1
|
Tewary A, Prajapati RK, Mukhopadhyay J. Mechanism of δ Mediated Transcription Activation in Bacillus subtilis: Interaction with α CTD of RNA Polymerase Stabilizes δ and Successively Facilitates the Open Complex Formation. J Mol Biol 2023; 435:168366. [PMID: 37972688 DOI: 10.1016/j.jmb.2023.168366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The α CTD (C-terminal domain of the α subunit) of RNA polymerase (RNAP) is a target for transcriptional regulators. In the transcription activation at Class I, Class II, and Class III promoters of bacteria, the transcriptional regulator, binds to DNA at different sites and interacts with the α CTD to stabilize the RNAP at the promoter or it binds to the α CTD to form a prerecruitment complex that searches for its cognate binding site. This 'simple recruitment mechanism' of the transcriptional machinery at the promoter is responsible for the activation of transcription. Strikingly, in B. subtilis the binding of RNAP at the promoter stabilizes the transcriptional regulator, δ at the -41 site of the promoter DNA through an interaction with its α CTD and successively facilitates the open complex formation. Two residues R293 and K294 of α CTD (equivalent to K297 and K298 of E. coli) are involved in the interactions with δ and essential for the activation of transcription. R293 is responsible for the stabilization of δ, while K294 is responsible for facilitating the open complex formation. Based on our data we propose a new model of transcription activation by δ of B. subtilis that is similar to (its binding location and interaction with α CTD), but distinct from (the recruitment of transcription factor by RNAP at the DNA, and enhancement of the open complex formation) the model Class II promoters in bacteria.
Collapse
Affiliation(s)
- Aniruddha Tewary
- Department of Chemical Science, Bose Institute, EN80 Sector V, Kolkata 700091, India.
| | | | - Jayanta Mukhopadhyay
- Department of Chemical Science, Bose Institute, EN80 Sector V, Kolkata 700091, India.
| |
Collapse
|
2
|
Walker LM, Haycocks JR, van Kessel JC, Dalia TN, Dalia AB, Grainger DC. A simple mechanism for integration of quorum sensing and cAMP signalling in V. cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527633. [PMID: 36798193 PMCID: PMC9934648 DOI: 10.1101/2023.02.08.527633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Many bacteria use quorum sensing to control changes in lifestyle. The process is regulated by microbially derived "autoinducer" signalling molecules, that accumulate in the local environment. Individual cells sense autoinducer abundance, to infer population density, and alter their behaviour accordingly. In Vibrio cholerae , quorum sensing signals are transduced by phosphorelay to the transcription factor LuxO. Unphosphorylated LuxO permits expression of HapR, which alters global gene expression patterns. In this work, we have mapped the genome-wide distribution of LuxO and HapR in V. cholerae . Whilst LuxO has a small regulon, HapR targets 32 loci. Many HapR targets coincide with sites for the cAMP receptor protein (CRP) that regulates the transcriptional response to carbon starvation. This overlap, also evident in other Vibrio species, results from similarities in the DNA sequence bound by each factor. At shared sites, HapR and CRP simultaneously contact the double helix and binding is stabilised by direct interaction of the two factors. Importantly, this involves a CRP surface that usually contacts RNA polymerase to stimulate transcription. As a result, HapR can block transcription activation by CRP. Thus, by interacting at shared sites, HapR and CRP integrate information from quorum sensing and cAMP signalling to control gene expression. This likely allows V. cholerae to regulate subsets of genes during the transition between aquatic environments and the human host.
Collapse
Affiliation(s)
- Lucas M. Walker
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | | | | | - Triana N. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - David C. Grainger
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
3
|
cAMP Activation of the cAMP Receptor Protein, a Model Bacterial Transcription Factor. J Microbiol 2023; 61:277-287. [PMID: 36892777 DOI: 10.1007/s12275-023-00028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
The active and inactive structures of the Escherichia coli cAMP receptor protein (CRP), a model bacterial transcription factor, are compared to generate a paradigm in the cAMP-induced activation of CRP. The resulting paradigm is shown to be consistent with numerous biochemical studies of CRP and CRP*, a group of CRP mutants displaying cAMP-free activity. The cAMP affinity of CRP is dictated by two factors: (i) the effectiveness of the cAMP pocket and (ii) the protein equilibrium of apo-CRP. How these two factors interplay in determining the cAMP affinity and cAMP specificity of CRP and CRP* mutants are discussed. Both the current understanding and knowledge gaps of CRP-DNA interactions are also described. This review ends with a list of several important CRP issues that need to be addressed in the future.
Collapse
|
4
|
Cautionary Notes on the Use of Arabinose- and Rhamnose-Inducible Expression Vectors in Pseudomonas aeruginosa. J Bacteriol 2021; 203:e0022421. [PMID: 34096777 DOI: 10.1128/jb.00224-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Pseudomonas aeruginosa virulence factor regulator (Vfr) is a cyclic AMP (cAMP)-responsive transcription factor homologous to the Escherichia coli cAMP receptor protein (CRP). Unlike CRP, which plays a central role in E. coli energy metabolism and catabolite repression, Vfr is primarily involved in the control of P. aeruginosa virulence factor expression. Expression of the Vfr regulon is controlled at the level of vfr transcription, Vfr translation, cAMP synthesis, and cAMP degradation. While investigating mechanisms that regulate Vfr translation, we placed vfr transcription under the control of the rhaBp rhamnose-inducible promoter system (designated PRha) and found that PRha promoter activity was highly dependent upon vfr. Vfr dependence was also observed for the araBp arabinose-inducible promoter (designated PBAD). The observation of Vfr dependence was not entirely unexpected. Both promoters are derived from E. coli, where maximal promoter activity is dependent upon CRP. Like CRP, we found that Vfr directly binds to promoter probes derived from the PRha and PBAD promoters in vitro. Because Vfr-cAMP activity is highly integrated into numerous global regulatory systems, including c-di-GMP signaling, the Gac/Rsm system, MucA/AlgU/AlgZR signaling, and Hfq/sRNAs, the potential exists for significant variability in PRha and PBAD promoter activity in a variety of genetic backgrounds, and use of these promoter systems in P. aeruginosa should be employed with caution. IMPORTANCE Heterologous gene expression and complementation constitute a valuable and widely utilized tool in bacterial genetics. The arabinose-inducible ParaBAD (PBAD) and rhamnose-inducible PrhaBAD (PRha) promoter systems are commonly used in P. aeruginosa genetics and prized for the tight control and dynamic expression ranges that can be achieved. In this study, we demonstrate that the activity of both promoters is dependent upon the cAMP-dependent transcription factor Vfr. While this poses an obvious problem for use in a vfr mutant background, the issue is more pervasive, considering that vfr transcription/synthesis and cAMP homeostasis are highly integrated into the cellular physiology of the organism and influenced by numerous global regulatory systems. Fortunately, the synthetic PTac promoter is not subject to Vfr regulatory control.
Collapse
|
5
|
Shi W, Jiang Y, Deng Y, Dong Z, Liu B. Visualization of two architectures in class-II CAP-dependent transcription activation. PLoS Biol 2020; 18:e3000706. [PMID: 32310937 PMCID: PMC7192510 DOI: 10.1371/journal.pbio.3000706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 04/09/2020] [Indexed: 01/01/2023] Open
Abstract
Transcription activation by cyclic AMP (cAMP) receptor protein (CAP) is the classic paradigm of transcription regulation in bacteria. CAP was suggested to activate transcription on class-II promoters via a recruitment and isomerization mechanism. However, whether and how it modifies RNA polymerase (RNAP) to initiate transcription remains unclear. Here, we report cryo–electron microscopy (cryo-EM) structures of an intact Escherichia coli class-II CAP-dependent transcription activation complex (CAP-TAC) with and without de novo RNA transcript. The structures reveal two distinct architectures of TAC and raise the possibility that CAP binding may induce substantial conformational changes in all the subunits of RNAP and transiently widen the main cleft of RNAP to facilitate DNA promoter entering and formation of the initiation open complex. These structural changes vanish during further RNA transcript synthesis. The observations in this study may reveal a possible on-pathway intermediate and suggest a possibility that CAP activates transcription by inducing intermediate state, in addition to the previously proposed stabilization mechanism. Cryo-EM structures of transcription activation complexes comprising cyclic AMP receptor protein (CAP) bound to a class-II promoter reveal two distinct architectures and suggest a possibility that CAP activates transcription by inducing an intermediate state, an important supplement to the previously proposed stabilization mechanism.
