1
|
Dorairaj DP, Kumar P, Rajasekaran H, Bhuvanesh N, Hsu SCN, Karvembu R. Copper(II) complexes containing hydrazone and bipyridine/phenanthroline ligands for anticancer application against breast cancer cells. J Inorg Biochem 2025; 262:112759. [PMID: 39426333 DOI: 10.1016/j.jinorgbio.2024.112759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
In this work, mixed ligand Cu(II) complexes containing hydrazone and bipyridine ligands (CB1-CB5), or hydrazone and phenanthroline ligands (CP1-CP5) have been synthesized and characterized by spectroscopic and analytical techniques. Single crystal X-ray structure of complex CB1 revealed that two nitrogen atoms from bipyridine, one carbonyl oxygen, one azomethine nitrogen and one hydroxyl oxygen from the hydrazone ligand coordinated to Cu(II) ion, adopting a distorted square pyramidal geometry. Interaction of these complexes with calf thymus (CT) DNA and bovine serum albumin (BSA) was analyzed by absorption and emission studies. Further, the in vitro anticancer activity of the complexes was investigated exclusively against the breast cancer cells namely MCF7, T47D and MDA MB 231, and a normal breast MCF 10a cell line. The phenanthroline bearing complexes (CP1-CP5) displayed better activity than their bipyridine counterparts as seen from the IC50 values. In addition, the most active complex CP1 having an IC50 value of 5.8 ± 0.3 μM against T47D cancer cells was investigated for its mode of cell death through acridine orange/ethidium bromide(AO/EB), 4',6-diamidino-2-phenylindole (DAPI) and Annexin-V fluorescein isothiocyanate (FITC) staining assays which revealed apoptosis. Lastly, the cell cycle analysis revealed that complex CP1 induced cell death in T47D cancer cells at the G0/G1 phase.
Collapse
Affiliation(s)
| | - Prashant Kumar
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Haritha Rajasekaran
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| |
Collapse
|
2
|
Kim HS, Park JE, Lee WH, Kwon YB, Seu YB, Kim KS. Novel Amidine Derivative K1586 Sensitizes Colorectal Cancer Cells to Ionizing Radiation by Inducing Chk1 Instability. Int J Mol Sci 2024; 25:4396. [PMID: 38673980 PMCID: PMC11049894 DOI: 10.3390/ijms25084396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Checkpoint kinase 1 (Chk1) is a key mediator of the DNA damage response that regulates cell cycle progression, DNA damage repair, and DNA replication. Small-molecule Chk1 inhibitors sensitize cancer cells to genotoxic agents and have shown preclinical activity as single agents in cancers characterized by high levels of replication stress. However, the underlying genetic determinants of Chk1-inhibitor sensitivity remain unclear. Although treatment options for advanced colorectal cancer are limited, radiotherapy is effective. Here, we report that exposure to a novel amidine derivative, K1586, leads to an initial reduction in the proliferative potential of colorectal cancer cells. Cell cycle analysis revealed that the length of the G2/M phase increased with K1586 exposure as a result of Chk1 instability. Exposure to K1586 enhanced the degradation of Chk1 in a time- and dose-dependent manner, increasing replication stress and sensitizing colorectal cancer cells to radiation. Taken together, the results suggest that a novel amidine derivative may have potential as a radiotherapy-sensitization agent that targets Chk1.
Collapse
Affiliation(s)
- Hang Soo Kim
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Ji-Eun Park
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea;
- School of Radiological & Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Won Hyung Lee
- R&D Center, Chemical Business Unit, Pharmicell Co., Ltd., Ulsan 45009, Republic of Korea;
| | - Young Bin Kwon
- Central Research Institute, Kyung Nong Co., Ltd., Gyeongju 38175, Republic of Korea;
| | - Young-Bae Seu
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Kwang Seok Kim
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea;
- School of Radiological & Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Ogbonna EN, Paul A, Ross Terrell J, Fang Z, Chen C, Poon GMK, Boykin DW, Wilson WD. Drug design and DNA structural research inspired by the Neidle laboratory: DNA minor groove binding and transcription factor inhibition by thiophene diamidines. Bioorg Med Chem 2022; 68:116861. [PMID: 35661929 PMCID: PMC9707304 DOI: 10.1016/j.bmc.2022.116861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
The understanding of sequence-specific DNA minor groove interactions has recently made major steps forward and as a result, the goal of development of compounds that target the minor groove is an active research area. In an effort to develop biologically active minor groove agents, we are preparing and exploring the DNA interactions of diverse diamidine derivatives with a 5'-GAATTC-3' binding site using a powerful array of methods including, biosensor-SPR methods, and X-ray crystallography. The benzimidazole-thiophene module provides an excellent minor groove recognition component. A central thiophene in a benzimidazole-thiophene-phenyl aromatic system provides essentially optimum curvature for matching the shape of the minor groove. Comparison of that structure to one with the benzimidazole replaced with an indole shows that the two structures are very similar, but have some interesting and important differences in electrostatic potential maps, the DNA minor groove binding structure based on x-ray crystallographic analysis, and inhibition of the major groove binding PU.1 transcription factor complex. The binding KD for both compounds is under 10 nM and both form amidine H-bonds to DNA bases. They both have bifurcated H-bonds from the benzimidazole or indole groups to bases at the center of the -AATT- binding site. Analysis of the comparative results provides an excellent understanding of how thiophene compounds recognize the minor groove and can act as transcription factor inhibitors.
Collapse
Affiliation(s)
- Edwin N Ogbonna
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - J Ross Terrell
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Ziyuan Fang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Cen Chen
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Gregory M K Poon
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - David W Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - W David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA.
| |
Collapse
|
4
|
Racané L, Zlatar I, Perin N, Cindrić M, Radovanović V, Banjanac M, Shanmugam S, Stojković MR, Brajša K, Hranjec M. Biological Activity of Newly Synthesized Benzimidazole and Benzothizole 2,5-Disubstituted Furane Derivatives. Molecules 2021; 26:molecules26164935. [PMID: 34443523 PMCID: PMC8401404 DOI: 10.3390/molecules26164935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Newly designed and synthesized cyano, amidino and acrylonitrile 2,5-disubstituted furane derivatives with either benzimidazole/benzothiazole nuclei have been evaluated for antitumor and antimicrobial activity. For potential antitumor activity, the compounds were tested in 2D and 3D cell culture methods on three human lung cancer cell lines, A549, HCC827 and NCI-H358, with MTS cytotoxicity and BrdU proliferation assays in vitro. Compounds 5, 6, 8, 9 and 15 have been proven to be compounds with potential antitumor activity with high potential to stop the proliferation of cells. In general, benzothiazole derivatives were more active in comparison to benzimidazole derivatives. Antimicrobial activity was evaluated with Broth microdilution testing (according to CLSI (Clinical Laboratory Standards Institute) guidelines) on Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Additionally, Saccharomyces cerevisiae was included in testing as a eukaryotic model organism. Compounds 5, 6, 8, 9 and 15 showed the most promising antibacterial activity. In general, the compounds showed antitumor activity, higher in 2D assays in comparison with 3D assays, on all three cell lines in both assays. In natural conditions, compounds with such an activity profile (less toxic but still effective against tumor growth) could be promising new antitumor drugs. Some of the tested compounds showed antimicrobial activity. In contrast to ctDNA, the presence of nitro group or chlorine in selected furane-benzothiazole structures did not influence the binding mode with AT-DNA. All compounds dominantly bound inside the minor groove of AT-DNA either in form of monomers or dimer and higher-order aggregates.
Collapse
Affiliation(s)
- Livio Racané
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia;
| | - Ivo Zlatar
- Pharmacology In Vitro, Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (I.Z.); (V.R.); (M.B.)
| | - Nataša Perin
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (N.P.); (M.C.)
| | - Maja Cindrić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (N.P.); (M.C.)
| | - Vedrana Radovanović
- Pharmacology In Vitro, Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (I.Z.); (V.R.); (M.B.)
| | - Mihailo Banjanac
- Pharmacology In Vitro, Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (I.Z.); (V.R.); (M.B.)
| | - Suresh Shanmugam
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (S.S.); (M.R.S.)
| | - Marijana Radić Stojković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (S.S.); (M.R.S.)
| | - Karmen Brajša
- Pharmacology In Vitro, Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (I.Z.); (V.R.); (M.B.)
- Correspondence: (K.B.); (M.H.); Tel.: +385-1-4597245 (M.H.)
