1
|
Resnik N, Višnjar T, Smrkolj T, Kreft ME, Romih R, Zupančič D. Selective targeting of lectins and their macropinocytosis in urothelial tumours: translation from in vitro to ex vivo. Histochem Cell Biol 2023; 160:435-452. [PMID: 37535087 PMCID: PMC10624759 DOI: 10.1007/s00418-023-02224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Urinary bladder cancer can be treated by intravesical application of therapeutic agents, but the specific targeting of cancer urothelial cells and the endocytotic pathways of the agents are not known. During carcinogenesis, the superficial urothelial cells exhibit changes in sugar residues on the apical plasma membranes. This can be exploited for selective targeting from the luminal side of the bladder. Here we show that the plant lectins Jacalin (from Artocarpus integrifolia), ACA (from Amaranthus caudatus) and DSA (from Datura stramonium) selectively bind to the apical plasma membrane of low- (RT4) and high-grade (T24) cancer urothelial cells in vitro and urothelial tumours ex vivo. The amount of lectin binding was significantly different between RT4 and T24 cells. Endocytosis of lectins was observed only in cancer urothelial cells and not in normal urothelial cells. Transmission electron microscopy analysis showed macropinosomes, endosome-like vesicles and multivesicular bodies filled with lectins in RT4 and T24 cells and also in cells of urothelial tumours ex vivo. Endocytosis of Jacalin and ACA in cancer cells was decreased in vitro after addition of inhibitor of macropinocytosis 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and increased after stimulation of macropinocytosis with epidermal growth factor (EGF). Clathrin, caveolin and flotillin did not colocalise with lectins. These results confirm that the predominant mechanism of lectin endocytosis in cancer urothelial cells is macropinocytosis. Therefore, we propose that lectins in combination with conjugated therapeutic agents are promising tools for improved intravesical therapy by targeting cancer cells.
Collapse
Affiliation(s)
- Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Tanja Višnjar
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tomaž Smrkolj
- Department of Urology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
The Golgi complex: An organelle that determines urothelial cell biology in health and disease. Histochem Cell Biol 2022; 158:229-240. [PMID: 35773494 PMCID: PMC9399047 DOI: 10.1007/s00418-022-02121-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/05/2022]
Abstract
The Golgi complex undergoes considerable structural remodeling during differentiation of urothelial cells in vivo and in vitro. It is known that in a healthy bladder the differentiation from the basal to the superficial cell layer leads to the formation of the tightest barrier in our body, i.e., the blood–urine barrier. In this process, urothelial cells start expressing tight junctional proteins, apical membrane lipids, surface glycans, and integral membrane proteins, the uroplakins (UPs). The latter are the most abundant membrane proteins in the apical plasma membrane of differentiated superficial urothelial cells (UCs) and, in addition to well-developed tight junctions, contribute to the permeability barrier by their structural organization and by hindering endocytosis from the apical plasma membrane. By studying the transport of UPs, we were able to demonstrate their differentiation-dependent effect on the Golgi architecture. Although fragmentation of the Golgi complex is known to be associated with mitosis and apoptosis, we found that the process of Golgi fragmentation is required for delivery of certain specific urothelial differentiation cargoes to the plasma membrane as well as for cell–cell communication. In this review, we will discuss the currently known contribution of the Golgi complex to the formation of the blood–urine barrier in normal UCs and how it may be involved in the loss of the blood–urine barrier in cancer. Some open questions related to the Golgi complex in the urothelium will be highlighted.
Collapse
|
3
|
Jafari NV, Rohn JL. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunol 2022; 15:1127-1142. [PMID: 36180582 PMCID: PMC9705259 DOI: 10.1038/s41385-022-00565-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 02/04/2023]
Abstract
All mucosal surfaces must deal with the challenge of exposure to the outside world. The urothelium is a highly specialized layer of stratified epithelial cells lining the inner surface of the urinary bladder, a gruelling environment involving significant stretch forces, osmotic and hydrostatic pressures, toxic substances, and microbial invasion. The urinary bladder plays an important barrier role and allows the accommodation and expulsion of large volumes of urine without permitting urine components to diffuse across. The urothelium is made up of three cell types, basal, intermediate, and umbrella cells, whose specialized functions aid in the bladder's mission. In this review, we summarize the recent insights into urothelial structure, function, development, regeneration, and in particular the role of umbrella cells in barrier formation and maintenance. We briefly review diseases which involve the bladder and discuss current human urothelial in vitro models as a complement to traditional animal studies.
Collapse
Affiliation(s)
- Nazila V Jafari
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK.
| |
Collapse
|
4
|
Rubio-Ramos A, Labat-de-Hoz L, Correas I, Alonso MA. The MAL Protein, an Integral Component of Specialized Membranes, in Normal Cells and Cancer. Cells 2021; 10:1065. [PMID: 33946345 PMCID: PMC8145151 DOI: 10.3390/cells10051065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
The MAL gene encodes a 17-kDa protein containing four putative transmembrane segments whose expression is restricted to human T cells, polarized epithelial cells and myelin-forming cells. The MAL protein has two unusual biochemical features. First, it has lipid-like properties that qualify it as a member of the group of proteolipid proteins. Second, it partitions selectively into detergent-insoluble membranes, which are known to be enriched in condensed cell membranes, consistent with MAL being distributed in highly ordered membranes in the cell. Since its original description more than thirty years ago, a large body of evidence has accumulated supporting a role of MAL in specialized membranes in all the cell types in which it is expressed. Here, we review the structure, expression and biochemical characteristics of MAL, and discuss the association of MAL with raft membranes and the function of MAL in polarized epithelial cells, T lymphocytes, and myelin-forming cells. The evidence that MAL is a putative receptor of the epsilon toxin of Clostridium perfringens, the expression of MAL in lymphomas, the hypermethylation of the MAL gene and subsequent loss of MAL expression in carcinomas are also presented. We propose a model of MAL as the organizer of specialized condensed membranes to make them functional, discuss the role of MAL as a tumor suppressor in carcinomas, consider its potential use as a cancer biomarker, and summarize the directions for future research.
Collapse
Affiliation(s)
- Armando Rubio-Ramos
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| | - Leticia Labat-de-Hoz
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| | - Isabel Correas
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel A. Alonso
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| |
Collapse
|
5
|
Zupančič D, Romih R. Immunohistochemistry as a paramount tool in research of normal urothelium, bladder cancer and bladder pain syndrome. Eur J Histochem 2021; 65. [PMID: 33764020 PMCID: PMC8033529 DOI: 10.4081/ejh.2021.3242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
The urothelium, an epithelium of the urinary bladder, primarily functions as blood-urine permeability barrier. The urothelium has a very slow turnover under normal conditions but is capable of extremely fast response to injury. During regeneration urothelium either restores normal function or undergoes altered differentiation pathways, the latter being the cause of several bladder diseases. In this review, we describe the structure of the apical plasma membrane that enables barrier function, the role of urothelium specific proteins uroplakins and the machinery for polarized membrane transports in terminally differentiated superficial umbrella cells. We address key markers, such as keratins, cancer stem cell markers, retinoic acid signalling pathway proteins and transient receptor potential channels and purinergic receptors that drive normal and altered differentiation in bladder cancer and bladder pain syndrome. Finally, we discuss uncertainties regarding research, diagnosis and treatment of bladder pain syndrome. Throughout the review, we emphasise the contribution of immunohistochemistry in advancing our understanding of processes in normal and diseased bladder as well as the most promising possibilities for improved bladder cancer and bladder pain syndrome management.
Collapse
Affiliation(s)
- Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana.
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana.
| |
Collapse
|
6
|
Xie S, Shalaby-Rana E, Hester A, Honeycutt J, Fu CL, Boyett D, Jiang W, Hsieh MH. Macroscopic and microscopic imaging modalities for diagnosis and monitoring of urogenital schistosomiasis. ADVANCES IN PARASITOLOGY 2021; 112:51-76. [PMID: 34024359 DOI: 10.1016/bs.apar.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Urogenital schistosomiasis remains a major global challenge. Optimal management of this infection depends upon imaging-based assessment of sequelae. Although established imaging modalities such as ultrasonography, plain radiography, magnetic resonance imaging (MRI), narrow band imaging, and computerized tomography (CT) have been used to determine tissue involvement by urogenital schistosomiasis, newer refinements in associated technologies may lead to improvements in patient care. Moreover, application of investigational imaging methods such as confocal laser endomicroscopy and two-photon microscopy in animal models of urogenital schistosomiasis are likely to contribute to our understanding of this infection's pathogenesis. This review discusses prior use of imaging in patients with urogenital schistosomiasis and experimentally infected animals, the advantages and limitations of these modalities, the latest radiologic developments relevant to this infection, and a proposed future diagnostic standard of care for management of afflicted patients.
Collapse
Affiliation(s)
- Shelly Xie
- Division of Urology, Children's National Hospital, Washington, DC, United States
| | - Eglal Shalaby-Rana
- Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, United States
| | - Austin Hester
- Division of Urology, Children's National Hospital, Washington, DC, United States
| | - Jared Honeycutt
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | | | - Deborah Boyett
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, United States
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael H Hsieh
- Division of Urology, Children's National Hospital, Washington, DC, United States.
| |
Collapse
|
7
|
Hatton NE, Baumann CG, Fascione MA. Developments in Mannose-Based Treatments for Uropathogenic Escherichia coli-Induced Urinary Tract Infections. Chembiochem 2021; 22:613-629. [PMID: 32876368 PMCID: PMC7894189 DOI: 10.1002/cbic.202000406] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/28/2020] [Indexed: 12/16/2022]
Abstract
During their lifetime almost half of women will experience a symptomatic urinary tract infection (UTI) with a further half experiencing a relapse within six months. Currently UTIs are treated with antibiotics, but increasing antibiotic resistance rates highlight the need for new treatments. Uropathogenic Escherichia coli (UPEC) is responsible for the majority of symptomatic UTI cases and thus has become a key pathological target. Adhesion of type one pilus subunit FimH at the surface of UPEC strains to mannose-saturated oligosaccharides located on the urothelium is critical to pathogenesis. Since the identification of FimH as a therapeutic target in the late 1980s, a substantial body of research has been generated focusing on the development of FimH-targeting mannose-based anti-adhesion therapies. In this review we will discuss the design of different classes of these mannose-based compounds and their utility and potential as UPEC therapeutics.
