1
|
Wu Y, Jaremko WJ, Wilson RC, Pata JD. Heterotrimeric PCNA increases the activity and fidelity of Dbh, a Y-family translesion DNA polymerase prone to creating single-base deletion mutations. DNA Repair (Amst) 2020; 96:102967. [PMID: 32961405 DOI: 10.1016/j.dnarep.2020.102967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Abstract
Dbh is a Y-family translesion DNA polymerase from Sulfolobus acidocaldarius, an archaeal species that grows in harsh environmental conditions. Biochemically, Dbh displays a distinctive mutational profile, creating single-base deletion mutations at extraordinarily high frequencies (up to 50 %) in specific repeat sequences. In cells, however, Dbh does not appear to contribute significantly to spontaneous frameshifts in these same sequence contexts. This suggests that either the error-prone DNA synthesis activity of Dbh is reduced in vivo and/or Dbh is restricted from replicating these sequences. Here, we test the hypothesis that the propensity for Dbh to make single base deletion mutations is reduced through interaction with the S. acidocaldarius heterotrimeric sliding clamp processivity factor, PCNA-123. We first confirm that Dbh physically interacts with PCNA-123, with the interaction requiring both the PCNA-1 subunit and the C-terminal 10 amino acids of Dbh, which contain a predicted PCNA-interaction peptide (PIP) motif. This interaction stimulates the polymerase activity of Dbh, even on short, linear primer-template DNA, by increasing the rate of nucleotide incorporation. This stimulation requires an intact PCNA-123 heterotrimer and a DNA duplex length of at least 18 basepairs, the minimal length predicted from structural data to bind to both the polymerase and the clamp. Finally, we find that PCNA-123 increases the fidelity of Dbh on a single-base deletion hotspot sequence 3-fold by promoting an increase in the rate of correct, but not incorrect, nucleotide addition and propose that PCNA-123 induces Dbh to adopt a more active conformation that is less prone to creating deletions during DNA synthesis.
Collapse
Affiliation(s)
- Yifeng Wu
- Wadsworth Center, New York State Department of Health, Albany, NY, United States; Department of Biomedical Sciences, University at Albany, Albany, NY, United States
| | - William J Jaremko
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Ryan C Wilson
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Janice D Pata
- Wadsworth Center, New York State Department of Health, Albany, NY, United States; Department of Biomedical Sciences, University at Albany, Albany, NY, United States.
| |
Collapse
|
2
|
Lyu Z, Whitman WB. Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease. Cell Mol Life Sci 2017; 74:183-212. [PMID: 27261368 PMCID: PMC11107668 DOI: 10.1007/s00018-016-2286-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/05/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
Current evolutionary models suggest that Eukaryotes originated from within Archaea instead of being a sister lineage. To test this model of ancient evolution, we review recent studies and compare the three major information processing subsystems of replication, transcription and translation in the Archaea and Eukaryotes. Our hypothesis is that if the Eukaryotes arose within the archaeal radiation, their information processing systems will appear to be one of kind and not wholly original. Within the Eukaryotes, the mammalian or human systems are emphasized because of their importance in understanding health. Biochemical as well as genetic studies provide strong evidence for the functional similarity of archaeal homologs to the mammalian information processing system and their dissimilarity to the bacterial systems. In many independent instances, a simple archaeal system is functionally equivalent to more elaborate eukaryotic homologs, suggesting that evolution of complexity is likely an central feature of the eukaryotic information processing system. Because fewer components are often involved, biochemical characterizations of the archaeal systems are often easier to interpret. Similarly, the archaeal cell provides a genetically and metabolically simpler background, enabling convenient studies on the complex information processing system. Therefore, Archaea could serve as a parsimonious and tractable host for studying human diseases that arise in the information processing systems.
Collapse
Affiliation(s)
- Zhe Lyu
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
3
|
Functional dissection of proliferating-cell nuclear antigens (1 and 2) in human malarial parasite Plasmodium falciparum: possible involvement in DNA replication and DNA damage response. Biochem J 2015; 470:115-29. [PMID: 26251451 DOI: 10.1042/bj20150452] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/22/2015] [Indexed: 11/17/2022]
Abstract
Eukaryotic PCNAs (proliferating-cell nuclear antigens) play diverse roles in nucleic acid metabolism in addition to DNA replication. Plasmodium falciparum, which causes human malaria, harbours two PCNA homologues: PfPCNA1 and PfPCNA2. The functional role of two distinct PCNAs in the parasite still eludes us. In the present study, we show that, whereas both PfPCNAs share structural and biochemical properties, only PfPCNA1 functionally complements the ScPCNA mutant and forms distinct replication foci in the parasite, which PfPCNA2 fails to do. Although PfPCNA1 appears to be the primary replicative PCNA, both PfPCNA1 and PfPCNA2 participate in an active DDR (DNA-damage-response) pathway with significant accumulation in the parasite upon DNA damage induction. Interestingly, PfPCNA genes were found to be regulated not at the transcription level, but presumably at the protein stability level upon DNA damage. Such regulation of PCNA has not been shown in eukaryotes before. Moreover, overexpression of PfPCNA1 and PfPCNA2 in the parasite confers a survival edge on the parasite in a genotoxic environment. This is the first evidence of a PfPCNA-mediated DDR in the parasite and gives new insights and rationale for the presence of two PCNAs as a parasite survival strategy and its probable success.
Collapse
|
4
|
Parnas O, Zipin-Roitman A, Pfander B, Liefshitz B, Mazor Y, Ben-Aroya S, Jentsch S, Kupiec M. Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA. EMBO J 2010; 29:2611-22. [PMID: 20571511 DOI: 10.1038/emboj.2010.128] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 05/26/2010] [Indexed: 12/17/2022] Open
Abstract
Replication-factor C (RFC) is a protein complex that loads the processivity clamp PCNA onto DNA. Elg1 is a conserved protein with homology to the largest subunit of RFC, but its function remained enigmatic. Here, we show that yeast Elg1 interacts physically and genetically with PCNA, in a manner that depends on PCNA modification, and exhibits preferential affinity for SUMOylated PCNA. This interaction is mediated by three small ubiquitin-like modifier (SUMO)-interacting motifs and a PCNA-interacting protein box close to the N-terminus of Elg1. These motifs are important for the ability of Elg1 to maintain genomic stability. SUMOylated PCNA is known to recruit the helicase Srs2, and in the absence of Elg1, Srs2 and SUMOylated PCNA accumulate on chromatin. Strains carrying mutations in both ELG1 and SRS2 exhibit a synthetic fitness defect that depends on PCNA modification. Our results underscore the importance of Elg1, Srs2 and SUMOylated PCNA in the maintenance of genomic stability.
Collapse
Affiliation(s)
- Oren Parnas
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Accurate DNA synthesis by Sulfolobus solfataricus DNA polymerase B1 at high temperature. Extremophiles 2009; 14:107-17. [DOI: 10.1007/s00792-009-0292-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/23/2009] [Indexed: 11/24/2022]
|
6
|
Castrec B, Rouillon C, Henneke G, Flament D, Querellou J, Raffin JP. Binding to PCNA in Euryarchaeal DNA Replication requires two PIP motifs for DNA polymerase D and one PIP motif for DNA polymerase B. J Mol Biol 2009; 394:209-18. [PMID: 19781553 DOI: 10.1016/j.jmb.2009.09.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 01/07/2023]
Abstract
Replicative DNA polymerases possess a canonical C-terminal proliferating cell nuclear antigen (PCNA)-binding motif termed the PCNA-interacting protein (PIP) box. We investigated the role of the PIP box on the functional interactions of the two DNA polymerases, PabPol B (family B) and PabPol D (family D), from the hyperthermophilic euryarchaeon Pyrococcus abyssi, with its cognate PCNA. The PIP box was essential for interactions of PabPol B with PCNA, as shown by surface plasmon resonance and primer extension studies. In contrast, binding of PabPol D to PCNA was affected only partially by removing the PIP motif. We identified a second palindromic PIP box motif at the N-terminus of the large subunit of PabPol D that was required for the interactions of PabPol D with PCNA. Thus, two PIP motifs were needed for PabPol D for binding to PabPCNA. Moreover, the C-terminus of PabPCNA was essential for stimulation of PabPol D activity but not for stimulation of PabPol B activity. Neither DNA polymerase interacted with the PabPCNA interdomain connecting loop. Our data suggest that distinct processes are involved in PabPol D and PabPol B binding to PCNA, raising the possibility that Archaea require two mechanisms for recruiting replicative DNA polymerases at the replication fork.