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia; (N.P.); (M.C.)
- Correspondence: (K.B.); (M.H.); Tel.: +385-1-4597245 (M.H.)
| |
Collapse
|
5
|
Paul A, Musetti C, Nanjunda R, Wilson WD. Biosensor-Surface Plasmon Resonance: Label-Free Method for Investigation of Small Molecule-Quadruplex Nucleic Acid Interactions. Methods Mol Biol 2019; 2035:63-85. [PMID: 31444744 DOI: 10.1007/978-1-4939-9666-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Biosensor-surface plasmon resonance (SPR) technology is now well established as a quantitative approach for the study of nucleic acid interactions in real time, without the need for labeling any components of the interaction. The method provides real-time equilibrium and kinetic characterization for quadruplex DNA interactions and requires small amounts of materials and no external probe. A detailed protocol for quadruplex-DNA interaction analyses with a variety of binding molecules using biosensor-SPR methods is presented. Explanations of the SPR method with basic fundamentals for use and analysis of results are described with recommendations on the preparation of the SPR instrument, sensor chips, and samples. Details of experimental design, quantitative and qualitative data analyses, and presentation are described. Some specific examples of small molecule-DNA quadruplex interactions are presented with results evaluated by both kinetic and steady-state SPR methods.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Caterina Musetti
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.,Department of Screening, Profiling and Mechanistic Biology, Platform Technology and Science, Glaxo Smith Kline, Collegeville, PA, USA
| | - Rupesh Nanjunda
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.,Janssen Research and Development, Spring House, PA, USA
| | - W David Wilson
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Yadava U, Yadav SK, Yadav RK. Investigations on bisamidine derivatives as novel minor groove binders with the dodecamer 5′(CGCGAATTCGCG)3′. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Carter EK, Laughlin-Toth S, Dodd T, Wilson WD, Ivanov I. Small molecule binders recognize DNA microstructural variations via an induced fit mechanism. Phys Chem Chem Phys 2019; 21:1841-1851. [PMID: 30629058 PMCID: PMC6497476 DOI: 10.1039/c8cp05537h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Regulation of gene-expression by specific targeting of protein-nucleic acid interactions has been a long-standing goal in medicinal chemistry. Transcription factors are considered "undruggable" because they lack binding sites well suited for binding small-molecules. In order to overcome this obstacle, we are interested in designing small molecules that bind to the corresponding promoter sequences and either prevent or modulate transcription factor association via an allosteric mechanism. To achieve this, we must design small molecules that are both sequence-specific and able to target G/C base pair sites. A thorough understanding of the relationship between binding affinity and the structural aspects of the small molecule-DNA complex would greatly aid in rational design of such compounds. Here we present a comprehensive analysis of sequence-specific DNA association of a synthetic minor groove binder using long timescale molecular dynamics. We show how binding selectivity arises from a combination of structural factors. Our results provide a framework for the rational design and optimization of synthetic small molecules in order to improve site-specific targeting of DNA for therapeutic uses in the design of selective DNA binders targeting transcription regulation.
Collapse
Affiliation(s)
- E. Kathleen Carter
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
| | - Sarah Laughlin-Toth
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas Dodd
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
| | - W. David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
| | - Ivaylo Ivanov
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
| |
Collapse
|
8
|
Ramírez-Benítez JE, Arjona Sabido RA, Caamal Velázquez JH, Rodríguez Ávila NL, Solís Pereira SE, Lizama Uc G. Inhibición del crecimiento y modificación genética de Phytophthora capsici usando quitosano de bajo grado de polimerización. Rev Argent Microbiol 2019; 51:12-17. [DOI: 10.1016/j.ram.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 02/09/2018] [Accepted: 03/16/2018] [Indexed: 10/28/2022] Open
|
9
|
Affiliation(s)
- Hasan Y. Alniss
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
Reis AFVF, Gonçalves ILP, Neto AFG, Santos AS, Kuca K, Nepovimova E, Neto AMJC. Intermolecular interactions between DNA and methamphetamine, amphetamine, ecstasy and their major metabolites. J Biomol Struct Dyn 2017; 36:3047-3057. [PMID: 28978251 DOI: 10.1080/07391102.2017.1386592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this work, we carried out a theoretical investigation regarding amphetamine-type stimulants, which can cause central nervous system degeneration, interacting with human DNA. These include amphetamine, methamphetamine, 3,4-Methylenedioxymethamphetamine (also known as ecstasy), as well as their main metabolites. The studies were performed through molecular docking and molecular dynamics simulations, where molecular interactions of the receptor-ligand systems, along with their physical-chemical energies, were reported. Our results show that 3,4-Methylenedioxymethamphetamine and 3,4-Dihydroxymethamphetamine (ecstasy) present considerable reactivity with the receptor (DNA), suggesting that these molecules may cause damage due to human-DNA. These results were indicated by free Gibbs change of bind (ΔGbind) values referring to intermolecular interactions between the drugs and the minor grooves of DNA, which were predominant for all simulations. In addition, it was observed that 3,4-Dihydroxymethamphetamine (ΔGbind = -13.15 kcal/mol) presented greater spontaneity in establishing interactions with DNA in comparison to 3,4-Methylenedioxymethamphetamine (ΔGbind = -8.61 kcal/mol). Thus, according with the calculations performed our results suggest that the 3,4-Methylenedioxymethamphetamine and 3,4-Dihydroxymethamphetamine have greater probability to provide damage to human DNA fragments.
Collapse
Affiliation(s)
- Arthur F V F Reis
- a Laboratory of Preparation and Computation of Nanomaterial , Faculty of Physics-ICEN-Federal University of Pará , Augusto Correa Street N°.1 C. P. 479, 66075-110 Belém , PA , Brazil.,b Federal University of Pará , Institute of Exact and Natural Sciences, Faculty of Chemistry . Augusto Correa Street, 01, Guamá66075-110, Belém , PA , Brazil
| | - Igor L P Gonçalves
- a Laboratory of Preparation and Computation of Nanomaterial , Faculty of Physics-ICEN-Federal University of Pará , Augusto Correa Street N°.1 C. P. 479, 66075-110 Belém , PA , Brazil.,b Federal University of Pará , Institute of Exact and Natural Sciences, Faculty of Chemistry . Augusto Correa Street, 01, Guamá66075-110, Belém , PA , Brazil
| | - Abel F G Neto
- a Laboratory of Preparation and Computation of Nanomaterial , Faculty of Physics-ICEN-Federal University of Pará , Augusto Correa Street N°.1 C. P. 479, 66075-110 Belém , PA , Brazil
| | - Alberdan S Santos
- b Federal University of Pará , Institute of Exact and Natural Sciences, Faculty of Chemistry . Augusto Correa Street, 01, Guamá66075-110, Belém , PA , Brazil
| | - Kamil Kuca
- c Biomedical Research Center , University Hospital Hradec Kralove , Sokolska 581, 500 05 Hradec Kralove , Czech Republic.,d Department of Chemistry, Faculty of Science , University of Hradec Kralove , Rokitanskeho 62, 500 03 Hradec Kralove , Czech Republic
| | - Eugenie Nepovimova
- c Biomedical Research Center , University Hospital Hradec Kralove , Sokolska 581, 500 05 Hradec Kralove , Czech Republic.,d Department of Chemistry, Faculty of Science , University of Hradec Kralove , Rokitanskeho 62, 500 03 Hradec Kralove , Czech Republic
| | - Antonio M J C Neto
- a Laboratory of Preparation and Computation of Nanomaterial , Faculty of Physics-ICEN-Federal University of Pará , Augusto Correa Street N°.1 C. P. 479, 66075-110 Belém , PA , Brazil
| |
Collapse
|
11
|
Synthesis, biological characterisation and structure activity relationships of aromatic bisamidines active against Plasmodium falciparum. Eur J Med Chem 2017; 127:22-40. [DOI: 10.1016/j.ejmech.2016.12.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 01/27/2023]
|
12
|
Kumar S, Newby Spano M, Arya DP. Shape readout of AT-rich DNA by carbohydrates. Biopolymers 2016; 101:720-32. [PMID: 24281844 DOI: 10.1002/bip.22448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/10/2013] [Accepted: 11/23/2013] [Indexed: 12/16/2022]
Abstract
Gene expression can be altered by small molecules that target DNA; sequence as well as shape selectivities are both extremely important for DNA recognition by intercalating and groove-binding ligands. We have characterized a carbohydrate scaffold (1) exhibiting DNA "shape readout" properties. Thermodynamic studies with 1 and model duplex DNAs demonstrate the molecule's high affinity and selectivity towards B* form (continuous AT-rich) DNA. Isothermal titration calorimetry (ITC), circular dichroism (CD) titration, ultraviolet (UV) thermal denaturation, and Differential Scanning Calorimetry were used to characterize the binding of 1 with a B* form AT-rich DNA duplex d[5'-G2 A6 T6 C2 -3']. The binding constant was determined using ITC at various temperatures, salt concentrations, and pH. ITC titrations were fit using a two-binding site model. The first binding event was shown to have a 1:1 binding stoichiometry and was predominantly entropy-driven with a binding constant of approximately 10(8) M(-1) . ITC-derived binding enthalpies were used to obtain the binding-induced change in heat capacity (ΔCp ) of -225 ± 19 cal/mol·K. The ionic strength dependence of the binding constant indicated a significant electrolytic contribution in ligand:DNA binding, with approximately four to five ion pairs involved in binding. Ligand 1 displayed a significantly higher affinity towards AT-tract DNA over sequences containing GC inserts, and binding experiments revealed the order of binding affinity for 1 with DNA duplexes: contiguous B* form AT-rich DNA (d[5'-G2 A6 T6 C2 -3']) >B form alternate AT-rich DNA (d[5'-G2 (AT)6 C2- 3']) > A form GC-rich DNA (d[5'-A2 G6 C6 T2 -3']), demonstrating the preference of ligand 1 for B* form DNA.