Collapse
Affiliation(s)
- Natasha E. Hatton
- York Structural Biology Lab, Department of ChemistryUniversity of YorkHeslington RoadYorkYO10 5DDUK
| | | | - Martin A. Fascione
- York Structural Biology Lab, Department of ChemistryUniversity of YorkHeslington RoadYorkYO10 5DDUK
| |
Collapse
|
8
|
Zupančič D, Korać-Prlić J, Kreft ME, Franković L, Vilović K, Jeruc J, Romih R, Terzić J. Vitamin A Rich Diet Diminishes Early Urothelial Carcinogenesis by Altering Retinoic Acid Signaling. Cancers (Basel) 2020; 12:1712. [PMID: 32605249 PMCID: PMC7407197 DOI: 10.3390/cancers12071712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Urinary bladder cancer is one of the leading malignancies worldwide, with the highest recurrence rates. A diet rich in vitamin A has proven to lower the risk of cancer, yet the molecular mechanisms underlying this effect are unknown. We found that vitamin A decreased urothelial atypia and apoptosis during early bladder carcinogenesis induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Vitamin A did not alter urothelial cell desquamation, differentiation, or proliferation rate. Genes like Wnt5a, involved in retinoic acid signaling, and transcription factors Pparg, Ppara, Rxra, and Hoxa5 were downregulated, while Sox9 and Stra6 were upregulated in early urothelial carcinogenesis. When a vitamin A rich diet was provided during BBN treatment, none of these genes was up- or downregulated; only Lrat and Neurod1 were upregulated. The lecithin retinol acyltransferase (LRAT) enzyme that produces all-trans retinyl esters was translocated from the cytoplasm to the nuclei in urothelial cells as a consequence of BBN treatment regardless of vitamin A rich diet. A vitamin A-rich diet altered retinoic acid signaling, decreased atypia and apoptosis of urothelial cells, and consequently diminished early urothelial carcinogenesis.
Collapse
Affiliation(s)
- Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana,1000 Ljubljana, Slovenia; (D.Z.); (M.E.K.)
| | - Jelena Korać-Prlić
- Laboratory for Cancer Research, School of Medicine, University of Split, 21000 Split, Croatia; (J.K.-P.); (L.F.)
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana,1000 Ljubljana, Slovenia; (D.Z.); (M.E.K.)
| | - Lucija Franković
- Laboratory for Cancer Research, School of Medicine, University of Split, 21000 Split, Croatia; (J.K.-P.); (L.F.)
| | - Katarina Vilović
- Department of Pathology, University Hospital of Split, 21000 Split, Croatia;
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana,1000 Ljubljana, Slovenia; (D.Z.); (M.E.K.)
| | - Janoš Terzić
- Laboratory for Cancer Research, School of Medicine, University of Split, 21000 Split, Croatia; (J.K.-P.); (L.F.)
| |
Collapse
|
9
|
Does the Urothelium of Old Mice Regenerate after Chitosan Injury as Quickly as the Urothelium of Young Mice? Int J Mol Sci 2020; 21:ijms21103502. [PMID: 32429113 PMCID: PMC7278990 DOI: 10.3390/ijms21103502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/02/2023] Open
Abstract
The aging of organisms leads to a decreased ability of tissue to regenerate after injury. The regeneration of the bladder urothelium after induced desquamation with biopolymer chitosan has been studied in young mice but not in old mice. Chitosan is a suitable inducer of urothelial desquamation because it is known to be non-toxic. We used chitosan for desquamation of urothelial cells in order to compare the dynamics of urothelial regeneration after injury between young and old mice. Our aim was to determine whether the urothelial function and structure of old mice is restored as fast as in young mice, and to evaluate the inflammatory response due to chitosan treatment. We discovered that the urothelial function restored comparably fast in both age groups and that the urothelium of young and old mice recovered within 5 days after injury, although the onset of proliferation and differentiation appeared later in old mice. Acute inflammation markers showed some differences in the inflammatory response in young versus old mice, but in both age groups, chitosan caused short-term acute inflammation. In conclusion, the restoration of urothelial function is not impaired in old mice, but the regeneration of the urothelial structure in old mice slightly lags behind the regeneration in young mice.
Collapse
|
10
|
Liao Y, Tham DKL, Liang FX, Chang J, Wei Y, Sudhir PR, Sall J, Ren SJ, Chicote JU, Arnold LL, Hu CCA, Romih R, Andrade LR, Rindler MJ, Cohen SM, DeSalle R, Garcia-España A, Ding M, Wu XR, Sun TT. Mitochondrial lipid droplet formation as a detoxification mechanism to sequester and degrade excessive urothelial membranes. Mol Biol Cell 2019; 30:2969-2984. [PMID: 31577526 PMCID: PMC6857570 DOI: 10.1091/mbc.e19-05-0284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The apical surface of the terminally differentiated mammalian urothelial umbrella cell is mechanically stable and highly impermeable, in part due to its coverage by urothelial plaques consisting of 2D crystals of uroplakin particles. The mechanism for regulating the uroplakin/plaque level is unclear. We found that genetic ablation of the highly tissue-specific sorting nexin Snx31, which localizes to plaques lining the multivesicular bodies (MVBs) in urothelial umbrella cells, abolishes MVBs suggesting that Snx31 plays a role in stabilizing the MVB-associated plaques by allowing them to achieve a greater curvature. Strikingly, Snx31 ablation also induces a massive accumulation of uroplakin-containing mitochondria-derived lipid droplets (LDs), which mediate uroplakin degradation via autophagy/lipophagy, leading to the loss of apical and fusiform vesicle plaques. These results suggest that MVBs play an active role in suppressing the excessive/wasteful endocytic degradation of uroplakins. Failure of this suppression mechanism triggers the formation of mitochondrial LDs so that excessive uroplakin membranes can be sequestered and degraded. Because mitochondrial LD formation, which occurs at a low level in normal urothelium, can also be induced by disturbance in uroplakin polymerization due to individual uroplakin knockout and by arsenite, a bladder carcinogen, this pathway may represent an inducible, versatile urothelial detoxification mechanism.
Collapse
Affiliation(s)
- Yi Liao
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Daniel K L Tham
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Feng-Xia Liang
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Jennifer Chang
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Yuan Wei
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Putty-Reddy Sudhir
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Joseph Sall
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Sarah J Ren
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Javier U Chicote
- Research Unit, Hospital Joan XXIII, Institut de Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Lora L Arnold
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Chih-Chi Andrew Hu
- The Wistar Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | | | - Michael J Rindler
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024
| | - Antonio Garcia-España
- Research Unit, Hospital Joan XXIII, Institut de Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Mingxiao Ding
- College of Life Sciences, Peking University, Dachengfang, Haidian, Beijing 100871, China
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine, New York, NY10016.,Department of Pathology, New York University School of Medicine, New York, NY10016.,Veterans Affairs Medical Center, New York, NY 10010
| | - Tung-Tien Sun
- Department of Cell Biology, New York University School of Medicine, New York, NY10016.,Department of Urology, New York University School of Medicine, New York, NY10016.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016.,Department of Dermatology, New York University School of Medicine, New York, NY10016
| |
Collapse
|
11
|
Tamadonfar KO, Omattage NS, Spaulding CN, Hultgren SJ. Reaching the End of the Line: Urinary Tract Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0014-2019. [PMID: 31172909 PMCID: PMC11314827 DOI: 10.1128/microbiolspec.bai-0014-2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 12/26/2022] Open
Abstract
Urinary tract infections (UTIs) cause a substantial health care burden. UTIs (i) are most often caused by uropathogenic Escherichia coli (UPEC), (ii) primarily affect otherwise healthy females (50% of women will have a UTI), (iii) are associated with significant morbidity and economic impact, (iv) can become chronic, and (v) are highly recurrent. A history of UTI is a significant risk factor for a recurrent UTI (rUTI). In otherwise healthy women, an acute UTI leads to a 25 to 50% chance of rUTI within months of the initial infection. Interestingly, rUTIs are commonly caused by the same strain of E. coli that led to the initial infection, arguing that there exist host-associated reservoirs, like the gastrointestinal tract and underlying bladder tissue, that can seed rUTIs. Additionally, catheter-associated UTIs (CAUTI), caused by Enterococcus and Staphylococcus as well as UPEC, represent a major health care concern. The host's response of depositing fibrinogen at the site of infection has been found to be critical to establishing CAUTI. The Drug Resistance Index, an evaluation of antibiotic resistance, indicates that UTIs have become increasingly difficult to treat since the mid-2000s. Thus, UTIs are a "canary in the coal mine," warning of the possibility of a return to the preantibiotic era, where some common infections are untreatable with available antibiotics. Numerous alternative strategies for both the prevention and treatment of UTIs are being pursued, with a focus on the development of vaccines and small-molecule inhibitors targeting virulence factors, in the hopes of reducing the burden of urogenital tract infections in an antibiotic-sparing manner.
Collapse
Affiliation(s)
- Kevin O Tamadonfar
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Natalie S Omattage
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Caitlin N Spaulding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- Harvard University School of Public Health, Boston, MA 02115
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- Center for Women's Infectious Disease Research, Washington University, School of Medicine, St. Louis, MO 63110
| |
Collapse
|
12
|
Krystofiak ES, Heymann JB, Kachar B. Carbon replicas reveal double stranded structure of tight junctions in phase-contrast electron microscopy. Commun Biol 2019; 2:98. [PMID: 30886907 PMCID: PMC6414538 DOI: 10.1038/s42003-019-0319-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
Replica-based freeze-fracture and freeze-etching electron microscopy methods provide surface topography information, particularly suited to studying membrane protein complexes in their native context. The fidelity and resolution of metal replicas is limited by the inherent property of metal atoms to crystallize. To overcome the limitations of metal replicas, we combined amorphous carbon replicas with phase-contrast electron microscopy. Using this approach, tight junction intramembrane fibrils were shown to have a double stranded morphology.
Collapse
Affiliation(s)
- Evan S Krystofiak
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.,Cell Imaging Shared Resource, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - J Bernard Heymann
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Liao Y, Chang HC, Liang FX, Chung PJ, Wei Y, Nguyen TP, Zhou G, Talebian S, Krey LC, Deng FM, Wong TW, Chicote JU, Grifo JA, Keefe DL, Shapiro E, Lepor H, Wu XR, DeSalle R, Garcia-España A, Kim SY, Sun TT. Uroplakins play conserved roles in egg fertilization and acquired additional urothelial functions during mammalian divergence. Mol Biol Cell 2018; 29:3128-3143. [PMID: 30303751 PMCID: PMC6340209 DOI: 10.1091/mbc.e18-08-0496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Uroplakin (UP) tetraspanins and their associated proteins are major mammalian urothelial differentiation products that form unique two-dimensional crystals of 16-nm particles (“urothelial plaques”) covering the apical urothelial surface. Although uroplakins are highly expressed only in mammalian urothelium and are often referred to as being urothelium specific, they are also expressed in several mouse nonurothelial cell types in stomach, kidney, prostate, epididymis, testis/sperms, and ovary/oocytes. In oocytes, uroplakins colocalize with CD9 on cell-surface and multivesicular body-derived exosomes, and the cytoplasmic tail of UPIIIa undergoes a conserved fertilization-dependent, Fyn-mediated tyrosine phosphorylation that also occurs in Xenopus laevis eggs. Uroplakin knockout and antibody blocking reduce mouse eggs’ fertilization rate in in vitro fertilization assays, and UPII/IIIa double-knockout mice have a smaller litter size. Phylogenetic analyses showed that uroplakin sequences underwent significant mammal-specific changes. These results suggest that, by mediating signal transduction and modulating membrane stability that do not require two-dimensional-crystal formation, uroplakins can perform conserved and more ancestral fertilization functions in mouse and frog eggs. Uroplakins acquired the ability to form two-dimensional-crystalline plaques during mammalian divergence, enabling them to perform additional functions, including umbrella cell enlargement and the formation of permeability and mechanical barriers, to protect/modify the apical surface of the modern-day mammalian urothelium.