Collapse
Affiliation(s)
- Wei Shi
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Yanan Jiang
- Section of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, P.R. China
| | - Yibin Deng
- Section of Cell Death and Cancer Genetics, The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Zigang Dong
- Section of Cellular and Molecular Biology, The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
- * E-mail: (BL); (ZD)
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
- * E-mail: (BL); (ZD)
| |
Collapse
|
6
|
Søndberg E, Sinha AK, Gerdes K, Semsey S. CRP Interacts Specifically With Sxy to Activate Transcription in Escherichia coli. Front Microbiol 2019; 10:2053. [PMID: 31543875 PMCID: PMC6728893 DOI: 10.3389/fmicb.2019.02053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Horizontal gene transfer through natural competence is an important driving force of bacterial evolution and antibiotic resistance development. In several Gram-negative pathogens natural competence is regulated by the concerted action of cAMP receptor protein (CRP) and the transcriptional co-regulator Sxy through a subset of CRP-binding sites (CRP-S sites) at genes encoding competence factors. Despite the wealth of knowledge on CRP’s structure and function it is not known how CRP and Sxy act together to activate transcription. In order to get an insight into the regulatory mechanism by which these two proteins activate gene expression, we performed a series of mutational analyses on CRP and Sxy. We found that CRP contains a previously uncharacterized region necessary for Sxy dependent induction of CRP-S sites, here named “Sxy Interacting Region” (SIR) encompassing residues Q194 and L196. Lost promoter induction in SIR mutants could be restored in the presence of specific complementary Sxy mutants, presenting evidence for a direct interaction of CRP and Sxy proteins in transcriptional activation. Moreover, we identified constitutive mutants of Sxy causing higher levels of CRP-S site promoter activation than wild-type Sxy. Both suppressor and constitutive mutations are located within the same area of Sxy.
Collapse
Affiliation(s)
- Emilie Søndberg
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anurag Kumar Sinha
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenn Gerdes
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Szabolcs Semsey
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Frendorf PO, Lauritsen I, Sekowska A, Danchin A, Nørholm MH. Mutations in the Global Transcription Factor CRP/CAP: Insights from Experimental Evolution and Deep Sequencing. Comput Struct Biotechnol J 2019; 17:730-736. [PMID: 31303977 PMCID: PMC6603298 DOI: 10.1016/j.csbj.2019.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/22/2019] [Accepted: 05/26/2019] [Indexed: 11/17/2022] Open
Abstract
The Escherichia coli cyclic AMP receptor protein (CRP or catabolite activator protein, CAP) provides a textbook example of bacterial transcriptional regulation and is one of the best studied transcription factors in biology. For almost five decades a large number of mutants, evolved in vivo or engineered in vitro, have shed light on the molecular structure and mechanism of CRP. Here, we review previous work, providing an overview of studies describing the isolation of CRP mutants. Furthermore, we present new data on deep sequencing of different bacterial populations that have evolved under selective pressure that strongly favors mutations in the crp locus. Our new approach identifies more than 100 new CRP mutations and paves the way for a deeper understanding of this fascinating bacterial master regulator.
Collapse
Affiliation(s)
- Pernille Ott Frendorf
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, DK-2800 Kgs. Lyngby, Denmark
| | - Ida Lauritsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, DK-2800 Kgs. Lyngby, Denmark
| | - Agnieszka Sekowska
- Institut de Cardiométabolisme et Nutrition, CHU Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Antoine Danchin
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Morten H.H. Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Ball AS, van Kessel JC. The master quorum-sensing regulators LuxR/HapR directly interact with the alpha subunit of RNA polymerase to drive transcription activation in Vibrio harveyi and Vibrio cholerae. Mol Microbiol 2019; 111:1317-1334. [PMID: 30742725 DOI: 10.1111/mmi.14223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2019] [Indexed: 12/19/2022]
Abstract
In Vibrio species, quorum sensing controls gene expression for numerous group behaviors, including bioluminescence production, biofilm formation, virulence factor secretion systems, and competence. The LuxR/HapR master quorum-sensing regulators activate expression of hundreds of genes in response to changes in population densities. The mechanism of transcription activation by these TetR-type transcription factors is unknown, though LuxR DNA binding sites that lie in close proximity to the -35 region of the promoter are required for activation at some promoters. Here, we show that Vibrio harveyi LuxR directly interacts with RNA polymerase to activate transcription of the luxCDABE bioluminescence genes. LuxR interacts with RNA polymerase in vitro and in vivo and specifically interacts with both the N- and C-terminal domains of the RNA polymerase α-subunit. Amino acid substitutions in the RNAP interaction domain on LuxR decrease interactions between LuxR and the α-subunit and result in defects in transcription activation of quorum-sensing genes in vivo. The RNAP-LuxR interaction domain is conserved in Vibrio cholerae HapR and is required for activation of the HapR-regulated gene hapA. Our findings support a model in which LuxR/HapR bind proximally to RNA polymerase to drive transcription initiation at a subset of quorum-sensing genes in Vibrio species.
Collapse
Affiliation(s)
- Alyssa S Ball
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | |
Collapse
|
9
|
Manneh-Roussel J, Haycocks JRJ, Magán A, Perez-Soto N, Voelz K, Camilli A, Krachler AM, Grainger DC. cAMP Receptor Protein Controls Vibrio cholerae Gene Expression in Response to Host Colonization. mBio 2018; 9:e00966-18. [PMID: 29991587 PMCID: PMC6050953 DOI: 10.1128/mbio.00966-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/14/2018] [Indexed: 11/20/2022] Open
Abstract
The bacterium Vibrio cholerae is native to aquatic environments and can switch lifestyles to cause disease in humans. Lifestyle switching requires modulation of genetic systems for quorum sensing, intestinal colonization, and toxin production. Much of this regulation occurs at the level of gene expression and is controlled by transcription factors. In this work, we have mapped the binding of cAMP receptor protein (CRP) and RNA polymerase across the V. cholerae genome. We show that CRP is an integral component of the regulatory network that controls lifestyle switching. Focusing on a locus necessary for toxin transport, we demonstrate CRP-dependent regulation of gene expression in response to host colonization. Examination of further CRP-targeted genes reveals that this behavior is commonplace. Hence, CRP is a key regulator of many V. cholerae genes in response to lifestyle changes.IMPORTANCE Cholera is an infectious disease that is caused by the bacterium Vibrio cholerae Best known for causing disease in humans, the bacterium is most commonly found in aquatic ecosystems. Hence, humans acquire cholera following ingestion of food or water contaminated with V. cholerae Transition between an aquatic environment and a human host triggers a lifestyle switch that involves reprogramming of V. cholerae gene expression patterns. This process is controlled by a network of transcription factors. In this paper, we show that the cAMP receptor protein (CRP) is a key regulator of V. cholerae gene expression in response to lifestyle changes.
Collapse
Affiliation(s)
- Jainaba Manneh-Roussel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - James R J Haycocks
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrés Magán
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Nicolas Perez-Soto
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kerstin Voelz
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Tufts University, Boston, Massachusetts, USA
| | - Anne-Marie Krachler
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - David C Grainger
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
10
|
Latif H, Federowicz S, Ebrahim A, Tarasova J, Szubin R, Utrilla J, Zengler K, Palsson BO. ChIP-exo interrogation of Crp, DNA, and RNAP holoenzyme interactions. PLoS One 2018; 13:e0197272. [PMID: 29771928 PMCID: PMC5957442 DOI: 10.1371/journal.pone.0197272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Numerous in vitro studies have yielded a refined picture of the structural and molecular associations between Cyclic-AMP receptor protein (Crp), the DNA motif, and RNA polymerase (RNAP) holoenzyme. In this study, high-resolution ChIP-exonuclease (ChIP-exo) was applied to study Crp binding in vivo and at genome-scale. Surprisingly, Crp was found to provide little to no protection of the DNA motif under activating conditions. Instead, Crp demonstrated binding patterns that closely resembled those generated by σ70. The binding patterns of both Crp and σ70 are indicative of RNAP holoenzyme DNA footprinting profiles associated with stages during transcription initiation that occur post-recruitment. This is marked by a pronounced advancement of the template strand footprint profile to the +20 position relative to the transcription start site and a multimodal distribution on the nontemplate strand. This trend was also observed in the familial transcription factor, Fnr, but full protection of the motif was seen in the repressor ArcA. Given the time-scale of ChIP studies and that the rate-limiting step in transcription initiation is typically post recruitment, we propose a hypothesis where Crp is absent from the DNA motif but remains associated with RNAP holoenzyme post-recruitment during transcription initiation. The release of Crp from the DNA motif may be a result of energetic changes that occur as RNAP holoenzyme traverses the various stable intermediates towards elongation complex formation.
Collapse
Affiliation(s)
- Haythem Latif
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Stephen Federowicz
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
| | - Ali Ebrahim
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
| | - Janna Tarasova
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
| | - Richard Szubin
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
| | - Jose Utrilla
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
| | - Karsten Zengler
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bernhard O. Palsson
- Bioengineering Department, University of California San Diego, La Jolla, California, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
11
|
Liu B, Hong C, Huang RK, Yu Z, Steitz TA. Structural basis of bacterial transcription activation. Science 2018; 358:947-951. [PMID: 29146813 DOI: 10.1126/science.aao1923] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/20/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023]
Abstract
In bacteria, the activation of gene transcription at many promoters is simple and only involves a single activator. The cyclic adenosine 3',5'-monophosphate receptor protein (CAP), a classic activator, is able to activate transcription independently through two different mechanisms. Understanding the class I mechanism requires an intact transcription activation complex (TAC) structure at a high resolution. Here we report a high-resolution cryo-electron microscopy structure of an intact Escherichia coli class I TAC containing a CAP dimer, a σ70-RNA polymerase (RNAP) holoenzyme, a complete class I CAP-dependent promoter DNA, and a de novo synthesized RNA oligonucleotide. The structure shows how CAP wraps the upstream DNA and how the interactions recruit RNAP. Our study provides a structural basis for understanding how activators activate transcription through the class I recruitment mechanism.
