1
|
Wu C, Raheem IT, Nahas DD, Citron M, Kim PS, Montefiori DC, Ottinger EA, Hepler RW, Hrin R, Patel SB, Soisson SM, Joyce JG. Stabilized trimeric peptide immunogens of the complete HIV-1 gp41 N-heptad repeat and their use as HIV-1 vaccine candidates. Proc Natl Acad Sci U S A 2024; 121:e2317230121. [PMID: 38768344 PMCID: PMC11145295 DOI: 10.1073/pnas.2317230121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/29/2024] [Indexed: 05/22/2024] Open
Abstract
Efforts to develop an HIV-1 vaccine include those focusing on conserved structural elements as the target of broadly neutralizing monoclonal antibodies. MAb D5 binds to a highly conserved hydrophobic pocket on the gp41 N-heptad repeat (NHR) coiled coil and neutralizes through prevention of viral fusion and entry. Assessment of 17-mer and 36-mer NHR peptides presenting the D5 epitope in rodent immunogenicity studies showed that the longer peptide elicited higher titers of neutralizing antibodies, suggesting that neutralizing epitopes outside of the D5 pocket may exist. Although the magnitude and breadth of neutralization elicited by NHR-targeting antigens are lower than that observed for antibodies directed to other epitopes on the envelope glycoprotein complex, it has been shown that NHR-directed antibodies are potentiated in TZM-bl cells containing the FcγRI receptor. Herein, we report the design and evaluation of covalently stabilized trimeric 51-mer peptides encompassing the complete gp41 NHR. We demonstrate that these peptide trimers function as effective antiviral entry inhibitors and retain the ability to present the D5 epitope. We further demonstrate in rodent and nonhuman primate immunization studies that our 51-mer constructs elicit a broader repertoire of neutralizing antibody and improved cross-clade neutralization of primary HIV-1 isolates relative to 17-mer and 36-mer NHR peptides in A3R5 and FcγR1-enhanced TZM-bl assays. These results demonstrate that sensitive neutralization assays can be used for structural enhancement of moderately potent neutralizing epitopes. Finally, we present expanded trimeric peptide designs which include unique low-molecular-weight scaffolds that provide versatility in our immunogen presentation strategy.
Collapse
Affiliation(s)
- Chengwei Wu
- Discovery Chemistry, Merck & Co., Inc., West Point, PA19486
| | | | | | - Michael Citron
- Discovery Biology, Merck & Co., Inc., West Point, PA19486
| | - Peter S. Kim
- Office of the President, Merck & Co., Inc., West Point, PA19486
| | | | | | | | - Renee Hrin
- Discovery Biology, Merck & Co., Inc., West Point, PA19486
| | | | | | - Joseph G. Joyce
- Process Research and Development, Merck & Co., Inc., West Point, PA19486
| |
Collapse
|
2
|
Tuerkova A, Kasson PM. Computational methods to study enveloped viral entry. Biochem Soc Trans 2021; 49:2527-2537. [PMID: 34783344 PMCID: PMC10184508 DOI: 10.1042/bst20210190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
The protein-membrane interactions that mediate viral infection occur via loosely ordered, transient assemblies, creating challenges for high-resolution structure determination. Computational methods and in particular molecular dynamics simulation have thus become important adjuncts for integrating experimental data, developing mechanistic models, and suggesting testable hypotheses regarding viral function. However, the large molecular scales of virus-host interaction also create challenges for detailed molecular simulation. For this reason, continuum membrane models have played a large historical role, although they have become less favored for high-resolution models of protein assemblies and lipid organization. Here, we review recent progress in the field, with an emphasis on the insight that has been gained using a mixture of coarse-grained and atomic-resolution molecular dynamics simulations. Based on successes and challenges to date, we suggest a multiresolution strategy that should yield the best mixture of computational efficiency and physical fidelity. This strategy may facilitate further simulations of viral entry by a broader range of viruses, helping illuminate the diversity of viral entry strategies and the essential common elements that can be targeted for antiviral therapies.
Collapse
Affiliation(s)
- Alzbeta Tuerkova
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, U.S.A
| |
Collapse
|
3
|
Structure, interactions and membrane topology of HIV gp41 ectodomain sequences. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183274. [DOI: 10.1016/j.bbamem.2020.183274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 11/21/2022]
|
4
|
Klug YA, Rotem E, Schwarzer R, Shai Y. Mapping out the intricate relationship of the HIV envelope protein and the membrane environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:550-560. [PMID: 27793589 DOI: 10.1016/j.bbamem.2016.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023]
Abstract
The HIV gp160 envelope fusion protein is situated in the viral membrane and mediates virus entry into its host cell. Increasing evidence suggests that virtually all parts of the HIV envelope are structurally and functionally dependent on membranes. Protein-lipid interactions and membrane properties influence the dynamics of a manifold of gp160 biological activities such as membrane fusion, immune suppression and gp160 incorporation into virions during HIV budding and assembly. In the following we will summarize our current understanding of this interdependence between membrane interaction, structural conformation and functionality of the different gp160 domains. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Yoel A Klug
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Etai Rotem
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Roland Schwarzer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
The HIV gp41 pocket binding domain enables C-terminal heptad repeat transition from mediating membrane fusion to immune modulation. Biochem J 2016; 473:911-8. [DOI: 10.1042/bj20151252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/28/2016] [Indexed: 01/29/2023]
Abstract
We found that the HIV gp41 pocket binding domain (PBD) promotes the transition from fusion facilitation to an interaction with the T-cell receptor (TCR) leading to T-cell inhibition by stabilizing an α-helical conformation in the membrane.
Collapse
|
6
|
Pacheco-Martínez E, Figueroa-Medina E, Villarreal C, Cocho G, Medina-Franco JL, Méndez-Lucio O, Huerta L. Statistical correlation of nonconservative substitutions of HIV gp41 variable amino acid residues with the R5X4 HIV-1 phenotype. Virol J 2016; 13:28. [PMID: 26879054 PMCID: PMC4754869 DOI: 10.1186/s12985-016-0486-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The interaction of the envelope glycoprotein of HIV-1 (gp120/gp41) with coreceptor molecules has important implications for specific cellular targeting and pathogenesis. Experimental and theoretical evidences have shown a role for gp41 in coreceptor tropism, although there is no consensus about the positions involved. Here we analyze the association of physicochemical properties of gp41 amino acid residues with viral tropism (X4, R5, and R5X4) using a large set of HIV-1 sequences. Under the assumption that conserved regions define the complex structural features essential for protein function, we focused our search only on amino acids in the gp41 variable regions. METHODS Gp41 amino acid sequences of 2823 HIV-1 strains from all clades with known coreceptor tropism were retrieved from Los Alamos HIV Database. Consensus sequences were constructed for homologous sequences (those obtained from the same patient and having the same tropism) in order to avoid bias due to sequence overrepresentation, and the variability (entropy) per site was determined. Comparisons of hydropathy index (HI) and charge (Q) of amino acid residues at highly variable positions between coreceptor groups were performed using two non-parametrical tests and Benjamini-Hochberg correction. Pearson's correlation analysis was performed to determine covariance of HI and Q values. RESULTS Calculation of variability per site rendered 58 highly variable amino acid positions. Of these, statistical analysis rendered significantly different HI or Q only for the R5 vs. R5X4 comparison at twelve positions: 535, 602, 619, 636, 640, 641, 658, 662, 667, 723, 756 and 841. The largest differences in particular amino acid frequencies between coreceptor groups were found at 619, 636, 640, 641, 662, 723 and 756. A hydrophobic tendency of residues 619, 640, 641, 723 and 756, along with a hydrophilic/charged tendency at residues 636 and 662 was observed in R5X4 with respect to R5 sequences. HI of position 640 covariated with that of 602, 619, 636, 662, and 756. CONCLUSIONS Variability and significant correlations of physicochemical properties with viral phenotype suggest that substitutions at residues in the loop (602 and 619), the HR2 (636, 640, 641, 662), and the C-terminal tail (723, 756) of gp41 may contribute to phenotype of R5X4 strains.
Collapse
Affiliation(s)
- Elena Pacheco-Martínez
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Distrito Federal, 04510, México
| | - Evangelina Figueroa-Medina
- Unidad de Radio Oncología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Avenida Vasco de Quiroga No.15, ᅟDistrito Federal, 14080, México
| | - Carlos Villarreal
- Departmento de Física Teórica, Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, ᅟDistrito Federal, 04510, México.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Univesitaria, ᅟDistrito Federal, 04510, México
| | - Germinal Cocho
- Departmento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, ᅟDistrito Federal, 04510, México.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Univesitaria, ᅟDistrito Federal, 04510, México
| | - José L Medina-Franco
- Departmento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, ᅟDistrito Federal, 04510, México
| | - Oscar Méndez-Lucio
- Departmento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, ᅟDistrito Federal, 04510, México
| | - Leonor Huerta
- Departmento de Immunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Distrito Federal, México.
| |
Collapse
|
7
|
Jiao J, Rebane AA, Ma L, Gao Y, Zhang Y. Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition. Proc Natl Acad Sci U S A 2015; 112:E2855-64. [PMID: 26038562 PMCID: PMC4460471 DOI: 10.1073/pnas.1424995112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
HIV-1 glycoprotein 41 (gp41) mediates viral entry into host cells by coupling its folding energy to membrane fusion. Gp41 folding is blocked by fusion inhibitors, including the commercial drug T20, to treat HIV/AIDS. However, gp41 folding intermediates, energy, and kinetics are poorly understood. Here, we identified the folding intermediates of a single gp41 trimer-of-hairpins and measured their associated energy and kinetics using high-resolution optical tweezers. We found that folding of gp41 hairpins was energetically independent but kinetically coupled: Each hairpin contributed a folding energy of ∼-23 kBT, but folding of one hairpin successively accelerated the folding rate of the next one by ∼20-fold. Membrane-mimicking micelles slowed down gp41 folding and reduced the stability of the six-helix bundle. However, the stability was restored by cooperative folding of the membrane-proximal external region. Surprisingly, T20 strongly inhibited gp41 folding by actively displacing the C-terminal hairpin strand in a force-dependent manner. The inhibition was abolished by a T20-resistant gp41 mutation. The energetics and kinetics of gp41 folding established by us provides a basis to understand viral membrane fusion, infection, and therapeutic intervention.