Collapse
Affiliation(s)
- Yi Liao
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Hung-Chi Chang
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016.,Department of Obstetrics and Gynecology, National Taiwan University, Taipei 10617, Taiwan
| | - Feng-Xia Liang
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | | | - Yuan Wei
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Tuan-Phi Nguyen
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Ge Zhou
- Regeneron, Tarrytown, NY 10591
| | - Sheeva Talebian
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Lewis C Krey
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Fang-Ming Deng
- Department of Pathology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University, Tainan 701, Taiwan
| | - Javier U Chicote
- Unitat De Recerca, Hospital Joan XXIII, Institut de Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - James A Grifo
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016
| | - Ellen Shapiro
- Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Herbert Lepor
- Department of Urology, New York University School of Medicine, New York, NY 10016.,Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024
| | - Xue-Ru Wu
- Department of Pathology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Robert DeSalle
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Antonio Garcia-España
- Unitat De Recerca, Hospital Joan XXIII, Institut de Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Sang Yong Kim
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Tung-Tien Sun
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016.,Department of Urology, New York University School of Medicine, New York, NY 10016.,The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016.,Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY 10024
| |
Collapse
|
14
|
Jerman UD, Kreft ME. Reuse of bladder mucosa explants provides a long lasting source of urothelial cells for the establishment of differentiated urothelia. Histochem Cell Biol 2018; 150:567-574. [PMID: 30094468 DOI: 10.1007/s00418-018-1704-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2018] [Indexed: 12/31/2022]
Abstract
Organ explant cultures are well-established in vitro models that are used to study normal cell biological and regeneration processes as well as carcinogenesis. Primary urothelial cultures from bladder mucosa explants are highly differentiated and are thus broadly used as in vitro experimental equivalents of native urothelial tissue. Since experiments on differentiated urothelial cultures from bladder mucosa explants currently allow only a single use of explants, establishment of sufficient quantities of cultures requires large numbers of sacrificed animals. There is thus a great need for a cheaper approach with less ethical dilemmas. Herein, we demonstrate that mouse bladder mucosa explants can be reused. Reused explants produce outgrowths with highly differentiated urothelia, just like primary explants. Even after being recycled ten times, urothelial outgrowths have the supramolecular and ultrastructural features that are comparable to the native urothelium. Ten times reused explants produce superficial urothelial cells that express uroplakins in the apical plasma membrane, claudin-8 in the tight junctions, and have a subapical network of cytokeratin 20. Basal urothelial cells in urothelial outgrowths of ten times reused explants express p63 which indicates that these urothelial outgrowths have a persistent proliferative capacity. Using our approach, one can perform experiments that were previously not feasible due to low quantities of donor tissue. The method also offers opportunity for effective use of scarce healthy human urothelial tissue.
Collapse
Affiliation(s)
- Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
The Use of Polymer Chitosan in Intravesical Treatment of Urinary Bladder Cancer and Infections. Polymers (Basel) 2018; 10:polym10030265. [PMID: 30966300 PMCID: PMC6414971 DOI: 10.3390/polym10030265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/27/2018] [Accepted: 03/03/2018] [Indexed: 11/17/2022] Open
Abstract
The most frequent diseases of the urinary bladder are bacterial infections and bladder cancers. For both diseases, very high recurrence rates are characteristic: 50⁻80% for bladder cancer and more than 50% for bladder infections, causing loss of millions of dollars per year for medical treatment and sick leave. Despite years of searching for better treatment, the prevalence of bladder infections and bladder cancer remains unchanged and is even increasing in recent years. Very encouraging results in treatment of both diseases recently culminated from studies combining biopolymer chitosan with immunotherapy, and chitosan with antibiotics for treatment of bladder cancer and cystitis, respectably. In both pathways of research, the discoveries involving chitosan reached a successful long-lasting cure. The property of chitosan that boosted the effectivity of illness-specific drugs is its ability to enhance the accessibility of these drugs to the very sources of both pathologies that individual treatments without chitosan failed to achieve. Chitosan can thus be recognised as a very promising co-player in treatment of bladder cancer and bacterial cystitis.
Collapse
|
16
|
Višnjar T, Chesi G, Iacobacci S, Polishchuk E, Resnik N, Robenek H, Kreft M, Romih R, Polishchuk R, Kreft ME. Uroplakin traffic through the Golgi apparatus induces its fragmentation: new insights from novel in vitro models. Sci Rep 2017; 7:12842. [PMID: 28993693 PMCID: PMC5634464 DOI: 10.1038/s41598-017-13103-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 09/20/2017] [Indexed: 11/10/2022] Open
Abstract
Uroplakins (UPs) play an essential role in maintaining an effective urothelial permeability barrier at the level of superficial urothelial cell (UC) layer. Although the organization of UPs in the apical plasma membrane (PM) of UCs is well known, their transport in UCs is only partially understood. Here, we dissected trafficking of UPs and its differentiation-dependent impact on Golgi apparatus (GA) architecture. We demonstrated that individual subunits UPIb and UPIIIa are capable of trafficking from the endoplasmic reticulum to the GA in UCs. Moreover, UPIb, UPIIIa or UPIb/UPIIIa expressing UCs revealed fragmentation and peripheral redistribution of Golgi-units. Notably, expression of UPIb or UPIb/UPIIIa triggered similar GA fragmentation in MDCK and HeLa cells that do not express UPs endogenously. The colocalization analysis of UPIb/UPIIIa-EGFP and COPI, COPII or clathrin suggested that UPs follow constitutively the post-Golgi route to the apical PM. Depolymerisation of microtubules leads to complete blockade of the UPIb/UPIIIa-EGFP post-Golgi transport, while disassembly of actin filaments shows significantly reduced delivery of UPIb/UPIIIa-EGFP to the PM. Our findings show the significant effect of the UPs expression on the GA fragmentation, which enables secretory Golgi-outpost to be distributed as close as possible to the sites of cargo delivery at the PM.
Collapse
Affiliation(s)
- Tanja Višnjar
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Giancarlo Chesi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Simona Iacobacci
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Horst Robenek
- Institute for experimental musculoskeletal medicine, University of Münster, Albert-Schweitzer-Campus 1, Domagkstrasse 3, 48149, Münster, Germany
| | - Marko Kreft
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia & LN-MCP, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana & Celica Biomedical Center, Ljubljana, Slovenia
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy.
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Balsara ZR, Li X. Sleeping beauty: awakening urothelium from its slumber. Am J Physiol Renal Physiol 2017; 312:F732-F743. [PMID: 28122714 PMCID: PMC5407074 DOI: 10.1152/ajprenal.00337.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/18/2022] Open
Abstract
The bladder urothelium is essentially quiescent but regenerates readily upon injury. The process of urothelial regeneration harkens back to the process of urothelial development whereby urothelial stem/progenitor cells must proliferate and terminally differentiate to establish all three urothelial layers. How the urothelium regulates the level of proliferation and the timing of differentiation to ensure the precise degree of regeneration is of significant interest in the field. Without a carefully-orchestrated process, urothelial regeneration may be inadequate, thereby exposing the host to toxins or pathogens. Alternatively, regeneration may be excessive, thereby setting the stage for tumor development. This review describes our current understanding of urothelial regeneration. The current controversies surrounding the identity and location of urothelial progenitor cells that mediate urothelial regeneration are discussed and evidence for each model is provided. We emphasize the factors that have been shown to be crucial for urothelial regeneration, including local growth factors that stimulate repair, and epithelial-mesenchymal cross talk, which ensures feedback regulation. Also highlighted is the emerging concept of epigenetic regulation of urothelial regeneration, which additionally fine tunes the process through transcriptional regulation of cell cycle genes and growth and differentiation factors. Finally, we emphasize how several of these pathways and/or programs are often dysregulated during malignant transformation, further corroborating their importance in directing normal urothelial regeneration. Together, evidence in the field suggests that any attempt to exploit regenerative programs for the purposes of enhanced urothelial repair or replacement must take into account this delicate balance.
Collapse
Affiliation(s)
- Zarine R Balsara
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xue Li
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Al-Kurdi B. Hierarchical transcriptional profile of urothelial cells development and differentiation. Differentiation 2017; 95:10-20. [PMID: 28135607 DOI: 10.1016/j.diff.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/09/2016] [Accepted: 10/14/2016] [Indexed: 11/27/2022]
Abstract
The urothelial lining of the lower urinary tract is the most efficient permeability barrier in animals, exhibiting a highly differentiated phenotype and a remarkable regenerative capacity upon wounding. During development and possibly during repair, cells undergo a sequence of hierarchical transcriptional events that mark the transition of these cells from the least differentiated urothelial phenotype characteristic of the basal cell layer, to the most differentiated cellular phenotype characteristic of the superficial cell layer. Unraveling normal urothelial differentiation program is essential to uncover the underlying causes of many congenital abnormalities and for the development of an appropriate differentiation niche for stem cells, for future use in urinary tract tissue engineering and organ reconstruction. Kruppel like factor-5 appears to be at the top of the hierarchy activating several downstream transcription factors, the most prominent of which is peroxisome proliferator activator receptor-γ. Eventually those lead to the activation of transcription factors that directly regulate the expression of uroplakin proteins along with other proteins that mediate the permeability function of the urothelium. In this review, we discuss the most recent findings in the area of urothelial cellular differentiation and transcriptional regulation, aiming for a comprehensive overview that aids in a refined understanding of this process.