Collapse
Affiliation(s)
- Bin Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Chuan Hong
- Howard Hughes Medical Institute, CryoEM Shared Resource, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Rick K Huang
- Howard Hughes Medical Institute, CryoEM Shared Resource, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Zhiheng Yu
- Howard Hughes Medical Institute, CryoEM Shared Resource, Janelia Research Campus, Ashburn, VA 20147, USA.
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA. .,Howard Hughes Medical Institute, Yale University, New Haven, CT 06510, USA.,Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Davis R, Écija-Conesa A, Gallego-Jara J, de Diego T, Filippova EV, Kuffel G, Anderson WF, Gibson BW, Schilling B, Canovas M, Wolfe AJ. An acetylatable lysine controls CRP function in E. coli. Mol Microbiol 2017; 107:116-131. [PMID: 29105190 DOI: 10.1111/mmi.13874] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 01/02/2023]
Abstract
Transcriptional regulation is the key to ensuring that proteins are expressed at the proper time and the proper amount. In Escherichia coli, the transcription factor cAMP receptor protein (CRP) is responsible for much of this regulation. Questions remain, however, regarding the regulation of CRP activity itself. Here, we demonstrate that a lysine (K100) on the surface of CRP has a dual function: to promote CRP activity at Class II promoters, and to ensure proper CRP steady state levels. Both functions require the lysine's positive charge; intriguingly, the positive charge of K100 can be neutralized by acetylation using the central metabolite acetyl phosphate as the acetyl donor. We propose that CRP K100 acetylation could be a mechanism by which the cell downwardly tunes CRP-dependent Class II promoter activity, whilst elevating CRP steady state levels, thus indirectly increasing Class I promoter activity. This mechanism would operate under conditions that favor acetate fermentation, such as during growth on glucose as the sole carbon source or when carbon flux exceeds the capacity of the central metabolic pathways.
Collapse
Affiliation(s)
- Robert Davis
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Ana Écija-Conesa
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', Murcia, E-30100, Spain
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', Murcia, E-30100, Spain
| | - Teresa de Diego
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', Murcia, E-30100, Spain
| | - Ekaterina V Filippova
- Department of Biochemistry and Molecular Genetics, Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gina Kuffel
- Loyola Genomics Facility, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Wayne F Anderson
- Department of Biochemistry and Molecular Genetics, Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | | | - Manuel Canovas
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', Murcia, E-30100, Spain
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| |
Collapse
|
13
|
Horizontally acquired AT-rich genes in Escherichia coli cause toxicity by sequestering RNA polymerase. Nat Microbiol 2017; 2:16249. [PMID: 28067866 DOI: 10.1038/nmicrobiol.2016.249] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/08/2016] [Indexed: 11/09/2022]
Abstract
Horizontal gene transfer permits rapid dissemination of genetic elements between individuals in bacterial populations. Transmitted DNA sequences may encode favourable traits. However, if the acquired DNA has an atypical base composition, it can reduce host fitness. Consequently, bacteria have evolved strategies to minimize the harmful effects of foreign genes. Most notably, xenogeneic silencing proteins bind incoming DNA that has a higher AT content than the host genome. An enduring question has been why such sequences are deleterious. Here, we showed that the toxicity of AT-rich DNA in Escherichia coli frequently results from constitutive transcription initiation within the coding regions of genes. Left unchecked, this causes titration of RNA polymerase and a global downshift in host gene expression. Accordingly, a mutation in RNA polymerase that diminished the impact of AT-rich DNA on host fitness reduced transcription from constitutive, but not activator-dependent, promoters.
Collapse
|
14
|
Feng Y, Zhang Y, Ebright RH. Structural basis of transcription activation. Science 2016; 352:1330-3. [PMID: 27284196 DOI: 10.1126/science.aaf4417] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme.
Collapse
Affiliation(s)
- Yu Feng
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Zhang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Molecular Mechanisms of Transcription Initiation at gal Promoters and their Multi-Level Regulation by GalR, CRP and DNA Loop. Biomolecules 2015; 5:2782-807. [PMID: 26501343 PMCID: PMC4693257 DOI: 10.3390/biom5042782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/25/2015] [Indexed: 11/16/2022] Open
Abstract
Studying the regulation of transcription of the gal operon that encodes the amphibolic pathway of d-galactose metabolism in Escherichia coli discerned a plethora of principles that operate in prokaryotic gene regulatory processes. In this chapter, we have reviewed some of the more recent findings in gal that continues to reveal unexpected but important mechanistic details. Since the operon is transcribed from two overlapping promoters, P1 and P2, regulated by common regulatory factors, each genetic or biochemical experiment allowed simultaneous discernment of two promoters. Recent studies range from genetic, biochemical through biophysical experiments providing explanations at physiological, mechanistic and single molecule levels. The salient observations highlighted here are: the axiom of determining transcription start points, discovery of a new promoter element different from the known ones that influences promoter strength, occurrence of an intrinsic DNA sequence element that overrides the transcription elongation pause created by a DNA-bound protein roadblock, first observation of a DNA loop and determination its trajectory, and piggybacking proteins and delivering to their DNA target.
Collapse
|
16
|
Murchland I, Ahlgren-Berg A, Priest DG, Dodd IB, Shearwin KE. Promoter activation by CII, a potent transcriptional activator from bacteriophage 186. J Biol Chem 2014; 289:32094-32108. [PMID: 25294872 DOI: 10.1074/jbc.m114.608026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lysogeny promoting protein CII from bacteriophage 186 is a potent transcriptional activator, capable of mediating at least a 400-fold increase in transcription over basal activity. Despite being functionally similar to its counterpart in phage λ, it shows no homology at the level of protein sequence and does not belong to any known family of transcriptional activators. It also has the unusual property of binding DNA half-sites that are separated by 20 base pairs, center to center. Here we investigate the structural and functional properties of CII using a combination of genetics, in vitro assays, and mutational analysis. We find that 186 CII possesses two functional domains, with an independent activation epitope in each. 186 CII owes its potent activity to activation mechanisms that are dependent on both the σ(70) and α C-terminal domain (αCTD) components of RNA polymerase, contacting different functional domains. We also present evidence that like λ CII, 186 CII is proteolytically degraded in vivo, but unlike λ CII, 186 CII proteolysis results in a specific, transcriptionally inactive, degradation product with altered self-association properties.
Collapse
Affiliation(s)
- Iain Murchland
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alexandra Ahlgren-Berg
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - David G Priest
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ian B Dodd
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Keith E Shearwin
- Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
17
|
Rao RR, Lawson CL. Structure of catabolite activator protein with cobalt(II) and sulfate. Acta Crystallogr F Struct Biol Commun 2014; 70:560-3. [PMID: 24817710 PMCID: PMC4014319 DOI: 10.1107/s2053230x14005366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/08/2014] [Indexed: 11/25/2022] Open
Abstract
The crystal structure of cyclic AMP-catabolite activator protein (CAP) from Escherichia coli containing cobalt(II) chloride and ammonium sulfate is reported at 1.97 Å resolution. Each of the two CAP subunits in the asymmetric unit binds one cobalt(II) ion, in each case coordinated by N-terminal domain residues His19, His21 and Glu96 plus an additional acidic residue contributed via a crystal contact. The three identified N-terminal domain cobalt-binding residues are part of a region of CAP that is important for transcription activation at class II CAP-dependent promoters. Sulfate anions mediate additional crystal lattice contacts and occupy sites corresponding to DNA backbone phosphate positions in CAP-DNA complex structures.
Collapse
Affiliation(s)
- Ramya R. Rao
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Catherine L. Lawson
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
18
|
Bates SR, Quake SR. Mapping of protein-protein interactions of E. coli RNA polymerase with microfluidic mechanical trapping. PLoS One 2014; 9:e91542. [PMID: 24643045 PMCID: PMC3958368 DOI: 10.1371/journal.pone.0091542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/13/2014] [Indexed: 11/18/2022] Open
Abstract
The biophysical details of how transcription factors and other proteins interact with RNA polymerase are of great interest as they represent the nexus of how structure and function interact to regulate gene expression in the cell. We used an in vitro microfluidic approach to map interactions between a set of ninety proteins, over a third of which are transcription factors, and each of the four subunits of E. coli RNA polymerase, and we compared our results to those of previous large-scale studies. We detected interactions between RNA polymerase and transcription factors that earlier high-throughput screens missed; our results suggest that such interactions can occur without DNA mediation more commonly than previously appreciated.
Collapse
Affiliation(s)
- Steven R. Bates
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Stephen R. Quake
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Department of Bioengineering and HHMI, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Koike R, Ota M, Kidera A. Hierarchical Description and Extensive Classification of Protein Structural Changes by Motion Tree. J Mol Biol 2014; 426:752-62. [DOI: 10.1016/j.jmb.2013.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 11/25/2022]
|
20
|
Abstract
Bacteria use a variety of mechanisms to direct RNA polymerase to specific promoters in order to activate transcription in response to growth signals or environmental cues. Activation can be due to factors that interact at specific promoters, thereby increasing transcription directed by these promoters. We examine the range of architectures found at activator-dependent promoters and outline the mechanisms by which input from different factors is integrated. Alternatively, activation can be due to factors that interact with RNA polymerase and change its preferences for target promoters. We summarize the different mechanistic options for activation that are focused directly on RNA polymerase.