Collapse
Affiliation(s)
- Benoît Castrec
- Université de Bretagne Occidentale, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, BP 70, F-29280 Plouzané, France
| | | | | | | | | | | |
Collapse
|
7
|
Lu S, Li Z, Wang Z, Ma X, Sheng D, Ni J, Shen Y. Spatial subunit distribution and in vitro functions of the novel trimeric PCNA complex from Sulfolobus tokodaii. Biochem Biophys Res Commun 2008; 376:369-74. [DOI: 10.1016/j.bbrc.2008.08.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
|
8
|
Hlinkova V, Xing G, Bauer J, Shin YJ, Dionne I, Rajashankar KR, Bell SD, Ling H. Structures of monomeric, dimeric and trimeric PCNA: PCNA-ring assembly and opening. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2008; 64:941-9. [PMID: 18703842 PMCID: PMC3606083 DOI: 10.1107/s0907444908021665] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 07/11/2008] [Indexed: 11/10/2022]
Abstract
DNA sliding clamps form an oligomeric ring encircling DNA and serve as a moving platform for DNA-processing proteins. The opening and closing of a sliding-clamp ring is essential to load the clamp onto DNA in order to perform its functions. The molecular details of how clamp rings open and enclose DNA are still not clear. Three PCNA homologues have been found in Sulfolobus solfataricus which form a heterotrimer. Taking advantage of their hetero-oligomeric nature, the structures of the PCNAs in monomeric PCNA3, dimeric PCNA1-PCNA2 and trimeric PCNA1-PCNA2-PCNA3 forms were determined at resolutions of 2.6-1.9 A. The distinct oligomeric structures represent different stages in ring formation, which were verified in solution by ultracentrifugation analysis. The heterodimer opens in a V-shape of 130 degrees , while the heterotrimers form a ring with a 120 degrees rotation between monomers. The association of a rigid PCNA3 monomer with an opened PCNA1-PCNA2 heterodimer closes the ring and introduces a spring tension in the PCNA1-PCNA2 interface, thus bending the nine-stranded intermolecular beta-sheet to fit the 120 degrees rotation. The release of the spring tension as PCNA3 dissociates from the ring may facilitate ring opening. The structural features in different assemblies present a molecular model for clamp ring assembly and opening.
Collapse
Affiliation(s)
- Vladena Hlinkova
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Guangxin Xing
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Jacob Bauer
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Yoon Jung Shin
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Isabelle Dionne
- The Medical Research Council Cancer Cell Unit, Hutchison MRC Centre, Hills Road, Cambridge CB2 2XZ, England
| | | | - Stephen D. Bell
- The Medical Research Council Cancer Cell Unit, Hutchison MRC Centre, Hills Road, Cambridge CB2 2XZ, England
| | - Hong Ling
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
9
|
Rouillon C, Henneke G, Flament D, Querellou J, Raffin JP. DNA Polymerase Switching on Homotrimeric PCNA at the Replication Fork of the Euryarchaea Pyrococcus abyssi. J Mol Biol 2007; 369:343-55. [PMID: 17442344 DOI: 10.1016/j.jmb.2007.03.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 12/28/2022]
Abstract
DNA replication in Archaea, as in other organisms, involves large protein complexes called replisomes. In the Euryarchaeota subdomain, only two putative replicases have been identified, and their roles in leading and lagging strand DNA synthesis are still poorly understood. In this study, we focused on the coupling of proliferating cell nuclear antigen (PCNA)-loading mechanisms with DNA polymerase function in the Euryarchaea Pyrococcus abyssi. PCNA spontaneously loaded onto primed DNA, and replication factor C dramatically increased this loading. Surprisingly, the family B DNA polymerase (Pol B) also increased PCNA loading, probably by stabilizing the clamp on primed DNA via an essential motif. In contrast, on an RNA-primed DNA template, the PCNA/Pol B complex was destabilized in the presence of dNTPs, allowing the family D DNA polymerase (Pol D) to perform RNA-primed DNA synthesis. Then, Pol D is displaced by Pol B to perform processive DNA synthesis, at least on the leading strand.
Collapse
Affiliation(s)
- Christophe Rouillon
- IFREMER, UMR 6197, Laboratoire de Microbiologie et Environnements Extrêmes, BP 70, F-29280 Plouzané, France
| | | | | | | | | |
Collapse
|
10
|
Ruike T, Takeuchi R, Takata KI, Oshige M, Kasai N, Shimanouchi K, Kanai Y, Nakamura R, Sugawara F, Sakaguchi K. Characterization of a second proliferating cell nuclear antigen (PCNA2) from Drosophila melanogaster. FEBS J 2007; 273:5062-73. [PMID: 17087725 DOI: 10.1111/j.1742-4658.2006.05504.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eukaryotic DNA polymerase processivity factor, proliferating cell nuclear antigen, is an essential component in the DNA replication and repair machinery. In Drosophila melanogaster, we cloned a second PCNA cDNA that differs from that encoded by the gene mus209 (for convenience called DmPCNA1 in this article). The second PCNA cDNA (DmPCNA2) encoded a 255 amino acid protein with 51.7% identity to DmPCNA1, and was ubiquitously expressed during Drosophila development. DmPCNA2 was localized in nuclei as a homotrimeric complex and associated with Drosophila DNA polymerase delta and epsilonin vivo. Treatment of cells with methyl methanesulfonate or hydrogen peroxide increased the amount of both DmPCNA2 and DmPCNA1 associating with chromatin, whereas exposure to UV light increased the level of association of only DmPCNA1. Our observations suggest that DmPCNA2 may function as an independent sliding clamp of DmPCNA1 when DNA repair occurs.
Collapse
Affiliation(s)
- Tatsushi Ruike
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pascal JM, Tsodikov OV, Hura GL, Song W, Cotner EA, Classen S, Tomkinson AE, Tainer JA, Ellenberger T. A flexible interface between DNA ligase and PCNA supports conformational switching and efficient ligation of DNA. Mol Cell 2006; 24:279-91. [PMID: 17052461 DOI: 10.1016/j.molcel.2006.08.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/01/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
DNA sliding clamps encircle DNA and provide binding sites for many DNA-processing enzymes. However, it is largely unknown how sliding clamps like proliferating cell nuclear antigen (PCNA) coordinate multistep DNA transactions. We have determined structures of Sulfolobus solfataricus DNA ligase and heterotrimeric PCNA separately by X-ray diffraction and in complex by small-angle X-ray scattering (SAXS). Three distinct PCNA subunits assemble into a protein ring resembling the homotrimeric PCNA of humans but with three unique protein-binding sites. In the absence of nicked DNA, the Sulfolobus solfataricus DNA ligase has an open, extended conformation. When complexed with heterotrimeric PCNA, the DNA ligase binds to the PCNA3 subunit and ligase retains an open, extended conformation. A closed, ring-shaped conformation of ligase catalyzes a DNA end-joining reaction that is strongly stimulated by PCNA. This open-to-closed switch in the conformation of DNA ligase is accommodated by a malleable interface with PCNA that serves as an efficient platform for DNA ligation.