Collapse
Affiliation(s)
- Ban Al-Kurdi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
| |
Collapse
|
19
|
Wankel B, Ouyang J, Guo X, Hadjiolova K, Miller J, Liao Y, Tham DKL, Romih R, Andrade LR, Gumper I, Simon JP, Sachdeva R, Tolmachova T, Seabra MC, Fukuda M, Schaeren-Wiemers N, Hong WJ, Sabatini DD, Wu XR, Kong X, Kreibich G, Rindler MJ, Sun TT. Sequential and compartmentalized action of Rabs, SNAREs, and MAL in the apical delivery of fusiform vesicles in urothelial umbrella cells. Mol Biol Cell 2016; 27:1621-34. [PMID: 27009205 PMCID: PMC4865319 DOI: 10.1091/mbc.e15-04-0230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 03/17/2016] [Indexed: 01/28/2023] Open
Abstract
As major urothelial differentiation products, uroplakins are targeted to the apical surface of umbrella cells. Via the sequential actions of Rabs 11, 8, and 27b and their effectors, uroplakin vesicles are transported to a subapical zone above a K20 network and fuse, via a SNARE-mediated and MAL-facilitated step, with the urothelial apical membrane. Uroplakins (UPs) are major differentiation products of urothelial umbrella cells and play important roles in forming the permeability barrier and in the expansion/stabilization of the apical membrane. Further, UPIa serves as a uropathogenic Escherichia coli receptor. Although it is understood that UPs are delivered to the apical membrane via fusiform vesicles (FVs), the mechanisms that regulate this exocytic pathway remain poorly understood. Immunomicroscopy of normal and mutant mouse urothelia show that the UP-delivering FVs contained Rab8/11 and Rab27b/Slac2-a, which mediate apical transport along actin filaments. Subsequently a Rab27b/Slp2-a complex mediated FV–membrane anchorage before SNARE-mediated and MAL-facilitated apical fusion. We also show that keratin 20 (K20), which forms a chicken-wire network ∼200 nm below the apical membrane and has hole sizes allowing FV passage, defines a subapical compartment containing FVs primed and strategically located for fusion. Finally, we show that Rab8/11 and Rab27b function in the same pathway, Rab27b knockout leads to uroplakin and Slp2-a destabilization, and Rab27b works upstream from MAL. These data support a unifying model in which UP cargoes are targeted for apical insertion via sequential interactions with Rabs and their effectors, SNAREs and MAL, and in which K20 plays a key role in regulating vesicular trafficking.
Collapse
Affiliation(s)
- Bret Wankel
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Jiangyong Ouyang
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Xuemei Guo
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Krassimira Hadjiolova
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Jeremy Miller
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Yi Liao
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Daniel Kai Long Tham
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Leonardo R Andrade
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Iwona Gumper
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Jean-Pierre Simon
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Rakhee Sachdeva
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Tanya Tolmachova
- Molecular and Cellular Medicine, Imperial College, London SW7 2AZ, United Kingdom
| | - Miguel C Seabra
- Molecular and Cellular Medicine, Imperial College, London SW7 2AZ, United Kingdom
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Nicole Schaeren-Wiemers
- Neurobiology Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, CH-4031 Basel, Switzerland
| | - Wan Jin Hong
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673
| | - David D Sabatini
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine, New York, NY10016
| | - Xiangpeng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016
| | - Gert Kreibich
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Michael J Rindler
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Tung-Tien Sun
- Department of Cell Biology, New York University School of Medicine, New York, NY10016 Department of Urology, New York University School of Medicine, New York, NY10016 Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016 Department of Dermatology, New York University School of Medicine, New York, NY10016
| |
Collapse
|
20
|
Imani R, Veranič P, Iglič A, Kreft ME, Pazoki M, Hudoklin S. Combined cytotoxic effect of UV-irradiation and TiO2 microbeads in normal urothelial cells, low-grade and high-grade urothelial cancer cells. Photochem Photobiol Sci 2015; 14:583-90. [PMID: 25385056 DOI: 10.1039/c4pp00272e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The differentiation of urothelial cells results in normal terminally differentiated cells or by alternative pathways in low-grade or high-grade urothelial carcinomas. Treatments with traditional surgical and chemotherapeutical approaches are still inadequate and expensive, as bladder tumours are generally highly recurrent. In such situations, alternative approaches, using irradiation of the cells and nanoparticles, are promising. The ways in which urothelial cells, at different differentiation levels, respond to UV-irradiation (photolytic treatment) or to the combination of UV-irradiation and nanoparticles (photocatalytic treatment), are unknown. Here we tested cytotoxicity of UV-irradiation on (i) normal porcine urothelial cells (NPU), (ii) human low-grade urothelial cancer cells (RT4), and (iii) human high-grade urothelial cancer cells (T24). The results have shown that 1 minute of UV-irradiation is enough to kill 90% of the cells in NPU and RT4 cultures, as determined by the live/dead viability assay. On the other hand, the majority of T24 cells survived 1 minute of UV-irradiation. Moreover, even a prolonged UV-irradiation for 30 minutes killed <50% of T24 cells. When T24 cells were pre-supplemented with mesoporous TiO2 microbeads and then UV-irradiated, the viability of these high-grade urothelial cancer cells was reduced to <10%, which points to the highly efficient cytotoxic effects of TiO2 photocatalysis. Using electron microscopy, we confirmed that the mesoporous TiO2 microbeads were internalized into T24 cells, and that the cell's ultrastructure was heavily compromised after UV-irradiation. In conclusion, our results show major differences in the sensitivity to UV-irradiation among the urothelial cells with respect to cell differentiation. To achieve an increased cytotoxicity of urothelial cancer cells, the photocatalytic approach is recommended.
Collapse
Affiliation(s)
- Roghayeh Imani
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
21
|
Hickling DR, Sun TT, Wu XR. Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection. Microbiol Spectr 2015; 3:10.1128/microbiolspec.UTI-0016-2012. [PMID: 26350322 PMCID: PMC4566164 DOI: 10.1128/microbiolspec.uti-0016-2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Indexed: 02/07/2023] Open
Abstract
The urinary tract exits to a body surface area that is densely populated by a wide range of microbes. Yet, under most normal circumstances, it is typically considered sterile, i.e., devoid of microbes, a stark contrast to the gastrointestinal and upper respiratory tracts where many commensal and pathogenic microbes call home. Not surprisingly, infection of the urinary tract over a healthy person's lifetime is relatively infrequent, occurring once or twice or not at all for most people. For those who do experience an initial infection, the great majority (70% to 80%) thankfully do not go on to suffer from multiple episodes. This is a far cry from the upper respiratory tract infections, which can afflict an otherwise healthy individual countless times. The fact that urinary tract infections are hard to elicit in experimental animals except with inoculum 3-5 orders of magnitude greater than the colony counts that define an acute urinary infection in humans (105 cfu/ml), also speaks to the robustness of the urinary tract defense. How can the urinary tract be so effective in fending off harmful microbes despite its orifice in a close vicinity to that of the microbe-laden gastrointestinal tract? While a complete picture is still evolving, the general consensus is that the anatomical and physiological integrity of the urinary tract is of paramount importance in maintaining a healthy urinary tract. When this integrity is breached, however, the urinary tract can be at a heightened risk or even recurrent episodes of microbial infections. In fact, recurrent urinary tract infections are a significant cause of morbidity and time lost from work and a major challenge to manage clinically. Additionally, infections of the upper urinary tract often require hospitalization and prolonged antibiotic therapy. In this chapter, we provide an overview of the basic anatomy and physiology of the urinary tract with an emphasis on their specific roles in host defense. We also highlight the important structural and functional abnormalities that predispose the urinary tract to microbial infections.
Collapse
Affiliation(s)
- Duane R Hickling
- Division of Urology, Ottawa Hospital Research Institute, The Ottawa Hospital, University of Ottawa, Ottawa, ON K1Y 4E9, Canada
| | - Tung-Tien Sun
- Departments of Cell Biology, Biochemistry and Molecular Pharmacology, Departments of Dermatology and Urology, New York University School of Medicine, New York, NY, 10016
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, NY, 10016
| |
Collapse
|
22
|
Mathai JC, Zhou EH, Yu W, Kim JH, Zhou G, Liao Y, Sun TT, Fredberg JJ, Zeidel ML. Hypercompliant apical membranes of bladder umbrella cells. Biophys J 2015; 107:1273-9. [PMID: 25229135 DOI: 10.1016/j.bpj.2014.07.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022] Open
Abstract
Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder.
Collapse
Affiliation(s)
- John C Mathai
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Enhua H Zhou
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jae Hun Kim
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Ge Zhou
- Department of Cell Biology, New York University, New York, New York
| | - Yi Liao
- Department of Cell Biology, New York University, New York, New York
| | - Tung-Tien Sun
- Department of Cell Biology, New York University, New York, New York
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Arrighi S. The urothelium: anatomy, review of the literature, perspectives for veterinary medicine. Ann Anat 2014; 198:73-82. [PMID: 25533627 DOI: 10.1016/j.aanat.2014.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 01/13/2023]
Abstract
Over time, much knowledge has been accumulated about the active role of the urothelium, principally in rodents and human. Far from being a mere passive barrier, this specialized epithelium can alter the ion and protein composition of the urine, is able to sense and respond to mechanical stimuli such as pressure, and react to mechanical stimuli by epithelial cell communication with the nervous system. Most of the specialized functions of the urothelium are linked to a number of morpho-physiologic properties exhibited by the superficial umbrella cells, including specialized membrane lipids, asymmetric unit membrane particles and a plasmalemma with stiff plaques which function as a barrier to most substances found in urine, thus protecting the underlying tissues. Moreover, the entire mucosa lining the low urinary tract, composed of urothelium and sub-urothelium, forms a functional transduction unit, able to respond to eso- and endogenous physical and chemical stimuli in a manner assuring an adequate functional response. This review will summarize the available information on each area of inquiry from a morpho-functional point of view. Possible considerations pertaining to species of veterinary interest are reviewed as well. The review was prepared consulting the electronic databases PubMed and Cab Abstracts and retrieving all pertinent reports and the relative reference lists, in order to identify any potential additional studies that could be included. Full-length research articles and thematic reviews were considered. Information on the urothelium of some domestic animal species was also included.
Collapse
Affiliation(s)
- S Arrighi
- Department of Health, Animal Science and Food Safety, Laboratory of Anatomy and Confocal Microscopy, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
24
|
Kątnik-Prastowska I, Lis J, Matejuk A. Glycosylation of uroplakins. Implications for bladder physiopathology. Glycoconj J 2014; 31:623-36. [PMID: 25394961 PMCID: PMC4245495 DOI: 10.1007/s10719-014-9564-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Abstract
Urothelium, a specialized epithelium, covers the urinary tract and act not only as a barrier separating its light from the surrounding tissues, but fulfills an important role in maintaining the homeostasis of the urothelial tract and well-being of the whole organism. Proper function of urothelium is dependent on the precise assemble of highly specialized glycoproteins called uroplakins, the end products and differentiation markers of the urothelial cells. Glycosylation changes in uroplakins correlate with and might reflect progressive stages of pathological conditions of the urothelium such as cancer, urinary tract infections, interstitial cystitis and others. In this review we focus on sugar components of uroplakins, their emerging role in urothelial biology and disease implications. The advances in our understanding of uroplakins changes in glycan moieties composition, structure, assembly and expression of their glycovariants could potentially lead to the development of targeted therapies and discoveries of novel urine and plasma markers for the benefit of patients with urinary tract diseases.