Collapse
Affiliation(s)
- David J Lee
- School of Biosciences, University of Birmingham, United Kingdom.
| | | | | |
Collapse
|
21
|
Bonocora RP, Decker PK, Glass S, Knipling L, Hinton DM. Bacteriophage T4 MotA activator and the β-flap tip of RNA polymerase target the same set of σ70 carboxyl-terminal residues. J Biol Chem 2011; 286:39290-6. [PMID: 21911499 DOI: 10.1074/jbc.m111.278762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sigma factors, the specificity subunits of RNA polymerase, are involved in interactions with promoter DNA, the core subunits of RNA polymerase, and transcription factors. The bacteriophage T4-encoded activator, MotA, is one such factor, which engages the C terminus of the Escherichia coli housekeeping sigma factor, σ(70). MotA functions in concert with a phage-encoded co-activator, AsiA, as a molecular switch. This process, termed sigma appropriation, inhibits host transcription while activating transcription from a class of phage promoters. Previous work has demonstrated that MotA contacts the C terminus of σ(70), H5, a region that is normally bound within RNA polymerase by its interaction with the β-flap tip. To identify the specific σ(70) residues responsible for interacting with MotA and the β-flap tip, we generated single substitutions throughout the C terminus of σ(70). We find that MotA targets H5 residues that are normally engaged by the β-flap. In two-hybrid assays, the interaction of σ(70) with either the β-flap tip or MotA is impaired by alanine substitutions at residues Leu-607, Arg-608, Phe-610, Leu-611, and Asp-613. Transcription assays identify Phe-610 and Leu-611 as the key residues for MotA/AsiA-dependent transcription. Phe-610 is a crucial residue in the H5/β-flap tip interaction using promoter clearance assays with RNA polymerase alone. Our results show how the actions of small transcriptional factors on a defined local region of RNA polymerase can fundamentally change the specificity of polymerase.
Collapse
Affiliation(s)
- Richard P Bonocora
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
22
|
Decker KB, Chen Q, Hsieh ML, Boucher P, Stibitz S, Hinton DM. Different requirements for σ Region 4 in BvgA activation of the Bordetella pertussis promoters P(fim3) and P(fhaB). J Mol Biol 2011; 409:692-709. [PMID: 21536048 PMCID: PMC3141349 DOI: 10.1016/j.jmb.2011.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 12/31/2022]
Abstract
Bordetella pertussis BvgA is a global response regulator that activates virulence genes, including adhesin-encoding fim3 and fhaB. At the fhaB promoter, P(fhaB), a BvgA binding site lies immediately upstream of the -35 promoter element recognized by Region 4 of the σ subunit of RNA polymerase (RNAP). We demonstrate that σ Region 4 is required for BvgA activation of P(fhaB), a hallmark of Class II activation. In contrast, the promoter-proximal BvgA binding site at P(fim3) includes the -35 region, which is composed of a tract of cytosines that lacks specific sequence information. We demonstrate that σ Region 4 is not required for BvgA activation at P(fim3). Nonetheless, Region 4 mutations that impair its typical interactions with core and with the -35 DNA affect P(fim3) transcription. Hydroxyl radical cleavage using RNAP with σD581C-FeBABE positions Region 4 near the -35 region of P(fim3); cleavage using RNAP with α276C-FeBABE or α302C-FeBABE also positions an α subunit C-terminal domain within the -35 region, on a different helical face from the promoter-proximal BvgA~P dimer. Our results suggest that the -35 region of P(fim3) accommodates a BvgA~P dimer, an α subunit C-terminal domain, and σ Region 4. Molecular modeling suggests how BvgA, σ Region 4, and α might coexist within this DNA in a conformation that suggests a novel mechanism of activation.
Collapse
Affiliation(s)
- Kimberly B Decker
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
23
|
Singh SS, Typas A, Hengge R, Grainger DC. Escherichia coli σ⁷⁰ senses sequence and conformation of the promoter spacer region. Nucleic Acids Res 2011; 39:5109-18. [PMID: 21398630 PMCID: PMC3130263 DOI: 10.1093/nar/gkr080] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In bacteria, promoter identification by RNA polymerase is mediated by a dissociable σ factor. The housekeeping σ70 factor of Escherichia coli recognizes two well characterized DNA sequence elements, known as the ‘−10’ and ‘−35’ hexamers. These elements are separated by ‘spacer’ DNA, the sequence of which is generally considered unimportant. Here, we use a combination of bioinformatics, genetics and biochemistry to show that σ70 can sense the sequence and conformation of the promoter spacer region. Our data illustrate how alterations in spacer region sequence can increase promoter activity. This stimulatory effect requires σ70 side chain R451, which is located in close proximity to the non-template strand at promoter position −18. Conversely, R451 is not required to mediate transcriptional stimulation by improvement of the −10 element. Mutation of σ70 residue R451, which is highly conserved, results in reduced growth rate, consistent with a central role in promoter recognition.
Collapse
Affiliation(s)
- Shivani S Singh
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
24
|
Zafar MA, Sanchez-Alberola N, Wolf RE. Genetic evidence for a novel interaction between transcriptional activator SoxS and region 4 of the σ(70) subunit of RNA polymerase at class II SoxS-dependent promoters in Escherichia coli. J Mol Biol 2010; 407:333-53. [PMID: 21195716 DOI: 10.1016/j.jmb.2010.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 11/30/2022]
Abstract
Escherichia coli SoxS activates transcription of the genes of the soxRS regulon, which provide the cell's defense against oxidative stress. In response to this stress, SoxS is synthesized de novo. Because the DNA binding site of SoxS is highly degenerate, SoxS efficiently activates transcription by the mechanism of prerecruitment. In prerecruitment, newly synthesized SoxS first forms binary complexes with RNA polymerase. These complexes then scan the chromosome for class I and II SoxS-dependent promoters, using the specific DNA-recognition properties of SoxS and σ(70) to distinguish SoxS-dependent promoters from the vast excess of sequence-equivalent soxboxes that do not reside in promoters. Previously, we determined that SoxS interacts with RNA polymerase in two ways: by making protein-protein interactions with the DNA-binding determinant of the α subunit and by interacting with σ(70) region 4 (σ(70) R4) both "on-DNA" and "off-DNA." Here, we address the question of how SoxS and σ(70) R4 coexist at class II promoters, where the binding site for SoxS either partially or completely overlaps the -35 region of the promoter, which is usually bound by σ(70) R4. To do so, we created a tri-alanine scanning library that covers all of σ(70) R4. We determined that interactions between σ(70) R4 and the DNA in the promoter's -35 region are required for activation of class I promoters, where the binding site lies upstream of the -35 hexamer, but they are not required at class II promoters. In contrast, specific three-amino-acid stretches are required for activation of class I (lac) and class II (galP1) cyclic AMP receptor protein-dependent promoters. We conclude from these data that SoxS and σ(70) R4 interact with each other in a novel way at class II SoxS-dependent promoters such that the two proteins do not accommodate one another in the -35 region but instead SoxS binding there occludes the binding of σ(70) R4.
Collapse
Affiliation(s)
- M Ammar Zafar
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
25
|
Hinton DM. Transcriptional control in the prereplicative phase of T4 development. Virol J 2010; 7:289. [PMID: 21029433 PMCID: PMC2988021 DOI: 10.1186/1743-422x-7-289] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/28/2010] [Indexed: 12/18/2022] Open
Abstract
Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ⁷⁰, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ⁷⁰, which then allows the T4 activator MotA to also interact with σ⁷⁰. In addition, AsiA restructuring of σ⁷⁰ prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 2A-13, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
26
|
Abstract
Gene transcription is a fundamental cellular process carried out by RNA polymerase (RNAP) enzymes and is highly regulated through the action of gene regulatory complexes. Important mechanistic insights have been gained from structural studies on multisubunit RNAP from bacteria, yeast and archaea, although the initiation process that involves the conversion of the inactive transcription complex to an active one has yet to be fully understood. RNAPs are unambiguously closely related in structure and function across all kingdoms of life and have conserved mechanisms. In bacteria, sigma (sigma) factors direct RNAP to specific promoter sites and the RNAP/sigma holoenzyme can either form a stable closed complex that is incompetent for transcription (as in the case of sigma(54)) or can spontaneously proceed to an open complex that is competent for transcription (as in the case of sigma(70)). The conversion of the RNAP/sigma(54) closed complex to an open complex requires ATP hydrolysis by enhancer-binding proteins, hence providing an ideal model system for studying the initiation process biochemically and structurally. In this review, we present recent structural studies of the two major bacterial RNAP holoenzymes and focus on mechanistic advances in the transcription initiation process via enhancer-binding proteins.