Collapse
Affiliation(s)
- Junyi Jiao
- Department of Cell Biology, Yale University, School of Medicine, New Haven, CT 06511; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06511
| | - Aleksander A Rebane
- Department of Cell Biology, Yale University, School of Medicine, New Haven, CT 06511; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06511; Department of Physics, Yale University, New Haven, CT 06511
| | - Lu Ma
- Department of Cell Biology, Yale University, School of Medicine, New Haven, CT 06511
| | - Ying Gao
- Department of Cell Biology, Yale University, School of Medicine, New Haven, CT 06511; National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yongli Zhang
- Department of Cell Biology, Yale University, School of Medicine, New Haven, CT 06511; Nanobiology Institute, Yale University, West Haven, CT 06477
| |
Collapse
|
8
|
Chu S, Kaur H, Nemati A, Walsh JD, Partida V, Zhang SQ, Gochin M. Swapped-domain constructs of the glycoprotein-41 ectodomain are potent inhibitors of HIV infection. ACS Chem Biol 2015; 10:1247-57. [PMID: 25646644 DOI: 10.1021/cb501021j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The conformational rearrangement of N- and C-heptad repeats (NHR, CHR) of the HIV-1 glycoprotein-41 (gp41) ectodomain into a trimer of hairpins triggers virus-cell fusion by bringing together membrane-spanning N- and C-terminal domains. Peptides derived from the NHR and CHR inhibit fusion by targeting a prehairpin intermediate state of gp41. Typically, peptides derived from the CHR are low nanomolar inhibitors, whereas peptides derived from the NHR are low micromolar inhibitors. Here, we describe the inhibitory activity of swapped-domain gp41 mimics of the form CHR-loop-NHR, which were designed to form reverse hairpin trimers exposing NHR grooves. We observed low nanomolar inhibition of HIV fusion in constructs that possessed the following properties: an extended NHR C-terminus, an exposed conserved hydrophobic pocket on the NHR, high helical content, and trimer stability. Low nanomolar activity was independent of CHR length. CD studies in membrane mimetic dodecylphosphocholine micelles suggested that bioactivity could be related to the ability of the inhibitors to interact with a membrane-associated prehairpin intermediate. The swapped-domain design resolves the problem of unstable and weakly active NHR peptides and suggests a different mechanism of action from that of CHR peptides in inhibition of HIV-1 fusion.
Collapse
Affiliation(s)
- Shidong Chu
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Hardeep Kaur
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Ariana Nemati
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Joseph D. Walsh
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Vivian Partida
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Shao-Qing Zhang
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
| | - Miriam Gochin
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| |
Collapse
|
9
|
Roche J, Louis JM, Aniana A, Ghirlando R, Bax A. Complete dissociation of the HIV-1 gp41 ectodomain and membrane proximal regions upon phospholipid binding. JOURNAL OF BIOMOLECULAR NMR 2015; 61:235-48. [PMID: 25631354 PMCID: PMC4398632 DOI: 10.1007/s10858-015-9900-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/17/2015] [Indexed: 05/22/2023]
Abstract
The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. Strong lipid affinity of the ectodomain suggests that its heptad repeat regions play an active role in destabilizing membranes by directly binding to the lipid bilayers and thereby lowering the free-energy barrier for membrane fusion. In such a model, immediately following the shedding of gp120, the N-heptad and C-heptad helices dissociate and melt into the host cell and viral membranes, respectively, pulling the destabilized membranes into juxtaposition, ready for fusion. Post-fusion, reaching the final 6-helix bundle (6 HB) conformation then involves competition between intermolecular interactions needed for formation of the symmetric 6 HB trimer and the membrane affinity of gp41's ectodomain, including its membrane-proximal regions. Our solution NMR study of the structural and dynamic properties of three constructs containing the ectodomain of gp41 with and without its membrane-proximal regions suggests that these segments do not form inter-helical interactions until the very late steps of the fusion process. Interactions between the polar termini of the heptad regions, which are not associating with the lipid surface, therefore may constitute the main driving force initiating formation of the final post-fusion states. The absence of significant intermolecular ectodomain interactions in the presence of dodecyl phosphocholine highlights the importance of trimerization of gp41's transmembrane helix to prevent complete dissociation of the trimer during the course of fusion.
Collapse
Affiliation(s)
- Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | | | | | | | | |
Collapse
|
10
|
Lakomek NA, Kaufman JD, Stahl SJ, Wingfield PT. HIV-1 envelope protein gp41: an NMR study of dodecyl phosphocholine embedded gp41 reveals a dynamic prefusion intermediate conformation. Structure 2014; 22:1311-1321. [PMID: 25132083 DOI: 10.1016/j.str.2014.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/21/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022]
Abstract
Human immunodeficiency viral (HIV-1) fusion is mediated by the viral envelope gp120/gp41 complex (ENVelope glycoprotein). After gp120 shedding, gp41 is exposed and elicits membrane fusion via a cascade of conformational changes. In contrast to prefusion and postfusion conformation, little is known about any intermediate conformation. We report on a solution NMR investigation of homotrimeric HIV-1 gp41(27-194), comprising the transmembrane region and reconstituted in dodecyl phosphocholine (DPC) micelles. The protein is mainly α-helical, but experiences internal dynamics on the nanosecond and micro to millisecond time scale and transient α-helical behavior for certain residues in the N-terminal heptad repeat (NHR). Strong lipid interactions are observed, in particular for C-terminal residues of the NHR and imunodominant loop region connecting NHR and C-terminal heptad repeat (CHR). Our data indicate an extended conformation with features anticipated for a prefusion intermediate, presumably in exchange with a lowly populated postfusion six-helical bundle conformation.
Collapse
Affiliation(s)
- Nils-Alexander Lakomek
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| | - Joshua D Kaufman
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892-2775, USA
| | - Stephen J Stahl
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892-2775, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892-2775, USA.
| |
Collapse
|
11
|
Dissociation of the trimeric gp41 ectodomain at the lipid-water interface suggests an active role in HIV-1 Env-mediated membrane fusion. Proc Natl Acad Sci U S A 2014; 111:3425-30. [PMID: 24550514 DOI: 10.1073/pnas.1401397111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. The actual fusion process involves a switch from a homotrimeric prehairpin intermediate conformation, consisting of parallel coiled-coil helices, to a postfusion state where the ectodomains are arranged as a trimer of helical hairpins, adopting a six-helix bundle (6HB) state. Here, we show by solution NMR spectroscopy that a water-soluble 6HB gp41 ectodomain binds to zwitterionic detergents that contain phosphocholine or phosphatidylcholine head groups and phospholipid vesicles that mimic T-cell membrane composition. Binding results in the dissociation of the 6HB and the formation of a monomeric state, where its two α-helices, N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR), become embedded in the lipid-water interface of the virus and host cell. The atomic structure of the gp41 ectodomain monomer, based on NOE distance restraints and residual dipolar couplings, shows that the NHR and CHR helices remain mostly intact, but they completely lose interhelical contacts. The high affinity of the ectodomain helices for phospholipid surfaces suggests that unzippering of the prehairpin intermediate leads to a state where the NHR and CHR helices become embedded in the host cell and viral membranes, respectively, thereby providing a physical force for bringing these membranes into close juxtaposition before actual fusion.
Collapse
|
12
|
Díez-Fuertes F, Delgado E, Vega Y, Fernández-García A, Cuevas MT, Pinilla M, García V, Pérez-Álvarez L, Thomson MM. Improvement of HIV-1 coreceptor tropism prediction by employing selected nucleotide positions of the env gene in a Bayesian network classifier. J Antimicrob Chemother 2013; 68:1471-85. [DOI: 10.1093/jac/dkt077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
13
|
Jun Tan J, Kong R, Xin Wang C, Zu Chen W. Prediction of the binding model of HIV-1 gp41 with small molecule inhibitors. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2012; 2005:4755-8. [PMID: 17281304 DOI: 10.1109/iembs.2005.1615534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite the synthetic peptides inhibit HIV-1 entry; its application of this peptide therapy may be limited due to the high cost of the peptide production and lack of its oral availability. Thus, it is necessary to identify the small molecule inhibitors reacting with the same or overlapping target sites on gp41 recognizing the antiviral peptides. In this work, a small inhibitor (TP1) is docked into the hydrophobic grooves of gp41 by using AutoDock software, resulting in five alternative energetically favorable models. The data from other studies were used to define our preferred models. We found that only one binding mode is supported by the experimental evidence. The model could be used to design more effective HIV-1 inhibitors targeted to the HIV-1 gp41 core structure.
