addition of a methyl group to pyrimidine residues suffices to create new drug binding sites. Therefore, unlike most DNA-binding small molecules, the rebeccamycin analogue seems to be highly sensitive to any modification of the exocyclic substituents on the bases in both the major and minor grooves of the double helix. The footprinting profiles with the different DNA fragments bear a remarkable resemblance to those determined for nogalamycin and bisnaphthalimide compounds known to recognize their preferred GpT and TpG sites via intercalation from the major groove. The unique DNA binding characteristics of the rebeccamycin analogue correlate well with its inhibitory effects on topoisomerase I.
Collapse
Affiliation(s)
- C Bailly
- Laboratoire de Pharmacologie Moléculaire Antitumorale du Centre Oscar Lambret, Institut National de la Santé et de la Recherche Médicale Unité 124, Lille, France.
| | | | | | | | | | | |
Collapse
|
49
|
Latchman DS. How can we use our growing understanding of gene transcription to discover effective new medicines? Curr Opin Biotechnol 1997; 8:713-7. [PMID: 9425662 DOI: 10.1016/s0958-1669(97)80125-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although drugs that target gene transcription are in wide therapeutic use, they were all identified on the basis of their effect on a specific biological process, such as inflammation or hormone responses, and were only subsequently shown to target transcription. The recent progress in understanding the mechanism of action of these drugs, and the mechanisms of transcriptional regulation in general, offers hope for a new generation of drugs isolated on the basis of their ability to modulate either the synthesis of transcription factors, the regulation of their activity by ligands or phosphorylation events, their protein-protein interactions or their binding to DNA.
Collapse
Affiliation(s)
- D S Latchman
- Department of Molecular Pathology, Windeyer Institute of Medical Science, University College London Medical School, UK.
| |
Collapse
|