Collapse
Affiliation(s)
- Tamaswati Ghosh
- Department of Life Sciences, Centre for Structural Biology, Division of Molecular Biosciences, Imperial College London, London, UK
| | | | | |
Collapse
|
27
|
Zafar MA, Shah IM, Wolf RE. Protein-protein interactions between sigma(70) region 4 of RNA polymerase and Escherichia coli SoxS, a transcription activator that functions by the prerecruitment mechanism: evidence for "off-DNA" and "on-DNA" interactions. J Mol Biol 2010; 401:13-32. [PMID: 20595001 DOI: 10.1016/j.jmb.2010.05.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 05/12/2010] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
Abstract
According to the prerecruitment hypothesis, Escherichia coli SoxS activates the transcription of the genes of the SoxRS regulon by forming binary complexes with RNA polymerase (RNAP) that scan the chromosome for class I and class II SoxS-dependent promoters. We showed previously that the alpha subunit's C-terminal domain plays a role in activating both classes of promoter by making protein-protein contacts with SoxS; some of these contacts are made in solution in the absence of promoter DNA, a critical prediction of the prerecruitment hypothesis. Here, we identified seven single-alanine substitutions of the region 4 of sigma(70) (sigma(70) R4) of RNAP that reduce SoxS activation of class II promoters. With genetic epistasis tests between these sigma(70) R4 mutants and positive control mutants of SoxS, we identified 10 pairs of amino acids that interact with each other in E. coli. Using the yeast two-hybrid system and affinity immobilization assays, we showed that SoxS and sigma(70) R4 can interact in solution (i.e., "off-DNA"). The interaction requires amino acids of the class I/II (but not the class II) positive control surface of SoxS, and five amino acids of sigma(70) R4 that reduce activation in E. coli also reduce the SoxS-sigma(70) R4 interaction in yeast. One of the epistatic interactions that occur in E. coli also occurs in the yeast two-hybrid system (i.e., off-DNA). Importantly, we infer that the five epistatic interactions occurring in E. coli that require an amino acid of the class II surface occur "on-DNA" at class II promoters. Finding that SoxS contacts sigma(70) R4 both off-DNA and on-DNA is consistent with the prerecruitment hypothesis. Moreover, SoxS is now the first example of an E. coli transcriptional activator that uses a single positive control surface to make specific protein-protein contacts with two different subunits of RNAP.
Collapse
Affiliation(s)
- M Ammar Zafar
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
28
|
Bonocora RP, Caignan G, Woodrell C, Werner MH, Hinton DM. A basic/hydrophobic cleft of the T4 activator MotA interacts with the C-terminus of E.coli sigma70 to activate middle gene transcription. Mol Microbiol 2008; 69:331-43. [PMID: 18485078 DOI: 10.1111/j.1365-2958.2008.06276.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcriptional activation often employs a direct interaction between an activator and RNA polymerase. For activation of its middle genes, bacteriophage T4 appropriates Escherichia coli RNA polymerase through the action of two phage-encoded proteins, MotA and AsiA. Alone, AsiA inhibits transcription from a large class of host promoters by structurally remodelling region 4 of sigma(70), the primary specificity subunit of E. coli RNA polymerase. MotA interacts both with sigma(70) region 4 and with a DNA element present in T4 middle promoters. AsiA-induced remodelling is proposed to make the far C-terminus of sigma(70) region 4 accessible for MotA binding. Here, NMR chemical shift analysis indicates that MotA uses a 'basic/hydrophobic' cleft to interact with the C-terminus of AsiA-remodelled sigma(70), but MotA does not interact with AsiA itself. Mutations within this cleft, at residues K3, K28 and Q76, both impair the interaction of MotA with sigma(70) region 4 and MotA-dependent activation. Furthermore, mutations at these residues greatly decrease phage viability. Most previously described activators that target sigma(70) directly use acidic residues to engage a basic surface of region 4. Our work supports accumulated evidence indicating that 'sigma appropriation' by MotA and AsiA uses a fundamentally different mechanism to activate transcription.
Collapse
Affiliation(s)
- Richard P Bonocora
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
29
|
Sclavi B, Beatty CM, Thach DS, Fredericks CE, Buckle M, Wolfe AJ. The multiple roles of CRP at the complex acs promoter depend on activation region 2 and IHF. Mol Microbiol 2007; 65:425-40. [PMID: 17630973 DOI: 10.1111/j.1365-2958.2007.05797.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
acs encodes a high-affinity enzyme that permits survival during carbon starvation. As befits a survival gene, its transcription is subject to complex regulation. Previously, we reported that cAMP receptor protein (CRP) activates acs transcription by binding tandem DNA sites located upstream of the major acsP2 promoter and that the nucleoid protein IHF (integration host factor) binds three specific sites located just upstream. In vivo, the sequence that includes these IHF sites exerts a positive effect on CRP-dependent transcription, while a construct containing only the most proximal site exhibits reduced transcription compared with the full-length promoter or with a construct lacking all three IHF sites. Here, we defined the minimal system required for this IHF-dependent inhibition, showing it requires the promoter-distal CRP site and an amino acid residue located within activation region 2 (AR2), a surface determinant of CRP that interacts with RNA polymerase (RNAP). Surprisingly, for a Class III promoter, disruption of AR2 caused significant changes in the activity and structure of both the full-length promoter and the construct with the single proximal IHF site. We propose that AR2, together with IHF, mediates formation of a multi-protein complex, in which RNAP is stabilized in an open complex that remains poised on the promoter ready to respond rapidly to environmental changes.
Collapse
Affiliation(s)
- Bianca Sclavi
- LBPA, UMR8113, CNRS/Ecole Normale Supérieure de Cachan, 94230 Cachan, France
| | | | | | | | | | | |
Collapse
|
30
|
Gábor K, Veríssimo CS, Cyran BC, Ter Horst P, Meijer NP, Smidt H, de Vos WM, van der Oost J. Characterization of CprK1, a CRP/FNR-type transcriptional regulator of halorespiration from Desulfitobacterium hafniense. J Bacteriol 2006; 188:2604-13. [PMID: 16547048 PMCID: PMC1428393 DOI: 10.1128/jb.188.7.2604-2613.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recently identified CprK branch of the CRP (cyclic AMP receptor protein)-FNR (fumarate and nitrate reduction regulator) family of transcriptional regulators includes proteins that activate the transcription of genes encoding proteins involved in reductive dehalogenation of chlorinated aromatic compounds. Here we report the characterization of the CprK1 protein from Desulfitobacterium hafniense, an anaerobic low-G+C gram-positive bacterium that is capable of reductive dechlorination of 3-chloro-4-hydroxyphenylacetic acid (Cl-OHPA). The gene encoding CprK1 was cloned and functionally overexpressed in Escherichia coli, and the protein was subsequently purified to homogeneity. To investigate the interaction of CprK1 with three of its predicted binding sequences (dehaloboxes), we performed in vitro DNA-binding assays (electrophoretic mobility shift assays) as well as in vivo promoter probe assays. Our results show that CprK1 binds its target dehaloboxes with high affinity (dissociation constant, 90 nM) in the presence of Cl-OHPA and that transcriptional initiation by CprK1 is influenced by deviations in the dehaloboxes from the consensus TTAAT----ATTAA sequence. A mutant CprK1 protein was created by a Val-->Glu substitution at a conserved position in the recognition alpha-helix that gained FNR-type DNA-binding specificity, recognizing the TTGAT----ATCAA sequence (FNR box) instead of the dehaloboxes. CprK1 was subject to oxidative inactivation in vitro, most likely caused by the formation of an intermolecular disulfide bridge between Cys11 and Cys200. The possibility of redox regulation of CprK1 by a thiol-disulfide exchange reaction was investigated by using two Cys-->Ser mutants. Our results indicate that a Cys11-Cys200 disulfide bridge does not appear to play a physiological role in the regulation of CprK1.
Collapse
Affiliation(s)
- Krisztina Gábor
- Laboratory of Microbiology, Wageningen University and Research Centre, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Youn H, Kerby RL, Conrad M, Roberts GP. Study of highly constitutively active mutants suggests how cAMP activates cAMP receptor protein. J Biol Chem 2005; 281:1119-27. [PMID: 16260780 PMCID: PMC3464001 DOI: 10.1074/jbc.m509421200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cAMP receptor protein (CRP) of Escherichia coli undergoes a conformational change in response to cAMP binding that allows it to bind specific DNA sequences. Using an in vivo screening method following the simultaneous randomization of the codons at positions 127 and 128 (two C-helix residues of the protein interacting with cAMP), we have isolated a series of novel constitutively active CRP variants. Sequence analysis showed that this group of variants commonly possesses leucine or methionine at position 127 with a beta-branched amino acid at position 128. One specific variant, T127L/S128I CRP, showed extremely high cAMP-independent DNA binding affinity comparable with that of cAMP-bound wild-type CRP. Further biochemical analysis of this variant and others revealed that Leu(127) and Ile(128) have different roles in stabilizing the active conformation of CRP in the absence of cAMP. Leu(127) contributes to an improved leucine zipper at the dimer interface, leading to an altered intersubunit interaction in the C-helix region. In contrast, Ile(128) stabilizes the proper position of the beta4/beta5 loop by functionally communicating with Leu(61). By analogy, the results suggest two direct local effects of cAMP binding in the course of activating wild-type CRP: (i) C-helix repositioning through direct interaction with Thr(127) and Ser(128) and (ii) the concomitant reorientation of the beta4/beta5 loop. Finally, we also report that elevated expression of T127L/S128I CRP markedly perturbed E. coli growth even in the absence of cAMP, which suggests why comparably active variants have not been described previously.