Collapse
Affiliation(s)
- John M Pascal
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Asami Y, Murakami M, Shimizu M, Pisani FM, Hayata I, Nohmi T. Visualization of the interaction between archaeal DNA polymerase and uracil-containing DNA by atomic force microscopy. Genes Cells 2006; 11:3-11. [PMID: 16371128 DOI: 10.1111/j.1365-2443.2005.00918.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deamination of cytosine to uracil is a hydrolytic reaction that is greatly accelerated at high temperatures. The resulting uracil pairs with adenine during DNA replication, thereby inducing G:C to A:T transitions in the progeny. Interestingly, B-family DNA polymerases from hyperthermophilic Archaea recognize the presence of uracil in DNA and stall DNA synthesis. To better understand the recognition mechanism, the binding modes of DNA polymerase B1 of Sulfolobus solfataricus (Pol B1) to uracil-containing DNA were examined by gel mobility shift assays and atomic force microscopy. Although PolB1 per se specifically binds to uracil-containing single-stranded DNA, the binding efficiency was substantially enhanced by the initiation of DNA synthesis. Analysis by the atomic force microscopy showed a number of double-stranded DNA (dsDNA) in the products of DNA synthesis. The generation of ds DNA was significantly inhibited, however, by the presence of template uracil, and intermediates where monomeric forms of Pol B1 appeared to bind to uracil-containing DNA were observed. These results suggest that Pol B1 more efficiently recognizes uracil in DNA during DNA synthesis rather than during random diffusion in solution, and that single molecules of Pol B1 bind to template uracil and stall DNA synthesis.
Collapse
Affiliation(s)
- Yasuo Asami
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | | | | | | | | | | |
Collapse
|
13
|
Guerini MN, Behnke MS, White MW. Biochemical and genetic analysis of the distinct proliferating cell nuclear antigens of Toxoplasma gondii. Mol Biochem Parasitol 2005; 142:56-65. [PMID: 15878790 DOI: 10.1016/j.molbiopara.2005.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 03/05/2005] [Accepted: 03/07/2005] [Indexed: 11/27/2022]
Abstract
The apicomplexa parasite Toxoplasma gondii expresses two distinct proliferating cell nuclear antigens (PCNA) that exhibit distinct patterns of subcellular localization during tachyzoite growth. In all cell cycle phases, TgPCNA1 is concentrated in the nucleus, while TgPCNA2 is only concentrated in the nucleus during S-phase and uniformly distributed throughout the cell during mitosis and early G1-phase. TgPCNA1-GFP and native TgPCNA2 display a punctate staining pattern that is consistent with assembly into replication foci during S-phase; however, TgPCNA2 disassociates from replication foci before TgPCNA1-GFP. Consistent with the distinct pattern of TgPCNA2 cellular localization, homotypic TgPCNA2 interactions were primarily observed by yeast two-hybrid or co-immunoprecipitation analysis. Transgenic parasites in which the TgPCNA2 gene was disrupted displayed a slower growth rate in vitro; however, no difference in DNA polymerase activity, response to chemical mutagens, or recombinational frequency was observed in these mutant clones demonstrating that TgPCNA2 is non-essential in the tachyzoite developmental stage. Heterologous expression of TgPCNA1, but not TgPCNA2, was able to complement a POL30 cold-sensitive yeast strain suggesting that this isoform may serve as a major replisomal factor in T. gondii and is consistent with the failure to disrupt this gene in tachyzoites.
Collapse
Affiliation(s)
- Michael N Guerini
- Department of Veterinary Molecular Biology, 960 Technology Blvd, Montana State University, Bozeman, MT 59717-3610, USA
| | | | | |
Collapse
|
14
|
Contursi P, Pisani FM, Grigoriev A, Cannio R, Bartolucci S, Rossi M. Identification and autonomous replication capability of a chromosomal replication origin from the archaeon Sulfolobus solfataricus. Extremophiles 2004; 8:385-91. [PMID: 15480865 DOI: 10.1007/s00792-004-0399-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Accepted: 05/10/2004] [Indexed: 11/29/2022]
Abstract
Here, we describe the identification of a chromosomal DNA replication origin (oriC) from the hyperthermophilic archaeon Sulfolobus solfataricus (subdomain of Crenarchaeota). By means of a cumulative GC-skew analysis of the Sulfolobus genome sequence, a candidate oriC was mapped within a 1.12-kb region located between the two divergently transcribed MCM- and cdc6-like genes. We demonstrated that plasmids containing the Sulfolobus oriC sequence and a hygromycin-resistance selectable marker were maintained in an episomal state in transformed S. solfataricus cells under selective pressure. The proposed location of the origin was confirmed by 2-D gel electrophoresis experiments. This is the first report on the functional cloning of a chromosomal oriC from an archaeon and represents an important step toward the reconstitution of an archaeal in vitro DNA replication system.
Collapse
Affiliation(s)
- Patrizia Contursi
- Dipartimento di Chimica Biologica, Università degli Studi di Napoli, Via Mezzocannone, 16, 80134, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Fiala KA, Suo Z. Mechanism of DNA polymerization catalyzed by Sulfolobus solfataricus P2 DNA polymerase IV. Biochemistry 2004; 43:2116-25. [PMID: 14967051 DOI: 10.1021/bi035746z] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kinetic mechanism of DNA polymerization catalyzed by Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) is resolved by pre-steady-state kinetic analysis of single-nucleotide (dTTP) incorporation into a DNA 21/41-mer. Like replicative DNA polymerases, Dpo4 utilizes an "induced-fit" mechanism to select correct incoming nucleotides. The affinity of DNA and a matched incoming nucleotide for Dpo4 was measured to be 10.6 nM and 230 microM, respectively. Dpo4 binds DNA with an affinity similar to that of replicative polymerases due to the presence of an atypical little finger domain and a highly charged tether that links this novel domain to its small thumb domain. On the basis of the elemental effect between the incorporations of dTTP and its thio analogue S(p)-dTTPalphaS, the incorporation of a correct incoming nucleotide by Dpo4 was shown to be limited by the protein conformational change step preceding the chemistry step. In contrast, the chemistry step limited the incorporation of an incorrect nucleotide. The measured dissociation rates of the enzyme.DNA binary complex (0.02-0.07 s(-1)), the enzyme.DNA.dNTP ternary complex (0.41 s(-1)), and the ternary complex after the protein conformational change (0.004 s(-1)) are significantly different and support the existence of a bona fide protein conformational change step. The rate-limiting protein conformational change was further substantiated by the observation of different reaction amplitudes between pulse-quench and pulse-chase experiments. Additionally, the processivity of Dpo4 was calculated to be 16 at 37 degrees C from analysis of a processive polymerization experiment. The structural basis for both the protein conformational change and the low processivity of Dpo4 was discussed.
Collapse
Affiliation(s)
- Kevin A Fiala
- Department of Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
16
|
Lou H, Duan Z, Sun T, Huang L. Cleavage of double-stranded DNA by the intrinsic 3'-5' exonuclease activity of DNA polymerase B1 from the hyperthermophilic archaeon Sulfolobus solfataricus at high temperature. FEMS Microbiol Lett 2004; 231:111-7. [PMID: 14769474 DOI: 10.1016/s0378-1097(03)00932-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 11/20/2003] [Accepted: 12/08/2003] [Indexed: 11/30/2022] Open
Abstract
The substrate requirement of the intrinsic 3'-5' exonuclease of DNA polymerase B1 from the hyperthermophilic archaeon Sulfolobus solfataricus P2 (Sso polB1) was investigated. Sso polB1 degraded both single-stranded (ss) and double-stranded (ds) DNA at similar rates in vitro at temperatures of physiological relevance. No difference was found in the cleavage of 3'-recessive, 3'-protruding and blunt-ended DNA duplexes at these temperatures. However, a single-stranded nick in duplex DNA was less readily employed by the enzyme to initiate cleavage than a free 3' end. At lower temperatures, Sso polB1 cleaved ssDNA more efficiently than dsDNA. The strong 3'-5' exonuclease activity of polB1 was inhibited by 50% in the presence of 2 microM dNTPs, but remained measurable at up to 600 microM dNTPs. In view of the strong exonuclease activity of Sso polB1 on matched dsDNA, we suggest that S. solfataricus may have evolved mechanisms to regulate the exonuclease/polymerase ratio of the enzyme, thereby reducing the cost of proofreading at high temperature.
