1
|
Obr M, Percipalle M, Chernikova D, Yang H, Thader A, Pinke G, Porley D, Mansky LM, Dick RA, Schur FKM. Distinct stabilization of the human T cell leukemia virus type 1 immature Gag lattice. Nat Struct Mol Biol 2025; 32:268-276. [PMID: 39242978 PMCID: PMC11832423 DOI: 10.1038/s41594-024-01390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/14/2024] [Indexed: 09/09/2024]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) immature particles differ in morphology from other retroviruses, suggesting a distinct way of assembly. Here we report the results of cryo-electron tomography studies of HTLV-1 virus-like particles assembled in vitro, as well as derived from cells. This work shows that HTLV-1 uses a distinct mechanism of Gag-Gag interactions to form the immature viral lattice. Analysis of high-resolution structural information from immature capsid (CA) tubular arrays reveals that the primary stabilizing component in HTLV-1 is the N-terminal domain of CA. Mutagenesis analysis supports this observation. This distinguishes HTLV-1 from other retroviruses, in which the stabilization is provided primarily by the C-terminal domain of CA. These results provide structural details of the quaternary arrangement of Gag for an immature deltaretrovirus and this helps explain why HTLV-1 particles are morphologically distinct.
Collapse
Affiliation(s)
- Martin Obr
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Material and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord, Eindhoven, Netherlands
| | - Mathias Percipalle
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Darya Chernikova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Andreas Thader
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Gergely Pinke
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Dario Porley
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, GA, USA
| | - Florian K M Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
2
|
Obr M, Percipalle M, Chernikova D, Yang H, Thader A, Pinke G, Porley D, Mansky LM, Dick RA, Schur FKM. Unconventional stabilization of the human T-cell leukemia virus type 1 immature Gag lattice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.548988. [PMID: 37546793 PMCID: PMC10402013 DOI: 10.1101/2023.07.24.548988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) has an atypical immature particle morphology compared to other retroviruses. This indicates that these particles are formed in a way that is unique. Here we report the results of cryo-electron tomography (cryo-ET) studies of HTLV-1 virus-like particles (VLPs) assembled in vitro, as well as derived from cells. This work shows that HTLV-1 employs an unconventional mechanism of Gag-Gag interactions to form the immature viral lattice. Analysis of high-resolution structural information from immature CA tubular arrays reveals that the primary stabilizing component in HTLV-1 is CA-NTD. Mutagenesis and biophysical analysis support this observation. This distinguishes HTLV-1 from other retroviruses, in which the stabilization is provided primarily by the CA-CTD. These results are the first to provide structural details of the quaternary arrangement of Gag for an immature deltaretrovirus, and this helps explain why HTLV-1 particles are morphologically distinct.
Collapse
Affiliation(s)
- Martin Obr
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Mathias Percipalle
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Darya Chernikova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Andreas Thader
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Gergely Pinke
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Dario Porley
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Florian KM Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
3
|
Obr M, Schur FKM. Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging. Adv Virus Res 2019; 105:117-159. [PMID: 31522703 DOI: 10.1016/bs.aivir.2019.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Describing the protein interactions that form pleomorphic and asymmetric viruses represents a considerable challenge to most structural biology techniques, including X-ray crystallography and single particle cryo-electron microscopy. Obtaining a detailed understanding of these interactions is nevertheless important, considering the number of relevant human pathogens that do not follow strict icosahedral or helical symmetry. Cryo-electron tomography and subtomogram averaging methods provide structural insights into complex biological environments and are well suited to go beyond structures of perfectly symmetric viruses. This chapter discusses recent developments showing that cryo-ET and subtomogram averaging can provide high-resolution insights into hitherto unknown structural features of pleomorphic and asymmetric virus particles. It also describes how these methods have significantly added to our understanding of retrovirus capsid assemblies in immature and mature viruses. Additional examples of irregular viruses and their associated proteins, whose structures have been studied via cryo-ET and subtomogram averaging, further support the versatility of these methods.
Collapse
Affiliation(s)
- Martin Obr
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Florian K M Schur
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
| |
Collapse
|
4
|
Lyngdoh D, Shukla H, Sonkar A, Anupam R, Tripathi T. Portrait of the Intrinsically Disordered Side of the HTLV-1 Proteome. ACS OMEGA 2019; 4:10003-10018. [PMID: 31460093 PMCID: PMC6648719 DOI: 10.1021/acsomega.9b01017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/28/2019] [Indexed: 05/07/2023]
Abstract
Intrinsically disordered proteins (IDPs) lack an ordered 3D structure. These proteins contain one or more intrinsically disordered protein regions (IDPRs). IDPRs interact promiscuously with other proteins, which leads to their structural transition from a disordered to an ordered state. Such interaction-prone regions of IDPs are known as molecular recognition features. Recent studies suggest that IDPs provide structural plasticity and functional diversity to viral proteins that are involved in rapid replication and immune evasion within the host cells. In the present study, we evaluated the prevalence of IDPs and IDPRs in human T lymphotropic virus type 1 (HTLV-1) proteome. We also investigated the presence of MoRF regions in the structural and nonstructural proteins of HTLV-1. We found abundant IDPRs in HTLV-1 bZIP factor, p30, Rex, and structural nucleocapsid p15 proteins, which are involved in diverse functions such as virus proliferation, mRNA export, and genomic RNA binding. Our study analyzed the HTLV-1 proteome with the perspective of intrinsic disorder identification. We propose that the intrinsic disorder analysis of HTLV-1 proteins may form the basis for the development of protein disorder-based drugs.
Collapse
Affiliation(s)
- Denzelle
L. Lyngdoh
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Harish Shukla
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Amit Sonkar
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Rajaneesh Anupam
- Department
of Biotechnology, Dr. Harisingh Gour Central
University, Sagar 470003, India
| | - Timir Tripathi
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
- E-mail: , . Phone: +91-364-2722141. Fax: +91-364-2550108
| |
Collapse
|
5
|
Abstract
The retrovirus capsid core is a metastable structure that disassembles during the early phase of viral infection after membrane fusion. The core is intact and permeable to essential nucleotides during reverse transcription, but it undergoes disassembly for nuclear entry and genome integration. Increasing or decreasing the stability of the capsid core has a substantial negative impact on virus infectivity, which makes the core an attractive anti-viral target. The retrovirus capsid core also encounters a variety of virus- and organism-specific host cellular factors that promote or restrict viral replication. This review describes the structural elements fundamental to the formation and stability of the capsid core. The physical and chemical properties of the capsid core that are critical to its functional role in reverse transcription and interaction with host cellular factors are highlighted to emphasize areas of current research.
Collapse
|
6
|
Distinct Pathway of Human T-Cell Leukemia Virus Type 1 Gag Punctum Biogenesis Provides New Insights into Enveloped Virus Assembly. mBio 2018; 9:mBio.00758-18. [PMID: 30181245 PMCID: PMC6123448 DOI: 10.1128/mbio.00758-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The assembly of virus particles is a crucial aspect of virus spread. For retroviruses, the Gag polyprotein is the key driver for virus particle assembly. In order to produce progeny virus, once Gag is translated, it must translocate from the location in the cytoplasm where it is synthesized to the plasma membrane and form an oligomeric lattice that results in Gag puncta. The biogenesis of mature Gag puncta can trigger the budding process, resulting in virus particle production. While some aspects of the dynamics of Gag oligomerization and particle biogenesis have been observed with human immunodeficiency virus type 1 (HIV-1), the process of Gag punctum biogenesis remains poorly understood, particularly for other retroviruses. Here, we have conducted the most detailed studies thus far on Gag punctum biogenesis for human T-cell leukemia virus type 1 (HTLV-1). Using mEos2 photoconvertible fluorescent proteins and total internal reflection fluorescence microscopy (TIRF), we have found that HTLV-1 Gag was recruited to Gag puncta primarily from the plasma membrane. This was in stark contrast to HIV-1 Gag, which was recruited from the cytoplasm. These observations imply fundamental differences among retroviruses regarding the orchestration of Gag punctum biogenesis, which has important general implications for enveloped virus particle assembly.IMPORTANCE This report describes the results of experiments examining the pathway by which the human retroviral Gag protein is recruited to sites along the inner leaflet of the plasma membrane where Gag punctum biogenesis occurs. In particular, clever and sensitive experimental methods were devised to image in living cells fluorescently labeled Gag protein derivatives from human T-cell leukemia virus type 1 (HTLV-1) and human immunodeficiency virus type 1 (HIV-1) at the plasma membrane. The photoconvertible fluorescent protein mEos2 was strategically utilized, as the fluorescence emission of Gag at the plasma membrane could be differentiated from that of cytosolic Gag. This experimental strategy allowed for the determination of the Gag recruitment pathway into Gag puncta. For HTLV-1 Gag, puncta recruited Gag primarily from the plasma membrane, while HIV-1 Gag was recruited from the cytoplasm. These observations represent the first report of HTLV-1 particle biogenesis and its contrast to that of HIV-1. The observed differences in the Gag recruitment pathways used by HTLV-1 and HIV-1 Gag provide key information that is useful for informing the discovery of novel targets for antiretroviral therapies directed at eliminating virus infectivity and spread.