Collapse
Affiliation(s)
| | | | | | - Gary P. Roberts
- To whom correspondence should be addressed: Dept. of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706. Tel.: 608-262-3567; Fax: 608-262-9865;
| |
Collapse
|
32
|
Gregory BD, Deighan P, Hochschild A. An artificial activator that contacts a normally occluded surface of the RNA polymerase holoenzyme. J Mol Biol 2005; 353:497-506. [PMID: 16185714 DOI: 10.1016/j.jmb.2005.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 08/16/2005] [Accepted: 08/18/2005] [Indexed: 11/26/2022]
Abstract
Many activators of transcription are sequence-specific DNA-binding proteins that stimulate transcription initiation through interaction with RNA polymerase (RNAP). Such activators can be constructed artificially by fusing a DNA-binding protein to a protein domain that can interact with an accessible surface of RNAP. In these cases, the artificial activator is directed to a target promoter bearing a recognition site for the DNA-binding protein. Here we describe an artificial activator that functions by contacting a normally occluded surface of promoter-bound RNAP holoenzyme. This artificial activator consists of a DNA-binding protein fused to the bacteriophage T4-encoded transcription regulator AsiA. On its own, AsiA inhibits transcription by Escherichia coli RNAP because it remodels the holoenzyme, disrupting an intersubunit interaction that is required for recognition of the major class of bacterial promoters. However, when tethered to the DNA via a DNA-binding protein, AsiA can exert a strong stimulatory effect on transcription by disrupting the same intersubunit interaction, contacting an otherwise occluded surface of the holoenzyme. We show that mutations that affect the intersubunit interaction targeted by AsiA modulate the stimulatory effect of this artificial activator. Our results thus demonstrate that changes in the accessibility of a normally occluded surface of the RNAP holoenzyme can modulate the activity of a gene-specific regulator of transcription.
Collapse
Affiliation(s)
- Brian D Gregory
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
33
|
Youn H, Thorsteinsson MV, Conrad M, Kerby RL, Roberts GP. Dual roles of an E-helix residue, Glu167, in the transcriptional activator function of CooA. J Bacteriol 2005; 187:2573-81. [PMID: 15805503 PMCID: PMC1070397 DOI: 10.1128/jb.187.8.2573-2581.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CooA is a transcriptional activator that mediates CO-dependent expression of the genes responsible for CO oxidation in Rhodospirillum rubrum. In this study, we suggest in vitro and in vivo models explaining an unusual requirement of CooA for millimolar levels of divalent cations for high-affinity DNA binding. Several lines of evidence indicate that an E-helix residue, Glu167, plays a central role in this requirement by inhibiting sequence-specific DNA binding via charge repulsion in the absence of any divalent cation and that divalent cations relieve such repulsion in the process of DNA binding by CooA. Unexpectedly, the Glu167 residue is the optimal residue for in vivo transcriptional activity of CooA. We present a model in which the Glu167 from the downstream subunit of CooA helps the protein to interact with RNA polymerase, probably through an interaction between activating region 3 and sigma subunit. The study was further extended to a homologous protein, cyclic AMP receptor protein (CRP), which revealed similar, but not identical, roles of the residue in this protein as well. The results show a unique mechanism of CooA modulating its DNA binding and transcriptional activation in response to divalent cations among the CRP/FNR (fumarate and nitrate reductase activator protein) superfamily of regulators.
Collapse
Affiliation(s)
- Hwan Youn
- Department of Bacteriology, University of Wisconsin--Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
34
|
Hinton DM, Pande S, Wais N, Johnson XB, Vuthoori M, Makela A, Hook-Barnard I. Transcriptional takeover by σ appropriation: remodelling of the σ 70 subunit of Escherichia coli RNA polymerase by the bacteriophage T4 activator MotA and co-activator AsiA. Microbiology (Reading) 2005; 151:1729-1740. [PMID: 15941982 DOI: 10.1099/mic.0.27972-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of bacteriophage T4 middle promoters, which occurs about 1 min after infection, uses two phage-encoded factors that change the promoter specificity of the host RNA polymerase. These phage factors, the MotA activator and the AsiA co-activator, interact with theσ70specificity subunit ofEscherichia coliRNA polymerase, which normally contacts the −10 and −35 regions of host promoter DNA. Like host promoters, T4 middle promoters have a good match to the canonicalσ70DNA element located in the −10 region. However, instead of theσ70DNA recognition element in the promoter's −35 region, they have a 9 bp sequence (a MotA box) centred at −30, which is bound by MotA. Recent work has begun to provide information about the MotA/AsiA system at a detailed molecular level. Accumulated evidence suggests that the presence of MotA and AsiA reconfigures protein–DNA contacts in the upstream promoter sequences, without significantly affecting the contacts ofσ70with the −10 region. This type of activation, which is called ‘σappropriation’, is fundamentally different from other well-characterized models of prokaryotic activation in which an activator frequently serves to forceσ70to contact a less than ideal −35 DNA element. This review summarizes the interactions of AsiA and MotA withσ70, and discusses how these interactions accomplish the switch to T4 middle promoters by inhibiting the typical contacts of the C-terminal region ofσ70, region 4, with the host −35 DNA element and with other subunits of polymerase.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suchira Pande
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neelowfar Wais
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xanthia B Johnson
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Madhavi Vuthoori
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Makela
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - India Hook-Barnard
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Stauffer LT, Stauffer GV. GcvA interacts with both the alpha and sigma subunits of RNA polymerase to activate the Escherichia coli gcvB gene and the gcvTHP operon. FEMS Microbiol Lett 2005; 242:333-8. [PMID: 15621456 DOI: 10.1016/j.femsle.2004.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/12/2004] [Accepted: 11/15/2004] [Indexed: 11/18/2022] Open
Abstract
The glycine cleavage enzyme system in Escherichia coli provides one-carbon units for cellular methylation reactions. The gcvB gene encodes two small RNAs that in turn regulate other genes. The GcvA protein is required for expression of both the gcvTHP (P(gcvT)) and gcvB (P(gcvB)) promoters. However, the architectures of the two promoters are different, with the P(gcvT) promoter representing a class III activator-dependent promoter and the P(gcvB) promoter representing a class II activator-dependent promoter. The RNA polymerase holoenzyme was examined for its role in transcription activation of the gcvTHP operon and the gcvB gene by the GcvA protein. The results suggest that GcvA interacts with the RNA polymerase alpha subunit for activation of the gcvTHP operon and interacts with the RNA polymerase sigma subunit for activation of the gcvB gene.
Collapse
|
36
|
Lacour S, Leroy O, Kolb A, Landini P. Substitutions in Region 2.4 of σ70 Allow Recognition of the σS-Dependent aidB Promoter. J Biol Chem 2004; 279:55255-61. [PMID: 15507429 DOI: 10.1074/jbc.m410855200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The strict dependence of transcription from the aidB promoter (PaidB) on the Esigma(S) form of RNA polymerase is because of the presence of a C nucleotide as the first residue of the -10 promoter sequence (-12C), which does not allow an open complex formation by Esigma(70). In this report, sigma(70) mutants carrying either the Q437H or the T440I single amino acid substitutions, which allow -12C recognition by sigma(70), were tested for their ability to carry out transcription from PaidB. The Gln-437 and Thr-440 residues are located in region 2.4 of sigma(70) and correspond to Gln-152 and Glu-155 in sigma(S). Interestingly, the Q437H mutant of sigma(70), but not T440I, was able to promote an open complex formation and to initiate transcription at PaidB. In contrast to T440I, a T440E mutant was proficient in carrying out transcription from PaidB. No sigma(70) mutant displayed significantly increased interaction with a PaidB mutant in which the -12C was substituted by a T (PaidB((C12T))), which is also efficiently recognized by wild type sigma(70). The effect of the T440E mutation suggests that the corresponding Glu-155 residue in sigma(S) might be involved in -12C recognition. However, substitution to alanine of the Glu-155 residue, as well as of Gln-152, in the sigma(S) protein did not significantly affect Esigma(S) interaction with PaidB. Our results reiterate the importance of the -12C residue for sigma(S)-specific promoter recognition and strongly suggest that interaction with the -10 sequence and open complex formation are carried out by different determinants in the two sigma factors.
Collapse
Affiliation(s)
- Stephan Lacour
- Swiss Federal Institute of Environmental Technology (EAWAG), Uberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | | | | | | |
Collapse
|
37
|
Typas A, Hengge R. Differential ability of σs and σ70 of Escherichia coli to utilize promoters containing half or full UP-element sites. Mol Microbiol 2004; 55:250-60. [PMID: 15612932 DOI: 10.1111/j.1365-2958.2004.04382.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The sigma(s) subunit of RNA polymerase (RNAP) is the master regulator of the general stress response in Escherichia coli. Nevertheless, the selectivity of promoter recognition by the housekeeping sigma70-containing and sigma5-containing RNAP holoenzymes (Esigma70 and Esigma(s) respectively) is not yet fully clarified, as they both recognize nearly identical -35 and -10 promoter consensus sequences. In this study, we show that in a subset of promoters, Esigma(s) favours the presence of a distal UP-element half-site, and at the same time is unable to take advantage of a proximal half-site or a full UP-element. This is reflected by the frequent occurrence of distal UP-element half-sites in natural sigma(s)-dependent promoters and the absence of proximal half-sites. Esigma70, however, exhibits the opposite preference. The presence of the -35 element is a prerequisite for this differential behaviour. In the absence of the -35 element, half or full UP-element sites play no role in sigma selectivity, but the distal subsite leads to an equivalent, if not greater, transcriptional stimulation than the proximal one for both sigma factors. Finally, experiments using single amino acid substitutions of sigma(s) indicate that the foundation for this preference lies in an inability of sigma(s) to interact with the a subunit C-terminal domain.