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, 29634
| | | | | |
Collapse
|
13
|
Patra A, Hazra S, Samanta N, Suresh Kumar G, Mitra RK. Micelle induced dissociation of DNA–ligand complexes: The effect of ligand binding specificity. Int J Biol Macromol 2016; 82:418-24. [DOI: 10.1016/j.ijbiomac.2015.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/19/2015] [Accepted: 11/05/2015] [Indexed: 11/16/2022]
|
14
|
Deligkaris C, Ascone AT, Sweeney KJ, Greene AJQ. Validation of a computational docking methodology to identify the non-covalent binding site of ligands to DNA. MOLECULAR BIOSYSTEMS 2015; 10:2106-25. [PMID: 24853173 DOI: 10.1039/c4mb00239c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite the biomedical consequences of carcinogen-DNA interactions and the potential of DNA as a drug target in medicinal chemistry, only a small number of studies have validated or used docking methods for the prediction of the physical binding of small molecules to DNA. Knowledge of the DNA-physically-bound ligand geometry can lead to the elucidation of the molecular-level mechanism of drugs as well as predicting the subsequent chemical interactions that lead to DNA damage from carcinogens. We sought to validate AutoDock 4.2, a docking method that includes a physics-based free energy function and a Lamarckian Genetic Algorithm, for the prediction of ligand geometries upon physical binding to DNA. We performed simulations by systematically changing the length of the search process for a comprehensive set of 32 ligand-DNA molecular systems with different physico-chemical properties, and we used a free-energy-based convergence criterion to terminate our simulations. For 11 out of 28 molecular systems for which convergence was achieved, the lowest binding free energy geometries were within 2 Å of the experimentally determined geometry. Considering all predicted sites with free energy changes within 20% of the lowest binding free energy site, we found a site within 2 Å of the experimentally determined geometry for 24 out of the 28 systems. However, the predicted hydrogen bonding interactions were different for most molecular systems compared to the same interactions in the experimentally determined geometry. We discuss reasons for the successes and failures, implications, and the importance of ensuring an adequate search in docking calculations. Overall, we concluded that AutoDock 4.2 can be used to predict the non-covalent binding geometry of a small molecule to DNA with some limitations.
Collapse
|
15
|
Ríos Martínez CH, Lagartera L, Trujillo C, Dardonville C. Bisimidazoline arylamides binding to the DNA minor groove: N1-hydroxylation enhances binding affinity and selectivity to AATT sites. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00292c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Selective binding of N-hydroxy bisimidazolines to dsDNA GCAATTGC is derived from a tighter fit to this narrower minor groove.
Collapse
Affiliation(s)
| | | | - Cristina Trujillo
- School of Chemistry
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- Dublin 2
- Ireland
| | | |
Collapse
|
16
|
Harris RC, Boschitsch AH, Fenley MO. Sensitivities to parameterization in the size-modified Poisson-Boltzmann equation. J Chem Phys 2014; 140:075102. [PMID: 24559370 DOI: 10.1063/1.4864460] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experimental results have demonstrated that the numbers of counterions surrounding nucleic acids differ from those predicted by the nonlinear Poisson-Boltzmann equation, NLPBE. Some studies have fit these data against the ion size in the size-modified Poisson-Boltzmann equation, SMPBE, but the present study demonstrates that other parameters, such as the Stern layer thickness and the molecular surface definition, can change the number of bound ions by amounts comparable to varying the ion size. These parameters will therefore have to be fit simultaneously against experimental data. In addition, the data presented here demonstrate that the derivative, SK, of the electrostatic binding free energy, ΔGel, with respect to the logarithm of the salt concentration is sensitive to these parameters, and experimental measurements of SK could be used to parameterize the model. However, although better values for the Stern layer thickness and ion size and better molecular surface definitions could improve the model's predictions of the numbers of ions around biomolecules and SK, ΔGel itself is more sensitive to parameters, such as the interior dielectric constant, which in turn do not significantly affect the distributions of ions around biomolecules. Therefore, improved estimates of the ion size and Stern layer thickness to use in the SMPBE will not necessarily improve the model's predictions of ΔGel.
Collapse
Affiliation(s)
- Robert C Harris
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-3408, USA
| | | | - Marcia O Fenley
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-3408, USA
| |
Collapse
|
17
|
Ismail MA, Arafa RK, Youssef MM, El-Sayed WM. Anticancer, antioxidant activities, and DNA affinity of novel monocationic bithiophenes and analogues. Drug Des Devel Ther 2014; 8:1659-1672. [PMID: 25302019 PMCID: PMC4189708 DOI: 10.2147/dddt.s68016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A series of 15 monocationic bithiophenes and isosteres were prepared and subjected to in vitro antiproliferative screening using the full National Cancer Institute (NCI)-60 cell line panel, representing nine types of cancer. Among the nine types of cancer involved in a five-dose screen, non-small cell lung and breast cancer cell lines were the most responsive to the antiproliferative effect of the tested compounds, especially cell lines A549/ATCC, NCI-H322M, and NCI-H460, whereas compounds 1a, 1c, 1d, and 7 exhibited potent activity, with GI50 values (drug concentration that causes 50% inhibition of cell growth) from less than 10 nM to 102 nM. In addition, compounds 1c and 1d gave GI50 values of 73 nM and 79 nM, respectively, against the MDA-MB-468 breast cancer cell line. Structure-activity relationship findings indicated that the mononitriles were far less active than their corresponding monoamidines and, within the amidines series, the bioisosteric replacement of a thiophene ring by a furan led to a reduction in antiproliferative activity. Also, molecular manipulations, involving substitution on the phenyl ring, or its replacement by a pyridyl, or alteration of the position of the amidine group, led to significant alteration in antiproliferative activity. On the other hand, DNA studies demonstrated that these monoamidine bichalcophenes have promising ability to cleave the genomic DNA. These monoamidines show a wide range of DNA affinities, as judged from their DNA cleavage effect, which are remarkably sensitive to all kinds of structural modifications. Finally, the novel bichalcophenes were tested for their antioxidant property by the ABTS (2,2'-azino- bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt) assay, as well as lipid and nitric oxide scavenging techniques, and were found to exhibit good-to-potent antioxidant abilities.