Collapse
Affiliation(s)
- Huiqiang Lou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, PR China
| | | | | | | |
Collapse
|
17
|
Abstract
Genome sequences of a number of archaea have revealed an apparent paradox in the phylogenies of the bacteria, archaea, and eukarya, as well as an intriguing set of problems to be resolved in the study of DNA replication. The archaea, long thought to be bacteria, are not only different enough to merit their own domain but also appear to be an interesting mosaic of bacterial, eukaryal, and unique features. Most archaeal proteins participating in DNA replication are more similar in sequence to those found in eukarya than to analogous replication proteins in bacteria. However, archaea have only a subset of the eukaryal replication machinery, apparently needing fewer polypeptides and structurally simpler complexes. The archaeal replication apparatus also contains features not found in other organisms owing, in part, to the broad range of environmental conditions, some extreme, in which members of this domain thrive. In this review the current knowledge of the mechanisms governing DNA replication in archaea is summarized and the similarities and differences of those of bacteria and eukarya are highlighted.
Collapse
Affiliation(s)
- Beatrice Grabowski
- University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
18
|
Robbins JB, Murphy MC, White BA, Mackie RI, Ha T, Cann IKO. Functional analysis of multiple single-stranded DNA-binding proteins from Methanosarcina acetivorans and their effects on DNA synthesis by DNA polymerase BI. J Biol Chem 2003; 279:6315-26. [PMID: 14676214 DOI: 10.1074/jbc.m304491200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-stranded DNA-binding proteins and their functional homologs, replication protein A, are essential components of cellular DNA replication, repair and recombination. We describe here the isolation and characterization of multiple replication protein A homologs, RPA1, RPA2, and RPA3, from the archaeon Methanosarcina acetivorans. RPA1 comprises four single-stranded DNA-binding domains, while RPA2 and RPA3 are each composed of two such domains and a zinc finger domain. Gel filtration analysis suggested that RPA1 exists as homotetramers and homodimers in solution, while RPA2 and RPA3 form only homodimers. Unlike the multiple RPA proteins found in other Archaea and eukaryotes, each of the M. acetivorans RPAs can act as a distinct single-stranded DNA-binding protein. Fluorescence resonance energy transfer and fluorescence polarization anisotropy studies revealed that the M. acetivorans RPAs bind to as few as 10 single-stranded DNA bases. However, more stable binding is achieved with single-stranded DNA of 18-23 bases, and for such substrates the estimated Kd was 3.82 +/- 0.28 nM, 173.6 +/- 105.17 nM, and 5.92 +/- 0.23 nM, for RPA1, RPA2, and RPA3, respectively. The architectures of the M. acetivorans RPAs are different from those of hitherto reported homologs. Thus, these proteins may represent novel forms of replication protein A. Most importantly, our results show that the three RPAs and their combinations highly stimulate the primer extension capacity of M. acetivorans DNA polymerase BI. Although bacterial SSB and eukaryotic RPA have been shown to stimulate DNA synthesis by their cognate DNA polymerases, our findings provide the first in vitro biochemical evidence for the conservation of this property in an archaeon.
Collapse
Affiliation(s)
- Justin B Robbins
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
19
|
Lou H, Duan Z, Huo X, Huang L. Modulation of hyperthermophilic DNA polymerase activity by archaeal chromatin proteins. J Biol Chem 2003; 279:127-32. [PMID: 14563841 DOI: 10.1074/jbc.m309860200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfolobus synthesizes a large quantity of highly conserved 7-kDa DNA-binding proteins suspected to be involved in chromosomal organization. The effect of the 7-kDa proteins on the polymerization and 3'-5' exonuclease activities of a family B DNA polymerase (polB1) from the hyperthermophilic archaeon Sulfolobus solfataricus was investigated. polB1 degraded both single-stranded DNA and double-stranded DNA at similar rates in vitro at temperatures of physiological relevance. The 7-kDa proteins were capable of significantly inhibiting the excision and enhancing the extension of matched template primers by the polymerase. However, the proteins did not protect single-stranded DNA from cleavage by polB1. In addition, the 7-kDa proteins did not affect the proofreading ability of polB1 and were not inhibitory to the excision of mismatched primers by the polymerase. The dNTP concentrations required for the effective inhibition of the 3'-5' exonuclease activity of polB1 were lowered from approximately 1 mm in the absence of the 7-kDa proteins to approximately 50 microm in the presence of the proteins at 65 degrees C. Our data suggest that the 7-kDa chromatin proteins serve to modulate the extension and excision activities of the hyperthermophilic DNA polymerase, reducing the cost of proofreading by the enzyme at high temperature.
Collapse
Affiliation(s)
- Huiqiang Lou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | |
Collapse
|
20
|
Abstract
DNA polymerase sliding clamps are a family of ring-shaped proteins that play essential roles in DNA metabolism. The proteins from the three domains of life, Bacteria, Archaea and Eukarya, as well as those from bacteriophages and viruses, were shown to interact with a large number of cellular factors and to influence their activity. In the last several years a large number of such proteins have been identified and studied. Here the various proteins that have been shown to interact with the sliding clamps of Bacteria, Archaea and Eukarya are summarized.
Collapse
Affiliation(s)
- Jonathan B Vivona
- University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | |
Collapse
|
21
|
Jonuscheit M, Martusewitsch E, Stedman KM, Schleper C. A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector. Mol Microbiol 2003; 48:1241-52. [PMID: 12787352 DOI: 10.1046/j.1365-2958.2003.03509.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sulfolobus solfataricus has developed into an important model organism for molecular and biochemical studies of hyperthermophilic archaea. Although a number of in vitro systems have been established for the organism, efficient tools for genetic manipulations have not yet been available for any hyperthermophile. In this work, we have developed a stable and selectable shuttle vector based on the virus SSV1 of Sulfolobus shibatae. We have introduced pUC18 for propagation in Escherichia coli and the genes pyrEF coding for orotidine-5'-monophosphate pyrophosphorylase and orotidine-5'-monophosphate decarboxylase of Sulfolobus solfataricus as selectable marker to complement pyrimidine auxotrophic mutants. Furthermore, the beta-galactosidase gene (lacS) was introduced into this vector as a reporter under the control of the strong and heat-inducible promoter of the Sulfolobus chaperonin (thermosome). After transformation of a S. solfataricus pyrEF/lacS double mutant, the vector was found to reside as a single-copy vector, stably integrated into the host chromosome via the site-specific recombination system of SSV1. Specific beta-galactosidase activities in transformants were found to be fourfold higher than in wild-type S. solfataricus cells, and increased to more than 10-fold after heat shock. Greatly increased levels of lacS mRNA were detected in Northern analyses, demonstrating that this reporter gene system is suitable for the study of regulated promoters in Sulfolobus and that the vector can also be used for the high-level expression of genes from hyperthermophilic archaea.
Collapse
Affiliation(s)
- Melanie Jonuscheit
- Institute of Microbiology and Genetics, Darmstadt University of Technology, Schnittspahnstr. 10, Germany
| | | | | | | |
Collapse
|
22
|
Dionne I, Nookala RK, Jackson SP, Doherty AJ, Bell SD. A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Cell 2003; 11:275-82. [PMID: 12535540 DOI: 10.1016/s1097-2765(02)00824-9] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sliding clamp, PCNA, of the archaeon Sulfolobus solfataricus P2 is a heterotrimer of three distinct subunits (PCNA1, 2, and 3) that assembles in a defined manner. The PCNA heterotrimer, but not individual subunits, stimulates the activities of the DNA polymerase, DNA ligase I, and the flap endonuclease (FEN1) of S. solfataricus. Distinct PCNA subunits contact DNA polymerase, DNA ligase, or FEN1, imposing a defined architecture at the lagging strand fork and suggesting the existence of a preformed scanning complex at the fork. This provides a mechanism to tightly couple DNA synthesis and Okazaki fragment maturation. Additionally, unique subunit-specific interactions between components of the clamp loader, RFC, suggest a model for clamp loading of PCNA.