Collapse
Affiliation(s)
- Iwona Kątnik-Prastowska
- Department of Chemistry and Immunochemistry, Medical University of Wroclaw, Bujwida 44a, 50-345, Wroclaw, Poland
| | | | | |
Collapse
|
25
|
Zupančič D, Romih R, Robenek H, Žužek Rožman K, Samardžija Z, Kostanjšek R, Kreft ME. Molecular ultrastructure of the urothelial surface: insights from a combination of various microscopic techniques. Microsc Res Tech 2014; 77:896-901. [PMID: 25060677 DOI: 10.1002/jemt.22412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/30/2014] [Accepted: 07/15/2014] [Indexed: 11/09/2022]
Abstract
The urothelium forms the blood-urine barrier, which depends on the complex organization of transmembrane proteins, uroplakins, in the apical plasma membrane of umbrella cells. Uroplakins compose 16 nm intramembrane particles, which are assembled into urothelial plaques. Here we present an integrated survey on the molecular ultrastructure of urothelial plaques in normal umbrella cells with advanced microscopic techniques. We analyzed the ultrastructure and performed measurements of urothelial plaques in the normal mouse urothelium. We used field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) on immunolabeled ultrathin sections (immuno-TEM), and freeze-fracture replicas (FRIL). We performed immunolabeling of uroplakins for scanning electron microscopy (immuno-FESEM). All microscopic techniques revealed a variability of urothelial plaque diameters ranging from 332 to 1179 nm. All immunolabeling techniques confirmed the presence of uroplakins in urothelial plaques. FRIL showed the association of uroplakins with 16 nm intramembrane particles and their organization into plaques. Using different microscopic techniques and applied qualitative and quantitative evaluation, new insights into the urothelial apical surface molecular ultrastructure have emerged and may hopefully provide a timely impulse for many ongoing studies. The combination of various microscopic techniques used in this study shows how these techniques complement one another. The described advantages and disadvantages of each technique should be considered for future studies of molecular and structural membrane specializations in other cells and tissues.
Collapse
Affiliation(s)
- Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
26
|
SNX31: a novel sorting nexin associated with the uroplakin-degrading multivesicular bodies in terminally differentiated urothelial cells. PLoS One 2014; 9:e99644. [PMID: 24914955 PMCID: PMC4051706 DOI: 10.1371/journal.pone.0099644] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/16/2014] [Indexed: 11/19/2022] Open
Abstract
Uroplakins (UP), a group of integral membrane proteins, are major urothelial differentiation products that form 2D crystals of 16-nm particles (urothelial plaques) covering the apical surface of mammalian bladder urothelium. They contribute to the urothelial barrier function and, one of them, UPIa, serves as the receptor for uropathogenic Escherichia coli. It is therefore important to understand the mechanism by which these surface-associated uroplakins are degraded. While it is known that endocytosed uroplakin plaques are targeted to and line the multivesicular bodies (MVBs), it is unclear how these rigid-looking plaques can go to the highly curved membranes of intraluminal vesicles (ILVs). From a cDNA subtraction library, we identified a highly urothelium-specific sorting nexin, SNX31. SNX31 is expressed, like uroplakins, in terminally differentiated urothelial umbrella cells where it is predominantly associated with MVBs. Apical membrane proteins including uroplakins that are surface biotin-tagged are endocytosed and targeted to the SNX31-positive MVBs. EM localization demonstrated that SNX31 and uroplakins are both associated not only with the limiting membranes of MVBs containing uroplakin plaques, but also with ILVs. SNX31 can bind, on one hand, the PtdIns3P-enriched lipids via its N-terminal PX-domain, and, on the other hand, it binds uroplakins as demonstrated by co-immunoprecipitation and proximity ligation assay, and by its reduced membrane association in uroplakin II-deficient urothelium. The fact that in urothelial umbrella cells MVBs are the only major intracellular organelles enriched in both PtdIns3P and uroplakins may explain SNX31's MVB-specificity in these cells. However, in MDCK and other cultured cells transfected SNX31 can bind to early endosomes possibly via lipids. These data support a model in which SNX31 mediates the endocytic degradation of uroplakins by disassembling/collapsing the MVB-associated uroplakin plaques, thus enabling the uroplakin-containing (but ‘softened’) membranes to bud and form the ILVs for lysosomal degradation and/or exosome formation.
Collapse
|
27
|
Glycan-targeted drug delivery for intravesical therapy: in the footsteps of uropathogenic bacteria. Ther Deliv 2014; 5:537-53. [DOI: 10.4155/tde.14.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The human urothelium belongs to the most efficient biobarriers, and represents a highly rewarding but challenging target for local drug administration. Inadequate urothelial bioavailability is a major obstacle for successful treatment of bladder cancer and other diseases, yet little research has addressed the development of advanced delivery concepts for the intravesical route. A prominent example of how to overcome the urothelial barrier by means of specific biorecognition is the efficient cytoinvasion of UPEC bacteria, mediated by the mannose-targeted lectin domain FimH. Similar mechanisms of non-bacterial origin may be exploited for enhancing drug uptake from the bladder cavity. This review covers the current status in the development of lectin-based delivery strategies for the urinary tract. Different concepts for preparing and optimizing carbohydrate-targeted delivery systems are presented, along with important design parameters, benefits and shortcomings. Bioconjugate- and nano-/microparticle-based systems are discussed in further detail with regard to their performance in preclinical testing.
Collapse
|
28
|
Cystitis: from urothelial cell biology to clinical applications. BIOMED RESEARCH INTERNATIONAL 2014; 2014:473536. [PMID: 24877098 PMCID: PMC4022113 DOI: 10.1155/2014/473536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/15/2014] [Indexed: 12/23/2022]
Abstract
Cystitis is a urinary bladder disease with many causes and symptoms. The severity of cystitis ranges from mild lower abdominal discomfort to life-threatening haemorrhagic cystitis. The course of disease is often chronic or recurrent. Although cystitis represents huge economical and medical burden throughout the world and in many cases treatments are ineffective, the mechanisms of its origin and development as well as measures for effective treatment are still poorly understood. However, many studies have demonstrated that urothelial dysfunction plays a crucial role. In the present review we first discuss fundamental issues of urothelial cell biology, which is the core for comprehension of cystitis. Then we focus on many forms of cystitis, its current treatments, and advances in its research. Additionally we review haemorrhagic cystitis with one of the leading causative agents being chemotherapeutic drug cyclophosphamide and summarise its management strategies. At the end we describe an excellent and widely used animal model of cyclophosphamide induced cystitis, which gives researches the opportunity to get a better insight into the mechanisms involved and possibility to develop new therapy approaches.
Collapse
|
29
|
Zupančič D, Kreft ME, Romih R. Selective binding of lectins to normal and neoplastic urothelium in rat and mouse bladder carcinogenesis models. PROTOPLASMA 2014; 251:49-59. [PMID: 23828036 DOI: 10.1007/s00709-013-0524-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/19/2013] [Indexed: 05/07/2023]
Abstract
Bladder cancer adjuvant intravesical therapy could be optimized by more selective targeting of neoplastic tissue via specific binding of lectins to plasma membrane carbohydrates. Our aim was to establish rat and mouse models of bladder carcinogenesis to investigate in vivo and ex vivo binding of selected lectins to the luminal surface of normal and neoplastic urothelium. Male rats and mice were treated with 0.05 % N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water and used for ex vivo and in vivo lectin binding experiments. Urinary bladder samples were also used for paraffin embedding, scanning electron microscopy and immunofluorescence labelling of uroplakins. During carcinogenesis, the structure of the urinary bladder luminal surface changed from microridges to microvilli and ropy ridges and the expression of urothelial-specific glycoproteins uroplakins was decreased. Ex vivo and in vivo lectin binding experiments gave comparable results. Jacalin (lectin from Artocarpus integrifolia) exhibited the highest selectivity for neoplastic compared to normal urothelium of rats and mice. The binding of lectin from Amaranthus caudatus decreased in rat model and increased in mouse carcinogenesis model, indicating interspecies variations of plasma membrane glycosylation. Lectin from Datura stramonium showed higher affinity for neoplastic urothelium compared to the normal in rat and mouse model. The BBN-induced animal models of bladder carcinogenesis offer a promising approach for lectin binding experiments and further lectin-mediated targeted drug delivery research. Moreover, in vivo lectin binding experiments are comparable to ex vivo experiments, which should be considered when planning and optimizing future research.
Collapse
Affiliation(s)
- Daša Zupančič
- Faculty of Medicine, Institute of Cell Biology, Vrazov trg 2, 1000, Ljubljana, Slovenia,
| | | | | |
Collapse
|
30
|
Hudoklin S, Zupančič D, Makovec D, Kreft ME, Romih R. Gold nanoparticles as physiological markers of urine internalization into urothelial cells in vivo. Int J Nanomedicine 2013; 8:3945-53. [PMID: 24143099 PMCID: PMC3798153 DOI: 10.2147/ijn.s44363] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Urothelial bladder is the reservoir of urine and the urothelium minimizes the exchange of urine constituents with this tissue. Our aim was to test 1.9 nm biocompatible gold nanoparticles as a novel marker of internalization into the urothelial cells under physiological conditions in vivo. METHODS We compared normal and neoplastic mice urothelium. Neoplastic lesions were induced by 0.05% N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water for 10 weeks. Nanoparticles, intravenously injected into normal and BBN-treated mice, were filtered through the kidneys and became constituents of the urine within 90 minutes after injection. RESULTS Gold nanoparticles were densely accumulated in the urine, while their internalization into urothelial cells depended on the cell differentiation stage. In the terminally differentiated superficial urothelial cells of normal animals, nanoparticles were occasionally found in the endosomes, but not in the fusiform vesicles. Regions of exfoliated cells were occasionally found in the normal urothelium. Superficial urothelial cells located next to exfoliated regions contained gold nanoparticles in the endosomes and in the cytosol beneath the apical plasma membrane. The urothelium of BBN-treated animals developed fat hyperplasia with moderate dysplasia. The superficial cells of BBN-treated animals were partially differentiated as demonstrated by the lack of fusiform vesicles. These cells contained the gold nanoparticles distributed in the endosomes and throughout their cytosol. CONCLUSION Gold nanoparticles are a valuable marker to study urine internalization into urothelial cells in vivo. Moreover, they can be used as a sensitive marker of differentiation and functionality of urothelial cells.
Collapse
Affiliation(s)
- Samo Hudoklin
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
31
|
Desantis S, Accogli G, Zizza S, Arrighi S. In situ characterization of glycans in the urothelium of donkey bladder: evidence of secretion of sialomucins. Acta Histochem 2013; 115:712-8. [PMID: 23523263 DOI: 10.1016/j.acthis.2013.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
The glycoprotein pattern was investigated by lectin histochemistry in the urothelium lining the urinary bladder of the donkey Equus asinus. Tissue sections were stained with a panel of twelve lectins, in combination with saponification and sialidase digestion (K-s). The urinary bladder urothelium has three distinct layers from the basal zone to the lumen consisting of basal, intermediate and superficial cells (umbrella cells). Cytoplasm of basal cells reacted with SNA, PNA, K-s-PNA, GSA I-B4 and Con A showing glycans ending with Neu5Acα2,6Gal/GalNAc, Neu5AcGalβ1,3GalNAc, αGal and with terminal/internal αMan. The cytoplasm of umbrella cells displayed an increase of Neu5AcGalβ1,3GalNAc and the appearance of Neu5AcGalβ1,3GalNAc, Neu5acα2,3Galβ1,4GlcNAc and Neu5AcGalNAc residues (MAL II, K-s-SBA and K-s-HPA staining). Scattered umbrella cells were characterized by glycans terminating with GalNAc binding DBA, SBA and HPA. The mucosa forms folds with a crypt-like appearance where the urothelium shows a different pattern of glycans. The bladder luminal surface stained with K-s-PNA, K-s-DBA, KOH-s-SBA, and K-s-HPA displaying a coating of sialoglycoproteins belonging to O-linked glycans (typical secretory moieties). These findings show that different glycosylation patterns exist along the donkey bladder urothelium, and different sub-populations of umbrella cells are present secreting the sialoglycans which constitute the protective gel layer lining the bladder.