Collapse
Affiliation(s)
- Jian Jun Tan
- College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing 100022, China
| | | | | | | |
Collapse
|
14
|
Cai L, Gochin M, Liu K. Biochemistry and biophysics of HIV-1 gp41 - membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design. Curr Top Med Chem 2012; 11:2959-84. [PMID: 22044229 DOI: 10.2174/156802611798808497] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/16/2011] [Accepted: 12/01/2011] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes ~2 millions death every year and still defies an effective vaccine. HIV-1 infects host cells through envelope protein - mediated virus-cell fusion. The transmembrane subunit of envelope protein, gp41, is the molecular machinery which facilitates fusion. Its ectodomain contains several distinguishing functional domains, fusion peptide (FP), Nterminal heptad repeat (NHR), C-terminal heptad repeat (CHR) and membrane proximal extracellular region (MPER). During the fusion process, FP inserts into the host cell membrane, and an extended gp41 prehairpin conformation bridges the viral and cell membranes through MPER and FP respectively. Subsequent conformational change of the unstable prehairpin results in a coiled-coil 6-helix bundle (6HB) structure formed between NHR and CHR. The energetics of 6HB formation drives membrane apposition and fusion. Drugs targeting gp41 functional domains to prevent 6HB formation inhibit HIV-1 infection. T20 (enfuvirtide, Fuzeon) was approved by the US FDA in 2003 as the first fusion inhibitor. It is a 36-residue peptide from the gp41 CHR, and it inhibits 6HB formation by targeting NHR and lipids. Development of new fusion inhibitors, especially small molecule drugs, is encouraged to overcome the shortcomings of T20 as a peptide drug. Hydrophobic characteristics and membrane association are critical for gp41 function and mechanism of action. Research in gp41-membrane interactions, using peptides corresponding to specific functional domains, or constructs including several interactive domains, are reviewed here to get a better understanding of gp41 mediated virus-cell fusion that can inform or guide the design of new HIV-1 fusion inhibitors.
Collapse
Affiliation(s)
- Lifeng Cai
- Beijing Institute of Pharmacology & Toxicology, Haidian District, Beijing 100850, China.
| | | | | |
Collapse
|
15
|
Abstract
The development of peptides with therapeutic activities can be based on naturally occurring peptides or alternatively on de novo design. The discovery of natural peptides is often a matter of serendipity. In part, this is because natural peptides are typically proteolytically cleaved out from precursor proteins, a feature that averts the direct benefits of the genomic revolution. The first part of this review describes attempts to create a more systematic identification of natural peptides relying on a two step process. In the initial step, an in silico peptidome is predicted through the use of machine learning. Then, various computational biology tools are tailored to focus on peptides predicted to have the desired biological activity; for example, activating a GPCR or modulating the cellular arm of the immune system. The second part of the review is devoted to de novo peptide design and focuses on arguably the simplest scenario in which the designed peptide corresponds to a contiguous protein subsequence. Amongst these peptides, those corresponding to helical segments are prominent, mainly due to their relative ability to fold independently. Inspired by the clinical success of viral entry inhibitors, which are peptides corresponding to helical segments in viral envelope proteins, a computational tool for the identification of intramolecular helix-helix interactions was developed. Using this approach, peptides having anti-cancer, anti-angiogenic, and anti-inflammatory activities have been recently rationally designed and biologically characterized.
Collapse
Affiliation(s)
- Yossef Kliger
- Compugen LTD, 72 Pinchas Rosen, Tel Aviv 69512, Israel.
| |
Collapse
|
16
|
Mechanism of inhibition of enveloped virus membrane fusion by the antiviral drug arbidol. PLoS One 2011; 6:e15874. [PMID: 21283579 PMCID: PMC3026800 DOI: 10.1371/journal.pone.0015874] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/28/2010] [Indexed: 12/13/2022] Open
Abstract
The broad-spectrum antiviral arbidol (Arb) inhibits cell entry of enveloped viruses by blocking viral fusion with host cell membrane. To better understand Arb mechanism of action, we investigated its interactions with phospholipids and membrane peptides. We demonstrate that Arb associates with phospholipids in the micromolar range. NMR reveals that Arb interacts with the polar head-group of phospholipid at the membrane interface. Fluorescence studies of interactions between Arb and either tryptophan derivatives or membrane peptides reconstituted into liposomes show that Arb interacts with tryptophan in the micromolar range. Interestingly, apparent binding affinities between lipids and tryptophan residues are comparable with those of Arb IC50 of the hepatitis C virus (HCV) membrane fusion. Since tryptophan residues of membrane proteins are known to bind preferentially at the membrane interface, these data suggest that Arb could increase the strength of virus glycoprotein's interactions with the membrane, due to a dual binding mode involving aromatic residues and phospholipids. The resulting complexation would inhibit the expected viral glycoprotein conformational changes required during the fusion process. Our findings pave the way towards the design of new drugs exhibiting Arb-like interfacial membrane binding properties to inhibit early steps of virus entry, i.e., attractive targets to combat viral infection.
Collapse
|
17
|
Quantitative assessment of peptide–lipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1999-2012. [DOI: 10.1016/j.bbamem.2010.07.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 07/13/2010] [Accepted: 07/13/2010] [Indexed: 11/23/2022]
|
18
|
Bitler A, Lev N, Fridmann-Sirkis Y, Blank L, Cohen SR, Shai Y. Kinetics of interaction of HIV fusion protein (gp41) with lipid membranes studied by real-time AFM imaging. Ultramicroscopy 2010; 110:694-700. [DOI: 10.1016/j.ultramic.2010.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Sackett K, Nethercott MJ, Shai Y, Weliky DP. Hairpin folding of HIV gp41 abrogates lipid mixing function at physiologic pH and inhibits lipid mixing by exposed gp41 constructs. Biochemistry 2009; 48:2714-22. [PMID: 19222185 DOI: 10.1021/bi8019492] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conformational changes in the HIV gp41 protein are directly correlated with fusion between the HIV and target cell plasma membranes, which is the initial step of infection. Key gp41 fusion conformations include an early extended conformation termed prehairpin which contains exposed regions and a final low-energy conformation termed hairpin which has a compact six-helix bundle structure. Current fusion models debate the roles of hairpin and prehairpin conformations in the process of membrane merger. In the present work, gp41 constructs have been engineered which correspond to fusion relevant parts of both prehairpin and hairpin conformations and have been analyzed for their ability to induce lipid mixing between membrane vesicles. The data correlate membrane fusion function with the prehairpin conformation and suggest that one of the roles of the final hairpin conformation is sequestration of membrane-perturbing gp41 regions with consequent loss of the membrane disruption induced earlier by the prehairpin structure. To our knowledge, this is the first biophysical study to delineate the membrane fusion potential of gp41 constructs modeling key fusion conformations.
Collapse
Affiliation(s)
- Kelly Sackett
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
20
|
Cheng SF, Kantchev AB, Chang DK. Fluorescence evidence for a loose self-assembly of the fusion peptide of influenza virus HA2 in the lipid bilayer. Mol Membr Biol 2009; 20:345-51. [PMID: 14578049 DOI: 10.1080/0968708031000138046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Steady state fluorescence experiments were performed on a 25-mer synthetic peptide incorporated in the phospholipid vesicle to study the role of oligomerization of the fusion peptide in membrane fusion. It was found from fluorescence resonance energy transfer (FRET) that the extent of lipid mixing and the initial mixing rate varied with the fusion peptide concentration in a higher than linear fashion, indicating that the peptide promoted membrane mixing as oligomers. Results of self-quenching of the Rhodamine (Rho) in Rho-labelled peptide incorporated in the phospholipid bilayer indicated that the peptide molecules assembled in the bilayer with an order higher than dimer. The data also revealed that the peptides were not tightly packed in the membrane. Binding affinity measurement monitored by the NBD fluorescence intensity on the fluorophore-labelled fusion peptide supports the notion of self-association of the peptide in the vesicular dispersion. In the sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) experiments, a diffuse band with apparent molecular mass close to a dimeric species of the wild type fusion peptide suggested that the fusion peptides formed loose oligomers under the influence of SDS detergent in the electric field. The result is in contrast to a less fusion-active variant which appears to exhibit less propensity for self-association.
Collapse
Affiliation(s)
- Shu-Fang Cheng
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China 115
| | | | | |
Collapse
|
21
|
Lev N, Fridmann-Sirkis Y, Blank L, Bitler A, Epand RF, Epand RM, Shai Y. Conformational stability and membrane interaction of the full-length ectodomain of HIV-1 gp41: implication for mode of action. Biochemistry 2009; 48:3166-75. [PMID: 19206186 DOI: 10.1021/bi802243j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Membrane fusion between the human immunodeficiency virus (HIV) and the target cell plasma membrane is correlated with conformational changes in the HIV gp41 glycoprotein, which include an early exposed conformation (prehairpin) and a late low energy six helix bundle (SHB) conformation also termed hairpin. Peptides resembling regions from the exposed prehairpin have been previously studied for their interaction with membranes. Here we report on the expression, purification, SHB stability, and membrane interaction of the full-length ectodomain of the HIV gp41 and its two deletion mutants, all in their SHB-folded state. The interaction of the proteins with zwitterionic and negatively charged membranes was examined by using various biophysical methods including circular dichroism spectroscopy, differential scanning calorimetry, lipid mixing of large unilamellar vesicles, and atomic force microscopy (AFM). All experiments were done in an acidic environment in which the protein remains in its soluble trimeric state. The data reveal that all three proteins fold into a stable coiled-coil core in aqueous solution and retain a stable helical fold with reduced coiled-coil characteristics in a zwitterionic and negatively charged membrane mimetic environment. Furthermore, in contrast with the extended exposed N-terminal domain, the folded gp41 ectodomain does not induce lipid mixing of zwitterionic membranes. However, it disrupts and induces lipid mixing of negatively charged phospholipid membranes (approximately 100-fold more effective than fusion peptide alone), which are known to be expressed more in HIV-1-infected T cells or macrophages. The results support the emerging model in which one of the roles of gp41 folding into the SHB conformation is to slow down membrane disruption effects induced by early exposed gp41. However, it can further affect membrane morphology once exposed to negatively charged membranes during late stages.