Collapse
|
7
|
Critical Role of the Human T-Cell Leukemia Virus Type 1 Capsid N-Terminal Domain for Gag-Gag Interactions and Virus Particle Assembly. J Virol 2018; 92:JVI.00333-18. [PMID: 29695435 DOI: 10.1128/jvi.00333-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 01/28/2023] Open
Abstract
The retroviral Gag protein is the main structural protein responsible for virus particle assembly and release. Like human immunodeficiency virus type 1 (HIV-1) Gag, human T-cell leukemia virus type 1 (HTLV-1) has a structurally conserved capsid (CA) domain, including a β-hairpin turn and a centralized coiled-coil-like structure of six α helices in the CA amino-terminal domain (NTD), as well as four α-helices in the CA carboxy-terminal domain (CTD). CA drives Gag oligomerization, which is critical for both immature Gag lattice formation and particle production. The HIV-1 CA CTD has previously been shown to be a primary determinant for CA-CA interactions, and while both the HTLV-1 CA NTD and CTD have been implicated in Gag-Gag interactions, our recent observations have implicated the HTLV-1 CA NTD as encoding key determinants that dictate particle morphology. Here, we have conducted alanine-scanning mutagenesis in the HTLV-1 CA NTD nucleotide-encoding sequences spanning the loop regions and amino acids at the beginning and ends of α-helices due to their structural dissimilarity from the HIV-1 CA NTD structure. We analyzed both Gag subcellular distribution and efficiency of particle production for these mutants. We discovered several important residues (i.e., M17, Q47/F48, and Y61). Modeling implicated that these residues reside at the dimer interface (i.e., M17 and Y61) or at the trimer interface (i.e., Q47/F48). Taken together, these observations highlight the critical role of the HTLV-1 CA NTD in Gag-Gag interactions and particle assembly, which is, to the best of our knowledge, in contrast to HIV-1 and other retroviruses.IMPORTANCE Retrovirus particle assembly and release from infected cells is driven by the Gag structural protein. Gag-Gag interactions, which form an oligomeric lattice structure at a particle budding site, are essential to the biogenesis of an infectious virus particle. The CA domain of Gag is generally thought to possess the key determinants for Gag-Gag interactions, and the present study has discovered several critical amino acid residues in the CA domain of HTLV-1 Gag, an important cancer-causing human retrovirus, which are distinct from that of HIV-1 as well as other retroviruses studied to date. Altogether, our results provide important new insights into a poorly understood aspect of HTLV-1 replication that significantly enhances our understanding of the molecular nature of Gag-Gag interaction determinants crucial for virus particle assembly.
Collapse
|
8
|
Disparate Contributions of Human Retrovirus Capsid Subdomains to Gag-Gag Oligomerization, Virus Morphology, and Particle Biogenesis. J Virol 2017; 91:JVI.00298-17. [PMID: 28446667 DOI: 10.1128/jvi.00298-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022] Open
Abstract
The capsid domain (CA) of the retroviral Gag protein is a primary determinant of Gag oligomerization, which is a critical step for immature Gag lattice formation and virus particle budding. Although the human immunodeficiency virus type 1 (HIV-1) CA carboxy-terminal domain (CTD) is essential for CA-CA interactions, the CA CTD has been suggested to be largely dispensable for human T-cell leukemia virus type 1 (HTLV-1) particle biogenesis. To more clearly define the roles of the HTLV-1 CA amino-terminal domain (NTD) and CA CTD in particle biogenesis, we generated and analyzed a panel of Gag proteins with chimeric HIV-1/HTLV-1 CA domains. Subcellular distribution and protein expression levels indicated that Gag proteins with a chimeric HIV-1 CA NTD/HTLV-1 CA CTD did not result in Gag oligomerization regardless of the parent Gag background. Furthermore, chimeric Gag proteins with the HTLV-1 CA NTD produced particles phenotypically similar to HTLV-1 immature particles, highlighting the importance of the HTLV-1 CA NTD in HTLV-1 immature particle morphology. Taken together, these observations support the conclusion that the HTLV-1 CA NTD can functionally replace the HIV-1 CA CTD, but the HIV-1 CA NTD cannot replace the HTLV-1 CA CTD, indicating that the HTLV-1 CA subdomains provide distinct contributions to Gag-Gag oligomerization, particle morphology, and biogenesis. Furthermore, we have shown for the first time that HIV-1 and HTLV-1 Gag domains outside the CA (e.g., matrix and nucleocapsid) impact Gag oligomerization as well as immature particle size and morphology.IMPORTANCE A key aspect in virus replication is virus particle assembly, which is a poorly understood process for most viruses. For retroviruses, the Gag structural protein is the primary driver of virus particle biogenesis, and the CA CTD is the primary determinant of Gag-Gag interactions for HIV-1. In this study, the HTLV-1 capsid amino-terminal domain was found to provide distinct contributions to Gag-Gag oligomerization, particle morphology, and biogenesis. This study provides information that will aid efforts for discovery of therapeutic targets for intervention.
Collapse
|
9
|
Jeon J, Qiao X, Hung I, Mitra AK, Desfosses A, Huang D, Gor’kov PL, Craven RC, Kingston RL, Gan Z, Zhu F, Chen B. Structural Model of the Tubular Assembly of the Rous Sarcoma Virus Capsid Protein. J Am Chem Soc 2017; 139:2006-2013. [DOI: 10.1021/jacs.6b11939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jaekyun Jeon
- Department
of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xin Qiao
- Department
of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Ivan Hung
- National
High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Alok K. Mitra
- School
of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ambroise Desfosses
- School
of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniel Huang
- Department
of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Peter L. Gor’kov
- National
High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Rebecca C. Craven
- Department
of Microbiology and Immunology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Richard L. Kingston
- School
of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Zhehong Gan
- National
High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Fangqiang Zhu
- Department
of Physics, Indiana University−Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Bo Chen
- Department
of Physics, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
10
|
Ball NJ, Nicastro G, Dutta M, Pollard DJ, Goldstone DC, Sanz-Ramos M, Ramos A, Müllers E, Stirnnagel K, Stanke N, Lindemann D, Stoye JP, Taylor WR, Rosenthal PB, Taylor IA. Structure of a Spumaretrovirus Gag Central Domain Reveals an Ancient Retroviral Capsid. PLoS Pathog 2016; 12:e1005981. [PMID: 27829070 PMCID: PMC5102385 DOI: 10.1371/journal.ppat.1005981] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022] Open
Abstract
The Spumaretrovirinae, or foamy viruses (FVs) are complex retroviruses that infect many species of monkey and ape. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. However, there is a paucity of structural information for FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. To probe the functional overlap of FV and orthoretroviral Gag we have determined the structure of a central region of Gag from the Prototype FV (PFV). The structure comprises two all α-helical domains NtDCEN and CtDCEN that although they have no sequence similarity, we show they share the same core fold as the N- (NtDCA) and C-terminal domains (CtDCA) of archetypal orthoretroviral capsid protein (CA). Moreover, structural comparisons with orthoretroviral CA align PFV NtDCEN and CtDCEN with NtDCA and CtDCA respectively. Further in vitro and functional virological assays reveal that residues making inter-domain NtDCEN-CtDCEN interactions are required for PFV capsid assembly and that intact capsid is required for PFV reverse transcription. These data provide the first information that relates the Gag proteins of Spuma and Orthoretrovirinae and suggests a common ancestor for both lineages containing an ancient CA fold.