Collapse
|
32
|
UPEC biomimickry at the urothelial barrier: Lectin-functionalized PLGA microparticles for improved intravesical chemotherapy. Int J Pharm 2013; 450:163-76. [DOI: 10.1016/j.ijpharm.2013.04.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 11/23/2022]
|
33
|
Membrane lipids and proteins as modulators of urothelial endocytic vesicles pathways. Histochem Cell Biol 2013; 140:507-20. [PMID: 23624723 DOI: 10.1007/s00418-013-1095-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
Abstract
The increased studies on urinary bladder umbrella cells as an important factor for maintaining the permeability barrier have suggested new pathways for the discoidal/fusiform endocytic vesicles which is one of the main features of the umbrella cells. The biological role of these vesicles was defined, for many years, as a membrane reservoir for the umbrella cell apical plasma membrane which are subject to an increased tension during the filling phase of the micturition cycle and, therefore, the vesicles are fused with the apical membrane. Upon voiding, the added membrane is reinserted via a non-clathrin or caveolin-dependant endocytosis thereby restoring the vesicle cytoplasmic pool. However, in the last decade, new evidence appeared indicating alternative pathways of the endocytic vesicles different than the cycling process of exocytosis/endocytosis. The purpose of this review is to analyze the molecular modulators, such as membrane lipids and proteins, in the permeability of endocytic vesicles, the sorting of endocytosed material to lysosomal degradation pathway and recycling of both membrane and fluid phases.
Collapse
|
34
|
Eynard AR, Navarro A. Crosstalk among dietary polyunsaturated fatty acids, urolithiasis, chronic inflammation, and urinary tract tumor risk. Nutrition 2013; 29:930-8. [PMID: 23594581 DOI: 10.1016/j.nut.2012.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/04/2012] [Accepted: 12/13/2012] [Indexed: 01/04/2023]
Abstract
Based on a consistent bulk of experimental and epidemiologic works, we proposed that abnormal metabolism and/or dietary deprivation of essential polyunsaturated fatty acids by inducing a chronic and subclinical essential fatty acid deficiency (EFAD) in urothelial cell membranes may enhance the risk for urinary tract tumor (UTT) development. This threat may be enhanced by the unusual fact that the fatty-acid profile of the normal urothelium is similar to that reported in EFAD. The risk for UTT may be worsened when coexisting with a low-grade chronic inflammation (LGCI) state induced by urolithiasis or disbalance management of peroxides, free radical molecules, and their quenchers. There is cumulative evidence linking the LGCI of the urinary tract mucosa, calculi, and UTT, due to the long-standing release of promitotic, promutagen, and pro-inflammatory antiapoptotic cytokines in these conditions. The dual role played by pro- and anti-inflammatory eicosanoids and bioactive lipids, cytokines, and the disbalance of lipid peroxidation is discussed, concluding that the moderate, long-standing consumption or dietary supplementation of ω-3 PUFAs may improve the chances of avoiding UTT development.
Collapse
Affiliation(s)
- Aldo R Eynard
- Instituto de Biología Celular, INICSA, Córdoba, Argentina.
| | | |
Collapse
|
35
|
Kreft ME, Robenek H. Freeze-fracture replica immunolabelling reveals urothelial plaques in cultured urothelial cells. PLoS One 2012; 7:e38509. [PMID: 22768045 PMCID: PMC3387185 DOI: 10.1371/journal.pone.0038509] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/07/2012] [Indexed: 12/02/2022] Open
Abstract
The primary function of the urothelium is to provide the tightest and most impermeable barrier in the body, i.e. the blood-urine barrier. Urothelial plaques are formed and inserted into the apical plasma membrane during advanced stages of urothelial cell differentiation. Currently, it is supposed that differentiation with the final formation of urothelial plaques is hindered in cultured urothelial cells. With the aid of the high-resolution imaging technique of freeze-fracture replica immunolabelling, we here provide evidence that urothelial cells in vitro form uroplakin-positive urothelial plaques, localized in fusiform-shaped vesicles and apical plasma membranes. With the establishment of such an in vitro model of urothelial cells with fully developed urothelial plaques and functional properties equivalent to normal bladder urothelium, new perspectives have emerged which challenge prevailing concepts of apical plasma membrane biogenesis and blood-urine barrier development. This may hopefully provide a timely impulse for many ongoing studies and open up new questions for future research.
Collapse
Affiliation(s)
- Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | | |
Collapse
|
36
|
Hudoklin S, Jezernik K, Neumüller J, Pavelka M, Romih R. Electron tomography of fusiform vesicles and their organization in urothelial cells. PLoS One 2012; 7:e32935. [PMID: 22427911 PMCID: PMC3299716 DOI: 10.1371/journal.pone.0032935] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/01/2012] [Indexed: 11/19/2022] Open
Abstract
The formation of fusiform vesicles (FVs) is one of the most distinctive features in the urothelium of the urinary bladder. FVs represent compartments for intracellular transport of urothelial plaques, which modulate the surface area of the superficial urothelial (umbrella) cells during the distension-contraction cycle. We have analysed the three-dimensional (3D) structure of FVs and their organization in umbrella cells of mouse urinary bladders. Compared to chemical fixation, high pressure freezing gave a new insight into the ultrastructure of urothelial cells. Electron tomography on serial sections revealed that mature FVs had a shape of flattened discs, with a diameter of up to 1.2 µm. The lumen between the two opposing asymmetrically thickened membranes was very narrow, ranging from 5 nm to 10 nm. Freeze-fracturing and immunolabelling confirmed that FVs contain two opposing urothelial plaques connected by a hinge region that made an omega shaped curvature. In the central cytoplasm, 4-15 FVs were often organized into stacks. In the subapical cytoplasm, FVs were mainly organized as individual vesicles. Distension-contraction cycles did not affect the shape of mature FVs; however, their orientation changed from parallel in distended to perpendicular in contracted bladder with respect to the apical plasma membrane. In the intermediate cells, shorter and more dilated immature FVs were present. The salient outcome from this research is the first comprehensive, high resolution 3D view of the ultrastructure of FVs and how they are organized differently depending on their location in the cytoplasm of umbrella cells. The shape of mature FVs and their organization into tightly packed stacks makes them a perfect storage compartment, which transports large amounts of urothelial plaques while occupying a small volume of umbrella cell cytoplasm.
Collapse
Affiliation(s)
- Samo Hudoklin
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Kristijan Jezernik
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Josef Neumüller
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Margit Pavelka
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Rok Romih
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
37
|
Epithelium-free bladder wall graft: epithelial ingrowth and regeneration--clinical implications for partial cystectomy. J Urol 2012; 187:1450-7. [PMID: 22341288 DOI: 10.1016/j.juro.2011.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Indexed: 11/22/2022]
Abstract
PURPOSE Most patients who need a bioengineered bladder wall have bladder cancer. A graft made with autologous urothelium would not be safe. To investigate the feasibility of providing bioengineered tissue for patients with partial cystectomy we evaluated the host and graft response after transplanting an epithelium-free graft. MATERIALS AND METHODS De-epithelialized bladder wall grafts from male rats were transplanted on syngeneic female rat bladders after partial cystectomy. Urothelial morphology, vessel density, inflammation, stromal thickness and uroplakin expression were evaluated 1, 3, 6 and 9 months after surgery. Cell gender was distinguished by fluorescent in situ hybridization using unique X and Y chromosome probes. RESULTS There was no significant graft contraction at any time. Male graft urothelial morphology and uroplakin expression were similar to those of controls at all time points. The donor bladder had decreased vessel density at early time points while the host had increased vascularity, which normalized in each by 6 months. Graft inflammation and edema normalized by 9 months. There was no muscular hypertrophy. Fluorescence in situ hybridization revealed early ingrowth of host female urothelium and a small fraction of male urothelial cells, which appeared between 1 and 3 months. CONCLUSIONS Within 9 months de-epithelialized grafts appeared histologically as normal bladder, surprisingly faster than an equivalent model with full-thickness grafts. The safety and function of an epithelium-free graft must be determined in a large animal model. These early data in a small animal model substantiate the feasibility and equivalency of using grafts without epithelium, which would allow application in patients with cancer.
Collapse
|
38
|
Zhou G, Liang FX, Romih R, Wang Z, Liao Y, Ghiso J, Luque-Garcia JL, Neubert TA, Kreibich G, Alonso MA, Schaeren-Wiemers N, Sun TT. MAL facilitates the incorporation of exocytic uroplakin-delivering vesicles into the apical membrane of urothelial umbrella cells. Mol Biol Cell 2012; 23:1354-66. [PMID: 22323295 PMCID: PMC3315800 DOI: 10.1091/mbc.e11-09-0823] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MAL, suggested to play a key role in the apical sorting of membrane proteins, is not involved in the apical sorting of uroplakins. Instead, it plays an important role in facilitating the incorporation of the uroplakin-delivering exocytic vesicles into the apical surface of terminally differentiated urothelial umbrella cells. The apical surface of mammalian bladder urothelium is covered by large (500–1000 nm) two-dimensional (2D) crystals of hexagonally packed 16-nm uroplakin particles (urothelial plaques), which play a role in permeability barrier function and uropathogenic bacterial binding. How the uroplakin proteins are delivered to the luminal surface is unknown. We show here that myelin-and-lymphocyte protein (MAL), a 17-kDa tetraspan protein suggested to be important for the apical sorting of membrane proteins, is coexpressed with uroplakins in differentiated urothelial cell layers. MAL depletion in Madin–Darby canine kidney cells did not affect, however, the apical sorting of uroplakins, but it decreased the rate by which uroplakins were inserted into the apical surface. Moreover, MAL knockout in vivo led to the accumulation of fusiform vesicles in mouse urothelial superficial umbrella cells, whereas MAL transgenic overexpression in vivo led to enhanced exocytosis and compensatory endocytosis, resulting in the accumulation of the uroplakin-degrading multivesicular bodies. Finally, although MAL and uroplakins cofloat in detergent-resistant raft fractions, they are associated with distinct plaque and hinge membrane subdomains, respectively. These data suggest a model in which 1) MAL does not play a role in the apical sorting of uroplakins; 2) the propensity of uroplakins to polymerize forming 16-nm particles and later large 2D crystals that behave as detergent-resistant (giant) rafts may drive their apical targeting; 3) the exclusion of MAL from the expanding 2D crystals of uroplakins explains the selective association of MAL with the hinge areas in the uroplakin-delivering fusiform vesicles, as well as at the apical surface; and 4) the hinge-associated MAL may play a role in facilitating the incorporation of the exocytic uroplakin vesicles into the corresponding hinge areas of the urothelial apical surface.