Collapse
Affiliation(s)
- Naama Lev
- Department of Biological Chemistry, The Weizmann Institute of Science,RehoVot, 76100 Israel
| | | | | | | | | | | | | |
Collapse
|
22
|
Penn O, Stern A, Rubinstein ND, Dutheil J, Bacharach E, Galtier N, Pupko T. Evolutionary modeling of rate shifts reveals specificity determinants in HIV-1 subtypes. PLoS Comput Biol 2008; 4:e1000214. [PMID: 18989394 PMCID: PMC2566816 DOI: 10.1371/journal.pcbi.1000214] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 09/23/2008] [Indexed: 11/19/2022] Open
Abstract
A hallmark of the human immunodeficiency virus 1 (HIV-1) is its rapid rate of evolution within and among its various subtypes. Two complementary hypotheses are suggested to explain the sequence variability among HIV-1 subtypes. The first suggests that the functional constraints at each site remain the same across all subtypes, and the differences among subtypes are a direct reflection of random substitutions, which have occurred during the time elapsed since their divergence. The alternative hypothesis suggests that the functional constraints themselves have evolved, and thus sequence differences among subtypes in some sites reflect shifts in function. To determine the contribution of each of these two alternatives to HIV-1 subtype evolution, we have developed a novel Bayesian method for testing and detecting site-specific rate shifts. The RAte Shift EstimatoR (RASER) method determines whether or not site-specific functional shifts characterize the evolution of a protein and, if so, points to the specific sites and lineages in which these shifts have most likely occurred. Applying RASER to a dataset composed of large samples of HIV-1 sequences from different group M subtypes, we reveal rampant evolutionary shifts throughout the HIV-1 proteome. Most of these rate shifts have occurred during the divergence of the major subtypes, establishing that subtype divergence occurred together with functional diversification. We report further evidence for the emergence of a new sub-subtype, characterized by abundant rate-shifting sites. When focusing on the rate-shifting sites detected, we find that many are associated with known function relating to viral life cycle and drug resistance. Finally, we discuss mechanisms of covariation of rate-shifting sites. The AIDS epidemic, inflicted by the human immunodeficiency virus (HIV), has already claimed 25 million lives, thus posing a global threat. Since its discovery, several HIV subtypes have emerged, characterized by distinct genomic sequences and variable geographic locations. Here, we investigate the nature of the genetic differences among the subtypes. The neutral theory of evolution suggests that most genetic differences marginally affect the function of the encoded proteins (hence neutral) and thus occur randomly. Alternatively, changes in protein function are reflected by a pattern of nonrandom genetic differences. To address this issue, we developed a computational method, which studies the differences between sequences of different HIV subtypes, and estimates which of the explanations is more likely. Using a large sample of HIV protein sequences, we discovered that part of the variability among the subtypes is not random and possibly reflects different functional constraints imposed on the subtypes during the course of their evolution. An in-depth inspection of these nonrandom changes revealed a correlation with biological traits, such as drug resistance and mechanisms facilitating viral entry into the host cell. Interestingly, nonrandom changes are also characteristic of a viral strain that recently emerged in the former Soviet Union.
Collapse
Affiliation(s)
- Osnat Penn
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adi Stern
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nimrod D. Rubinstein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Julien Dutheil
- BiRC—Bioinformatics Research Center, University of Aarhus, Århus, Denmark
| | - Eran Bacharach
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution—CC64, Centre National de la Recherche Scientifique—Université Montpellier 2, Montpelier, France
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
23
|
Cohen T, Pevsner-Fischer M, Cohen N, Cohen IR, Shai Y. Characterization of the interacting domain of the HIV-1 fusion peptide with the transmembrane domain of the T-cell receptor. Biochemistry 2008; 47:4826-33. [PMID: 18376816 DOI: 10.1021/bi800100p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV infection is initiated by the fusion of the viral membrane with the target T-cell membrane. The HIV envelope glycoprotein, gp41, contains a fusion peptide (FP) in the N terminus that functions together with other gp41 domains to fuse the virion with the host cell membrane. We recently reported that FP co-localizes with CD4 and T-cell receptor (TCR) molecules, co-precipitates with TCR, and inhibits antigen-specific T-cell proliferation and pro-inflammatory cytokine secretion. Molecular dynamic simulation implicated an interaction between an alpha-helical transmembrane domain (TM) of the TCRalpha chain (designated CP) and the beta-sheet 5-13 region of the 16 N-terminal amino acids of FP (FP(1-16)). To correlate between the theoretical prediction and experimental data, we synthesized a series of mutants derived from the interacting motif GALFLGFLG stretch (FP(5-13)) and investigated them structurally and functionally. The data reveal a direct correlation between the beta-sheet structure of FP(5-13) and its mutants and their ability to interact with CP and induce immunosuppressive activity; the phenylalanines play an important role. Furthermore, studies with fluorescently labeled peptides revealed that this interaction leads to penetration of the N terminus of FP and its active analogues into the hydrophobic core of the membrane. A detailed understanding of the molecular interactions mediating the immunosuppressive activity of the FP(5-13) motif should facilitate evaluating its contribution to HIV pathology and its exploitation as an immunotherapeutic tool.
Collapse
Affiliation(s)
- Tomer Cohen
- Departments of Biological Chemistry and Immunology, the Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
24
|
Fatty acids can substitute the HIV fusion peptide in lipid merging and fusion: an analogy between viral and palmitoylated eukaryotic fusion proteins. J Mol Biol 2007; 374:220-30. [PMID: 17919659 DOI: 10.1016/j.jmb.2007.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 08/20/2007] [Accepted: 09/04/2007] [Indexed: 11/22/2022]
Abstract
Various fusion proteins from eukaryotes and viruses share structural similarities such as a coiled coil motif. However, compared with eukaryotic proteins, a viral fusion protein contains a fusion peptide (FP), which is an N-terminal hydrophobic fragment that is primarily involved in directing fusion via anchoring the protein to the target cell membrane. In various eukaryotic fusion proteins the membrane targeting domain is cysteine-rich and must undergo palmitoylation prior to the fusion process. Here we examined whether fatty acids can replace the FP of human immunodeficiency virus type 1 (HIV-1), thereby discerning between the contributions of the sequence versus hydrophobicity of the FP in the lipid-merging process. For that purpose, we structurally and functionally characterized peptides derived from the N terminus of HIV fusion protein - gp41 in which the FP is lacking or replaced by fatty acids. We found that fatty acid conjugation dramatically enhanced the capability of the peptides to induce lipid mixing and aggregation of zwitterionic phospholipids composing the outer leaflet of eukaryotic cell membranes. The enhanced effect of the acylated peptides on membranes was further supported by real-time atomic force microscopy (AFM) showing nanoscale holes in zwitterionic membranes. Membrane-binding experiments revealed that fatty acid conjugation did not increase the affinity of the peptides to the membrane significantly. Furthermore, all free and acylated peptides exhibited similar alpha-helical structures in solution and in zwitterionic membranes. Interestingly, the fusogenic active conformation of N36 in negatively charged membranes composing the inner leaflet of eukaryotic cells is beta-sheet. Apparently, N-terminal heptad repeat (NHR) can change its conformation as a response to a change in the charge of the membrane head group. Overall, the data suggest an analogy between the eukaryotic cysteine-rich domains and the viral fusion peptide, and mark the hydrophobic nature of FP as an important characteristic for its role in lipid merging.
Collapse
|
25
|
Moreno MR, Guillén J, Pérez-Berna AJ, Amorós D, Gómez AI, Bernabeu A, Villalaín J. Characterization of the Interaction of Two Peptides from the N Terminus of the NHR Domain of HIV-1 gp41 with Phospholipid Membranes. Biochemistry 2007; 46:10572-84. [PMID: 17711304 DOI: 10.1021/bi700911g] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HIV-1 gp41 envelope glycoprotein is responsible for the membrane fusion between the virus and the target cell. According to recent models, the N-terminal coiled-coil (NHR) region of gp41 is involved in forming the interfaces between neighboring helices in the six-helix bundle, as well as in membrane binding and perturbation. In order to get new insights into the viral membrane fusion mechanism, two peptides, pFP15 and pFP23, pertaining to the first part of the gp41 NHR domain were studied regarding their structure and their ability to induce membrane leakage, aggregation, and fusion, as well as their affinity toward specific phospholipids by a variety of spectroscopic methods. Our results demonstrate that the first part of the NHR domain interacts with negatively charged phospholipid-containing model membranes, modifies the phase behavior of membrane phospholipids, and induces leakage and aggregation of liposomes, suggesting that it could be involved directly in the merging of the viral and target cell membranes working synergistically with other membrane-active regions of the gp41 glycoprotein to boost the fusion process. On the other hand, we suggest that this region of the NHR domain could be involved in the first steps of the destabilization of the HIV-1 gp41 six-helix bundle after its interaction with negatively charged phospholipid headgroups.