Collapse
Affiliation(s)
- Neil J. Ball
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Moumita Dutta
- Structural Biology of Cells and Viruses, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Dominic J. Pollard
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - David C. Goldstone
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Marta Sanz-Ramos
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Andres Ramos
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Erik Müllers
- Institute of Virology, Technische Universität Dresden, Dresden, DE
| | | | - Nicole Stanke
- Institute of Virology, Technische Universität Dresden, Dresden, DE
| | - Dirk Lindemann
- Institute of Virology, Technische Universität Dresden, Dresden, DE
| | - Jonathan P. Stoye
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - William R. Taylor
- Computational Cell and Molecular Biology Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| |
Collapse
|
11
|
Li YL, Chandrasekaran V, Carter SD, Woodward CL, Christensen DE, Dryden KA, Pornillos O, Yeager M, Ganser-Pornillos BK, Jensen GJ, Sundquist WI. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. eLife 2016; 5. [PMID: 27253068 PMCID: PMC4936896 DOI: 10.7554/elife.16269] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/19/2016] [Indexed: 12/04/2022] Open
Abstract
TRIM5 proteins are restriction factors that block retroviral infections by binding viral capsids and preventing reverse transcription. Capsid recognition is mediated by C-terminal domains on TRIM5α (SPRY) or TRIMCyp (cyclophilin A), which interact weakly with capsids. Efficient capsid recognition also requires the conserved N-terminal tripartite motifs (TRIM), which mediate oligomerization and create avidity effects. To characterize how TRIM5 proteins recognize viral capsids, we developed methods for isolating native recombinant TRIM5 proteins and purifying stable HIV-1 capsids. Biochemical and EM analyses revealed that TRIM5 proteins assembled into hexagonal nets, both alone and on capsid surfaces. These nets comprised open hexameric rings, with the SPRY domains centered on the edges and the B-box and RING domains at the vertices. Thus, the principles of hexagonal TRIM5 assembly and capsid pattern recognition are conserved across primates, allowing TRIM5 assemblies to maintain the conformational plasticity necessary to recognize divergent and pleomorphic retroviral capsids. DOI:http://dx.doi.org/10.7554/eLife.16269.001 After infecting a cell, a virus reproduces by forcing the cell to produce new copies of the virus, which then spread to other cells. However, cells have evolved ways to fight back against these infections. For example, many mammalian cells contain proteins called restriction factors that prevent the virus from multiplying. The TRIM5 proteins form one common set of restriction factors that act against a class of viruses called retroviruses. HIV-1 and related retroviruses have a protein shell known as a capsid that surrounds the genetic material of the virus. The capsid contains several hundred repeating units, each of which consists of a hexagonal ring of six CA proteins. Although this basic pattern is maintained across different retroviruses, the overall shape of the capsids can vary considerably. For instance, HIV-1 capsids are shaped like a cone, but other retroviruses can form cylinders or spheres. Soon after the retrovirus enters a mammalian cell, TRIM5 proteins bind to the capsid. This causes the capsid to be destroyed, which prevents viral replication. Previous research has shown that several TRIM5 proteins must link up with each other via a region of their structure called the B-box 2 domain in order to efficiently recognize capsids. How this assembly process occurs, and why it enables the TRIM5 proteins to recognize different capsids was not fully understood. Now, Li, Chandrasekaran et al. (and independently Wagner et al.) have investigated these questions. Using biochemical analyses and electron microscopy, Li, Chandrasekaran et al. found that TRIM5 proteins can bind directly to the surface of HIV-1 capsids. Several TRIM5 proteins link together to form large hexagonal nets, in which the B-box domains of the proteins are found at the points where three TRIM5 proteins meet. This arrangement mimics the pattern present in the HIV-1 capsid, and just a few TRIM5 rings can cover most of the capsid. Li, Chandrasekaran et al. then analysed TRIM5 proteins from several primates, including rhesus macaques, African green monkeys and chimpanzees. In all cases analyzed, the TRIM5 proteins assembled into hexagonal nets, although the individual units within the net did not have strictly regular shapes. These results suggest that TRIM5 proteins assemble a scaffold that can deform to match the pattern of the proteins in the capsid. Further work is now needed to understand how capsid recognition is linked to the processes that disable the virus. DOI:http://dx.doi.org/10.7554/eLife.16269.002
Collapse
Affiliation(s)
- Yen-Li Li
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | | | - Stephen D Carter
- Division of Biology, California Institute of Technology, Pasadena, United States
| | - Cora L Woodward
- Division of Biology, California Institute of Technology, Pasadena, United States
| | - Devin E Christensen
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Kelly A Dryden
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, United States
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, United States
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, United States.,Department of Medicine, Division of Cardiovascular Medicine, University of Virginia Health System, Charlottesville, United States
| | - Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, United States
| | - Grant J Jensen
- Division of Biology, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| |
Collapse
|
12
|
Contributions of Charged Residues in Structurally Dynamic Capsid Surface Loops to Rous Sarcoma Virus Assembly. J Virol 2016; 90:5700-5714. [PMID: 27053549 DOI: 10.1128/jvi.00378-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/29/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Extensive studies of orthoretroviral capsids have shown that many regions of the CA protein play unique roles at different points in the virus life cycle. The N-terminal domain (NTD) flexible-loop (FL) region is one such example: exposed on the outer capsid surface, it has been implicated in Gag-mediated particle assembly, capsid maturation, and early replication events. We have now defined the contributions of charged residues in the FL region of the Rous sarcoma virus (RSV) CA to particle assembly. Effects of mutations on assembly were assessed in vivo and in vitro and analyzed in light of new RSV Gag lattice models. Virus replication was strongly dependent on the preservation of charge at a few critical positions in Gag-Gag interfaces. In particular, a cluster of charges at the beginning of FL contributes to an extensive electrostatic network that is important for robust Gag assembly and subsequent capsid maturation. Second-site suppressor analysis suggests that one of these charged residues, D87, has distal influence on interhexamer interactions involving helix α7. Overall, the tolerance of FL to most mutations is consistent with current models of Gag lattice structures. However, the results support the interpretation that virus evolution has achieved a charge distribution across the capsid surface that (i) permits the packing of NTD domains in the outer layer of the Gag shell, (ii) directs the maturational rearrangements of the NTDs that yield a functional core structure, and (iii) supports capsid function during the early stages of virus infection. IMPORTANCE The production of infectious retrovirus particles is a complex process, a choreography of protein and nucleic acid that occurs in two distinct stages: formation and release from the cell of an immature particle followed by an extracellular maturation phase during which the virion proteins and nucleic acids undergo major rearrangements that activate the infectious potential of the virion. This study examines the contributions of charged amino acids on the surface of the Rous sarcoma virus capsid protein in the assembly of appropriately formed immature particles and the maturational transitions that create a functional virion. The results provide important biological evidence in support of recent structural models of the RSV immature virions and further suggest that immature particle assembly and virion maturation are controlled by an extensive network of electrostatic interactions and long-range communication across the capsid surface.
Collapse
|
13
|
Mattei S, Schur FK, Briggs JA. Retrovirus maturation-an extraordinary structural transformation. Curr Opin Virol 2016; 18:27-35. [PMID: 27010119 DOI: 10.1016/j.coviro.2016.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
Abstract
Retroviruses such as HIV-1 assemble and bud from infected cells in an immature, non-infectious form. Subsequently, a series of proteolytic cleavages catalysed by the viral protease leads to a spectacular structural rearrangement of the viral particle into a mature form that is competent to fuse with and infect a new cell. Maturation involves changes in the structures of protein domains, in the interactions between protein domains, and in the architecture of the viral components that are assembled by the proteins. Tight control of proteolytic cleavages at different sites is required for successful maturation, and the process is a major target of antiretroviral drugs. Here we will describe what is known about the structures of immature and mature retrovirus particles, and about the maturation process by which one transitions into the other. Despite a wealth of available data, fundamental questions about retroviral maturation remain unanswered.