Collapse
Affiliation(s)
- Isabelle Dionne
- Medical Research Council Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Li JL, Warren AV, Cox LS. Identification of a second proliferating cell nuclear antigen in the human malarial pathogen Plasmodium falciparum. Int J Parasitol 2002; 32:1683-92. [PMID: 12464414 DOI: 10.1016/s0020-7519(02)00162-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proliferating cell nuclear antigen seems to exist as a single form in higher eukaryotic cells and plays multiple roles in nucleic acid metabolism. We have identified a second additional proliferating cell nuclear antigen (PfPCNA2) in Plasmodium falciparum on the basis of several lines of evidence. (1) PfPCNA2, consisting of 264 amino acid residues with a predicted molecular mass of 30.2kDa, shares only 29% identity and 53% similarity with PfPCNA1 at the amino acid level. (2) Southern blot analyses revealed that the hybridisation pattern of the Pfpcna2 gene is completely different from that of the Pfpcna1 gene. (3) Chromosomal localisation studies showed that Pfpcna2 is located on chromosome 12 while Pfpcna1 is located on chromosome 13. Northern blot analyses revealed two different transcripts of Pfpcna2, one expressed in both asexual and sexual erythrocytic stages, while the other existed only in the sexual stage, implying that PfPCNA2 may play multiple roles in DNA metabolism in different stages of the parasite. Recombinant protein of PfPCNA2, overexpressed in Escherichia coli, has been purified to near homogeneity and shown to form an oligomer, probably a trimer, as revealed by a size-exclusion chromatography and a native gel electrophoresis, suggesting that PfPCNA2, like its higher eukaryotic counterparts, may serve as a sliding platform which is capable of interaction with diverse proteins and regulation of their activities.
Collapse
Affiliation(s)
- Ji-Liang Li
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | |
Collapse
|
24
|
Henneke G, Gueguen Y, Flament D, Azam P, Querellou J, Dietrich J, Hübscher U, Raffin JP. Replication factor C from the hyperthermophilic archaeon Pyrococcus abyssi does not need ATP hydrolysis for clamp-loading and contains a functionally conserved RFC PCNA-binding domain. J Mol Biol 2002; 323:795-810. [PMID: 12417194 DOI: 10.1016/s0022-2836(02)01028-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The molecular organization of the replication complex in archaea is similar to that in eukaryotes. Only two proteins homologous to subunits of eukaryotic replication factor C (RFC) have been detected in Pyrococcus abyssi (Pab). The genes encoding these two proteins are arranged in tandem. We cloned these two genes and co-expressed the corresponding recombinant proteins in Escherichia coli. Two inteins present in the gene encoding the small subunit (PabRFC-small) were removed during cloning. The recombinant protein complex was purified by anion-exchange and hydroxyapatite chromatography. Also, the PabRFC-small subunit could be purified, while the large subunit (PabRFC-large) alone was completely insoluble. The highly purified PabRFC complex possessed an ATPase activity, which was not enhanced by DNA. The Pab proliferating cell nuclear antigen (PCNA) activated the PabRFC complex in a DNA-dependent manner, but the PabRFC-small ATPase activity was neither DNA-dependent nor PCNA-dependent. The PabRFC complex was able to stimulate PabPCNA-dependent DNA synthesis by the Pabfamily D heterodimeric DNA polymerase. Finally, (i) the PabRFC-large fraction cross-reacted with anti-human-RFC PCNA-binding domain antibody, corroborating the conservation of the protein sequence, (ii) the human PCNA stimulated the PabRFC complex ATPase activity in a DNA-dependent way and (iii) the PabRFC complex could load human PCNA onto primed single-stranded circular DNA, suggesting that the PCNA-binding domain of RFC has been functionally conserved during evolution. In addition, ATP hydrolysis was not required either for DNA polymerase stimulation or PCNA-loading in vitro.
Collapse
Affiliation(s)
- Ghislaine Henneke
- Ifremer, Laboratoire de Microbiologie et Biotechnologie des Extrêmophiles, DRV/VP, BP 70, F-29280 Plouzané, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Patterson S, Whittle C, Robert C, Chakrabarti D. Molecular characterization and expression of an alternate proliferating cell nuclear antigen homologue, PfPCNA2, in Plasmodium falciparum. Biochem Biophys Res Commun 2002; 298:371-6. [PMID: 12413950 DOI: 10.1016/s0006-291x(02)02436-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The malaria parasite Plasmodium falciparum genome sequencing has revealed the existence of a second gene for proliferating cell nuclear antigen (PCNA), a key factor in a variety of DNA metabolic events. The alternate copy of PCNA (PfPCNA2) shows only 23% identity to an earlier reported P. falciparum PCNA homologue (PfPCNA1). Our analysis indicated structural conservation of PfPCNA2 compared to eukaryotic PCNAs. PfPCNA1 and 2 polypeptides showed differential expression in the intraerythrocytic cell cycle of the malaria parasite. PfPCNA1 expression slowly increases about threefold from the ring to the late schizont stage. In contrast PfPCNA2 showed robust expression in trophozoites and early schizonts with a sudden drop in expression in the late schizont stage, suggesting that the two PfPCNAs may function under different physiological conditions. Chemical cross-linking indicated the presence of a trimeric PfPCNA2 protein, indicating the possible existence of a functional ring-like PfPCNA2 structure.
Collapse
Affiliation(s)
- Shelley Patterson
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | |
Collapse
|
26
|
Matsumiya S, Ishino S, Ishino Y, Morikawa K. Physical interaction between proliferating cell nuclear antigen and replication factor C fromPyrococcus furiosus. Genes Cells 2002; 7:911-22. [PMID: 12296822 DOI: 10.1046/j.1365-2443.2002.00572.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Proliferating cell nuclear antigen (PCNA), which is recognized as a DNA polymerase processivity factor, has direct interactions with various proteins involved in the important genetic information processes in Eukarya. We determined the crystal structure of PCNA from the hyperthermophilic archaeon, Pyrococcus furiosus (PfuPCNA) at 2.1 A resolution, and found that the toroidal ring-shaped structure, which consists of homotrimeric molecules, is highly conserved between the Eukarya and Archaea. This allowed us to examine its interaction with the loading factor at the atomic level. RESULTS The replication factor C (RFC) is known as the loading factor of PCNA on to the DNA strand. P. furiosus RFC (PfuRFC) has a PCNA binding motif (PIP-box) at the C-terminus of the large subunit (RFCL). An 11 residue-peptide containing a PIP-box sequence of RFCL inhibited the PCNA-dependent primer extension ability of P. furiosus PolI in a concentration-dependent manner. To understand the molecular interaction mechanism of PCNA with PCNA binding proteins, we solved the crystal structure of PfuPCNA complexed with the PIP-box peptide. The interaction mode of the two molecules is remarkably similar to that of human PCNA and a peptide containing the PIP-box of p21(WAF1/CIP1). Moreover, the PIP-box binding may have some effect on the stability of the ring structure of PfuPCNA by some domain shift. CONCLUSIONS Our structural analysis on PfuPCNA suggests that the interaction mode of the PIP-box with PCNA is generally conserved among the PCNA interacting proteins and that the functional meaning of the interaction via the PIP-box possibly depends on each protein. A movement of the C-terminal region of the PCNA monomer by PIP-box binding may cause the PCNA ring to be more rigid, suitable for its functions.