Collapse
Affiliation(s)
- Miguel R Moreno
- Instituto de Biología Molecular y Celular, Campus de Elche, Universidad Miguel HernAndez, E-03202 Elche-Alicante, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Bloch I, Quintana FJ, Gerber D, Cohen T, Cohen IR, Shai Y. T-cell inactivation and immunosuppressive activity induced by HIV gp41 via novel interacting motif. FASEB J 2006; 21:393-401. [PMID: 17185749 DOI: 10.1096/fj.06-7061com] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fusion peptide (FP) of the HIV gp41 molecule inserts into the T cell membrane during virus-cell fusion. FP also blocks the TCR/CD3 interaction needed for antigen-triggered T cell activation. Here we used in vitro (fluorescence and immunoprecipitation), in vivo (T cell mediated autoimmune disease adjuvant arthritis), and in silico methods to identify the FP-TCR novel interaction motif: the alpha-helical transmembrane domain (TMD) of the TCR alpha chain, and the beta-sheet 5-13 region of the 16 N-terminal aa of FP (FP(1-16)). Deciphering the molecular mechanism of the immunosuppressive activity of FP provides a new potential target to overcome the immunosuppressant activity of HIV, and in addition a tool for down-regulating immune mediated inflammation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/prevention & control
- Cell Membrane/metabolism
- Cell Proliferation/drug effects
- Cells, Cultured
- Fluorescence Resonance Energy Transfer
- HIV Envelope Protein gp41/chemistry
- HIV Envelope Protein gp41/genetics
- HIV Envelope Protein gp41/metabolism
- Immunosuppressive Agents/chemistry
- Immunosuppressive Agents/metabolism
- Immunosuppressive Agents/pharmacology
- Lymphocyte Activation/drug effects
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/pharmacology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thermodynamics
Collapse
Affiliation(s)
- Itai Bloch
- Department of Biological Chemistry, the Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | | | | | | | |
Collapse
|
27
|
Korazim O, Sackett K, Shai Y. Functional and Structural Characterization of HIV-1 gp41 Ectodomain Regions in Phospholipid Membranes Suggests that the Fusion-active Conformation Is Extended. J Mol Biol 2006; 364:1103-17. [PMID: 17045292 DOI: 10.1016/j.jmb.2006.08.091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 08/31/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
HIV-1 entry into its host cell involves a sequential interaction whereby gp41 is in direct contact with the plasma membrane. Understanding the effect of membrane composition on the fusion mechanism can shed light on the unsolved phases of this complex mechanism. Here, we studied N36, a peptide derived from the N-heptad-repeat (NHR) of the gp41 ectodomain, its six helix bundle (SHB) forming counterpart C34, together with the N-terminal 70-mer wild-type peptide (N70), and additional gp41 ectodomain-derived peptides in the presence of two membranes, modeling inner and outer leaflets of the plasma membrane. Information on the structure of these peptides, their affinity towards phospholipids and their ability to induce vesicle fusion was gathered by a variety of fluorescence, spectroscopic and microscopy methods. We found that N36, having strong affinity towards phospholipids, prominently shifts conformation from alpha-helix in an outer leaflet-like zwitterionic membrane to beta-sheet in a membrane mimicking the negatively charged inner leaflet environment, leading to pronounced fusion-activity. Real-time atomic force microscopy (AFM) was used to study the peptides' effect on the membrane morphology, revealing severe bilayer perturbation and extensive pore formation. We also found, that the N36/C34 core is destabilized by electronegative, but not zwitterionic phospholipids. Taken together, our data suggest that the fusion-active pore forming conformation of gp41 is extended, upstream of the SHB. In this manner, folding of the ectodomain into a SHB might also serve as a negative regulator of fusion by impeding gp41 fusion-active surfaces, thus preventing irreversible damage to the cell membrane. This assumption is supported by the finding that pre-incubation of large unilamellar vesicles (LUV) with C-heptad repeat (CHR)-derived fusion inhibitors reduces the fusogenic activity of N-terminal peptides in a dose-dependant manner, and suggests that CHR-derived fusion inhibitors inhibit HIV entry in an analogous mechanism.
Collapse
Affiliation(s)
- Ofir Korazim
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | |
Collapse
|
28
|
Rosenfeld Y, Barra D, Simmaco M, Shai Y, Mangoni ML. A synergism between temporins toward Gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer. J Biol Chem 2006; 281:28565-74. [PMID: 16867990 DOI: 10.1074/jbc.m606031200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Temporins are short and homologous antimicrobial peptides (AMPs) isolated from the frog skin of Rana genus. To date, very little is known about the biological significance of the presence of closely related AMPs in single living organisms. Here we addressed this question using temporins A, B, and L isolated from Rana temporaria. We found that temporins A and B are only weakly active toward Gram-negative bacteria. However, a marked synergism occurs when each is mixed with temporin L. To shed light on the underlying mechanisms involved in these activities, we used various experimental strategies to investigate: (i) the effect of the peptides' interaction on both the viability and membrane permeability of intact bacteria and spheroplasts; (ii) their interaction with lipopolysaccharides (LPS) and the effect of LPS on the oligomeric state of temporins, alone or combining one with another; (iii) their structure in solution and when bound to LPS, by using circular dichroism and ATR-FTIR spectroscopies. Our data reveal that temporin L synergizes with A and B by preventing their oligomerization in LPS. This should promote their translocation across the outer membrane into the cytoplasmic membrane. To the best of our knowledge, this is the first study that explains how a combination of native AMPs from the same species can overcome bacterial resistance imposed by the LPS leaflet.
Collapse
Affiliation(s)
- Yosef Rosenfeld
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
29
|
Zipeto D, Matucci A, Ripamonti C, Scarlatti G, Rossolillo P, Turci M, Sartoris S, Tridente G, Bertazzoni U. Induction of human immunodeficiency virus neutralizing antibodies using fusion complexes. Microbes Infect 2006; 8:1424-33. [PMID: 16702010 DOI: 10.1016/j.micinf.2006.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 05/12/2005] [Accepted: 05/12/2005] [Indexed: 11/21/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) infects cells by membrane fusion that is mediated by the envelope proteins gp120/gp41 and the cellular receptors CD4 and CCR5. During this process, some conserved viral epitopes are temporarily exposed and may induce a neutralizing antibody response when fixed in the fusogenic conformation. These transient structures are conserved and may be effective antigens for use in an anti-HIV-1 vaccine. In this study we tested different conditions of preparation of fusion complexes inducing neutralizing antibodies against both R5 and X4 tropic HIV-1 strains. Cell lines expressing HIV-1 gp120/gp41 and CD4-CCR5 were prepared and conditions for producing fusion complexes were tested. Complexes produced at different temperature and fixative combinations were used to immunize mice. Results indicated that (a) fusion complexes prepared at either 21 degrees C, 30 degrees C or 37 degrees C were immunogenic and induced neutralizing antibodies against both R5 and X4 HIV-1 heterologous isolates; (b) after extensive purification of antibodies there was no cytotoxic effect; (c) complexes prepared at 37 degrees C were more immunogenic and induced higher titers of neutralizing antibodies than complexes prepared at either 21 degrees C or 30 degrees C; (d) the fixative used did not affect the titer of neutralizing antibodies except for glutaraldehyde which was ineffective; (e) the neutralizing activity was retained after CD4-CCR5 antibody removal. The production of higher titers of neutralizing antibody with fusion complexes prepared at 37 degrees C, as compared to lower temperatures, may be related to the induction of antibodies against many different conformation intermediates that subsequently act synergistically at different steps in the fusion process.
Collapse
Affiliation(s)
- Donato Zipeto
- Laboratory of Molecular Virology, Department of Mother and Child, Biology and Genetics, Section of Biology and Genetics, University of Verona, Strada le Grazie n. 8, 37134 Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Moreno MR, Giudici M, Villalaín J. The membranotropic regions of the endo and ecto domains of HIV gp41 envelope glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:111-23. [PMID: 16483537 DOI: 10.1016/j.bbamem.2006.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 12/20/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
We have identified the membranotropic regions of the full sequence of the HIV gp41 envelope glycoprotein by performing an exhaustive study of membrane rupture, phospholipid-mixing and fusion induced by two 15-mer gp41-derived peptide libraries from HIV strains HIV_MN and HIV_consensus_B on model membranes having different phospholipid compositions. The data obtained for the two strains and its comparison have led us to identify different gp41 membranotropic segments in both ecto- and endodomains which might be implicated in viral membrane fusion and/or membrane interaction. The membranotropic segments corresponding to the gp41 ectodomain were the fusion domain, a stretch located on the N-heptad repeat region adjacent to the fusion domain, part of the immunodominant loop, the pre-transmembrane domain and the transmembrane domain. The membranotropic segments corresponding to the gp41 endodomain were mainly located at some specific parts of the previously described lentivirus lytic sequences. Significantly, the C-heptad repeat region and the Kennedy sequence located in the ectodomain and in the endodomain, respectively, presented no membranotropic activity in any model membrane assayed. The identification of these gp41 segments as well as their membranotropic propensity sustain the notion that different segments of gp41 provide the driving force for the merging of the viral and target cell membranes as well as they help us to define those segments as attractive targets for further development of new anti-viral compounds.
Collapse
Affiliation(s)
- Miguel R Moreno
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche-Alicante, Spain
| | | | | |
Collapse
|
31
|
Sackett K, Shai Y. The HIV Fusion Peptide Adopts Intermolecular Parallel β-Sheet Structure in Membranes when Stabilized by the Adjacent N-Terminal Heptad Repeat: A 13C FTIR Study. J Mol Biol 2005; 350:790-805. [PMID: 15964015 DOI: 10.1016/j.jmb.2005.05.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/16/2005] [Accepted: 05/17/2005] [Indexed: 10/25/2022]
Abstract
The HIV gp41 protein mediates fusion with target host cells. The region primarily involved in directing fusion, the fusion peptide (FP), is poorly understood at the level of structure and function due to its toxic effect in expression systems. To overcome this, we used a synthetic approach to generate the N70 construct, whereby the FP is stabilized in context of the adjacent auto oligomerization domain. The amide I profile of unlabeled N70 in membranes reveals prominent alpha-helical contribution, along with significant beta-structure. By truncating the N terminus (FP region) of N70, beta-structure is eliminated, suggesting that the FP adopts a beta-structure in membranes. To assess this directly, (13)C Fourier-transformed infra-red analysis was carried out to map secondary structure of the 16 N-terminal hydrophobic residues of the fusion peptide (FP16). The (13)C isotope shifted absorbance of the FP was filtered from the global secondary structure of the 70 residue construct (N70). On the basis of the peak shift induced by the (13)C-labeled residues of FP16, we directly assign beta-sheet structure in ordered membranes. A differential labeling scheme in FP16 allows us to distinguish the type of beta-sheet structure as parallel. Dilution of each FP16-labeled N70 peptide, by mixing with unlabeled N70, shows directly that the FP16 beta-strand region self-assembles. We discuss our structural findings in the context of the prevailing gp41 fusion paradigm. Specifically, we address the role of the FP region in organizing supramolecular gp41 assembly, and we also discuss the mechanism by which exogenous, free FP constructs inhibit gp41-induced fusion.