Collapse
Affiliation(s)
- Athanasios Typas
- Institut für Biologie-Mikrobiologie, Freie Universität Berlin, Königin-Luise-Str 12-16, 14195 Berlin, Germany
| | | |
Collapse
|
38
|
Lawson CL, Swigon D, Murakami KS, Darst SA, Berman HM, Ebright RH. Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol 2004; 14:10-20. [PMID: 15102444 PMCID: PMC2765107 DOI: 10.1016/j.sbi.2004.01.012] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently determined structures of the Escherichia coli catabolite activator protein (CAP) in complex with DNA, and in complex with the RNA polymerase alpha subunit C-terminal domain (alphaCTD) and DNA, have yielded insights into how CAP binds DNA and activates transcription. Comparison of multiple structures of CAP-DNA complexes has revealed the contributions of direct and indirect readout to DNA binding by CAP. The structure of the CAP-alphaCTD-DNA complex has provided the first structural description of interactions between a transcription activator and its functional target within the general transcription machinery. Using the structure of the CAP-alphaCTD-DNA complex, the structure of an RNA polymerase-DNA complex, and restraints from biophysical, biochemical and genetic experiments, it has been possible to construct detailed three-dimensional models of intact class I and class II transcription activation complexes.
Collapse
Affiliation(s)
- Catherine L Lawson
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Grainger DC, Webster CL, Belyaeva TA, Hyde EI, Busby SJW. Transcription activation at the Escherichia coli melAB promoter: interactions of MelR with its DNA target site and with domain 4 of the RNA polymerase sigma subunit. Mol Microbiol 2004; 51:1297-309. [PMID: 14982625 DOI: 10.1111/j.1365-2958.2003.03929.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of transcription initiation at the Escherichia coli melAB promoter is dependent on MelR, a transcription factor belonging to the AraC family. MelR binds to 18 bp target sites using two helix-turn-helix (HTH) motifs that are both located in its C-terminal domain. The melAB promoter contains four target sites for MelR. Previously, we showed that occupation of two of these sites, centred at positions -42.5 and -62.5 upstream of the melAB transcription start point, is sufficient for activation. We showed that MelR binds as a direct repeat to these sites, and we proposed a model to describe how the two HTH motifs are positioned. Here, we have used suppression genetics to confirm this model and to show that MelR residue 273, which is in HTH 2, interacts with basepair 13 of each target site. As our model for DNA-bound MelR suggests that HTH 2 must be adjacent to the melAB promoter -35 element, we searched this part of MelR for amino acid side-chains that might be able to interact with sigma. We describe genetic evidence to show that MelR residue 261 is close to residues 596 and 599 of the RNA polymerase sigma(70) subunit, and that they can interact. Similarly, MelR residue 265 is shown to be able to interact with residue 596 of sigma(70). In the final part of the work, we describe experiments in which the MelR binding site at position -42.5 was improved. We show that this is detrimental to MelR-dependent transcription activation because bound MelR is mispositioned so that it is unable to make 'correct' interactions with sigma.
Collapse
Affiliation(s)
- David C Grainger
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
40
|
Hsu HH, Huang WC, Chen JP, Huang LY, Wu CF, Chang BY. Properties of Bacillus subtilis sigma A factors with region 1.1 and the conserved Arg-103 at the N terminus of region 1.2 deleted. J Bacteriol 2004; 186:2366-75. [PMID: 15060039 PMCID: PMC412165 DOI: 10.1128/jb.186.8.2366-2375.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 12/17/2003] [Indexed: 11/20/2022] Open
Abstract
sigma factors in the sigma(70) family can be classified into the primary and alternative sigma factors according to their physiological functions and amino acid sequence similarities. The primary sigma factors are composed of four conserved regions, with the conserved region 1 being divided into two subregions. Region 1.1, which is absent from the alternative sigma factor, is poor in conservation; however, region 1.2 is well conserved. We investigated the importance of these two subregions to the function of Bacillus subtilis sigma(A), which belongs to a subgroup of the primary sigma factor lacking a 254-amino-acid spacer between regions 1 and 2. We found that deletion of not more than 100 amino acid residues from the N terminus of sigma(A), which removed part or all region 1.1, did not affect the overall transcription activity of the truncated sigma(A)-RNA polymerase in vitro, indicating that region 1.1 is not required for the functioning of sigma(A) in RNA polymerase holoenzyme. This finding is consistent with the complementation data obtained in vivo. However, region 1.1 is able to negatively modulate the promoter DNA-binding activity of the sigma(A)-RNA polymerase. Further deletion of the conserved Arg-103 at the N terminus of region 1.2 increased the content of stable secondary structures of the truncated sigma(A) and greatly reduced the transcription activity of the truncated sigma(A)-RNA polymerase by lowering the efficiency of transcription initiation after core binding of sigma(A). More importantly, the conserved Arg-103 was also demonstrated to be critical for the functioning of the full-length sigma(A) in RNA polymerase.
Collapse
Affiliation(s)
- Hsin-Hsien Hsu
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Johnson DC, Ishihama A, Stevens AM. Involvement of region 4 of the sigma70 subunit of RNA polymerase in transcriptional activation of the lux operon during quorum sensing. FEMS Microbiol Lett 2004; 228:193-201. [PMID: 14638424 DOI: 10.1016/s0378-1097(03)00750-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Quorum sensing-dependent activation of the luminescence (lux) genes of Vibrio fischeri relies on the formation of a complex between the autoinducer molecule, N-(3-oxohexanoyl)-L-homoserine lactone, and the autoinducer-dependent transcriptional activator LuxR. In its active conformation, LuxR binds to a site known as the lux box centered at position -42.5 relative to the luxI transcriptional start site and is thought to function as an ambidextrous activator capable of making multiple contacts with RNA polymerase (RNAP). The specific role of region 4 of the Escherichia coli sigma70 subunit of RNAP in LuxR-dependent activation of the luxI promoter has been investigated. Single-round transcription assays were performed in the presence of purified LuxRDeltaN, the autoinducer-independent C-terminal domain of LuxR, and a variant RNAP which contained a C-terminally truncated sigma70 subunit devoid of region 4. Results indicated that region 4 is essential for LuxRDeltaN-dependent luxI transcription, therefore 16 single and two triple alanine substitutions in region 4.2 of sigma70 between amino acid residues 590 and 613 were examined for their effects on LuxR- and LuxRDeltaN-dependent transcription at the luxI promoter. Taken together, the analyses performed on these variants of RpoD suggest that some individual residues in region 4.2 are important to the mechanism of activator-dependent transcription initiation under investigation.
Collapse
Affiliation(s)
- Deborah C Johnson
- Department of Biology, Virginia Tech, 2119 Derring Hall, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
42
|
Marr MT, Roberts JW, Brown SE, Klee M, Gussin GN. Interactions among CII protein, RNA polymerase and the lambda PRE promoter: contacts between RNA polymerase and the -35 region of PRE are identical in the presence and absence of CII protein. Nucleic Acids Res 2004; 32:1083-90. [PMID: 14872063 PMCID: PMC373397 DOI: 10.1093/nar/gkh261] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The DNA recognition sequence for the transcriptional activator, CII protein, which is critical for lysogenization by bacteriophage lambda, overlaps the -35 region of the P(RE) promoter. Data presented here show that activation by CII does not change the pattern of cleavage of the -35 region of P(RE) by iron (S)-1-(p-bromoacetamidobenzyl)-EDTA (Fe-BABE) conjugated to the sigma subunit of RNA polymerase (RNAP). Thus, the overall interaction between sigma and the -35 region of P(RE) is not significantly altered by CII. Therefore, the effects of the activator on RNAP binding to the promoter and formation of open complexes do not reflect a large-scale qualitative change in the nature of the interaction between RNAP and promoter DNA. The ability of CII to stimulate lysogenization is reduced in the presence of plasmid-borne rpoA variants encoding alanine substitutions at several positions in the C-terminal domain of the alpha subunit. However, it has not been possible to identify residues that directly affect the interaction between the activator and RNA polymerase.
Collapse
Affiliation(s)
- Michael T Marr
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
43
|
Westblade LF, Ilag LL, Powell AK, Kolb A, Robinson CV, Busby SJW. Studies of the Escherichia coli Rsd-sigma70 complex. J Mol Biol 2004; 335:685-92. [PMID: 14687566 DOI: 10.1016/j.jmb.2003.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Escherichia coli Rsd protein was previously identified on the basis of its binding to the RNA polymerase sigma(70) subunit. The Rsd-sigma(70) complex has been studied using different methods. Our data show that Rsd associates with sigma(70) to form a complex with a stoichiometry of 1:1. Alanine scanning and deletion mutagenesis were used to locate regions of sigma(70) that are required for the formation of the Rsd-sigma(70) complex.