Collapse
Affiliation(s)
- Ge Zhou
- Department of Cell Biology, NYU Cancer Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zocher F, Zeidel ML, Missner A, Sun TT, Zhou G, Liao Y, von Bodungen M, Hill WG, Meyers S, Pohl P, Mathai JC. Uroplakins do not restrict CO2 transport through urothelium. J Biol Chem 2012; 287:11011-7. [PMID: 22315218 PMCID: PMC3322830 DOI: 10.1074/jbc.m112.339283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lipid bilayers and biological membranes are freely permeable to CO2, and yet partial CO2 pressure in the urine is 3–4-fold higher than in blood. We hypothesized that the responsible permeability barrier to CO2 resides in the umbrella cell apical membrane of the bladder with its dense array of uroplakin complexes. We found that disrupting the uroplakin layer of the urothelium resulted in water and urea permeabilities (P) that were 7- to 8-fold higher than in wild type mice with intact urothelium. However, these interventions had no impact on bladder PCO2 (∼1.6 × 10−4 cm/s). To test whether the observed permeability barrier to CO2 was due to an unstirred layer effect or due to kinetics of CO2 hydration, we first measured the carbonic anhydrase (CA) activity of the bladder epithelium. Finding none, we reduced the experimental system to an epithelial monolayer, Madin-Darby canine kidney cells. With CA present inside and outside the cells, we showed that PCO2 was unstirred layer limited (∼7 × 10−3 cm/s). However, in the total absence of CA activity PCO2 decreased 14-fold (∼ 5.1 × 10−4 cm/s), indicating that now CO2 transport is limited by the kinetics of CO2 hydration. Expression of aquaporin-1 did not alter PCO2 (and thus the limiting transport step), which confirmed the conclusion that in the urinary bladder, low PCO2 is due to the lack of CA. The observed dependence of PCO2 on CA activity suggests that the tightness of biological membranes to CO2 may uniquely be regulated via CA expression.
Collapse
Affiliation(s)
- Florian Zocher
- Institut für Biophysik, Johannes Kepler Universität, 4020 Linz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Arkill KP, Knupp C, Michel CC, Neal CR, Qvortrup K, Rostgaard J, Squire JM. Similar endothelial glycocalyx structures in microvessels from a range of mammalian tissues: evidence for a common filtering mechanism? Biophys J 2011; 101:1046-56. [PMID: 21889441 DOI: 10.1016/j.bpj.2011.07.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/22/2011] [Accepted: 07/27/2011] [Indexed: 10/25/2022] Open
Abstract
The glycocalyx or endocapillary layer on the luminal surface of microvessels has a major role in the exclusion of macromolecules from the underlying endothelial cells. Current structural evidence in the capillaries of frog mesentery indicates a regularity in the structure of the glycocalyx, with a center-to-center fiber spacing of 20 nm and a fiber width of 12 nm, which might explain the observed macromolecular filtering properties. In this study, we used electron micrographs of tissues prepared using perfusion fixation and tannic acid treatment. The digitized images were analyzed using autocorrelation to find common spacings and to establish whether similar structures, hence mechanisms, are present in the microvessel glycocalyces of a variety of mammalian tissues. Continuous glycocalyx layers in mammalian microvessels of choroid, renal tubules, glomerulus, and psoas muscle all showed similar lateral spacings at ∼19.5 nm (possibly in a quasitetragonal lattice) and longer spacings above 100 nm. Individual glycocalyx tufts above fenestrations in the first three of these tissues and also in stomach fundus and jejunum showed evidence for similar short-range structural regularity, but with more disorder. The fiber diameter was estimated as 18.8 (± 0.2) nm, but we believe this is an overestimate because of the staining method used. The implications of these findings are discussed.
Collapse
Affiliation(s)
- K P Arkill
- MVRL, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
41
|
Hudoklin S, Jezernik K, Neumüller J, Pavelka M, Romih R. Urothelial plaque formation in post-Golgi compartments. PLoS One 2011; 6:e23636. [PMID: 21887288 PMCID: PMC3161059 DOI: 10.1371/journal.pone.0023636] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 07/21/2011] [Indexed: 11/26/2022] Open
Abstract
Urothelial plaques are specialized membrane domains in urothelial superficial (umbrella) cells, composed of highly ordered uroplakin particles. We investigated membrane compartments involved in the formation of urothelial plaques in mouse umbrella cells. The Golgi apparatus did not contain uroplakins organized into plaques. In the post-Golgi region, three distinct membrane compartments containing uroplakins were characterized: i) Small rounded vesicles, located close to the Golgi apparatus, were labelled weakly with anti-uroplakin antibodies and they possessed no plaques; we termed them "uroplakin-positive transporting vesicles" (UPTVs). ii) Spherical-to-flattened vesicles, termed "immature fusiform vesicles" (iFVs), were uroplakin-positive in their central regions and contained small urothelial plaques. iii) Flattened "mature fusiform vesicles" (mFVs) contained large plaques, which were densely labelled with anti-uroplakin antibodies. Endoytotic marker horseradish peroxidase was not found in these post-Golgi compartments. We propose a detailed model of de novo urothelial plaque formation in post-Golgi compartments: UPTVs carrying individual 16-nm particles detach from the Golgi apparatus and subsequently fuse into iFV. Concentration of 16-nm particles into plaques and removal of uroplakin-negative membranes takes place in iFVs. With additional fusions and buddings, iFVs mature into mFVs, each carrying two urothelial plaques toward the apical surface of the umbrella cell.
Collapse
Affiliation(s)
- Samo Hudoklin
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
42
|
Hasan AKMM, Fukami Y, Sato KI. Gamete membrane microdomains and their associated molecules in fertilization signaling. Mol Reprod Dev 2011; 78:814-30. [PMID: 21688335 DOI: 10.1002/mrd.21336] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/15/2011] [Indexed: 12/19/2022]
Abstract
Fertilization is the fundamental system of biological reproduction in many organisms, including animals, plants, and algae. A growing body of knowledge has emerged to explain how fertilization and activation of development are accomplished. Studies on the molecular mechanisms of fertilization are in progress for a wide variety of multicellular organisms. In this review, we summarize recent findings and debates about the long-standing questions concerning fertilization: how egg and sperm become competent for their interaction with each other, how the binding and fusion of these gamete cells are made possible, and how the fertilized eggs initiate development to a newborn. We will focus on the structure and function of the membrane microdomains (MDs) of egg and sperm that may serve as a platform or signaling center for the aforementioned cellular functions. In particular, we provide evidence that MDs of eggs from the African clawed frog, Xenopus laevis, play a pivotal role in receiving extracellular signals from fertilizing sperm and then transmitting them to the egg cytoplasm, where the tyrosine kinase Src is present and responsible for the subsequent signaling events collectively called egg activation. The presence of a new signaling axis involving uroplakin III, an MD-associated transmembrane protein, and Src in this system will be highlighted and discussed.
Collapse
Affiliation(s)
- A K M Mahbub Hasan
- Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | | |
Collapse
|
43
|
Abstract
The apical surface of mammalian urinary epithelium is covered by numerous scallop-shaped membrane plaques. This plaque consists of four different uroplakins (UPs) and integral membrane proteins. UPs, which are a member of the tetraspanin superfamily, are assembled into plaques that act as an exceptional barrier to water and toxic materials in urine. Within the plaques, the four UPs are organized into two heterodimers consisting of UP Ia/UP II and UP Ib/UP III in the endoplasmic reticulum. The two heterodimers bind to a heterotetramer, and then assemble into 16-nm particles in the Golgi apparatus. The aggregated UP complex ultimately covers almost all the mature fusiform vesicles in cytoplasm. These organelles migrate towards the apical urothelial cells, where they can fuse with the apical plasma membrane. As a result, the UPs are synthesized in large quantities only by terminally differentiated urothelial cells. For this reason, the UPs can be regarded as a major urothelial differentiation marker. In UP knockout (KO) mice, the incorporation of fully assembled UP plaques in cytoplasm into the apical surface is not functional. The mice with UP III-deficient urothelium show a significantly reduced number of UPs, whereas those with UP II-deficient urothelium have nearly undetectable levels of UPs. This finding strongly suggests that UP II ablation completely abolishes plaque formation. In addition, UP II KO mice contain abnormal epithelial polyps or complete epithelial occlusion in their ureters. UP IIIa KO mice are also associated with impairment of the urothelial permeability barrier and development of vesicoureteral reflux as well as a decrease in urothelial plaque size. In this review, I summarize recently published studies about UPs and attempt to explain the clinical significance of our laboratory results.
Collapse
|
44
|
Zupančič D, Ovčak Z, Vidmar G, Romih R. Altered expression of UPIa, UPIb, UPII, and UPIIIa during urothelial carcinogenesis induced by N-butyl-N-(4-hydroxybutyl)nitrosamine in rats. Virchows Arch 2011; 458:603-13. [PMID: 21301865 DOI: 10.1007/s00428-011-1045-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 12/21/2010] [Accepted: 01/10/2011] [Indexed: 12/11/2022]
Abstract
In normal urothelium, superficial umbrella cells express four major integral membrane proteins, uroplakins UPIa, UPIb, UPII, and UPIIIa, which compose urothelial plaques. In the apical plasma membrane, urothelial plaques form microridges. During neoplastic changes, microridges are replaced by microvilli, while uroplakin expression is retained. We correlated individual uroplakin expression with apical plasma membrane structure, cytokeratin 20 expression, and urothelial cell proliferation (Ki-67). Male Wistar rats were treated with 0.05% N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water, which caused flat hyperplasia with mild dysplasia, low-grade papillary urothelial carcinoma, invasive low- and high-grade papillary urothelial carcinoma and invasive squamous cell carcinoma with extensive keratinization, grade 2. During urothelial carcinogenesis, UPII expression was the most decreased in all urothelial lesions, while UPIa, UPIb, and UPIIIa expression was differently altered in different types of lesions. Superficial cells were covered with microvilli and ropy ridges, while microridges were disappearing. The expression of cytokeratin 20 was decreased and limited to superficial urothelial cells. Proliferation indices were increased, except for invasive squamous cell carcinoma with extensive keratinization. Our results indicate that during urothelial carcinogenesis the expression of UPII is diminished, suggesting that UPIb/UPIIIa heterodimer can still be formed, while heterodimer UPIa/UPII formation is disrupted. Correlation between decreased level of UPII expression and changed apical plasma membrane structure suggests that diminished expression of UPII hinders the urothelial plaque formation.