Collapse
Affiliation(s)
- Kelly Sackett
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
32
|
Wexler-Cohen Y, Sackett K, Shai Y. The role of the N-terminal heptad repeat of HIV-1 in the actual lipid mixing step as revealed by its substitution with distant coiled coils. Biochemistry 2005; 44:5853-61. [PMID: 15823044 DOI: 10.1021/bi047666g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gp41 glycoprotein of HIV-1 is considered to be responsible for the actual fusion process between the virus and the host membranes. According to a prevailing model, gp41 trimer organization, directed by the N-terminal coiled-coil region (NHR), is essential for steps involved in the actual merging of viral and cellular membranes. This study addresses a major question: Is the specific sequence of the NHR obligatory for the fusion process, or can it be replaced by distant coiled coils that form different oligomeric states in solution? For this purpose we synthesized three known GCN4 coiled-coil mutants that oligomerize in solution into either dimers, trimers, or tetramers. These peptides were chemically ligated to the fusion peptide thereby creating three chimera peptides with different oligomeric tendencies in solution. These peptides were investigated, together with the 70-mer wild-type peptide (N70), regarding their structure in solution and membrane by using circular dichroism (CD) and FTIR spectroscopies, their ability to induce vesicle fusion, and their ability to bind phospholipid membranes by using surface plasmon resonance (SPR). Our results suggest that local assembly of fusion peptides, facilitated by coiled-coil oligomers, increases lipid mixing ability, probably by facilitating stronger binding of the fusion peptides to the opposing membrane as revealed by SPR. However, N70 is significantly more active than the other chimeras. Overall, the data indicate a correlation between the distinct conformation of N70 in solution and in membranes and its enhanced lipid mixing relative to the GCN4 chimeras.
Collapse
Affiliation(s)
- Yael Wexler-Cohen
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
33
|
Pascual R, Moreno MR, Villalaín J. A peptide pertaining to the loop segment of human immunodeficiency virus gp41 binds and interacts with model biomembranes: implications for the fusion mechanism. J Virol 2005; 79:5142-52. [PMID: 15795298 PMCID: PMC1069547 DOI: 10.1128/jvi.79.8.5142-5152.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 11/05/2004] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus gp41 envelope protein mediates the entry of the virus into the target cell by promoting membrane fusion. In order to gain new insights into the viral fusion mechanism, we studied a 35-residue peptide pertaining to the loop domain of gp41, both in solution and membrane bound, by using infrared and fluorescence spectroscopy. We show here that the peptide, which has a membrane-interacting surface, binds and interacts with phospholipid model membranes and tends to aggregate in the presence of a membranous medium and induce the leakage of vesicle contents. The results reported in this work, i.e., the destabilization and fusion of negatively charged model membranes, suggest an essential role of the loop domain in the membrane fusion process induced by gp41.
Collapse
Affiliation(s)
- Roberto Pascual
- Instituto de Biología Molecular y Celular, Universidad "Miguel Hernández," E-03202 Elche-Alicante, Spain
| | | | | |
Collapse
|
34
|
Moreno MR, Pascual R, Villalaín J. Identification of membrane-active regions of the HIV-1 envelope glycoprotein gp41 using a 15-mer gp41-peptide scan. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1661:97-105. [PMID: 14967479 DOI: 10.1016/j.bbamem.2003.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 12/01/2003] [Accepted: 12/03/2003] [Indexed: 10/26/2022]
Abstract
The identification of membrane-active regions of the ectodomain of the HIV-1 envelope glycoprotein gp41 has been made by determining the effect on membrane integrity of a 15-mer gp41-derived peptide library. By monitoring the effect of this peptide library on membrane leakage, we have identified three regions on the gp41 ectodomain with membrane-interacting capabilities: Region 1, which would roughly correspond to the polar sequence which follows the fusion domain and extends to the N-terminal heptad repeat region; Region 2, which would correspond to the immunodominant loop; and Region 3, which would correspond to the pre-transmembrane region of gp41. The identification of these three regions supports their direct role in membrane fusion as well as facilitating the future development of HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Miguel R Moreno
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Elche-Alicante, Spain
| | | | | |
Collapse
|
35
|
Shnaper S, Sackett K, Gallo SA, Blumenthal R, Shai Y. The C- and the N-terminal Regions of Glycoprotein 41 Ectodomain Fuse Membranes Enriched and Not Enriched with Cholesterol, Respectively. J Biol Chem 2004; 279:18526-34. [PMID: 14981088 DOI: 10.1074/jbc.m304950200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To infect target cells, HIV-1 employs a virally encoded transmembrane protein (gp41) to fuse its viral envelope with the target cell plasma membrane. We describe the gp41 ectodomain as comprised of N- and C-terminal subdomains, each containing a heptad repeat as well as a fusogenic region, whose organization is mirrored by the intervening loop region. Recent evidence indicates that the gp41 directed fusion reaction proceeds to initial pore formation prior to gp41 folding into its low energy hairpin conformation. This implies that exposed regions of the gp41 ectodomain are responsible for the bulk of the fusion work, probably through direct protein-membrane interactions. Prevalent fusion models contend that the gp41 ectodomain initially interacts with the target cell surface through its highly hydrophobic N terminus, which is believed to insert into the target membrane, thereby linking the virus to the target cell. This arrangement allows the N-terminal subdomain to interact with the target cell surface, whereas the C-terminal subdomain remains proximal to the virion, allowing interaction with the viral envelope. The composition of the viral envelope and the target cell surface differ due to the virus budding from raft microdomains. We show here that constructs corresponding to the C-terminal subdomain specifically destabilize ordered and cholesterol rich membranes (33 molar %), whereas the N-terminal subdomain is more effective in fusing both unordered cholesterol-free membranes and those containing lower amounts of cholesterol (10 molar %). Moreover we show that, in the context of the C-terminal subdomain, the heptad repeat contributes helical structure, which may describe the enhanced inhibitory effect of the C-terminal subdomain relative to the C-terminal heptad repeat (C34) alone. Our results are discussed in light of recent findings that showcase the role of exposed gp41 regions in effecting membrane fusion.
Collapse
Affiliation(s)
- Sophie Shnaper
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
36
|
Peisajovich SG, Shai Y. Viral fusion proteins: multiple regions contribute to membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:122-9. [PMID: 12873773 DOI: 10.1016/s0005-2736(03)00170-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In recent years, the simple picture of a viral fusion protein interacting with the cell and/or viral membranes by means of only two localized segments (i.e. the fusion peptide and the transmembrane domain) has given way to a more complex picture in which multiple regions from the viral proteins interact with membranes. Indeed, possible roles in membrane binding and/or destabilization have been postulated for the N-terminal heptad repeats, pre-transmembrane segments, and other internal regions of fusion proteins from distant viruses (such as orthomyxo-, retro-, paramyxo-, or flaviviruses). This review focuses on the experimental evidence and functional models postulated so far about the role of these regions in the process of virus-induced membrane fusion.
Collapse
Affiliation(s)
- Sergio G Peisajovich
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | |
Collapse
|
37
|
Abstract
Disparate biological processes involve fusion of two membranes into one and fission of one membrane into two. To formulate the possible job description for the proteins that mediate remodeling of biological membranes, we analyze the energy price of disruption and bending of membrane lipid bilayers at the different stages of bilayer fusion. The phenomenology and the pathways of the well-characterized reactions of biological remodeling, such as fusion mediated by influenza hemagglutinin, are compared with those studied for protein-free bilayers. We briefly consider some proteins involved in fusion and fission, and the dependence of remodeling on the lipid composition of the membranes. The specific hypothetical mechanisms by which the proteins can lower the energy price of the bilayer rearrangement are discussed in light of the experimental data and the requirements imposed by the elastic properties of the bilayer.
Collapse
Affiliation(s)
- Leonid V Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, NICHD, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1855, USA.
| | | |
Collapse
|
38
|
Root MJ, Hamer DH. Targeting therapeutics to an exposed and conserved binding element of the HIV-1 fusion protein. Proc Natl Acad Sci U S A 2003; 100:5016-21. [PMID: 12702763 PMCID: PMC154290 DOI: 10.1073/pnas.0936926100] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is an urgent need for new drugs that can kill HIV type 1 (HIV-1)-infected cells. HIV-1 glycoprotein Env, which promotes viral membrane fusion through receptor-mediated conformational changes, is an attractive target for such agents because it is expressed on the surface of both virions and infected cells. Unfortunately, conserved binding elements on this protein frequently are buried under a canopy of flexible, glycosylated peptide loops or exposed only transiently during the fusion process. Here, we investigate the exposure of the C-terminal region of the Env ectodomain outside the context of membrane fusion. This binding element is the target of the 5-Helix protein, a designed entry inhibitor that disrupts conformational changes in Env subunit gp41, essential for the fusion process. We show that 5-Helix is capable of interacting with HIV-1 Env in a receptor-independent fashion and that a chimeric 5-Helix/Pseudomonas exotoxin protein recognizes cells expressing Env from a broad spectrum of HIV-1 strains including primary isolates from clades B, D, E, G, and H. This recombinant toxin selectively kills HIV-1-infected cells and blocks spreading infection while still maintaining potent inhibitory activity against membrane fusion. Our results demonstrate that the C-terminal region of the gp41 ectodomain is an accessible target on HIV-1-infected cells for the development of antiviral therapeutics and neutralizing antibodies.