Collapse
Affiliation(s)
- Simone Mattei
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Florian Km Schur
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - John Ag Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany.
| |
Collapse
|
14
|
McCarthy KR, Kirmaier A, Autissier P, Johnson WE. Evolutionary and Functional Analysis of Old World Primate TRIM5 Reveals the Ancient Emergence of Primate Lentiviruses and Convergent Evolution Targeting a Conserved Capsid Interface. PLoS Pathog 2015; 11:e1005085. [PMID: 26291613 PMCID: PMC4546234 DOI: 10.1371/journal.ppat.1005085] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/15/2015] [Indexed: 12/29/2022] Open
Abstract
The widespread distribution of lentiviruses among African primates, and the lack of severe pathogenesis in many of these natural reservoirs, are taken as evidence for long-term co-evolution between the simian immunodeficiency viruses (SIVs) and their primate hosts. Evidence for positive selection acting on antiviral restriction factors is consistent with virus-host interactions spanning millions of years of primate evolution. However, many restriction mechanisms are not virus-specific, and selection cannot be unambiguously attributed to any one type of virus. We hypothesized that the restriction factor TRIM5, because of its unique specificity for retrovirus capsids, should accumulate adaptive changes in a virus-specific fashion, and therefore, that phylogenetic reconstruction of TRIM5 evolution in African primates should reveal selection by lentiviruses closely related to modern SIVs. We analyzed complete TRIM5 coding sequences of 22 Old World primates and identified a tightly-spaced cluster of branch-specific adaptions appearing in the Cercopithecinae lineage after divergence from the Colobinae around 16 million years ago. Functional assays of both extant TRIM5 orthologs and reconstructed ancestral TRIM5 proteins revealed that this cluster of adaptations in TRIM5 specifically resulted in the ability to restrict Cercopithecine lentiviruses, but had no effect (positive or negative) on restriction of other retroviruses, including lentiviruses of non-Cercopithecine primates. The correlation between lineage-specific adaptations and ability to restrict viruses endemic to the same hosts supports the hypothesis that lentiviruses closely related to modern SIVs were present in Africa and infecting the ancestors of Cercopithecine primates as far back as 16 million years ago, and provides insight into the evolution of TRIM5 specificity. Old World primates in Africa are reservoir hosts for more than 40 species of simian immunodeficiency viruses (SIVs), including the sources of the human immunodeficiency viruses, HIV-1 and HIV-2. To investigate the prehistoric origins of these lentiviruses, we looked for patterns of evolution in the antiviral host gene TRIM5 that would reflect selection by lentiviruses during evolution of African primates. We identified a pattern of adaptive changes unique to the TRIM5 proteins of a subset of African monkeys that suggests that the ancestors of these viruses emerged between 11–16 million years ago, and by reconstructing and comparing the function of ancestral TRIM5 proteins with extant TRIM5 proteins, we confirmed that these adaptations confer specificity for their modern descendants, the SIVs.
Collapse
Affiliation(s)
- Kevin R. McCarthy
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Andrea Kirmaier
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Patrick Autissier
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Welkin E. Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Obal G, Trajtenberg F, Carrión F, Tomé L, Larrieux N, Zhang X, Pritsch O, Buschiazzo A. Conformational plasticity of a native retroviral capsid revealed by x-ray crystallography. Science 2015; 349:95-8. [DOI: 10.1126/science.aaa5182] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Retroviruses depend on self-assembly of their capsid proteins (core particle) to yield infectious mature virions. Despite the essential role of the retroviral core, its high polymorphism has hindered high-resolution structural analyses. Here, we report the x-ray structure of the native capsid (CA) protein from bovine leukemia virus. CA is organized as hexamers that deviate substantially from sixfold symmetry, yet adjust to make two-dimensional pseudohexagonal arrays that mimic mature retroviral cores. Intra- and interhexameric quasi-equivalent contacts are uncovered, with flexible trimeric lateral contacts among hexamers, yet preserving very similar dimeric interfaces making the lattice. The conformation of each capsid subunit in the hexamer is therefore dictated by long-range interactions, revealing how the hexamers can also assemble into closed core particles, a relevant feature of retrovirus biology.
Collapse
|
16
|
Schur FKM, Hagen WJH, Rumlová M, Ruml T, Müller B, Kräusslich HG, Briggs JAG. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution. Nature 2014; 517:505-8. [PMID: 25363765 DOI: 10.1038/nature13838] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/03/2014] [Indexed: 12/16/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form. Immature and mature HIV-1 particles are heterogeneous in size and morphology, preventing high-resolution analysis of their protein arrangement in situ by conventional structural biology methods. Here we apply cryo-electron tomography and sub-tomogram averaging methods to resolve the structure of the capsid lattice within intact immature HIV-1 particles at subnanometre resolution, allowing unambiguous positioning of all α-helices. The resulting model reveals tertiary and quaternary structural interactions that mediate HIV-1 assembly. Strikingly, these interactions differ from those predicted by the current model based on in vitro-assembled arrays of Gag-derived proteins from Mason-Pfizer monkey virus. To validate this difference, we solve the structure of the capsid lattice within intact immature Mason-Pfizer monkey virus particles. Comparison with the immature HIV-1 structure reveals that retroviral capsid proteins, while having conserved tertiary structures, adopt different quaternary arrangements during virus assembly. The approach demonstrated here should be applicable to determine structures of other proteins at subnanometre resolution within heterogeneous environments.
Collapse
Affiliation(s)
- Florian K M Schur
- 1] Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany [2] Molecular Medicine Partnership Unit, European Molecular Biology Laboratory/Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Michaela Rumlová
- 1] Institute of Organic Chemistry and Biochemistry (IOCB), Academy of Sciences of the Czech Republic, v.v.i., IOCB &Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic [2] Department of Biotechnology, Institute of Chemical Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Barbara Müller
- 1] Molecular Medicine Partnership Unit, European Molecular Biology Laboratory/Universitätsklinikum Heidelberg, Heidelberg, Germany [2] Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- 1] Molecular Medicine Partnership Unit, European Molecular Biology Laboratory/Universitätsklinikum Heidelberg, Heidelberg, Germany [2] Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - John A G Briggs
- 1] Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany [2] Molecular Medicine Partnership Unit, European Molecular Biology Laboratory/Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Obr M, Hadravová R, DoleŽal M, KříŽová I, Papoušková V, Zídek L, Hrabal R, Ruml T, Rumlová M. Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein- a critical step for infectivity. Retrovirology 2014; 11:94. [PMID: 25365920 PMCID: PMC4219007 DOI: 10.1186/s12977-014-0094-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/17/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Formation of a mature core is a crucial event for infectivity of retroviruses such as Mason-Pfizer monkey virus (M-PMV). The process is triggered by proteolytic cleavage of the polyprotein precursor Gag, which releases matrix, capsid (CA), and nucleocapsid proteins. Once released, CA assembles to form a mature core - a hexameric lattice protein shell that protects retroviral genomic RNA. Subtle conformational changes within CA induce the transition from the immature lattice to the mature lattice. Upon release from the precursor, the initially unstructured N-terminus of CA is refolded to form a β-hairpin stabilized by a salt bridge between the N-terminal proline and conserved aspartate. Although the crucial role of the β-hairpin in the mature core assembly has been confirmed, its precise structural function remains poorly understood. RESULTS Based on a previous NMR analysis of the N-terminal part of M-PMV CA, which suggested the role of additional interactions besides the proline-aspartate salt bridge in stabilization of the β-hairpin, we introduced a series of mutations into the CA sequence. The effect of the mutations on virus assembly and infectivity was analyzed. In addition, the structural consequences of selected mutations were determined by NMR spectroscopy. We identified a network of interactions critical for proper formation of the M-PMV core. This network involves residue R14, located in the N-terminal β-hairpin; residue W52 in the loop connecting helices 2 and 3; and residues Q113, Q115, and Y116 in helix 5. CONCLUSION Combining functional and structural analyses, we identified a network of supportive interactions that stabilize the β-hairpin in mature M-PMV CA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michaela Rumlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v,v,i,, IOCB & Gilead Research Center, Flemingovo nám, 2, Prague, 166 10, Czech Republic.
| |
Collapse
|
18
|
Goldstone DC, Flower TG, Ball NJ, Sanz-Ramos M, Yap MW, Ogrodowicz RW, Stanke N, Reh J, Lindemann D, Stoye JP, Taylor IA. A unique spumavirus Gag N-terminal domain with functional properties of orthoretroviral matrix and capsid. PLoS Pathog 2013; 9:e1003376. [PMID: 23675305 PMCID: PMC3649970 DOI: 10.1371/journal.ppat.1003376] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/04/2013] [Indexed: 11/19/2022] Open
Abstract
The Spumaretrovirinae, or foamyviruses (FVs) are complex retroviruses that infect many species of monkey and ape. Although FV infection is apparently benign, trans-species zoonosis is commonplace and has resulted in the isolation of the Prototypic Foamy Virus (PFV) from human sources and the potential for germ-line transmission. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. In addition, PFV Gag interacts with the FV Envelope (Env) protein to facilitate budding of infectious particles. Presently, there is a paucity of structural information with regards FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. Therefore, in order to probe the functional overlap of FV and orthoretroviral Gag and learn more about FV egress and replication we have undertaken a structural, biophysical and virological study of PFV-Gag. We present the crystal structure of a dimeric amino terminal domain from PFV, Gag-NtD, both free and in complex with the leader peptide of PFV Env. The structure comprises a head domain together with a coiled coil that forms the dimer interface and despite the shared function it is entirely unrelated to either the capsid or matrix of Gag from other retroviruses. Furthermore, we present structural, biochemical and virological data that reveal the molecular details of the essential Gag-Env interaction and in addition we also examine the specificity of Trim5α restriction of PFV. These data provide the first information with regards to FV structural proteins and suggest a model for convergent evolution of gag genes where structurally unrelated molecules have become functionally equivalent.