Collapse
Affiliation(s)
- Mohamed A Ismail
- Departments of Chemistry and Biological Sciences, College of Science, King Faisal University, Hofuf, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Reem K Arafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Magdy M Youssef
- Departments of Chemistry and Biological Sciences, College of Science, King Faisal University, Hofuf, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Wael M El-Sayed
- Departments of Chemistry and Biological Sciences, College of Science, King Faisal University, Hofuf, Saudi Arabia
- Department of Zoology, Faculty of Science, University of Ain Shams, Abbassia, Cairo, Egypt
| |
Collapse
|
18
|
Zeller F, Zacharias M. Adaptive Biasing Combined with Hamiltonian Replica Exchange to Improve Umbrella Sampling Free Energy Simulations. J Chem Theory Comput 2014; 10:703-10. [DOI: 10.1021/ct400689h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabian Zeller
- Physik-Department
T38, Technische Universität München, James Franck Str. 1, 85748 Garching, Germany
| | - Martin Zacharias
- Physik-Department
T38, Technische Universität München, James Franck Str. 1, 85748 Garching, Germany
| |
Collapse
|
19
|
Wang S, Kumar A, Aston K, Nguyen B, Bashkin JK, Boykin DW, Wilson WD. Different thermodynamic signatures for DNA minor groove binding with changes in salt concentration and temperature. Chem Commun (Camb) 2013; 49:8543-5. [PMID: 23945614 PMCID: PMC3791883 DOI: 10.1039/c3cc44569k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effects of salt concentration and temperature on the thermodynamics of DNA minor groove binding have quite different signatures: binding enthalpy is salt concentration independent but temperature dependent. Conversely, binding free energy is salt dependent but essentially temperature independent through enthalpy-entropy compensation.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Dumat B, Bordeau G, Faurel-Paul E, Mahuteau-Betzer F, Saettel N, Metge G, Fiorini-Debuisschert C, Charra F, Teulade-Fichou MP. DNA Switches on the Two-Photon Efficiency of an Ultrabright Triphenylamine Fluorescent Probe Specific of AT Regions. J Am Chem Soc 2013; 135:12697-706. [DOI: 10.1021/ja404422z] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Blaise Dumat
- Institut Curie, CNRS UMR-176, Centre Universitaire d’Orsay, Paris-Sud 91405
Orsay Cedex France
| | - Guillaume Bordeau
- Institut Curie, CNRS UMR-176, Centre Universitaire d’Orsay, Paris-Sud 91405
Orsay Cedex France
| | - Elodie Faurel-Paul
- Institut Curie, CNRS UMR-176, Centre Universitaire d’Orsay, Paris-Sud 91405
Orsay Cedex France
| | | | - Nicolas Saettel
- Institut Curie, CNRS UMR-176, Centre Universitaire d’Orsay, Paris-Sud 91405
Orsay Cedex France
| | - Germain Metge
- CEA-
Saclay, DSM-IRAMIS/SPCSI/Laboratoire NanoPhotonique, 91191 Gif-sur-Yvette, France
| | | | - Fabrice Charra
- CEA-
Saclay, DSM-IRAMIS/SPCSI/Laboratoire NanoPhotonique, 91191 Gif-sur-Yvette, France
| | | |
Collapse
|
21
|
Chavda S, Babu B, Patil P, Plaunt A, Ferguson A, Lee M, Tzou S, Sjoholm R, Rice T, Mackay H, Ramos J, Wang S, Lin S, Kiakos K, Wilson WD, Hartley JA, Lee M. Design, synthesis, and DNA binding characteristics of a group of orthogonally positioned diamino, N-formamido, pyrrole- and imidazole-containing polyamides. Bioorg Med Chem 2013; 21:3907-18. [PMID: 23647824 DOI: 10.1016/j.bmc.2013.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/26/2013] [Accepted: 04/02/2013] [Indexed: 02/08/2023]
Abstract
Orthogonally positioned diamino/dicationic polyamides (PAs) have good water solubility and enhanced binding affinity, whilst retaining DNA minor groove and sequence specificity compared to their monoamino/monocationic counterparts. The synthesis and DNA binding properties of the following diamino PAs: f-IPI (3a), f-IPP (4), f-PIP (5), and f-PPP (6) are described. P denotes the site where a 1-propylamino group is attached to the N1-position of the heterocycle. Binding of the diamino PAs to DNA was assessed by DNase I footprinting, thermal denaturation, circular dichroism titration, biosensor surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC) studies. According to SPR studies, f-IPI (3a) bound more strongly (K(eq)=2.4×10(8) M(-1)) and with comparable sequence selectivity to its cognate sequence 5'-ACGCGT-3' when compared to its monoamino analog f-IPI (1). The binding of f-IPI (3a) to 5'-ACGCGT-3' via the stacked dimer motif was balanced between enthalpy and entropy, and that was quite different from the enthalpy-driven binding of its monoamino parent f-IPI (1). f-IPP (4) also bound more strongly to its cognate sequence 5'-ATGCAT-3' (K(eq)=7.4×10(6) M(-1)) via the side-by-side stacked motif than its monoamino analog f-IPP (2a). Although f-PPP (6) bound via a 1:1 motif, it bound strongly to its cognate sequence 5'-AAATTT-3' (K(eq)=4.8×10(7) M(-1)), 15-times higher than the binding of its monoamino analog f-PPP (2c), albeit f-PPP bound via the stacked motif. Finally, f-PIP (5) bound to its target sequence 5'-ATCGAT-3' as a stacked dimer and it has the lowest affinity among the diamino PAs tested (Keq <1×10(5) M(-1)). This was about two times lower in affinity than the binding of its monoamino analog f-PIP (2b). The results further demonstrated that the 'core rules' of DNA recognition by monoamino PAs also apply to their diamino analogs. Specifically, PAs that contain a stacked IP core structure bind most strongly (highest binding constants) to their cognate GC doublet, followed by the binding of PAs with a stacked PP structure to two degenerate AT base pairs, and finally the binding of PAs with a PI core to their cognate CG doublet.
Collapse
Affiliation(s)
- Sameer Chavda
- Division of Natural and Applied Sciences and Department of Chemistry, Hope College, Holland, MI 49423, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Musetti C, Krapcho AP, Palumbo M, Sissi C. Effect of G-quadruplex polymorphism on the recognition of telomeric DNA by a metal complex. PLoS One 2013; 8:e58529. [PMID: 23516498 PMCID: PMC3596309 DOI: 10.1371/journal.pone.0058529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/05/2013] [Indexed: 01/13/2023] Open
Abstract
The physiological role(s) played by G-quadruplexes renders these 'non-canonical' DNA secondary structures interesting new targets for therapeutic intervention. In particular, the search for ligands for selective recognition and stabilization of G-quadruplex arrangements has led to a number of novel targeted agents. An interesting approach is represented by the use of metal-complexes, their binding to DNA being modulated by ligand and metal ion nature, and by complex stoichiometry. In this work we characterized thermodynamically and stereochemically the interactions of a Ni(II) bis-phenanthroline derivative with telomeric G-quadruplex sequences using calorimetric, chiroptical and NMR techniques. We employed three strictly related sequences based on the human telomeric repeat, namely Tel22, Tel26 and wtTel26, which assume distinct conformations in potassium containing solutions. We were able to monitor specific enthalpy/entropy changes according to the structural features of the target telomeric sequence and to dissect the binding process into distinct events. Interestingly, temperature effects turned out to be prominent both in terms of binding stoichiometry and ΔH/ΔS contributions, while the final G-quadruplex-metal complex architecture tended to merge for the examined sequences. These results underline the critical choice of experimental conditions and DNA sequence for practical use of thermodynamic data in the rational development of effective G-quadruplex binders.