Collapse
Affiliation(s)
- Shigeki Matsumiya
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | |
Collapse
|
27
|
Yang H, Chiang JH, Fitz-Gibbon S, Lebel M, Sartori AA, Jiricny J, Slupska MM, Miller JH. Direct interaction between uracil-DNA glycosylase and a proliferating cell nuclear antigen homolog in the crenarchaeon Pyrobaculum aerophilum. J Biol Chem 2002; 277:22271-8. [PMID: 11927597 DOI: 10.1074/jbc.m201820200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) acts as a sliding clamp on duplex DNA. Its homologs, present in Eukarya and Archaea, are part of protein complexes that are indispensable for DNA replication and DNA repair. In Eukarya, PCNA is known to interact with more than a dozen different proteins, including a human major nuclear uracil-DNA glycosylase (hUNG2) involved in immediate postreplicative repair. In Archaea, only three classes of PCNA-binding proteins have been reported previously: replication factor C (the PCNA clamp loader), family B DNA polymerase, and flap endonuclease. In this study, we report a direct interaction between a uracil-DNA glycosylase (Pa-UDGa) and a PCNA homolog (Pa-PCNA1), both from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum (T(opt) = 100 degrees C). We demonstrate that the Pa-UDGa-Pa-PCNA1 complex is thermostable, and two hydrophobic amino acid residues on Pa-UDGa (Phe(191) and Leu(192)) are shown to be crucial for this interaction. It is interesting to note that although Pa-UDGa has homologs throughout the Archaea and bacteria, it does not share significant sequence similarity with hUNG2. Nevertheless, our results raise the possibility that Pa-UDGa may be a functional analog of hUNG2 for PCNA-dependent postreplicative removal of misincorporated uracil.
Collapse
Affiliation(s)
- Hanjing Yang
- Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Carpentieri F, De Felice M, De Falco M, Rossi M, Pisani FM. Physical and functional interaction between the mini-chromosome maintenance-like DNA helicase and the single-stranded DNA binding protein from the crenarchaeon Sulfolobus solfataricus. J Biol Chem 2002; 277:12118-27. [PMID: 11821426 DOI: 10.1074/jbc.m200091200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mini-chromosome Maintenance (MCM) proteins play an essential role in both initiation and elongation phases of DNA replication in Eukarya. Genes encoding MCM homologs are present also in the genomic sequence of Archaea and the MCM-like protein from the euryarchaeon Methanobacterium thermoautotrophicum (Mth MCM) was shown to possess a robust ATP-dependent 3'-5' DNA helicase activity in vitro. Herein, we report the first biochemical characterization of a MCM homolog from a crenarchaeon, the thermoacidophile Sulfolobus solfataricus (Sso MCM). Gel filtration and glycerol gradient centrifugation experiments indicate that the Sso MCM forms single hexamers (470 kDa) in solution, whereas the Mth MCM assembles into double hexamers. The Sso MCM has NTPase and DNA helicase activity, which preferentially acts on DNA duplexes containing a 5'-tail and is stimulated by the single-stranded DNA binding protein from S. solfataricus (Sso SSB). In support of this functional interaction, we demonstrated by immunological methods that the Sso MCM and SSB form protein.protein complexes. These findings provide the first in vitro biochemical evidence of a physical/functional interaction between a MCM complex and another replication factor and suggest that the two proteins may function together in vivo in important DNA metabolic pathways.
Collapse
Affiliation(s)
- Floriana Carpentieri
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, Napoli 80131, Italy
| | | | | | | | | |
Collapse
|
29
|
Daimon K, Kawarabayasi Y, Kikuchi H, Sako Y, Ishino Y. Three proliferating cell nuclear antigen-like proteins found in the hyperthermophilic archaeon Aeropyrum pernix: interactions with the two DNA polymerases. J Bacteriol 2002; 184:687-94. [PMID: 11790738 PMCID: PMC139509 DOI: 10.1128/jb.184.3.687-694.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential component in the eukaryotic DNA replication machinery, in which it works for tethering DNA polymerases on the DNA template to accomplish processive DNA synthesis. The PCNA also interacts with many other proteins in important cellular processes, including cell cycle control, DNA repair, and an apoptotic pathway in the domain EUCARYA: We identified three genes encoding PCNA-like sequences in the genome of Aeropyrum pernix, a crenarchaeal archaeon. We cloned and expressed these genes in Escherichia coli and analyzed the gene products. All three PCNA homologs stimulated the primer extension activities of the two DNA polymerases, polymerase I (Pol I) and Pol II, identified in A. pernix to various extents, among which A. pernix PCNA 3 (ApePCNA3) provided a most remarkable effect on both Pol I and Pol II. The three proteins were confirmed to exist in the A. pernix cells. These results suggest that the three PCNAs work as the processivity factor of DNA polymerases in A. pernix cells under different conditions. In Eucarya, three checkpoint proteins, Hus1, Rad1, and Rad9, have been proposed to form a PCNA-like ring structure and may work as a sliding clamp for the translesion DNA polymerases. Therefore, it is very interesting that three active PCNAs were found in one archaeal cell. Further analyses are necessary to determine whether each PCNA has specific roles, and moreover, how they reveal different functions in the cells.
Collapse
Affiliation(s)
- Katsuya Daimon
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
30
|
Abstract
The analysis of completed archaeal genome sequences led to the identification of a set of approximately 10-20 genes whose protein products were inferred to be involved in chromosomal DNA replication. Until recently, however, little was known of the biochemical properties of these proteins. Here, I review recent progress in this area brought about by biochemical and structural analysis. Aside from shedding considerable new light on the molecular machinery of DNA replication in the archaea, the results of these studies also present new opportunities for understanding the molecular events of chromosomal DNA replication in eukaryotic cells.
Collapse
Affiliation(s)
- S A MacNeill
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK.
| |
Collapse
|
31
|
Grúz P, Pisani FM, Shimizu M, Yamada M, Hayashi I, Morikawa K, Nohmi T. Synthetic activity of Sso DNA polymerase Y1, an archaeal DinB-like DNA polymerase, is stimulated by processivity factors proliferating cell nuclear antigen and replication factor C. J Biol Chem 2001; 276:47394-401. [PMID: 11581267 DOI: 10.1074/jbc.m107213200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA replication efficiency is dictated by DNA polymerases (pol) and their associated proteins. The recent discovery of DNA polymerase Y family (DinB/UmuC/RAD30/REV1 superfamily) raises a question of whether the DNA polymerase activities are modified by accessory proteins such as proliferating cell nuclear antigen (PCNA). In fact, the activity of DNA pol IV (DinB) of Escherichia coli is enhanced upon interaction with the beta subunit, the processivity factor of DNA pol III. Here, we report the activity of Sso DNA pol Y1 encoded by the dbh gene of the archaeon Sulfolobus solfataricus is greatly enhanced by the presence of PCNA and replication factor C (RFC). Sso pol Y1 per se was a distributive enzyme but a substantial increase in the processivity was observed on poly(dA)-oligo(dT) in the presence of PCNA (039p or 048p) and RFC. The length of the synthesized DNA product reached at least 200 nucleotides. Sso pol Y1 displayed a higher affinity for DNA compared with pol IV of E. coli, suggesting that the two DNA polymerases have distinct reason(s) to require the processivity factors for efficient DNA synthesis. The abilities of pol Y1 and pol IV to bypass DNA lesions and their sensitive sites to protease are also discussed.