Collapse
Affiliation(s)
- David C. Goldstone
- Division of Molecular Structure, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
| | - Thomas G. Flower
- Division of Molecular Structure, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
| | - Neil J. Ball
- Division of Molecular Structure, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
| | - Marta Sanz-Ramos
- Division of Virology, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
| | - Melvyn W. Yap
- Division of Virology, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
| | - Roksana W. Ogrodowicz
- Division of Molecular Structure, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
| | - Nicole Stanke
- Institute of Virology, Technische Universität Dresden, Dresden, Germany
| | - Juliane Reh
- Institute of Virology, Technische Universität Dresden, Dresden, Germany
| | - Dirk Lindemann
- Institute of Virology, Technische Universität Dresden, Dresden, Germany
| | - Jonathan P. Stoye
- Division of Virology, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
| | - Ian A. Taylor
- Division of Molecular Structure, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
McCarthy KR, Schmidt AG, Kirmaier A, Wyand AL, Newman RM, Johnson WE. Gain-of-sensitivity mutations in a Trim5-resistant primary isolate of pathogenic SIV identify two independent conserved determinants of Trim5α specificity. PLoS Pathog 2013; 9:e1003352. [PMID: 23675300 PMCID: PMC3649984 DOI: 10.1371/journal.ppat.1003352] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 03/25/2013] [Indexed: 11/18/2022] Open
Abstract
Retroviral capsid recognition by Trim5 blocks productive infection. Rhesus macaques harbor three functionally distinct Trim5 alleles: Trim5αQ, Trim5αTFP and Trim5CypA. Despite the high degree of amino acid identity between Trim5αQ and Trim5αTFP alleles, the Q/TFP polymorphism results in the differential restriction of some primate lentiviruses, suggesting these alleles differ in how they engage these capsids. Simian immunodeficiency virus of rhesus macaques (SIVmac) evolved to resist all three alleles. Thus, SIVmac provides a unique opportunity to study a virus in the context of the Trim5 repertoire that drove its evolution in vivo. We exploited the evolved rhesus Trim5α resistance of this capsid to identify gain-of-sensitivity mutations that distinguish targets between the Trim5αQ and Trim5αTFP alleles. While both alleles recognize the capsid surface, Trim5αQ and Trim5αTFP alleles differed in their ability to restrict a panel of capsid chimeras and single amino acid substitutions. When mapped onto the structure of the SIVmac239 capsid N-terminal domain, single amino acid substitutions affecting both alleles mapped to the β-hairpin. Given that none of the substitutions affected Trim5αQ alone, and the fact that the β-hairpin is conserved among retroviral capsids, we propose that the β-hairpin is a molecular pattern widely exploited by Trim5α proteins. Mutations specifically affecting rhesus Trim5αTFP (without affecting Trim5αQ) surround a site of conservation unique to primate lentiviruses, overlapping the CPSF6 binding site. We believe targeting this site is an evolutionary innovation driven specifically by the emergence of primate lentiviruses in Africa during the last 12 million years. This modularity in targeting may be a general feature of Trim5 evolution, permitting different regions of the PRYSPRY domain to evolve independent interactions with capsid. TRIM5α is an intrinsic immunity protein that blocks retrovirus infection through a specific interaction with the viral capsid. Uniquely among primates, rhesus macaques harbor three functionally distinct kinds of Trim5 alleles: rhTrim5αTFP, rhTrim5αQ and rhTrim5CypA. SIVmac239, a simian immunodeficiency virus that causes AIDS in rhesus macaques, is resistant to all three, whereas its relative, the human AIDS virus HIV-1, is inhibited by rhTrim5αTFP and rhTrim5αQ alleles. We exploited this difference between these two retroviruses to figure out how Trim5α proteins recognize viral capsids. By combining mutagenesis, structural biology and evolutionary data we determined that both rhTrim5αTFP and rhTrim5αQ recognize a conserved structure common to all retroviral capsids. However, we also found evidence suggesting that rhTrim5αTFP evolved to recognize an additional target that is specifically conserved among primate immunodeficiency viruses. Molecular evolutionary analysis indicates that this expanded function appeared in a common ancestor of modern African monkeys sometime between 9–12 million years ago, and that it thereafter continued to be modified by strong evolutionary pressure. Our results provide insight into the evolutionary flexibility of Trim5α-capsid interactions, and support the notion that viruses related to modern HIV and SIV have been present in Africa for millions of years.
Collapse
Affiliation(s)
- Kevin R. McCarthy
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Aaron G. Schmidt
- Laboratory of Molecular Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrea Kirmaier
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Allison L. Wyand
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Ruchi M. Newman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Welkin E. Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Chen K, Piszczek G, Carter C, Tjandra N. The maturational refolding of the β-hairpin motif of equine infectious anemia virus capsid protein extends its helix α1 at capsid assembly locus. J Biol Chem 2012. [PMID: 23184932 PMCID: PMC3548464 DOI: 10.1074/jbc.m112.425140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A retroviral capsid (CA) protein consists of two helical domains, CAN and CAC, which drive hexamer and dimer formations, respectively, to form a capsid lattice. The N-terminal 13 residues of CA refold to a β-hairpin motif upon processing from its precursor polyprotein Gag. The β-hairpin is essential for correct CA assembly but unexpectedly it is not within any CA oligomeric interfaces. To understand the β-hairpin function we studied the full-length CA protein from equine infectious anemia virus (EIAV), a lentivirus sharing the same cone-shaped capsid core as HIV-1. Solution NMR spectroscopy is perfectly suited to study EIAV-CA that dimerizes weaker than HIV-1-CA. Comparison between the wild-type (wt) EIAV-CA and a variant lacking the β-hairpin structure demonstrated that folding of the β-hairpin specifically extended the N terminus of helix α1 from Tyr20 to Pro17. This coil to helix transition involves the conserved sequence of Thr16-Pro17-Arg18 (Ser16-Pro17-Arg18 in HIV-1-CA). The extended region of helix α1 constituted an expanded EIAV-CAN oligomeric interface and overlapped with the HIV-1-CA hexamer-core residue Arg18, helical in structure and pivotal in assembly. Therefore we propose the function of the maturational refolding of the β-hairpin in CA assembly is to extend helix α1 at the N terminus to enhance the CAN oligomerization along the capsid assembly core interface. In addition, NMR resonance line broadening indicated the presence of micro-millisecond exchange kinetics due to the EIAV-CAN domain oligomerization, independent to the faster EIAV-CAC domain dimerization.
Collapse
Affiliation(s)
- Kang Chen
- Laboratory of Molecular Biophysics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
21
|
In vitro assembly of virus-like particles of a gammaretrovirus, the murine leukemia virus XMRV. J Virol 2011; 86:1297-306. [PMID: 22090120 DOI: 10.1128/jvi.05564-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immature retroviral particles are assembled by self-association of the structural polyprotein precursor Gag. During maturation the Gag polyprotein is proteolytically cleaved, yielding mature structural proteins, matrix (MA), capsid (CA), and nucleocapsid (NC), that reassemble into a mature viral particle. Proteolytic cleavage causes the N terminus of CA to fold back to form a β-hairpin, anchored by an internal salt bridge between the N-terminal proline and the inner aspartate. Using an in vitro assembly system of capsid-nucleocapsid protein (CANC), we studied the formation of virus-like particles (VLP) of a gammaretrovirus, the xenotropic murine leukemia virus (MLV)-related virus (XMRV). We show here that, unlike other retroviruses, XMRV CA and CANC do not assemble tubular particles characteristic of mature assembly. The prevention of β-hairpin formation by the deletion of either the N-terminal proline or 10 initial amino acids enabled the assembly of ΔProCANC or Δ10CANC into immature-like spherical particles. Detailed three-dimensional (3D) structural analysis of these particles revealed that below a disordered N-terminal CA layer, the C terminus of CA assembles a typical immature lattice, which is linked by rod-like densities with the RNP.