Collapse
Affiliation(s)
- Caterina Musetti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - A. Paul Krapcho
- Department of Chemistry, University of Vermont, Burlington, Vermont, United States of America
| | - Manlio Palumbo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
23
|
Yang H, Zhong HJ, Leung KH, Chan DSH, Ma VPY, Fu WC, Nanjunda R, Wilson WD, Ma DL, Leung CH. Structure-based design of flavone derivatives as c-myc oncogene down-regulators. Eur J Pharm Sci 2013; 48:130-41. [DOI: 10.1016/j.ejps.2012.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 09/19/2012] [Accepted: 10/02/2012] [Indexed: 12/21/2022]
|
24
|
Ning J, Chen W, Li J, Peng Z, Wang J, Ni Z. Structural and energetic insights into sequence-specific interaction in DNA–drug recognition: development of affinity predictor and analysis of binding selectivity. J Mol Model 2012; 19:1573-82. [DOI: 10.1007/s00894-012-1722-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/03/2012] [Indexed: 11/28/2022]
|
25
|
Wang S, Nanjunda R, Aston K, Bashkin JK, Wilson WD. Correlation of local effects of DNA sequence and position of β-alanine inserts with polyamide-DNA complex binding affinities and kinetics. Biochemistry 2012; 51:9796-806. [PMID: 23167504 DOI: 10.1021/bi301327v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To improve our understanding of the effects of β-alanine (β) substitution and the number of heterocycles on DNA binding affinity and selectivity, we investigated the interactions of an eight-ring hairpin polyamide (PA) and two β derivatives as well as a six-heterocycle analogue with their cognate DNA sequence, 5'-TGGCTT-3'. Binding selectivity and the effects of β have been investigated with the cognate and five mutant DNAs. A set of powerful and complementary methods have been employed for both energetic and structural evaluations: UV melting, biosensor surface plasmon resonance, isothermal titration calorimetry, circular dichroism, and a DNA ligation ladder global structure assay. The reduced number of heterocycles in the six-ring PA weakens the binding affinity; however, the smaller PA aggregates significantly less than the larger PAs and allows us to obtain the binding thermodynamics. The PA-DNA binding enthalpy is large and negative with a large negative ΔC(p) and is the primary driving component of the Gibbs free energy. The complete SPR binding results clearly show that β substitutions can substantially weaken the binding affinity of hairpin PAs in a position-dependent manner. More importantly, the changes in the binding of PA to the mutant DNAs further confirm the position-dependent effects on the PA-DNA interaction affinity. Comparison of mutant DNA sequences also shows a different effect in recognition of T·A versus A·T base pairs. The effects of DNA mutations on binding of a single PA as well as the effects of the position of β substitution on binding tell a clear and very important story about sequence-dependent binding of PAs to DNA.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | |
Collapse
|
26
|
Chai J, Wang J, Xu Q, Hao F, Liu R. Multi-spectroscopic methods combined with molecular modeling dissect the interaction mechanisms of ractopamine and calf thymus DNA. MOLECULAR BIOSYSTEMS 2012; 8:1902-7. [PMID: 22610465 DOI: 10.1039/c2mb25095k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The toxic interaction of ractopamine (RAC) with calf thymus DNA (ct DNA) was studied in vitro using multi-spectroscopic methods and molecular modeling methods. The hypochromic effect without a noticeable shift in UV-vis absorption indicated that the minor groove binding mode existed in the interaction between RAC and DNA. The fluorescence quenching of RAC was observed with the increasing addition of DNA and was proved to be the static quenching. The binding constant and the binding site sizes were 4.13 × 10(3) and 0.97, respectively. The thermodynamic calculation demonstrated that the hydrogen bond and van der Waals were main acting forces. This result further confirmed the existence of groove binding mode. Afterwards, we found another interaction mode, electrostatic binding mode through the fluorescence polarization, ionic effects and denatured DNA experiments. Circular dichroism spectroscopy (CD) was then employed to monitor the conformation changes of DNA. Molecular modeling studies illustrated the visual display of the binding mode and the detailed information of the H-bond.
Collapse
Affiliation(s)
- Jun Chai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100, P.R.China
| | | | | | | | | |
Collapse
|
27
|
Lula I, De Sousa FB, Denadai ÂM, de Lima GF, Duarte HA, dos Mares Guia TR, Faljoni-Alario A, Santoro MM, de Camargo AC, dos Santos RA, Sinisterra RD. Interaction between bradykinin potentiating nonapeptide (BPP9a) and β-cyclodextrin: A structural and thermodynamic study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2011.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Kostjukov VV, Santiago AAH, Rodriguez FR, Castilla SR, Parkinson JA, Evstigneev MP. Energetics of ligand binding to the DNA minor groove. Phys Chem Chem Phys 2012; 14:5588-600. [DOI: 10.1039/c2cp40182g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Zhu Y, He J, Shi Q, Yang B, Tang M. Binding properties and conformational dynamics of reversible amidines with DNA from a theoretical view. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Abstract
The present study aimed to determine the in vitro biological efficacy and selectivity of 7 novel AIAs upon bloodstream trypomastigotes and intracellular amastigotes of Trypanosoma cruzi. The biological activity of these aromatic compounds was assayed for 48 and 24 h against intracellular parasites and bloodstream forms of T. cruzi (Y strain), respectively. Additional assays were also performed to determine their potential use in blood banks by treating the bloodstream parasites with the compounds diluted in mouse blood for 24 h at 4°C. Toxicity against mammalian cells was evaluated using primary cultures of cardiac cells incubated for 24 and 48 h with the AIAs and then cellular death rates were determined by MTT colorimetric assays. Our data demonstrated the outstanding trypanocidal effect of AIAs against T. cruzi, especially DB1853, DB1862, DB1867 and DB1868, giving IC50 values ranging between 16 and 70 nanomolar against both parasite forms. All AIAs presented superior efficacy to benznidazole and some, such as DB1868, also demonstrated promising activity as a candidate agent for blood prophylaxis. The excellent anti-trypanosomal efficacy of these novel AIAs against T. cruzi stimulates further in vivo studies and justifies the screening of new analogues with the goal of establishing a useful alternative therapy for Chagas disease.
Collapse
|
31
|
Kumar S, Bose D, Suryawanshi H, Sabharwal H, Mapa K, Maiti S. Specificity of RSG-1.2 peptide binding to RRE-IIB RNA element of HIV-1 over Rev peptide is mainly enthalpic in origin. PLoS One 2011; 6:e23300. [PMID: 21853108 PMCID: PMC3154333 DOI: 10.1371/journal.pone.0023300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/12/2011] [Indexed: 02/03/2023] Open
Abstract
Rev is an essential HIV-1 regulatory protein which binds to the Rev responsive element (RRE) present within the env gene of HIV-1 RNA genome. This binding facilitates the transport of the RNA to the cytoplasm, which in turn triggers the switch between viral latency and active viral replication. Essential components of this complex have been localized to a minimal arginine rich Rev peptide and stem IIB region of RRE. A synthetic peptide known as RSG-1.2 binds with high binding affinity and specificity to the RRE-IIB than the Rev peptide, however the thermodynamic basis of this specificity has not yet been addressed. The present study aims to probe the thermodynamic origin of this specificity of RSG-1.2 over Rev Peptide for RRE-IIB. The temperature dependent melting studies show that RSG-1.2 binding stabilizes the RRE structure significantly (ΔTm = 4.3°C), in contrast to Rev binding. Interestingly the thermodynamic signatures of the binding have also been found to be different for both the peptides. At pH 7.5, RSG-1.2 binds RRE-IIB with a Ka = 16.2±0.6×107 M−1 where enthalpic change ΔH = −13.9±0.1 kcal/mol is the main driving force with limited unfavorable contribution from entropic change TΔS = −2.8±0.1 kcal/mol. A large part of ΔH may be due to specific stacking between U72 and Arg15. In contrast binding of Rev (Ka = 3.1±0.4×107 M−1) is driven mainly by entropy (ΔH = 0 kcal/mol and TΔS = 10.2±0.2 kcal/mol) which arises from major conformational changes in the RNA upon binding.
Collapse
Affiliation(s)
- Santosh Kumar
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | - Debojit Bose
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | - Hemant Suryawanshi
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | - Harshana Sabharwal
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | - Koyeli Mapa
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | - Souvik Maiti
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
- * E-mail:
| |
Collapse
|
32
|
Liu Y, Kumar A, DEPAUW S, NHILI R, DAVID-CORDONNIER MH, Lee MP, Ismail MA, Farahat AA, Say M, Chackal-Catoen S, Batista-Parra A, Neidle S, Boykin DW, Wilson WD. Water-mediated binding of agents that target the DNA minor groove. J Am Chem Soc 2011; 133:10171-83. [PMID: 21627167 PMCID: PMC3165004 DOI: 10.1021/ja202006u] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small molecule complexes with DNA that incorporate linking water molecules are rare, and the DB921-DNA complex has provided a unique and well-defined system for analysis of water-mediated binding in the context of a DNA complex. DB921 has a benzimidazole-biphenyl system with terminal amidines that results in a linear conformation that does not possess the appropriate radius of curvature to match the minor groove shape and represents a new paradigm that does not fit the classical model of minor groove interactions. To better understand the role of the bound water molecule observed in the X-ray crystal structure of the DB921 complex, synthetic modifications have been made in the DB921 structure, and the interactions of the new compounds with DNA AT sites have been evaluated with an array of methods, including DNase I footprinting, biosensor-surface plasmon resonance, isothermal titration microcalorimetry, and circular dichroism. The interaction of a key compound, which has the amidine at the phenyl shifted from the para position in DB921 to the meta position, has also been examined by X-ray crystallography. The detailed structural, thermodynamic, and kinetic results provide valuable new information for incorporation of water molecules in the design of new lead scaffolds for targeting DNA in chemical biology and therapeutic applications.