Collapse
Affiliation(s)
- Michael J Root
- Kimmel Cancer Center and Center for Human Virology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
39
|
Trivedi VD, Cheng SF, Wu CW, Karthikeyan R, Chen CJ, Chang DK. The LLSGIV stretch of the N-terminal region of HIV-1 gp41 is critical for binding to a model peptide, T20. Protein Eng Des Sel 2003; 16:311-7. [PMID: 12736375 DOI: 10.1093/proeng/gzg036] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A number of peptides and peptide analogs derived from the membrane proximal region of gp41 ectodomain are found to be effective inhibitors of human immunodeficiency virus type 1 (HIV-1)-mediated fusion events. One of them, T20 (aa 638-673), was found disordered and sparingly soluble in water, but became soluble upon mixing with selected, structured peptides from the amino terminal heptad repeat (HR1) region of gp41 using a simple and sensitive method of reduction in the scattering of T20 suspension. From the results on mapping the locus of interaction with T20 by employing partially overlapping peptides derived from HR1, it was concluded that the LLSGIV segment was a critical docking site for the C-terminal peptide of gp41 in its putative inhibitory action consistent with a previous fluorescence study. It was also found that peptides capable of solubilizing T20 dispersion have a high content of helix, as well as beta-strand, conformation in aqueous solution. Specificity of T20/HR1-derived peptide binding was ascertained by using a scrambled sequence of a T20-active peptide and a plateau in scattering reduction of T20 suspension with variation in the concentration of a T20-active HR1 peptide. Implications on the mechanism of T20 inhibition and the sequence of folding of the gp41 core structure are discussed.
Collapse
|
40
|
Peisajovich SG, Blank L, Epand RF, Epand RM, Shai Y. On the interaction between gp41 and membranes: the immunodominant loop stabilizes gp41 helical hairpin conformation. J Mol Biol 2003; 326:1489-501. [PMID: 12595260 DOI: 10.1016/s0022-2836(03)00040-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
gp41 is the protein responsible for the process of membrane fusion that allows primate lentiviruses (HIV and SIV) to enter into their host cells. gp41 ectodomain contains an N-terminal and a C-terminal heptad repeat region (NHR and CHR) connected by an immunodominant loop. In the absence of membranes, the NHR and CHR segments fold into a protease-resistant core with a trimeric helical hairpin structure. However, when the immunodominant loop is not present (either in a complex formed by HIV-1 gp41-derived NHR and CHR peptides or by mild treatment with protease of recombinant constructs of HIV-1 gp41 ectodomain, which also lack the N-terminal fusion peptide and the C-terminal Trp-rich region) membrane binding induces a conformational change in the gp41 core structure. Here, we further investigated whether covalently linking the NHR and CHR segments by the immunodominant loop affects this conformational change. Specifically, we analyzed a construct corresponding to a fragment of SIVmac239 gp41ectodomain (residues 27-149, named e-gp41) by means of surface plasmon resonance, Trp and rhodamine fluorescence, ATR-FTIR spectroscopy, and differential scanning calorimetry. Our results suggest that the presence of the loop stabilizes the trimeric helical hairpin both when e-gp41 is in aqueous solution and when it is bound to the membrane surface. Bearing in mind possible differences between HIV-1 and SIV gp41, and considering that the gp41 ectodomain constructs analyzed to date lack the N-terminal fusion peptide and the C-terminal Trp-rich region, we discuss our observations in relation to the mechanism of virus-induced membrane fusion.
Collapse
Affiliation(s)
- Sergio G Peisajovich
- Department of Biological Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | | | | | | |
Collapse
|
41
|
Gilbert RJ, Grimes JM, Stuart DI. Hybrid vigor: hybrid methods in viral structure determination. ADVANCES IN PROTEIN CHEMISTRY 2003; 64:37-91. [PMID: 13677045 DOI: 10.1016/s0065-3233(03)01002-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Robert J Gilbert
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | | |
Collapse
|
42
|
Finnegan CM, Berg W, Lewis GK, DeVico AL. Antigenic properties of the human immunodeficiency virus transmembrane glycoprotein during cell-cell fusion. J Virol 2002; 76:12123-34. [PMID: 12414953 PMCID: PMC136862 DOI: 10.1128/jvi.76.23.12123-12134.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) entry is triggered by interactions between a pair of heptad repeats in the gp41 ectodomain, which convert a prehairpin gp41 trimer into a fusogenic three-hairpin bundle. Here we examined the disposition and antigenic nature of these structures during the HIV-mediated fusion of HeLa cells expressing either HIV(HXB2) envelope (Env cells) or CXCR4 and CD4 (target cells). Cell-cell fusion, indicated by cytoplasmic dye transfer, was allowed to progress for various lengths of time and then arrested. Fusion intermediates were then examined for reactivity with various monoclonal antibodies (MAbs) against immunogenic cluster I and cluster II epitopes in the gp41 ectodomain. All of these MAbs produced similar staining patterns indicative of reactivity with prehairpin gp41 intermediates or related structures. MAb staining was seen on Env cells only upon exposure to soluble CD4, CD4-positive, coreceptor-negative cells, or stromal cell-derived factor-treated target cells. In the fusion system, the MAbs reacted with the interfaces of attached Env and target cells within 10 min of coculture. MAb reactivity colocalized with the formation of gp120-CD4-coreceptor tricomplexes after longer periods of coculture, although reactivity was absent on cells exhibiting cytoplasmic dye transfer. Notably, the MAbs were unable to inhibit fusion even when allowed to react with soluble-CD4-triggered or temperature-arrested antigens prior to initiation of the fusion process. In comparison, a broadly neutralizing antibody, 2F5, which recognizes gp41 antigens in the HIV envelope spike, was immunoreactive with free Env cells and Env-target cell clusters but not with fused cells. Notably, exposure of the 2F5 epitope required temperature-dependent elements of the HIV envelope structure, as MAb binding occurred only above 19 degrees C. Overall, these results demonstrate that immunogenic epitopes, both neutralizing and nonneutralizing, are accessible on gp41 antigens prior to membrane fusion. The 2F5 epitope appears to depend on temperature-dependent elements on prefusion antigens, whereas cluster I and cluster II epitopes are displayed by transient gp41 structures. Such findings have important implications for HIV vaccine approaches based on gp41 intermediates.
Collapse
Affiliation(s)
- Catherine M Finnegan
- Institute of Human Virology, University of Maryland Biotechnology Institute, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
43
|
Joyce JG, Hurni WM, Bogusky MJ, Garsky VM, Liang X, Citron MP, Danzeisen RC, Miller MD, Shiver JW, Keller PM. Enhancement of alpha -helicity in the HIV-1 inhibitory peptide DP178 leads to an increased affinity for human monoclonal antibody 2F5 but does not elicit neutralizing responses in vitro. Implications for vaccine design. J Biol Chem 2002; 277:45811-20. [PMID: 12237296 DOI: 10.1074/jbc.m205862200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synthetic peptide DP178, derived from the carboxyl-terminal heptad repeat region of human immunodeficiency virus type 1 GP41 protein is a potent inhibitor of viral-mediated fusion and contains the sequence ELDKWA, which constitutes the recognition epitope for the broadly neutralizing human monoclonal antibody 2F5. Efforts at eliciting a 2F5-like immune response by immunization with peptides or fusion proteins containing this sequence have not met with success, possibly because of incorrect structural presentation of the epitope. Although the structure of the carboxyl-terminal heptad repeat on the virion is not known, several recent reports have suggested a propensity for alpha-helical conformation. We have examined DP178 in the context of a model for optimized alpha-helices and show that the native sequence conforms poorly to the model. Solution conformation of DP178 was studied by circular dichroism and NMR spectroscopy and found to be predominantly random, consistent with previous reports. NMR mapping was used to show that the low percentage of alpha-helix present was localized to residues Glu(662) through Asn(671), a region encompassing the 2F5 epitope. Using NH(2)-terminal extensions derived from either GP41 or the yeast GCN4 leucine zipper dimerization domain, we designed peptide analogs in which the average helicity is significantly increased compared with DP178 and show that these peptides exhibit both a modest increase in affinity for 2F5 using a novel competitive solution-based binding assay and an increased ability to inhibit viral entry in a single-cycle infectivity model. Selected peptides were conjugated to carrier protein and used for guinea pig immunizations. High peptide-specific titers were achieved using these immunogens, but the resulting sera were incapable of viral neutralization. We discuss these findings in terms of structural and immunological considerations as to the utility of a 2F5-like response.
Collapse
Affiliation(s)
- Joseph G Joyce
- Department of Virus and Cell Biology, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Leikina E, Ramos C, Markovic I, Zimmerberg J, Chernomordik LV. Reversible stages of the low-pH-triggered conformational change in influenza virus hemagglutinin. EMBO J 2002; 21:5701-10. [PMID: 12411488 PMCID: PMC131056 DOI: 10.1093/emboj/cdf559] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The refolding of the prototypic fusogenic protein hemagglutinin (HA) at the pH of fusion is considered to be a concerted and irreversible discharge of a loaded spring, with no distinct intermediates between the initial and final conformations. Here, we show that HA refolding involves reversible conformations with a lifetime of minutes. After reneutralization, low pH-activated HA returns from the conformations wherein both the fusion peptide and the kinked loop of the HA2 subunit are exposed, but the HA1 subunits have not yet dissociated, to a structure indistinguishable from the initial one in functional, biochemical and immunological characteristics. The rate of the transition from reversible conformations to irreversible refolding depends on the pH and on the presence of target membrane. Importantly, recovery of the initial conformation is blocked by the interactions between adjacent HA trimers. The existence of the identified reversible stage of refolding can be crucial for allowing multiple copies of HA to synchronize their release of conformational energy, as required for fusion.