Collapse
Affiliation(s)
- Lars F Westblade
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Sanderson A, Mitchell JE, Minchin SD, Busby SJW. Substitutions in the Escherichia coli RNA polymerase sigma70 factor that affect recognition of extended -10 elements at promoters. FEBS Lett 2003; 544:199-205. [PMID: 12782316 DOI: 10.1016/s0014-5793(03)00500-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous work has shown that the base sequence of the DNA segment immediately upstream of the -10 hexamer at bacterial promoters (the extended -10 element) can make a significant contribution to promoter strength. Guided by recently published structural information, we used alanine scanning and suppression mutagenesis of Region 2.4 and Region 3.0 of the Escherichia coli RNA polymerase sigma(70) subunit to identify amino acid sidechains that play a role in recognition of this element. Our study shows that changes in these regions of the sigma(70) subunit can affect the recognition of different extended -10 element sequences.
Collapse
|
45
|
Chen H, Tang H, Ebright RH. Functional interaction between RNA polymerase alpha subunit C-terminal domain and sigma70 in UP-element- and activator-dependent transcription. Mol Cell 2003; 11:1621-33. [PMID: 12820974 DOI: 10.1016/s1097-2765(03)00201-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We show that the Escherichia coli RNA polymerase (RNAP) alpha subunit C-terminal domain (alphaCTD) functionally interacts with sigma(70) at a subset of UP-element- and activator-dependent promoters, we define the determinants of alphaCTD and sigma(70) required for the interaction, and we present a structural model for the interaction. The alphaCTD-sigma(70) interaction spans the upstream promoter and core promoter, thereby linking recognition of UP-elements and activators in the upstream promoter with recognition of the -35 element in the core promoter. We propose that the alphaCTD-sigma(70) interaction permits UP-elements and activators not only to "recruit" RNAP through direct interaction with alphaCTD, but also to "remodel" RNAP-core-promoter interaction through indirect, alphaCTD-bridged interactions with sigma(70).
Collapse
Affiliation(s)
- Hao Chen
- Waksman Institute, Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
46
|
Ross W, Schneider DA, Paul BJ, Mertens A, Gourse RL. An intersubunit contact stimulating transcription initiation by E coli RNA polymerase: interaction of the alpha C-terminal domain and sigma region 4. Genes Dev 2003; 17:1293-307. [PMID: 12756230 PMCID: PMC196054 DOI: 10.1101/gad.1079403] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The C-terminal domain of the Escherichia coli RNA polymerase (RNAP) alpha subunit (alphaCTD) stimulates transcription initiation by interacting with upstream (UP) element DNA and a variety of transcription activators. Here we identify specific substitutions in region 4.2 of sigma 70 (sigma(70)) and in alphaCTD that decrease transcription initiation from promoters containing some, but not all, UP elements. This decrease in transcription derives from a decrease in the initial equilibrium constant for RNAP binding (K(B)). The open complexes formed by the mutant and wild-type RNAPs differ in DNAse I sensitivity at the junction of the alphaCTD and sigma DNA binding sites, correlating with the differences in transcription. A model of the DNA-alphaCTD-sigma region 4.2 ternary complex, constructed from the previously determined X-ray structures of the Thermus aquaticus sigma region 4.2-DNA complex and the E. coli alphaCTD-DNA complex, indicates that the residues identified by mutation in sigma region 4.2 and in alphaCTD are in very close proximity. Our results strongly suggest that alphaCTD, when bound to an UP element proximal subsite, contacts the RNAP sigma(70) subunit, increasing transcription. Previous data from the literature suggest that this same sigma-alphaCTD interaction also plays a role in transcription factor-mediated activation.
Collapse
Affiliation(s)
- Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Bacterial sigma factors play a key role in promoter recognition, making direct contact with conserved promoter elements. Most sigma factors belong to the sigma70 family, named for the primary sigma factor in Escherichia coli. Members of the sigma70 family typically share four conserved regions and, here, we focus on region 4, which is directly involved in promoter recognition and serves as a target for a variety of regulators of transcription initiation. We review recent advances in the understanding of the mechanism of action of regulators that target region 4 of sigma.
Collapse
Affiliation(s)
- Simon L Dove
- Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
48
|
Nickels BE, Dove SL, Murakami KS, Darst SA, Hochschild A. Protein-protein and protein-DNA interactions of sigma70 region 4 involved in transcription activation by lambdacI. J Mol Biol 2002; 324:17-34. [PMID: 12421556 DOI: 10.1016/s0022-2836(02)01043-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cI protein of bacteriophage lambda (lambdacI) activates transcription from promoter P(RM) through an acidic patch on the surface of its DNA-binding domain. Genetic evidence suggests that this acidic patch stimulates transcription from P(RM) through contact with the C-terminal domain (region 4) of the sigma(70) subunit of Escherichia coli RNA polymerase. Here, we identify two basic residues in region 4 of sigma(70) that are critical for lambdacI-mediated activation of transcription from P(RM). On the basis of structural modeling, we propose that one of these sigma(70) residues, K593, facilitates the interaction between lambdacI and region 4 of sigma(70) by inducing a bend in the DNA upstream of the -35 element, whereas the other, R588, interacts directly with a critical acidic residue within the activating patch of lambdacI. Residue R588 of sigma(70) has been shown to play an important role in promoter recognition; our findings suggest that the R588 side-chain has a dual function at P(RM), facilitating the interaction of region 4 with the promoter -35 element and participating directly in the protein-protein interaction with lambdacI.
Collapse
Affiliation(s)
- Bryce E Nickels
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
49
|
Steyn AJC, Collins DM, Hondalus MK, Jacobs WR, Kawakami RP, Bloom BR. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc Natl Acad Sci U S A 2002; 99:3147-52. [PMID: 11880648 PMCID: PMC122487 DOI: 10.1073/pnas.052705399] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous work established that the principal sigma factor (RpoV) of virulent Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex, restores virulence to an attenuated strain containing a point mutation (Arg-515-->His) in the 4.2 domain of RpoV. We used the 4.2 domain of RpoV as bait in a yeast two-hybrid screen of an M. tuberculosis H37Rv library and identified a putative transcription factor, WhiB3, which selectively interacts with the 4.2 domain of RpoV in virulent strains but not with the mutated (Arg-515-->His) allele. Infection of mice and guinea pigs with a M. tuberculosis H37Rv whiB3 deletion mutant strain showed that whiB3 is not necessary for in vivo bacterial replication in either animal model. In contrast, an M. bovis whiB3 deletion mutant was completely attenuated for growth in guinea pigs. However, we found that immunocompetent mice infected with the M. tuberculosis H37Rv whiB3 mutant strain had significantly longer mean survival times as compared with mice challenged with wild-type M. tuberculosis. Remarkably, the bacterial organ burdens of both mutant and wild-type infected mice were identical during the acute and persistent phases of infection. Our results imply that M. tuberculosis replication per se is not a sufficient condition for virulence in vivo. They also indicate a different role for M. bovis and M. tuberculosis whiB3 genes in pathogenesis generated in different animal models. We propose that M. tuberculosis WhiB3 functions as a transcription factor regulating genes that influence the immune response of the host.
Collapse
Affiliation(s)
- Adrie J C Steyn
- Harvard School of Public Health, Department of Immunology and Infectious Disease, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
50
|
Germer J, Becker G, Metzner M, Hengge-Aronis R. Role of activator site position and a distal UP-element half-site for sigma factor selectivity at a CRP/H-NS-activated sigma(s)-dependent promoter in Escherichia coli. Mol Microbiol 2001; 41:705-16. [PMID: 11532138 DOI: 10.1046/j.1365-2958.2001.02548.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcription initiation by the stress-associated sigma(S)-containing RNA polymerase holoenzyme (E sigma(S)) in Escherichia coli is often subject to complex regulation that involves multiple additional regulators and histone-like proteins. csiD is a stationary phase-inducible sigma(S)-dependent gene in E. coli that requires activation by cAMP-CRP (bound to a site centred at -68.5 nucleotides upstream of the transcriptional start site) and is positively modulated by the abundant nucleoid-associated proteins H-NS and Lrp. By shifting the CRP box to positions between -80.5 and -60.5, we could demonstrate that: (i) activation is equally helix phase dependent as at classic class I promoters; (ii) E sigma(S) prefers a CRP box location at -68.5/-70.5, whereas E sigma(70) is nearly inactive with such an arrangement; and (iii) with the CRP site moved to -60.5, transcription can be initiated efficiently by both holoenzymes. The csiD promoter region also contains a distal UP-element half-site located downstream of the CRP box, as demonstrated by mutational studies, in which this element was either eliminated or completed to a full UP-element. The UP-element half-site favours E sigma(S)-mediated expression, whereas with the full UP-element, nearly wild-type levels of csiD transcription were observed in the absence of sigma(S). Finally, we show that the two histone-like proteins, H-NS and Lrp, both act by influencing activation by cAMP-CRP, but do so by different mechanisms. In particular, H-NS directly or indirectly increases positional stringency for the CRP binding site. The implications of these findings with respect to sigma factor selectivity, activation mechanisms used by the two holoenzymes and the architecture of sigma(S)-dependent promoters are discussed.
Collapse
Affiliation(s)
- J Germer
- Institut für Biologie - Mikrobiologie, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195 Berlin, Germany
| | | | | | | |
Collapse
|