Collapse
|
33
|
Prislan I, Khutsishvili I, Marky LA. Interaction of minor groove ligands with G-quadruplexes: thermodynamic contributions of the number of quartets, T-U substitutions, and conformation. Biochimie 2011; 93:1341-50. [PMID: 21684318 DOI: 10.1016/j.biochi.2011.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
In the presence of specific metal ions, DNA oligonucleotides containing guanine repeat sequences can adopt G-quadruplex structures. In this work, we used a combination of spectroscopic and calorimetric techniques to investigate the conformation and unfolding thermodynamics of the K(+)-form of five G-quadruplexes with sequences: d(G(2)T(2)G(2)TGTG(2)T(2)G(2)), G2, d(G(3)T(2)G(3)TGTG(3)T(2)G(3)), G3, their analogs where T is replaced with U, G2-U and G3-U, and r(G(2)U(2)G(2)UGUG(2)U(2)G(2)), rG2. These G-quadruplexes show CD spectra characteristic of the "chair" conformation (G2 and G2-U), or "basket" conformation (rG2); or a mixture of these two conformers (G3 and G3-U). Thermodynamic profiles show that the favorable folding of each G-quadruplex results from the typical compensation of a favorable enthalpy and unfavorable entropy contributions. G-quadruplex stability increase in the following order (in ΔG°(20)): rG2 (-1.3 kcal/mol) < G2 < G2-U <G3-U (chair) < G3 (chair) <G3-U (basket) < G3 (basket) (-8.6 kcal/mol), due to favorable enthalpy contribution from the stacking of G-quartets. We used ITC to determine thermodynamic binding profiles for the interaction of the minor groove ligands, netropsin and distamycin, with each G-quadruplex. Both ligands bind with high exothermic enthalpies (~ -10.8 kcal/mol), 1:1 stoichiometries, and weak affinities (~8 × 10(4) M(-1)). The similarity of the binding thermodynamic profiles, together with the absence of induced Cotton effects, indicates a surface or outside binding mode. We speculate that the top and bottom surfaces of the G-quadruplex comprise the potential MGBL binding sites, where the ligand lies on the surface forming van der Waals interactions with the guanines of the G-quartets and loop nucleotides.
Collapse
Affiliation(s)
- Iztok Prislan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | | | | |
Collapse
|
34
|
QSAR study on the interactions between antibiotic compounds and DNA by a hybrid genetic-based support vector machine. MONATSHEFTE FUR CHEMIE 2011. [DOI: 10.1007/s00706-011-0493-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Phillips T, Haq I, Thomas JA. Water-soluble amino derivatives of free-base dppz – syntheses and DNA binding studies. Org Biomol Chem 2011; 9:3462-70. [DOI: 10.1039/c0ob00869a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Fenley MO, Harris RC, Jayaram B, Boschitsch AH. Revisiting the association of cationic groove-binding drugs to DNA using a Poisson-Boltzmann approach. Biophys J 2010; 99:879-86. [PMID: 20682266 DOI: 10.1016/j.bpj.2010.04.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/15/2010] [Accepted: 04/27/2010] [Indexed: 11/26/2022] Open
Abstract
Proper modeling of nonspecific salt-mediated electrostatic interactions is essential to understanding the binding of charged ligands to nucleic acids. Because the linear Poisson-Boltzmann equation (PBE) and the more approximate generalized Born approach are applied routinely to nucleic acids and their interactions with charged ligands, the reliability of these methods is examined vis-à-vis an efficient nonlinear PBE method. For moderate salt concentrations, the negative derivative, SK(pred), of the electrostatic binding free energy, DeltaG(el), with respect to the logarithm of the 1:1 salt concentration, [M(+)], for 33 cationic minor groove drugs binding to AT-rich DNA sequences is shown to be consistently negative and virtually constant over the salt range considered (0.1-0.4 M NaCl). The magnitude of SK(pred) is approximately equal to the charge on the drug, as predicted by counterion condensation theory (CCT) and observed in thermodynamic binding studies. The linear PBE is shown to overestimate the magnitude of SK(pred), whereas the nonlinear PBE closely matches the experimental results. The PBE predictions of SK(pred) were not correlated with DeltaG(el) in the presence of a dielectric discontinuity, as would be expected from the CCT. Because this correlation does not hold, parameterizing the PBE predictions of DeltaG(el) against the reported experimental data is not possible. Moreover, the common practice of extracting the electrostatic and nonelectrostatic contributions to the binding of charged ligands to biopolyelectrolytes based on the simple relation between experimental SK values and the electrostatic binding free energy that is based on CCT is called into question by the results presented here. Although the rigid-docking nonlinear PB calculations provide reliable predictions of SK(pred), at least for the charged ligand-nucleic acid complexes studied here, accurate estimates of DeltaG(el) will require further development in theoretical and experimental approaches.
Collapse
Affiliation(s)
- Marcia O Fenley
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA.
| | | | | | | |
Collapse
|
37
|
Munde M, Kumar A, Nhili R, Depauw S, David-Cordonnier MH, Ismail MA, Stephens CE, Farahat AA, Batista-Parra A, Boykin DW, Wilson WD. DNA minor groove induced dimerization of heterocyclic cations: compound structure, binding affinity, and specificity for a TTAA site. J Mol Biol 2010; 402:847-64. [PMID: 20713062 DOI: 10.1016/j.jmb.2010.08.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/05/2010] [Accepted: 08/09/2010] [Indexed: 12/24/2022]
Abstract
With the increasing number and variations of genome sequences available, control of gene expression with synthetic, cell-permeable molecules is within reach. The variety of sequence-specific binding agents is, however, still quite limited. Many minor groove binding agents selectivity recognize AT over GC sequences but have less ability to distinguish among different AT sequences. The goal with this article is to develop compounds that can bind selectively to different AT sequences. A number of studies indicate that AATT and TTAA sequences have significantly different physical and interaction properties and different requirements for minor groove recognition. Although it has been difficult to get minor groove binding at TTAA, DB293, a phenyl-furan-benzimidazole diamidine, was found to bind as a strong, cooperative dimer at TTAA but with no selectivity over AATT. In order to improve selectivity, we made modifications to each unit of DB293. Binding affinities and stoichiometries obtained from biosensor-surface plasmon resonance experiments show that DB1003, a furan-furan-benzimidazole diamidine, binds strongly to TTAA as a dimer and has selectivity (K(TTAA)/K(AATT)=6). CD and DNase I footprinting studies confirmed the preference of this compound for TTAA. In summary, (i) a favorable stacking surface provided by the pi system, (ii) H-bond donors to interact with TA base pairs at the floor of the groove provided by a benzimidazole (or indole) -NH and amidines, and (iii) appropriate curvature of the dimer complex to match the curvature of the minor groove play important roles in differentiating the TTAA and AATT minor grooves.
Collapse
Affiliation(s)
- Manoj Munde
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dolenc J, Gerster S, van Gunsteren WF. Molecular Dynamics Simulations Shed Light on the Enthalpic and Entropic Driving Forces That Govern the Sequence Specific Recognition between Netropsin and DNA. J Phys Chem B 2010; 114:11164-72. [DOI: 10.1021/jp100483f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jožica Dolenc
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland, and Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Sarah Gerster
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland, and Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Wilfred F. van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland, and Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
39
|
Jain AK, Bhattacharya S. Groove Binding Ligands for the Interaction with Parallel-Stranded ps-Duplex DNA and Triplex DNA. Bioconjug Chem 2010; 21:1389-403. [PMID: 20509695 DOI: 10.1021/bc900247s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Akash K. Jain
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India, Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India, Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| |
Collapse
|
40
|
Xi H, Kumar S, Dosen-Micovic L, Arya DP. Calorimetric and spectroscopic studies of aminoglycoside binding to AT-rich DNA triple helices. Biochimie 2010; 92:514-29. [PMID: 20167243 PMCID: PMC3977217 DOI: 10.1016/j.biochi.2010.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 02/08/2010] [Indexed: 11/21/2022]
Abstract
Calorimetric and fluorescence techniques were used to characterize the binding of aminoglycosides-neomycin, paromomycin, and ribostamycin, with 5'-dA(12)-x-dT(12)-x-dT(12)-3' intramolecular DNA triplex (x = hexaethylene glycol) and poly(dA).2poly(dT) triplex. Our results demonstrate the following features: (1) UV thermal analysis reveals that the T(m) for triplex decreases with increasing pH value in the presence of neomycin, while the T(m) for the duplex remains unchanged. (2) The binding affinity of neomycin decreases with increased pH, although there is an increase in observed binding enthalpy. (3) ITC studies conducted in two buffers (sodium cacodylate and MOPS) yield the number of protonated drug amino groups (Deltan) as 0.29 and 0.40 for neomycin and paromomycin interaction with 5'-dA(12)-x-dT(12)-x-dT(12)-3', respectively. (4) The specific heat capacity change (DeltaC(p)) determined by ITC studies is negative, with more negative values at lower salt concentrations. From 100 mM to 250 mM KCl, the DeltaC(p) ranges from -402 to -60 cal/(mol K) for neomycin. At pH 5.5, a more positive DeltaC(p) is observed, with a value of -98 cal/(mol K) at 100 mM KCl. DeltaC(p) is not significantly affected by ionic strength. (5) Salt dependence studies reveal that there are at least three amino groups of neomycin participating in the electrostatic interactions with the triplex. (6) FID studies using thiazole orange were used to derive the AC(50) (aminoglycoside concentration needed to displace 50% of the dye from the triplex) values. Neomycin shows a seven fold higher affinity than paromomycin and eleven fold higher affinity than ribostamycin at pH 6.8. (7) Modeling studies, consistent with UV and ITC results, show the importance of an additional positive charge in triplex recognition by neomycin. The modeling and thermodynamic studies indicate that neomycin binding to the DNA triplex depends upon significant contributions from charge as well as shape complementarity of the drug to the DNA triplex Watson-Hoogsteen groove.