Collapse
Affiliation(s)
- P Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Gueguen Y, Rolland JL, Lecompte O, Azam P, Le Romancer G, Flament D, Raffin JP, Dietrich J. Characterization of two DNA polymerases from the hyperthermophilic euryarchaeon Pyrococcus abyssi. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5961-9. [PMID: 11722585 DOI: 10.1046/j.0014-2956.2001.02550.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete genome sequence of the hyperthermophilic archaeon Pyrococcus abyssi revealed the presence of a family B DNA polymerase (Pol I) and a family D DNA polymerase (Pol II). To extend our knowledge about euryarchaeal DNA polymerases, we cloned the genes encoding these two enzymes and expressed them in Escherichia coli. The DNA polymerases (Pol I and Pol II) were purified to homogeneity and characterized. Pol I had a molecular mass of approximately 90 kDa, as estimated by SDS/PAGE. The optimum pH and Mg(2+) concentration of Pol I were 8.5-9.0 and 3 mm, respectively. Pol II is composed of two subunits that are encoded by two genes arranged in tandem on the P. abyssi genome. We cloned these genes and purified the Pol II DNA polymerase from an E. coli strain coexpressing the cloned genes. The optimum pH and Mg(2+) concentration of Pol II were 6.5 and 15-20 mm, respectively. Both P. abyssi Pol I and Pol II have associated 3'-->5' exonuclease activity although the exonuclease motifs usually found in DNA polymerases are absent in the archaeal family D DNA polymerase sequences. Sequence analysis has revealed that the small subunit of family D DNA polymerase and the Mre11 nucleases belong to the calcineurin-like phosphoesterase superfamily and that residues involved in catalysis and metal coordination in the Mre11 nuclease three-dimensional structure are strictly conserved in both families. One hypothesis is that the phosphoesterase domain of the small subunit is responsible for the 3'-->5' exonuclease activity of family D DNA polymerase. These results increase our understanding of euryarchaeal DNA polymerases and are of importance to push forward the complete understanding of the DNA replication in P. abyssi.
Collapse
Affiliation(s)
- Y Gueguen
- IFREMER, Centre de Brest, DRV-VP-LBMH, Plouzané, France.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Matsumiya S, Ishino Y, Morikawa K. Crystal structure of an archaeal DNA sliding clamp: proliferating cell nuclear antigen from Pyrococcus furiosus. Protein Sci 2001; 10:17-23. [PMID: 11266590 PMCID: PMC2249843 DOI: 10.1110/ps.36401] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The proliferating cell nuclear antigen (PCNA) is now recognized as one of the key proteins in DNA metabolic events because of its direct interactions with many proteins involved in important cellular processes. We have determined the crystal structure of PCNA from a hyperthermophilic archaeon, Pyrococcus furiosus (pfuPCNA), at 2.1 A resolution. pfuPCNA forms a toroidal, ring-shaped structure consisting of homotrimeric molecules, which is also observed in the PCNA crystals from human and yeast. The overall structure of pfuPCNA is highly conserved with other PCNA proteins, as well as with the bacterial ss clamp and the bacteriophage gp45. This result shows that the three-dimensional structure of the sliding clamp is conserved in the three domains of life. pfuPCNA has two remarkable features compared with the human and yeast PCNA molecules: it has more ion pairs and fewer intermolecular main chain hydrogen bonds. The former may contribute to the thermal stability of pfuPCNA, and the latter may be the cause of the stimulatory effect of pfuPCNA on the DNA synthesizing activity of P. furiosus DNA polymerases in the absence of the clamp loader replication factor C in vitro.
Collapse
Affiliation(s)
- S Matsumiya
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | | | | |
Collapse
|
34
|
Raffin JP, Henneke G, Dietrich J. Purification and characterization of a new DNA polymerase modulator from the hyperthermophilic archaeon Thermococcus fumicolans. Comp Biochem Physiol B Biochem Mol Biol 2000; 127:299-308. [PMID: 11126760 DOI: 10.1016/s0305-0491(00)00263-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During purification of the native alpha-like DNA polymerase from the hyperthermophilic euryarchaeote Thermococcus fumicolans, two activity peaks were detected after cation-exchange chromatography. One of the peaks (Ppol) was identified as the T. fumicolans DNA polymerase and the second peak (Pf) was shown to contain a factor which increased the DNA polymerase activity over 70-fold when tested with activated calf thymus DNA as substrate. The factor also stimulated nucleotide incorporation when using primed lambda DNA as substrate (approximately 8-fold), while inducing a very large decrease in the turnover rate of the enzyme. The factor, therefore, maximizes the ability of the DNA polymerase to synthesize small fragments, which is compatible with DNA repair or lagging strand DNA replication.
Collapse
Affiliation(s)
- J P Raffin
- Laboratoire de Biotechnologie des Microorganismes Hydrothermaux, Ifremer, DRV/VP, Plouzané, France.
| | | | | |
Collapse
|
35
|
Henneke G, Raffin JP, Ferrari E, Jónsson ZO, Dietrich J, Hübscher U. The PCNA from Thermococcus fumicolans functionally interacts with DNA polymerase delta. Biochem Biophys Res Commun 2000; 276:600-6. [PMID: 11027519 DOI: 10.1006/bbrc.2000.3481] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned the gene encoding proliferating cell nuclear antigen (PCNA) from the hyperthermophilic euryarchaeote Thermococcus fumicolans (Tfu). Tfu PCNA contains 250 amino acids with a calculated M(r) of 28,000 and is 26% identical to human PCNA. Next, Tfu PCNA was overexpressed in Escherichia coli and it showed an apparent molecular mass of 33.5 kDa. The purified Tfu PCNA was tested first with recombinant Tfu DNA polymerase I (Tfu pol) and second with calf thymus DNA polymerase delta (pol delta). When tested with the homologous Tfu pol on bacteriophage lambda DNA, large amounts of Tfu PCNA were required to obtain two- to threefold stimulation. Surprisingly, however, Tfu PCNA was much more efficient than human PCNA in stimulating calf thymus pol delta. Our data suggest that PCNA has been functionally conserved not only within eukaryotes but also from hyperthermophilic euryarchaeotes to mammals.
Collapse
|
36
|
Pisani FM, De Felice M, Carpentieri F, Rossi M. Biochemical characterization of a clamp-loader complex homologous to eukaryotic replication factor C from the hyperthermophilic archaeon Sulfolobus solfataricus. J Mol Biol 2000; 301:61-73. [PMID: 10926493 DOI: 10.1006/jmbi.2000.3964] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we report the isolation and characterization of a clamp-loader complex from the thermoacidophilic archaeon Sulfolobus solfataricus (SsoRFC). SsoRFC is a hetero-pentamer composed of polypeptides of 37 kDa (small subunit) and 46 kDa (large subunit), which possess primary structure similarity with human replication factor C p40 and p140 subunits, respectively. The two SsoRFC polypeptides were co-expressed in Escherichia coli and purified as a complex (SsoRFC-complex) that was demonstrated to possess a native M(r) of about 200 kDa and a 4:1 (small to large) subunit stoichiometric ratio. The small subunit was individually expressed in E. coli, purified, and found to form a homo-tetramer (SsoRFC-small; native M(r) 156 kDa), which was also characterized. The SsoRFC-complex, but not SsoRFC-small, highly stimulated the synthetic activity of S. solfataricus B1-type DNA polymerase in reactions containing primed M13mp18 DNA, ATP, and either of the two poliferating cell nuclear antigen-like processivity factors of S. solfataricus (039p and 048p). Both SsoRFC-small and -complex were able to hydrolyze ATP, but only the ATPase activity of the holo-enzymatic assembly was activated by primed DNA templates, such as poly(dA)-oligo(dT). As measured by nitrocellulose filter binding assays, SsoRFC-complex bound poly(dA)-oligo(dT), but not the unprimed homopolymer, whereas SsoRFC-small was devoid of any DNA-binding activity. The peculiar properties of this archaeal clamp-loader complex and their significance for the understanding of the DNA replication process in Archaea are discussed.