Collapse
Affiliation(s)
- Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, Lipičeva 2, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
45
|
Kreft ME, Di Giandomenico D, Beznoussenko GV, Resnik N, Mironov AA, Jezernik K. Golgi apparatus fragmentation as a mechanism responsible for uniform delivery of uroplakins to the apical plasma membrane of uroepithelial cells. Biol Cell 2010; 102:593-607. [PMID: 20735355 DOI: 10.1042/bc20100024] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
BACKGROUND INFORMATION The GA (Golgi apparatus) has an essential role in membrane trafficking, determining the assembly and delivery of UPs (uroplakins) to the APM (apical plasma membrane) of superficial UCs (uroepithelial cells) of urinary bladder. UPs are synchronously and uniformly delivered from the GA to the APM by DFVs (discoidal- or fusiform-shaped vesicles); however, the mechanism of UP delivery is not known. We have used the culture model of UCs with the capacity to undergo terminal differentiation to study the process of uniform delivery of DFVs to the APM and to elucidate the mechanisms involved. RESULTS By three-dimensional localization using confocal microscopy of immunofluorescence-labelled GA-related markers [GM130 (cis-Golgi matrix protein of 130 kDa), GS15 (Golgi Snare 15 kDa), GS28 and giantin], uroepithelial differentiation-related markers (UPs), MTs (microtubules; α-tubulin) and intermediate filaments [CK7 (cytokeratin 7) and CK20], we found that in non-differentiated, UP-negative UCs the GA is mostly organized as a single ribbon-like structure close to the nucleus, whereas in differentiated, UP-positive UCs the GA is fragmented and spread almost through the entire cell. The FRAP (fluorescence recovery after photobleaching) experiments on the UCs transfected with GalT (trans-Golgi/TGN enzyme β1,4-galactosyltransferase) fused to fluorescent protein showed that Golgi-resident enzyme cycles freely within ribbon-like GA but not within fragmented GA. By CLEM (correlative light-electron microscopy), we examined the GA fragments in cells expressing UPs. We found that GA fragments are fully functional and similar to the GA fragments that are formed after nocodazole treatment. Furthermore, we demonstrated that the reorganization of GA into a fragmented form is associated with the impairment of the MT organization in the basal, central and subapical cytoplasm and the accumulation of intermediate filaments in the apical cytoplasm that could affect the kinetics of MT star leading to the peripheral fragmentation of the GA in the differentiated UCs. CONCLUSIONS The fragmentation of the GA and the subsequent spreading of GA to the cell periphery represent one of the key events that promote the uniform delivery of UPs over the entire APM of differentiating UCs and thus are of major importance in the final proper formation and maintenance of the blood-urine barrier.
Collapse
Affiliation(s)
- Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
46
|
Kreft ME, Hudoklin S, Jezernik K, Romih R. Formation and maintenance of blood-urine barrier in urothelium. PROTOPLASMA 2010; 246:3-14. [PMID: 20521071 DOI: 10.1007/s00709-010-0112-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 01/15/2010] [Indexed: 05/29/2023]
Abstract
Blood-urine barrier, which is formed during differentiation of superficial urothelial cells, is the tightest and most impermeable barrier in the body. In the urinary bladder, the barrier must accommodate large changes in the surface area during distensions and contractions of the organ. Tight junctions and unique apical plasma membrane of superficial urothelial cells play a critical role in the barrier maintenance. Alterations in the blood-urine barrier function accompany most of the urinary tract diseases. In this review, we discuss recent discoveries on the role of tight junctions, dynamics of Golgi apparatus and post-Golgi compartments, and intracellular membrane traffic during the biogenesis and maintenance of blood-urine barrier.
Collapse
Affiliation(s)
- Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Lipiceva 2, SI-1000, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
47
|
Aboushwareb T, Zhou G, Deng FM, Turner C, Andersson KE, Tar M, Zhao W, Melman A, D'Agostino R, Sun TT, Christ GJ. Alterations in bladder function associated with urothelial defects in uroplakin II and IIIa knockout mice. Neurourol Urodyn 2010; 28:1028-33. [PMID: 19267388 DOI: 10.1002/nau.20688] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIMS The effects of deleting genes encoding uroplakins II (UPII) and III (UPIIIa) on mouse bladder physiology/dysfunction were studied in male and female wild type and knockout (KO) mice. METHODS UPII, UPIIIa, and WT mice were catheterized using previously described techniques. Continuous cystometry was conducted in conscious, freely moving animals. Bladder strips were harvested after animal sacrifice and pharmacological studies and EFS were conducted in an organ chamber. Histological studies were also carried on with H&E staining to identify differences among the three mouse types. RESULTS These studies have revealed numerous alterations, some of which were apparently gender-specific. Nonvoiding contractions were common in both UPII and UPIIIa KO mice, although more severe in the former. In particular, the increased bladder capacity, micturition pressure and demonstrable nonvoiding contractions observed in the male UPII KO's, were reminiscent of an obstruction-like syndrome accompanied by evidence of emerging bladder decompensation, as reflected by an increased residual volume. Pharmacological studies revealed a modest, gender-specific reduction in sensitivity of isolated detrusor strips from UPII KO female mice to carbachol-induced contractions. A similar reduction was observed in UPIIIa KO female mice. Histological investigation showed urothelial hyperplasia in both UPII KO and UPIIIa KO mice, although again, apparently more severe in the former. CONCLUSIONS These results confirm and extend previous work to indicate that urothelial defects due to uroplakin deficiency are associated with significant alterations in bladder function and further highlight the importance of the urothelium to bladder physiology/dysfunction.
Collapse
Affiliation(s)
- Tamer Aboushwareb
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang H, Min G, Glockshuber R, Sun TT, Kong XP. Uropathogenic E. coli adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction. J Mol Biol 2009; 392:352-61. [PMID: 19577575 PMCID: PMC2755582 DOI: 10.1016/j.jmb.2009.06.077] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/22/2009] [Accepted: 06/29/2009] [Indexed: 01/02/2023]
Abstract
Urinary tract infection is the second most common infectious disease and is caused predominantly by type 1-fimbriated uropathogenic Escherichia coli (UPEC). UPEC initiates infection by attaching to uroplakin (UP) Ia, its urothelial surface receptor, via the FimH adhesins capping the distal end of its fimbriae. UP Ia, together with UP Ib, UP II, and UP IIIa, forms a 16-nm receptor complex that is assembled into hexagonally packed, two-dimensional crystals (urothelial plaques) covering >90% of the urothelial apical surface. Recent studies indicate that FimH is the invasin of UPEC as its attachment to the urothelial surface can induce cellular signaling events including calcium elevation and the phosphorylation of the UP IIIa cytoplasmic tail, leading to cytoskeletal rearrangements and bacterial invasion. However, it remains unknown how the binding of FimH to the UP receptor triggers a signal that can be transmitted through the highly impermeable urothelial apical membrane. We show here by cryo-electron microscopy that FimH binding to the extracellular domain of UP Ia induces global conformational changes in the entire UP receptor complex, including a coordinated movement of the tightly bundled transmembrane helices. This movement of the transmembrane helix bundles can cause a corresponding lateral translocation of the UP cytoplasmic tails, which can be sufficient to trigger downstream signaling events. Our results suggest a novel pathogen-induced transmembrane signal transduction mechanism that plays a key role in the initial stages of UPEC invasion and receptor-mediated bacterial invasion in general.
Collapse
Affiliation(s)
- Huaibin Wang
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | - Guangwei Min
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | - Rudi Glockshuber
- Institut für Molekularbiologie und Biophysik, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Tung-Tien Sun
- Departments of Cell Biology, Dermatology, Pharmacology, Urology, and New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
49
|
Guo X, Tu L, Gumper I, Plesken H, Novak EK, Chintala S, Swank RT, Pastores G, Torres P, Izumi T, Sun TT, Sabatini DD, Kreibich G. Involvement of vps33a in the fusion of uroplakin-degrading multivesicular bodies with lysosomes. Traffic 2009; 10:1350-61. [PMID: 19566896 PMCID: PMC4494113 DOI: 10.1111/j.1600-0854.2009.00950.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The apical surface of the terminally differentiated mouse bladder urothelium is largely covered by urothelial plaques, consisting of hexagonally packed 16-nm uroplakin particles. These plaques are delivered to the cell surface by fusiform vesicles (FVs) that are the most abundant cytoplasmic organelles. We have analyzed the functional involvement of several proteins in the apical delivery and endocytic degradation of uroplakin proteins. Although FVs have an acidified lumen and Rab27b, which localizes to these organelles, is known to be involved in the targeting of lysosome-related organelles (LROs), FVs are CD63 negative and are therefore not typical LROs. Vps33a is a Sec1-related protein that plays a role in vesicular transport to the lysosomal compartment. A point mutation in mouse Vps33a (Buff mouse) causes albinism and bleeding (Hermansky-Pudlak syndrome) because of abnormalities in the trafficking of melanosomes and platelets. These Buff mice showed a novel phenotype observed in urothelial umbrella cells, where the uroplakin-delivering FVs were almost completely replaced by Rab27b-negative multivesicular bodies (MVBs) involved in uroplakin degradation. MVB accumulation leads to an increase in the amounts of uroplakins, Lysosomal-associated membrane protein (LAMP)-1/2, and the activities of beta-hexosaminidase and beta-glucocerebrosidase. These results suggest that FVs can be regarded as specialized secretory granules that deliver crystalline arrays of uroplakins to the cell surface, and that the Vps33a mutation interferes with the fusion of MVBs with mature lysosomes thus blocking uroplakin degradation.
Collapse
Affiliation(s)
- Xuemei Guo
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Liyu Tu
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Iwona Gumper
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Heide Plesken
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Edward K. Novak
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Sreenivasulu Chintala
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Richard T. Swank
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Gregory Pastores
- Department of Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Paola Torres
- Department of Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Tetsuro Izumi
- Department of Molecular Medicine, Gunma University, Maebashi, Japan
| | - Tung-Tien Sun
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
- Department of Urology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
- Department of Epithelial Biology Unit, The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
- Department of NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - David D. Sabatini
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
- Department of NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Gert Kreibich
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
- Department of NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
50
|
Urinary bladder membrane permeability differentially induced by membrane lipid composition. Mol Cell Biochem 2009; 330:163-9. [PMID: 19412731 DOI: 10.1007/s11010-009-0129-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
The permeability barrier of the urothelium (covering the mammalian urinary tract) has stimulated interest in the role of the luminal membrane in the barrier function. To know how membrane lipids may affect the permeability barrier we prepare endocytic vesicles of different lipid composition entrapping a fluorescent dye (HPTS) and its quencher (DPX) using a dietary strategy (rats fed with commercial, oleic acid- or linoleic acid-enriched diets) followed by endocytosis induction. Vesicular leakage was measured by a fluorescence requenching technique. The results showed (1) endocytosed vesicles can release their content; (2) a linoleic acid-rich diet did not change either the mechanism of leakage or the amount of released material relative to the control; and (3) a oleic acid-rich diet greatly affected the mechanism of release. Thus, the dietary fatty acids can modify the urothelial cell physiology altering the pathway of endocytosed urinary fluid.
Collapse
|