Collapse
Affiliation(s)
- Hongjuan Xi
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Sunil Kumar
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Ljiljana Dosen-Micovic
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Dev P. Arya
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
41
|
Denadai ÂM, Santoro MM, Texeira AV, Sinisterra RD. New insights regarding the cyclodextrin/AAS self-assembly: A molar ratio dependent system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2009.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Hossain M, Suresh Kumar G. DNA intercalation of methylene blue and quinacrine: new insights into base and sequence specificity from structural and thermodynamic studies with polynucleotides. MOLECULAR BIOSYSTEMS 2009; 5:1311-22. [PMID: 19823747 DOI: 10.1039/b909563b] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding of the known DNA intercalators methylene blue and quinacrine with four sequence specific polynucleotides, viz. poly(dG-dC).poly(dG-dC), poly(dG).poly(dC), poly(dA-dT).poly(dA-dT) and poly(dA).poly(dT), have been compared using absorbance, fluorescence, competition dialysis and thermal melting and the thermodynamic aspects of the interaction studied. In all the cases, non-cooperative binding phenomena obeying neighbor exclusion principle was observed though the affinity was remarkably higher for quinacrine and the nature of the binding was characterized to be true intercalation. The data on the salt dependence of binding derived from the plot of log Kvs. log[Na(+)] revealed a slope of around 1.0, consistent with the values predicted by the theories for the binding of monovalent cations, and contained contributions from polyelectrolytic and non-polyelectrolytic forces. The bindings were characterized by strong stabilization of the polynucleotides against thermal strand separation in both optical melting as well as differential scanning calorimetry studies. The data analyzed from the thermal melting and isothermal titration calorimetry studies were in close proximity to those obtained from absorption spectral titration data. Isothermal titration calorimetry results revealed the bindings to poly(dG-dC).poly(dG-dC), poly(dG).poly(dC) and poly(dA-dT).poly(dA-dT) to be exothermic and favoured by both negative enthalpy and large favourable positive entropy changes, while that to poly(dA).poly(dT) was endothermic and entropy driven. The heat capacity changes obtained from temperature dependence of enthalpy gave negative values to all polynucleotides. New insights on the molecular aspects of interaction of these molecules to DNA have emerged from these studies.
Collapse
Affiliation(s)
- Maidul Hossain
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology (Council of Scientific and Industrial Research), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | |
Collapse
|
43
|
Tevis DS, Kumar A, Stephens CE, Boykin DW, Wilson WD. Large, sequence-dependent effects on DNA conformation by minor groove binding compounds. Nucleic Acids Res 2009; 37:5550-8. [PMID: 19578063 PMCID: PMC2760788 DOI: 10.1093/nar/gkp558] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To determine what topological changes antiparasitic heterocyclic dications can have on kinetoplast DNA, we have constructed ligation ladders, with phased A5 and ATATA sequences in the same flanking sequence context, as models. Bending by the A5 tract is observed, as expected, while the ATATA sequence bends DNA very little. Complexes of these DNAs with three diamidines containing either furan, thiophene or selenophene groups flanked by phenylamidines were investigated along with netropsin. With the bent A5 ladder the compounds caused either a slight increase or decrease in the bending angle. Surprisingly, however, with ATATA all of the compounds caused significant bending, to values close to or even greater than the A5 bend angle. Results with a mixed cis sequence, which has one A5 and one ATATA, show that the compounds bend ATATA in the same direction as a reference A5 tract, that is, into the minor groove. These results are interpreted in terms of a groove structure for A5 which is largely pre-organized for a fit to the heterocyclic amidines. With ATATA the groove is intrinsically wider and must close to bind the compounds tightly. The conformational change at the binding site then leads to significant bending of the alternating DNA sequence.
Collapse
Affiliation(s)
- Denise S Tevis
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | | | | | | | | |
Collapse
|
44
|
Purfield AE, Tidwell RR, Meshnick SR. The diamidine DB75 targets the nucleus of Plasmodium falciparum. Malar J 2009; 8:104. [PMID: 19442305 PMCID: PMC2689252 DOI: 10.1186/1475-2875-8-104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 05/14/2009] [Indexed: 11/10/2022] Open
Abstract
Background DB289, [2,5-bis(4-amidinophenyl)furan bis-O-methylamidoxime], is a broad spectrum anti-parasitic compound which has been shown to be effective against malaria in recent clinical trials. DB75, [2,5-bis(4-amidinophenyl)furan], is the active metabolite of this drug. The objective of this study was to determine the mechanism of action of DB75 in Plasmodium falciparum. Methods Live parasites were observed by confocal microscopy after treatment with organelle specific dyes and DB75, an inherently fluorescent compound. Parasites were exposed to DB75 and assessed for growth and morphological changes over time using blood smears and light microscopy. Also, to determine if DB75 affects gene transcription, real time PCR was used to monitor transcript levels over time for six developmentally expressed genes, including trophozoite antigen R45-like (PFD1175w), lactate dehydrogenase (PF13_0141), DNA primase (PFI0530c), isocitrate dehydrogenase (PF13_0242), merozoite surface protein-1 (PFI1475w), and merozoite surface protein-7 (PF13_0197). Results The results show that DB75 localizes in the parasite nucleus but not in other organelles. Once rings are exposed, parasites mature to the trophozoite stage and stall. No stage-dependent or gene-specific inhibition of transcription was seen. However, DB75 delayed peak transcription of trophozoite-stage genes. Conclusion Taken together, DB75 appears to concentrate in the nucleus and delay parasite maturation.
Collapse
Affiliation(s)
- Anne E Purfield
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| | | | | |
Collapse
|
45
|
Rahimian M, Kumar A, Say M, Bakunov SA, Boykin DW, Tidwell RR, Wilson WD. Minor groove binding compounds that jump a gc base pair and bind to adjacent AT base pair sites. Biochemistry 2009; 48:1573-83. [PMID: 19173620 DOI: 10.1021/bi801944g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most A/T specific heterocyclic diamidine derivatives need at least four A/T base pairs for tight binding to the DNA minor groove. Addition of a GC base pair to A/T sequences typically causes a large decrease in binding constant. The ability to target biologically important sequences of DNA could be significantly increased if compounds that could recognize A/T sites with an intervening GC base pair could be designed. The kinetoplast DNA sequence of parasitic microorganisms, for example, contains numerous three A/T binding sites that are separated by a single G. A series of compounds were prepared to target the AAAGTTT sequence as a model system for discovery of "G-jumpers". The new synthetic compounds have two aromatic-amidine groups for A/T recognition, and these are connected through an oxy-methylene linker to cross the GC. CD experiments indicated a minor groove binding mode, as expected, for these compounds. T(max), surface plasmon resonance, and isothermal titration calorimetry experiments revealed 1:1 binding to the AAAGTTT sequence with an affinity that depends on compound structure. Benzimidazole derivatives gave the strongest binding and had generally good solution properties. The binding affinities to the classical AATT sequence were similar to that for AAAGTTT for these extended compounds, but binding was weaker to the AAAGCTTT sequence with two intervening GC base pairs. Binding to both AAAGTTT and AATT was enthalpy driven for strong binding benzimidazole derivatives.