Collapse
Affiliation(s)
- F M Pisani
- Istituto di Biochimica delle Proteine ed Enzimologia (C. N. R.), Via G. Marconi, 10, Napoli, 80125, Italy.
| | | | | | | |
Collapse
|
37
|
Guerini MN, Que X, Reed SL, White MW. Two genes encoding unique proliferating-cell-nuclear-antigens are expressed in Toxoplasma gondii. Mol Biochem Parasitol 2000; 109:121-31. [PMID: 10960171 DOI: 10.1016/s0166-6851(00)00240-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Complete cDNA sequences encoding two novel proliferating-cell-nuclear-antigens (designated TgPCNA1 and 2) were isolated from a Toxoplasma gondii tachyzoite cDNA library, and Southern analysis using cDNA probes confirmed the presence of two PCNA genes in T. gondii genomic DNA. Expressed-sequence-tags were identified in the T. gondii database that matched each TgPCNA cDNA and closely related PCNA coding regions (designated PfPCNA1 and 2) were discovered in sequence data obtained from chromosome 12 and 13 of Plasmodium falciparum. TgPCNA1 and PfPCNA1 were found to share the highest amino acid identity at 49% compared to TgPCNA2 and PfPCNA2 (37% identity) whereas intraspecies PCNAs were determined to be less similar (27-30% identity). Phylogenetic analysis suggests the two apicomplexan PCNAs are the result of a gene duplication in the common ancestor of these parasites. Antibodies specific for TgPCNA1 ( approximately 40 kDa) or TgPCNA2 ( approximately 37 kDa) detected single antigen species in tachyzoite extracts that were expressed at similar levels in isolates representative of the T. gondii Type I, II and III strains. TgPCNA1-specific cDNA probes detected multiple mRNA species on Northern blots, which when combined, were expressed 5-7 fold higher than the single species of mRNA detected by the TgPCNA2 probe. The difference in the number of mRNA species and comparative mRNA levels suggests each TgPCNA gene is independently controlled, although in light of the nearly equal levels of protein a post-transcriptional mechanism may be responsible for equalizing protein expression.
Collapse
Affiliation(s)
- M N Guerini
- Department of Veterinary Molecular Biology, Marsh Laboratory, Montana State University, Bozeman 59717-3610, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Recent progress in cell cycle analysis of archaea has included the identification of putative chromosome replication origins, novel DNA polymerases and an unusual mode of cell cycle organization featuring multiple copies of the chromosome and asymmetric cell divisions. Genome sequence data indicate that in crenarchaea, the 'ubiquitous' FtsZ/MinD-based prokaryotic cell division apparatus is absent and division therefore must occur by unique, as-yet-unidentified mechanisms. The evolutionary and functional relationships between the archaeal Cdc6 protein and bacterial and eukaryal replication initiation factors are discussed.
Collapse
Affiliation(s)
- R Bernander
- Dept of Cell and Molecular Biology, Box 596, Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
39
|
Kelman Z, Hurwitz J. A unique organization of the protein subunits of the DNA polymerase clamp loader in the archaeon Methanobacterium thermoautotrophicum deltaH. J Biol Chem 2000; 275:7327-36. [PMID: 10702304 DOI: 10.1074/jbc.275.10.7327] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication factor C (RFC, also called activator 1), in conjunction with proliferating cell nuclear antigen (PCNA), is responsible for processive DNA synthesis catalyzed by the eukaryotic replicative DNA polymerases delta and epsilon. Here we report the isolation and characterization of homologues of RFC and PCNA from the archaeon, Methanobacterium thermoautotrophicum DeltaH. In contrast to the five subunit RFC complex isolated from eukaryotic cells, the mthRFC contains only two subunits. The two genes encoding the RFC subunits called, mthRFC1 and mthRFC3, were cloned, and the proteins (54.4 and 36.8 kDa, respectively) were overexpressed in Escherichia coli and purified individually and as a complex. The gene encoding PCNA was also cloned, and the protein was purified after overexpression in E. coli. Based on sizing column elution and subunit composition, the mthRFC complex appears to be a hexamer consisting of two mthRFC1 protomers and four mthRFC3 protomers. Although mthRFC differs in organization from its eukaryotic counterpart, it was shown to be functionally similar to eukaryotic RFC in: (i) catalyzing DNA-dependent ATP hydrolysis; (ii) binding preferentially to DNA primer ends; (iii) loading mthPCNA onto singly nicked circular DNA; and (iv) supporting mthPolB-catalyzed PCNA-dependent DNA chain elongation. The importance and roles of RFC and PCNA in M. thermoautotrophicum DeltaH replication are discussed.
Collapse
Affiliation(s)
- Z Kelman
- Department of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | |
Collapse
|
40
|
Kähler M, Antranikian G. Cloning and characterization of a family B DNA polymerase from the hyperthermophilic crenarchaeon Pyrobaculum islandicum. J Bacteriol 2000; 182:655-63. [PMID: 10633098 PMCID: PMC94327 DOI: 10.1128/jb.182.3.655-663.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to extend the limited knowledge about crenarchaeal DNA polymerases, we cloned a gene encoding a family B DNA polymerase from the hyperthermophilic crenarchaeon Pyrobaculum islandicum. The enzyme shared highest sequence identities with a group of phylogenetically related DNA polymerases, designated B3 DNA polymerases, from members of the kingdom Crenarchaeota, Pyrodictium occultum and Aeropyrum pernix, and several members of the kingdom Euryarchaeota. Six highly conserved regions as well as a DNA-binding motif, indicative of family B DNA polymerases, were identified within the sequence. Furthermore, three highly conserved 3'-5' exonuclease motifs were also found. The gene was expressed in Escherichia coli, and the DNA polymerase was purified to homogeneity by heat treatment and affinity chromatography. Activity staining after sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed an active polypeptide of approximately 90 kDa. For the recombinant DNA polymerase from P. islandicum, activated calf thymus DNA was used as a substrate rather than primed single-stranded DNA. The enzyme was strongly inhibited by monovalent cations and N-ethylmaleimide; it is moderately sensitive to aphidicolin and dideoxyribonucleoside triphosphates. The half-life of the enzyme at 100 and 90 degrees C was 35 min and >5 h, respectively. Interestingly, the pH of the assay buffer had a significant influence on the 3'-5' exonuclease activity of the recombinant enzyme. Under suitable assay conditions for PCR, the enzyme was able to amplify lambda DNA fragments of up to 1,500 bp.
Collapse
Affiliation(s)
- M Kähler
- Department of Technical Microbiology, Technical University Hamburg-Harburg, Denickestrasse 15, D-21071 Hamburg, Germany
| | | |
Collapse
|
41
|
Desogus G, Onesti S, Brick P, Rossi M, Pisani FM. Identification and characterization of a DNA primase from the hyperthermophilic archaeon Methanococcus jannaschii. Nucleic Acids Res 1999; 27:4444-50. [PMID: 10536154 PMCID: PMC148728 DOI: 10.1093/nar/27.22.4444] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the identification and characterisation of a DNA primase from the thermophilic methanogenic archaeon Methanococcus jannaschii (Mjpri). The analysis of the complete genome sequence of this organism has identified an open reading frame coding for a protein with sequence similarity to the small subunit of the eukaryotic DNA primase (the p50 subunit of the polymerase alpha-primase complex). This protein has been overexpressed in Escherichia coli and purified to near homogeneity. Recombinant Mjpri is able to synthesise oligoribonucleotides on various pyrimidine single-stranded DNA templates [poly(dT) and poly(dC)]. This activity requires divalent cations such Mg(2+), Mn(2+)or Zn(2+), and is additionally stimulated by the monovalent cation K(+). A multiple sequence alignment has revealed that most of the regions that are conserved in eukaryotic p50 subunits are also present in the archaeal primases, including the conserved negatively charged residues, which have been shown to be essential for catalysis in the mouse primase. Of the four cysteine residues that have been postulated to make up a putative Zn-binding motif, two are not present in the archaeal homologue. This is the first report on the biochemical characterisation of an archaeal DNA primase.
Collapse
Affiliation(s)
- G Desogus
- Imperial College of Science, Technology, and Medicine, Biophysics Section, Blackett Laboratory, London SW7 2BZ, UK
| | | | | | | | | |
Collapse
|