Collapse
|
22
|
Cortines JR, Monroe EB, Kang S, Prevelige PE. A retroviral chimeric capsid protein reveals the role of the N-terminal β-hairpin in mature core assembly. J Mol Biol 2011; 410:641-52. [PMID: 21762805 DOI: 10.1016/j.jmb.2011.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/18/2011] [Accepted: 03/24/2011] [Indexed: 01/09/2023]
Abstract
The human immunodeficiency virus (HIV) is an enveloped virus constituted by two monomeric RNA molecules that encode for 15 proteins. Among these are the structural proteins that are translated as the gag polyprotein. In order to become infectious, HIV must undergo a maturation process mediated by the proteolytic cleavage of gag to give rise to the isolated structural protein matrix, capsid (CA), nucleocapsid as well as p6 and spacer peptides 1 and 2. Upon maturation, the 13 N-terminal residues from CA fold into a β-hairpin, which is stabilized mainly by a salt bridge between Pro1 and Asp51. Previous reports have shown that non-formation of the salt bridge, which potentially disrupts proper β-hairpin arrangement, generates noninfectious virus or aberrant cores. To date, however, there is no consensus on the role of the β-hairpin. In order to shed light in this subject, we have generated mutations in the hairpin region to examine what features would be crucial for the β-hairpin's role in retroviral mature core formation. These features include the importance of the proline at the N-terminus, the amino acid sequence, and the physical structure of the β-hairpin itself. The presented experiments provide biochemical evidence that β-hairpin formation plays an important role in regard to CA protein conformation required to support proper mature core arrangement. Hydrogen/deuterium exchange and in vitro assembly reactions illustrated the importance of the β-hairpin structure, its dynamics, and its influence on the orientation of helix 1 for the assembly of the mature CA lattice.
Collapse
Affiliation(s)
- Juliana R Cortines
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
23
|
Fogarty KH, Zhang W, Grigsby IF, Johnson JL, Chen Y, Mueller JD, Mansky LM. New insights into HTLV-1 particle structure, assembly, and Gag-Gag interactions in living cells. Viruses 2011; 3:770-93. [PMID: 21994753 PMCID: PMC3185773 DOI: 10.3390/v3060770] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 11/16/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) has a reputation for being extremely difficult to study in cell culture. The challenges in propagating HTLV-1 has prevented a rigorous analysis of how these viruses replicate in cells, including the detailed steps involved in virus assembly. The details for how retrovirus particle assembly occurs are poorly understood, even for other more tractable retroviral systems. Recent studies on HTLV-1 using state-of-the-art cryo-electron microscopy and fluorescence-based biophysical approaches explored questions related to HTLV-1 particle size, Gag stoichiometry in virions, and Gag-Gag interactions in living cells. These results provided new and exciting insights into fundamental aspects of HTLV-1 particle assembly-which are distinct from those of other retroviruses, including HIV-1. The application of these and other novel biophysical approaches promise to provide exciting new insights into HTLV-1 replication.
Collapse
Affiliation(s)
- Keir H. Fogarty
- Institute for Molecular Virology, University of Minnesota, Minneapolis, 18-242 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA; E-Mails: (K.H.F.); (W.Z.); (I.F.G.); (Y.C.); (J.D.M.)
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA; E-Mail: (J.L.J.)
| | - Wei Zhang
- Institute for Molecular Virology, University of Minnesota, Minneapolis, 18-242 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA; E-Mails: (K.H.F.); (W.Z.); (I.F.G.); (Y.C.); (J.D.M.)
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Iwen F. Grigsby
- Institute for Molecular Virology, University of Minnesota, Minneapolis, 18-242 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA; E-Mails: (K.H.F.); (W.Z.); (I.F.G.); (Y.C.); (J.D.M.)
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jolene L. Johnson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA; E-Mail: (J.L.J.)
| | - Yan Chen
- Institute for Molecular Virology, University of Minnesota, Minneapolis, 18-242 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA; E-Mails: (K.H.F.); (W.Z.); (I.F.G.); (Y.C.); (J.D.M.)
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA; E-Mail: (J.L.J.)
| | - Joachim D. Mueller
- Institute for Molecular Virology, University of Minnesota, Minneapolis, 18-242 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA; E-Mails: (K.H.F.); (W.Z.); (I.F.G.); (Y.C.); (J.D.M.)
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA; E-Mail: (J.L.J.)
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, 18-242 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA; E-Mails: (K.H.F.); (W.Z.); (I.F.G.); (Y.C.); (J.D.M.)
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Maillard PV, Zoete V, Michielin O, Trono D. Homology-based identification of capsid determinants that protect HIV1 from human TRIM5α restriction. J Biol Chem 2010; 286:8128-8140. [PMID: 21169362 DOI: 10.1074/jbc.m110.187609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tropism of retroviruses relies on their ability to exploit cellular factors for their replication as well as to avoid host-encoded inhibitory activities such as TRIM5α. N-tropic murine leukemia virus is sensitive to human TRIM5α (huTRIM5α) restriction, whereas human immunodeficiency virus type 1 (HIV1) escapes this antiviral factor. We previously revealed that mutation of four critical amino acid residues within the capsid can render murine leukemia virus resistant to huTRIM5α. Here, we exploit the high degree of conservation in the tertiary structure of retroviral capsids to map the corresponding positions on the HIV1 capsid. We then demonstrated that, when changes were introduced at some of these positions, HIV1 becomes sensitive to huTRIM5α restriction, a phenomenon reinforced by additionally mutating the nearby cyclophilin A binding loop of the viral protein. These results indicate that retroviruses have evolved similar mechanisms to escape TRIM5α restriction via the interference of structurally homologous determinants in the viral capsid.
Collapse
Affiliation(s)
- Pierre V Maillard
- From the Global Health Institute, School of Life Sciences, and "Frontiers in Genetics" National Center for Competence in Research, Ecole Polytechnique Fédérale de Lausanne and
| | - Vincent Zoete
- the Swiss Institute of Bioinformatics, Molecular Modeling Group, Genopode Building, 1015 Lausanne, Switzerland
| | - Olivier Michielin
- the Swiss Institute of Bioinformatics, Molecular Modeling Group, Genopode Building, 1015 Lausanne, Switzerland,; the Ludwig Institute for Cancer Research, Ltd., 1066 Epalinges, Switzerland, and; the Pluridisciplinary Centre for Clinical Oncology (CePO), Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Didier Trono
- From the Global Health Institute, School of Life Sciences, and "Frontiers in Genetics" National Center for Competence in Research, Ecole Polytechnique Fédérale de Lausanne and.
| |
Collapse
|
25
|
de Marco A, Müller B, Glass B, Riches JD, Kräusslich HG, Briggs JAG. Structural analysis of HIV-1 maturation using cryo-electron tomography. PLoS Pathog 2010; 6:e1001215. [PMID: 21151640 PMCID: PMC2999899 DOI: 10.1371/journal.ppat.1001215] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/27/2010] [Indexed: 11/18/2022] Open
Abstract
HIV-1 buds form infected cells in an immature, non-infectious form. Maturation into an infectious virion requires proteolytic cleavage of the Gag polyprotein at five positions, leading to a dramatic change in virus morphology. Immature virions contain an incomplete spherical shell where Gag is arranged with the N-terminal MA domain adjacent to the membrane, the CA domain adopting a hexameric lattice below the membrane, and beneath this, the NC domain and viral RNA forming a disordered layer. After maturation, NC and RNA are condensed within the particle surrounded by a conical CA core. Little is known about the sequence of structural changes that take place during maturation, however. Here we have used cryo-electron tomography and subtomogram averaging to resolve the structure of the Gag lattice in a panel of viruses containing point mutations abolishing cleavage at individual or multiple Gag cleavage sites. These studies describe the structural intermediates correlating with the ordered processing events that occur during the HIV-1 maturation process. After the first cleavage between SP1 and NC, the condensed NC-RNA may retain a link to the remaining Gag lattice. Initiation of disassembly of the immature Gag lattice requires cleavage to occur on both sides of CA-SP1, while assembly of the mature core also requires cleavage of SP1 from CA.