Collapse
Affiliation(s)
| | | | - Ingrid Markovic
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
Present address: Division of Monoclonal Antibodies, Office of Therapeutics Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA Corresponding author e-mail:
| | | | - Leonid V. Chernomordik
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
Present address: Division of Monoclonal Antibodies, Office of Therapeutics Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA Corresponding author e-mail:
| |
Collapse
|
45
|
Markosyan RM, Ma X, Lu M, Cohen FS, Melikyan GB. The mechanism of inhibition of HIV-1 env-mediated cell-cell fusion by recombinant cores of gp41 ectodomain. Virology 2002; 302:174-84. [PMID: 12429526 DOI: 10.1006/viro.2002.1593] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N36(L6)C34 is a recombinant protein that forms a six-helix bundle with high thermal stability. It consists of the N-terminal heptad-repeat region (N36 peptide) and the C-terminal heptad-repeat region (C34) of HIV-1 gp41, connected by six polar amino acids. The protein inhibits HIV-1 envelope-induced membrane fusion. Whether inhibition occurs while N36(L6)C34 is in its six-helix bundle configuration was investigated. Mutating a critical residue within the N36 region to promote dissociation of C34 from the grooves of the N36 coiled coil reduced bundle stability and increased the inhibition of fusion. In contrast, mutating a key residue within the C34 region to reduce bundle stability decreased inhibitory potency. The data provide strong evidence that the proteins inhibit fusion while they expose their C34 segments, rather than as six-helix bundles. Thus, despite high thermal stability of the bundle, the recombinants' less folded structures are present in sufficient concentration to inhibit fusion at physiological temperatures.
Collapse
Affiliation(s)
- Ruben M Markosyan
- Department of Molecular Biophysics and Physiology, Rush Medical College, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
46
|
San Román K, Villar E, Muñoz-Barroso I. Mode of action of two inhibitory peptides from heptad repeat domains of the fusion protein of Newcastle disease virus. Int J Biochem Cell Biol 2002; 34:1207-20. [PMID: 12127571 DOI: 10.1016/s1357-2725(02)00045-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptides derived from heptad repeat (HR) sequences of viral fusion proteins from several enveloped viruses have been shown to inhibit virus-mediated membrane fusion but the mechanism remains unknown. To further investigate this, the inhibition mechanism of two HR-derived peptides from the fusion protein of the paramyxovirus Newcastle disease virus (NDV) was investigated. Peptide N24 (residues 145-168) derived from HR1 was found to be 145-fold more inhibitory in a syncytium assay than peptide C24 (residues 474-496), derived from HR2. Both peptides failed to block lipid-mixing between R18-labeled virus and cells. None of the peptides interfered with the binding of hemagglutinin-neuraminidase (HN) protein to the target cells, as demonstrated by hemagglutining assays. When both peptides were mixed at equimolar concentrations, their inhibitory effect was abolished. In addition, both peptides induced the aggregation of negatively charged and zwitterionic phospholipid membranes. The ability of the peptides to interact with each other in solution suggests that these peptides may bind to the opposite HR region on the protein whereas their ability to interact with membranes as well as their failure to block lipid transfer suggest a second binding site. Taken together these results, suggest a mode of action for C24 and N24 in which both peptides have two different targets on the F protein: the opposite HR sequence and their corresponding domains.
Collapse
Affiliation(s)
- K San Román
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 109, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | |
Collapse
|
47
|
Sackett K, Shai Y. The HIV-1 gp41 N-terminal heptad repeat plays an essential role in membrane fusion. Biochemistry 2002; 41:4678-85. [PMID: 11926830 DOI: 10.1021/bi0255322] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For many different enveloped viruses the crystal structure of the fusion protein core has been established. A striking conservation in the tertiary and quaternary arrangement of these core structures is repeatedly revealed among members of diverse families. It has been proposed that the primary role of the core involves structural rearrangements which facilitate apposition between viral and target cell membranes. Forming the internal trimeric coiled coil of the core, the N-terminal heptad repeat (NHR) of HIV-1 gp41 was suggested to have additional roles, due to its ability to bind biological membranes. The NHR is adjacent to the N-terminal hydrophobic fusion peptide (FP), which alone can fuse biological membranes. To investigate the role of the NHR in membrane fusion, we synthesized and functionally characterized HIV-1 gp41 peptides corresponding to the FP and NHR alone, as well as continuous peptides made of both FP and NHR (wild type and mutant). We show here that a consecutive, 70-residue peptide consisting of both the FP and NHR (gp41/1-70) has dramatic fusogenic properties. The effect of including the complete NHR, as compared to shorter 23-, 33-, or 52-residue N-terminal peptides, is illustrated by a leap in lipid mixing of phosphatidylcholine (PC) large unilamellar vesicles (LUV) and clearly delineates the synergistic role of the NHR in the fusion event. Furthermore, a mutation in the NHR that renders the virus noninfectious is reflected by a significant reduction in in vitro lipid mixing induced by the mutant, gp41/1-70 (I62D). Additional spectroscopic studies, characterizing membrane binding and apposition induced by the peptides, help to clarify the role of the NHR in membrane fusion.
Collapse
Affiliation(s)
- Kelly Sackett
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
48
|
Chang DK, Cheng SF, Trivedi VD. Conformation and interaction with the membrane models of the amino-terminal peptide of influenza virus hemagglutinin HA2 at fusion pH. Arch Biochem Biophys 2001; 396:89-98. [PMID: 11716466 DOI: 10.1006/abbi.2001.2594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conformations of a 48-mer peptide corresponding to the amino-terminal region of influenza HA2 in aqueous and membranous environments were studied. In aqueous solution the peptide was found to be oligomeric and its helicity was enhanced at higher concentrations. The conformation in phospholipid bilayer and insertion depth into the sodium dodecyl sulfate (SDS) micelle for the fusion peptide were in line with those determined for the amino-terminal 25-mer analog. The turn of residues 28-31 found in the crystal structure of hemagglutinin at neutral pH persisted in the presence of SDS at pH 5.0. Except for the turn, conformational lability of the amino portion of HA2 is suggested by comparison of the secondary structure determined herein with that obtained with the influenza fusion protein crystallized in the aqueous phase at neutral pH. The backbone amide proton exchange experiment suggested an interaction with the micellar surface for the segment carboxy-terminal to the fusion peptide domain.
Collapse
Affiliation(s)
- D K Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, 115, Republic of China.
| | | | | |
Collapse
|
49
|
Avrahami D, Oren Z, Shai Y. Effect of multiple aliphatic amino acids substitutions on the structure, function, and mode of action of diastereomeric membrane active peptides. Biochemistry 2001; 40:12591-603. [PMID: 11601983 DOI: 10.1021/bi0105330] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The initial stages leading to the binding and functioning of membrane-active polypeptides including hormones, signal sequences, and lytic peptides are mainly governed by electrostatic attraction and hydrophobic partitioning between water and lipid bilayers. Antimicrobial peptides serve as an important model for studying the details of these initial steps. However, a systematic analysis of the contribution of multiple hydrophobic amino acids to these steps have been hindered by the propensity of many peptides to aggregate and become inactivated in solution. To this end, we synthesized a series of model amphipathic all L-amino acid peptides and their diastereomers with the sequence KX(3)KWX(2)KX(2)K, where X = Gly, Ala, Val, Ile, or Leu. The effect of the aliphatic amino acids on the biological activity, binding, structure, membrane localization, and mode of action of these peptides was investigated. Most of the L-amino acid peptides oligomerized and adopted distinct structures in solution and in a membrane mimetic environment. Among this group only the Leu containing peptide was hemolytic and highly active on most bacteria tested. The Val- and Leu-containing peptides were hemolytic but inactive toward most bacteria tested. In contrast, the diastereomeric peptides were monomeric and unstructured in solution, but they adopted distinct structures upon membrane binding. While hemolytic activity was drastically reduced, the spectrum of antibacterial activity was preserved or increased. Importantly, we found a direct correlation with the diastereomers between hydrophobicity and propensity to form a helical/distorted-helix and activity (induced membrane leakage and antibacterial activity), despite the fact that they contained 30% D-amino acids. Furthermore, efficient increase in membrane permeability can proceed through different mechanisms. Specifically, the Leu-containing diastereomeric peptide micellized vesicles and possibly bacterial membranes while the Ile-containing diastereomeric peptide fused model membranes and irregularly disrupted bacterial membranes.
Collapse
Affiliation(s)
- D Avrahami
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | |
Collapse
|
50
|
Peisajovich SG, Shai Y. SIV gp41 binds to membranes both in the monomeric and trimeric states: consequences for the neuropathology and inhibition of HIV infection. J Mol Biol 2001; 311:249-54. [PMID: 11478858 DOI: 10.1006/jmbi.2001.4875] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The viral envelope glycoprotein gp41 mediates membrane fusion in HIV/SIV infection. gp41 ectodomain (e-gp41, residues 27-149), which was shown to interact with phospholipid membranes, exists in an equilibrium between the monomeric and trimeric states. Here, we analyzed, by intrinsic Trp fluorescence and resonance energy transfer, whether SIV e-gp41-membrane interaction depends on the gp41 oligomeric state. We found that both gp41 monomers and trimers bind membranes, with the monomers' full binding being reached at substantially lower lipid to protein ratios. Furthermore, the different characteristics of the Trp fluorescence of monomers and trimers enabled us to detect binding of each form at concentrations at which both species were present. CD spectroscopy revealed that the secondary structure of gp41 monomers does not change upon membrane binding, suggesting that membrane-bound monomeric-gp41 is a possible target for DP-178, a potent peptide inhibitor of HIV infection. The consequences of the interaction between monomeric and trimeric gp41 with membranes in HIV/SIV infection, its inhibition, and its associated neuropathologies are discussed.
Collapse
Affiliation(s)
- S G Peisajovich
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | |
Collapse
|