Collapse
Affiliation(s)
- Maryam Rahimian
- Department of Chemistry, Georgia State University, P.O. Box 4098, Atlanta, Georgia 30302, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Effect of 3,4-ethylenedioxy-extension of thiophene core on the DNA/RNA binding properties and biological activity of bisbenzimidazole amidines. Bioorg Med Chem 2009; 17:2544-54. [PMID: 19231203 DOI: 10.1016/j.bmc.2009.01.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/20/2009] [Accepted: 01/22/2009] [Indexed: 11/22/2022]
Abstract
Novel bisbenzimidazoles (4-6), characterized by 3,4-ethylenedioxy-extension of thiophene core, revealed pronounced affinity and strong thermal stabilization effect toward ds-DNA. They interact within ds-DNA grooves as dimmers or even oligomers and agglomerate along ds-RNA. Compounds 4-6 have shown moderate to strong antiproliferative effect toward panel of eight carcinoma cell lines. Compound 5 displayed the best inhibitory potential and in equitoxic concentration (IC(50)=1 x 10(-6)M) induced accumulation of cells in G2/M phase after 48 h of incubation. Fluorescence microscopy showed that 5 entered into live HeLa cells within 30 min, but did not accumulate in nuclei even after 2.5h. Compound 5 inhibited the growth of Trypanosome cruzi epimastigotes (IC(50)=4.3 x 10(-6)M).
Collapse
|
47
|
Abstract
Targeting the minor groove of DNA through binding to a small molecule has long been considered an important molecular-recognition strategy in biology. A wide range of synthetic heterocyclic molecules bind noncovalently in the minor groove of the double helix and are also effective against a number of human and animal diseases. A classic structural concept, the isohelicity principle, has guided much of this work: such heterocyclic molecules require a shape that complements the convex surface of the minor groove. Researchers have used this principle to design molecules that can read DNA sequences. This principle also predicts that molecules that lack the complementary shape requirement would only bind weakly to DNA. Recently, however, researchers have unexpectedly found that some essentially linear compounds, which do not have this feature, can have high DNA affinity. In this Account, we discuss an alternative recognition concept based on these new findings. We demonstrate that highly structured water molecules can play a key role in mediating between the ligand and DNA minor groove without loss of binding affinity. Combined structural and thermodynamic approaches to understanding the behavior of these molecules have shown that there are different categories of bound water in their DNA complexes. For example, application of this water-bridging concept to the phenylamidine platform has resulted in the discovery of molecules with high levels of biological activity and low nonspecific toxicity. Some of these molecules are now in advanced clinical trials.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - Stephen Neidle
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, London WC1N 1AX, UK
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
48
|
Sato Y, Nishizawa S, Yoshimoto K, Seino T, Ichihashi T, Morita K, Teramae N. Influence of substituent modifications on the binding of 2-amino-1,8-naphthyridines to cytosine opposite an AP site in DNA duplexes: thermodynamic characterization. Nucleic Acids Res 2009; 37:1411-22. [PMID: 19136458 PMCID: PMC2655693 DOI: 10.1093/nar/gkn1079] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Here, we report on a significant effect of substitutions on the binding affinity of a series of 2-amino-1,8-naphthyridines, i.e., 2-amino-1,8-naphthyridine (AND), 2-amino-7-methyl-1,8-naphthyridine (AMND), 2-amino-5,7-dimethyl-1,8-naphthyridine (ADMND) and 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND), all of which can bind to cytosine opposite an AP site in DNA duplexes. Fluorescence titration experiments show that the binding affinity for cytosine is effectively enhanced by the introduction of methyl groups to the naphthyridine ring, and the 1:1 binding constant (106 M−1) follows in the order of AND (0.30) < AMND (2.7) < ADMND (6.1) < ATMND (19) in solutions containing 110 mM Na+ (pH 7.0, at 20°C). The thermodynamic parameters obtained by isothermal titration calorimetry experiments indicate that the introduction of methyl groups effectively reduces the loss of binding entropy, which is indeed responsible for the increase in the binding affinity. The heat capacity change (ΔCp), as determined from temperature dependence of the binding enthalpy, is found to be significantly different between AND (−161 cal/mol K) and ATMND (−217 cal/mol K). The hydrophobic contribution appears to be a key force to explain the observed effect of substitutions on the binding affinity when the observed binding free energy (ΔGobs) is dissected into its component terms.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, CREST, Japan Science and Technology Agency, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Arafa RK, Ismail MA, Munde M, Wilson WD, Wenzler T, Brun R, Boykin DW. Novel linear triaryl guanidines, N-substituted guanidines and potential prodrugs as antiprotozoal agents. Eur J Med Chem 2008; 43:2901-8. [PMID: 18455271 PMCID: PMC3815585 DOI: 10.1016/j.ejmech.2008.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 11/02/2007] [Accepted: 02/08/2008] [Indexed: 11/21/2022]
Abstract
A series of triaryl guanidines and N-substituted guanidines designed to target the minor groove of DNA were synthesized and evaluated as antiprotozoal agents. Selected carbamate prodrugs of these guanidines were assayed for their oral efficacy. The linear triaryl bis-guanidines 6a,b were prepared from their corresponding diamines 4a,b through the intermediate BOC protected bis-guanidines 5a,b followed by acid catalyzed deprotection. The N-substituted guanidino analogues 9c-f were obtained in three steps starting by reacting the diamines 4a,b with ethyl isothiocyanatoformate to give the carbamoyl thioureas 7a,b. Subsequent condensation of 7a,b with various amines in the presence of EDCI provided the carbamoyl N-substituted guanidine intermediates 8a-f which can also be regarded as potential prodrugs for the guanidino derivatives. Compounds 9c-f were obtained via the base catalyzed decarbamoylation of 8a-f. The DNA binding affinities for the target dicationic bis-guanidines were assessed by DeltaT(m) values. In vitro antiprotozoal screening of the new compounds showed that derivatives 6a, 9c and 9e possess high to moderate activity against Trypanosoma brucei rhodesiense (T.b.r.) and Plasmodium falciparum (P.f.). While the prodrugs did not yield cures upon oral administration in the antitrypanosomal STIB900 mouse model, compounds 8a and 8c prolonged the survival of the treated mice.
Collapse
Affiliation(s)
- Reem K. Arafa
- Department of Chemistry, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Mohamed A. Ismail
- Department of Chemistry, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Manoj Munde
- Department of Chemistry, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303-3083, USA
| | - W. David Wilson
- Department of Chemistry, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Tanja Wenzler
- Parasite Chemotherapy, Swiss Tropical Institute, Basel CH4002, Switzerland
| | - Reto Brun
- Parasite Chemotherapy, Swiss Tropical Institute, Basel CH4002, Switzerland
| | - David W. Boykin
- Department of Chemistry, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303-3083, USA
| |
Collapse
|
50
|
Liu Y, Collar CJ, Kumar A, Stephens CE, Boykin DW, Wilson WD. Heterocyclic diamidine interactions at AT base pairs in the DNA minor groove: effects of heterocycle differences, DNA AT sequence and length. J Phys Chem B 2008; 112:11809-18. [PMID: 18717551 PMCID: PMC2556899 DOI: 10.1021/jp804048c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Given the increasing significance of diamidines as DNA-targeted therapeutics and biotechnology reagents, it is important to establish the variations in thermodynamic quantities that characterize the interactions of closely related compounds to different sequence AT binding sites. In this study, an array of methods including biosensor-surface plasmon resonance (SPR), isothermal titration microcalorimetry (ITC), circular dichroism (CD), thermal melting (Tm) and molecular modeling have been used to characterize the binding of dicationic diamidines related to DB75 (amidine-phenyl-furan-phenyl-amidine) with alternating and nonalternating AT sequences. Conversion of the central furan of DB75 to other similar groups, such as thiophene or selenophene, can yield compounds with increased affinity and sequence binding selectivity for the minor groove. Calorimetric measurements revealed that the thermodynamic parameters (Delta G, Delta H, Delta S) that drive diamidine binding to alternating and nonalternating oligomers can be quite different and depend on both DNA sequence and length. Small changes in a compound can have major effects on DNA interactions. By choosing an appropriate central group it is possible to "tune" the shape of the molecule to match DNA for enhanced affinity and sequence recognition.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | | | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - Chad E. Stephens
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - David W. Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|