Collapse
Affiliation(s)
- Alex de Marco
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Bärbel Glass
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - James D. Riches
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - John A. G. Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
26
|
Grigsby IF, Zhang W, Johnson JL, Fogarty KH, Chen Y, Rawson JM, Crosby AJ, Mueller JD, Mansky LM. Biophysical analysis of HTLV-1 particles reveals novel insights into particle morphology and Gag stochiometry. Retrovirology 2010; 7:75. [PMID: 20854688 PMCID: PMC2954917 DOI: 10.1186/1742-4690-7-75] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/20/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human T-lymphotropic virus type 1 (HTLV-1) is an important human retrovirus that is a cause of adult T-cell leukemia/lymphoma. While an important human pathogen, the details regarding virus replication cycle, including the nature of HTLV-1 particles, remain largely unknown due to the difficulties in propagating the virus in tissue culture. In this study, we created a codon-optimized HTLV-1 Gag fused to an EYFP reporter as a model system to quantitatively analyze HTLV-1 particles released from producer cells. RESULTS The codon-optimized Gag led to a dramatic and highly robust level of Gag expression as well as virus-like particle (VLP) production. The robust level of particle production overcomes previous technical difficulties with authentic particles and allowed for detailed analysis of particle architecture using two novel methodologies. We quantitatively measured the diameter and morphology of HTLV-1 VLPs in their native, hydrated state using cryo-transmission electron microscopy (cryo-TEM). Furthermore, we were able to determine HTLV-1 Gag stoichiometry as well as particle size with the novel biophysical technique of fluorescence fluctuation spectroscopy (FFS). The average HTLV-1 particle diameter determined by cryo-TEM and FFS was 71 ± 20 nm and 75 ± 4 nm, respectively. These values are significantly smaller than previous estimates made of HTLV-1 particles by negative staining TEM. Furthermore, cryo-TEM reveals that the majority of HTLV-1 VLPs lacks an ordered structure of the Gag lattice, suggesting that the HTLV-1 Gag shell is very likely to be organized differently compared to that observed with HIV-1 Gag in immature particles. This conclusion is supported by our observation that the average copy number of HTLV-1 Gag per particle is estimated to be 510 based on FFS, which is significantly lower than that found for HIV-1 immature virions. CONCLUSIONS In summary, our studies represent the first quantitative biophysical analysis of HTLV-1-like particles and reveal novel insights into particle morphology and Gag stochiometry.
Collapse
Affiliation(s)
- Iwen F Grigsby
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Disulfide bond stabilization of the hexameric capsomer of human immunodeficiency virus. J Mol Biol 2010; 401:985-95. [PMID: 20600115 DOI: 10.1016/j.jmb.2010.06.042] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 01/18/2023]
Abstract
The human immunodeficiency virus type 1 capsid is modeled as a fullerene cone that is composed of approximately 250 hexamers and 12 pentamers of the viral CA protein. Structures of CA hexamers have been difficult to obtain because the hexamer-stabilizing interactions are inherently weak, and CA tends to spontaneously assemble into capsid-like particles. Here, we describe a two-step biochemical strategy to obtain soluble CA hexamers for crystallization. First, the hexamer was stabilized by engineering disulfide cross-links (either A14C/E45C or A42C/T54C) between the N-terminal domains of adjacent subunits. Second, the cross-linked hexamers were prevented from polymerizing further into hyperstable capsid-like structures by mutations (W184A and M185A) that interfered with dimeric association between the C-terminal domains that link adjacent hexamers. The structures of two different cross-linked CA hexamers were nearly identical, and we combined the non-mutated portions of the structures to generate an atomic resolution model for the native hexamer. This hybrid approach for structure determination should be applicable to other viral capsomers and protein-protein complexes in general.
Collapse
|
28
|
Suppression of a morphogenic mutant in Rous sarcoma virus capsid protein by a second-site mutation: a cryoelectron tomography study. J Virol 2010; 84:6377-86. [PMID: 20427531 DOI: 10.1128/jvi.00207-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Retrovirus assembly is driven by polymerization of the Gag polyprotein as nascent virions bud from host cells. Gag is then processed proteolytically, releasing the capsid protein (CA) to assemble de novo inside maturing virions. CA has N-terminal and C-terminal domains (NTDs and CTDs, respectively) whose folds are conserved, although their sequences are divergent except in the 20-residue major homology region (MHR) in the CTD. The MHR is thought to play an important role in assembly, and some mutations affecting it, including the F167Y substitution, are lethal. A temperature-sensitive second-site suppressor mutation in the NTD, A38V, restores infectivity. We have used cryoelectron tomography to investigate the morphotypes of this double mutant. Virions produced at the nonpermissive temperature do not assemble capsids, although Gag is processed normally; moreover, they are more variable in size than the wild type and have fewer glycoprotein spikes. At the permissive temperature, virions are similar in size and spike content as in the wild type and capsid assembly is restored, albeit with altered polymorphisms. The mutation F167Y-A38V (referred to as FY/AV in this paper) produces fewer tubular capsids than wild type and more irregular polyhedra, which tend to be larger than in the wild type, containing approximately 30% more CA subunits. It follows that FY/AV CA assembles more efficiently in situ than in the wild type and has a lower critical concentration, reflecting altered nucleation properties. However, its infectivity is lower than that of the wild type, due to a 4-fold-lower budding efficiency. We conclude that the wild-type CA protein sequence represents an evolutionary compromise between competing requirements for optimization of Gag assembly (of the immature virion) and CA assembly (in the maturing virion).
Collapse
|
29
|
Effect of dimerizing domains and basic residues on in vitro and in vivo assembly of Mason-Pfizer monkey virus and human immunodeficiency virus. J Virol 2009; 84:1977-88. [PMID: 20007269 DOI: 10.1128/jvi.02022-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Assembly of immature retroviral particles is a complex process involving interactions of several specific domains of the Gag polyprotein localized mainly within capsid protein (CA), spacer peptide (SP), and nucleocapsid protein (NC). In the present work we focus on the contribution of NC to the oligomerization of CA leading to assembly of Mason-Pfizer monkey virus (M-PMV) and HIV-1. Analyzing in vitro assembly of substitution and deletion mutants of DeltaProCANC, we identified a "spacer-like" sequence (NC(15)) at the M-PMV NC N terminus. This NC(15) domain is indispensable for the assembly and cannot be replaced with oligomerization domains of GCN4 or CREB proteins. Although the M-PMV NC(15) occupies a position analogous to that of the HIV-1 spacer peptide, it could not be replaced by the latter one. To induce the assembly, both M-PMV NC(15) and HIV-1 SP1 must be followed by a short peptide that is rich in basic residues. This region either can be specific, i.e., derived from the downstream NC sequence, or can be a nonspecific positively charged peptide. However, it cannot be replaced by heterologous interaction domains either from GCN4 or from CREB. In summary, we report here a novel M-PMV spacer-like domain that is functionally similar to other retroviral spacer peptides and contributes to the assembly of immature-virus-like particles.
Collapse
|
30
|
Macek P, Chmelík J, Krízová I, Kaderávek P, Padrta P, Zídek L, Wildová M, Hadravová R, Chaloupková R, Pichová I, Ruml T, Rumlová M, Sklenár V. NMR structure of the N-terminal domain of capsid protein from the mason-pfizer monkey virus. J Mol Biol 2009; 392:100-14. [PMID: 19527730 DOI: 10.1016/j.jmb.2009.06.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 11/28/2022]
Abstract
The high-resolution structure of the N-terminal domain (NTD) of the retroviral capsid protein (CA) of Mason-Pfizer monkey virus (M-PMV), a member of the betaretrovirus family, has been determined by NMR. The M-PMV NTD CA structure is similar to the other retroviral capsid structures and is characterized by a six alpha-helix bundle and an N-terminal beta-hairpin, stabilized by an interaction of highly conserved residues, Pro1 and Asp57. Since the role of the beta-hairpin has been shown to be critical for formation of infectious viral core, we also investigated the functional role of M-PMV beta-hairpin in two mutants (i.e., DeltaP1NTDCA and D57ANTDCA) where the salt bridge stabilizing the wild-type structure was disrupted. NMR data obtained for these mutants were compared with those obtained for the wild type. The main structural changes were observed within the beta-hairpin structure; within helices 2, 3, and 5; and in the loop connecting helices 2 and 3. This observation is supported by biochemical data showing different cleavage patterns of the wild-type and the mutated capsid-nucleocapsid fusion protein (CANC) by M-PMV protease. Despite these structural changes, the mutants with disrupted salt bridge are still able to assemble into immature, spherical particles. This confirms that the mutual interaction and topology within the beta-hairpin and helix 3 might correlate with the changes in interaction between immature and mature lattices.
Collapse
Affiliation(s)
- Pavel Macek
- National Centre for Biomolecular Research, Masaryk University, Kotlárská, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
X-ray structures of the hexameric building block of the HIV capsid. Cell 2009; 137:1282-92. [PMID: 19523676 DOI: 10.1016/j.cell.2009.04.063] [Citation(s) in RCA: 444] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 04/23/2009] [Accepted: 04/30/2009] [Indexed: 01/02/2023]
Abstract
The mature capsids of HIV and other retroviruses organize and package the viral genome and its associated enzymes for delivery into host cells. The HIV capsid is a fullerene cone: a variably curved, closed shell composed of approximately 250 hexamers and exactly 12 pentamers of the viral CA protein. We devised methods for isolating soluble, assembly-competent CA hexamers and derived four crystallographically independent models that define the structure of this capsid assembly unit at atomic resolution. A ring of six CA N-terminal domains form an apparently rigid core, surrounded by an outer ring of C-terminal domains. Mobility of the outer ring appears to be an underlying mechanism for generating the variably curved lattice in authentic capsids. Hexamer-stabilizing interfaces are highly hydrated, and this property may be key to the formation of quasi-equivalent interactions within hexamers and pentamers. The structures also clarify the molecular basis for capsid assembly inhibition and should facilitate structure-based drug design strategies.
Collapse
|
32
|
Visualization of a missing link in retrovirus capsid assembly. Nature 2009; 457:694-8. [PMID: 19194444 PMCID: PMC2721793 DOI: 10.1038/nature07724] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 12/15/2008] [Indexed: 11/13/2022]
Abstract
For a retrovirus such as HIV to be infectious, a properly formed capsid is needed; however, unusually among viruses, retrovirus capsids are highly variable in structure. According to the fullerene conjecture, they are composed of hexamers and pentamers of CA protein, with a capsid’s shape varying according to how the twelve pentamers are distributed and its size depending on the number of hexamers. Hexamers have been studied in planar and tubular arrays but the predicted pentamers have not been observed. Here we report cryo-electron microscopic analyses of two in vitro-assembled capsids of Rous sarcoma virus. Both are icosahedrally symmetric: one is composed of 12 pentamers; the other, of 12 pentamers and 20 hexamers. Fitting of atomic models of the two CA domains into the reconstructions shows three distinct inter-subunit interactions. These observations substantiate the fullerene conjecture, show how pentamers are accommodated at vertices, support the inference that nucleation is a crucial morphologic determinant, and imply that electrostatic interactions govern the differential assembly of pentamers and hexamers.
Collapse
|
33
|
Mortuza GB, Goldstone DC, Pashley C, Haire LF, Palmarini M, Taylor WR, Stoye JP, Taylor IA. Structure of the capsid amino-terminal domain from the betaretrovirus, Jaagsiekte sheep retrovirus. J Mol Biol 2008; 386:1179-92. [PMID: 19007792 DOI: 10.1016/j.jmb.2008.10.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/06/2008] [Accepted: 10/13/2008] [Indexed: 01/27/2023]
Abstract
Jaagsiekte sheep retrovirus is a betaretrovirus and the causative agent of pulmonary adenocarcinoma, a transmissible lung tumour of sheep. Here we report the crystal structure of the capsid amino-terminal domain and examine the self-association properties of Jaagsiekte sheep retrovirus capsid. We find that the structure is remarkably similar to the amino-terminal domain of the alpharetrovirus, avian leukosis virus, revealing a previously undetected evolutionary similarity. Examination of capsid self-association suggests a mode of assembly not driven by the strong capsid carboxy-terminal domain interactions that characterise capsid assembly in the lentiviruses. Based on these data, we propose this structure provides a model for the capsid of betaretroviruses including the HML-2 family of endogenous human betaretroviruses.
Collapse
Affiliation(s)
- Gulnahar B Mortuza
- Division of Molecular Structure, National Institute for Medical Research, the Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wildová M, Hadravová R, Stokrová J, Krízová I, Ruml T, Hunter E, Pichová I, Rumlová M. The effect of point mutations within the N-terminal domain of Mason-Pfizer monkey virus capsid protein on virus core assembly and infectivity. Virology 2008; 380:157-63. [PMID: 18755489 DOI: 10.1016/j.virol.2008.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/10/2008] [Accepted: 07/22/2008] [Indexed: 12/29/2022]
Abstract
Retroviral capsid protein (CA) mediates protein interactions driving the assembly of both immature viral particles and the core of the mature virions. Structurally conserved N-terminal domains of several retroviruses refold after proteolytic cleavage into a beta-hairpin, stabilized by a salt bridge between conserved N-terminal Pro and Asp residues. Based on comparison with other retroviral CA, we identified Asp50 and Asp57 as putative interacting partners for Pro1 in Mason-Pfizer monkey virus (M-PMV) CA. To investigate the importance of CA Pro1 and its interacting Asp in M-PMV core assembly and infectivity, P1A, P1Y, D50A, T54A and D57A mutations were introduced into M-PMV. The P1A and D57A mutations partially blocked Gag processing and the released viral particles exhibited aberrant cores and were non-infectious. These data indicate that the region spanning residues Asp50-Asp57 plays an important role in stabilization of the beta-hairpin and that Asp57 likely forms a salt-bridge with P1 in M-PMV CA.
Collapse
Affiliation(s)
- Marcela Wildová
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Purdy JG, Flanagan JM, Ropson IJ, Rennoll-Bankert KE, Craven RC. Critical role of conserved hydrophobic residues within the major homology region in mature retroviral capsid assembly. J Virol 2008; 82:5951-61. [PMID: 18400856 PMCID: PMC2395126 DOI: 10.1128/jvi.00214-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 03/28/2008] [Indexed: 12/26/2022] Open
Abstract
During retroviral maturation, the CA protein undergoes dramatic structural changes and establishes unique intermolecular interfaces in the mature capsid shell that are different from those that existed in the immature precursor. The most conserved region of CA, the major homology region (MHR), has been implicated in both immature and mature assembly, although the precise contribution of the MHR residues to each event has been largely undefined. To test the roles of specific MHR residues in mature capsid assembly, an in vitro system was developed that allowed for the first-time formation of Rous sarcoma virus CA into structures resembling authentic capsids. The ability of CA to assemble organized structures was destroyed by substitutions of two conserved hydrophobic MHR residues and restored by second-site suppressors, demonstrating that these MHR residues are required for the proper assembly of mature capsids in addition to any role that these amino acids may play in immature particle assembly. The defect caused by the MHR mutations was identified as an early step in the capsid assembly process. The results provide strong evidence for a model in which the hydrophobic residues of the MHR control a conformational reorganization of CA that is needed to initiate capsid assembly and suggest that the formation of an interdomain interaction occurs early during maturation.
Collapse
Affiliation(s)
- John G Purdy
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
36
|
Lokhandwala PM, Nguyen TLN, Bowzard JB, Craven RC. Cooperative role of the MHR and the CA dimerization helix in the maturation of the functional retrovirus capsid. Virology 2008; 376:191-8. [PMID: 18433823 DOI: 10.1016/j.virol.2008.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 02/23/2008] [Accepted: 03/01/2008] [Indexed: 12/25/2022]
Abstract
The second helix in the C-terminal domain of retroviral capsid (CA) protein functions as the site of dimerization between subunits in capsid assembly and is believed to participate in a unique interface between Gag molecules in immature particles. This study reports isolation of two substitutions in the dimerization helix of Rous sarcoma virus CA protein that have the ability to suppress lethal defects in core maturation imposed by alterations to the major homology region (MHR) motif just upstream. Together with two previously published suppressors, these define an extended region of the dimerization helix that is unlikely to contribute directly to CA-CA contacts but whose assembly-competence may be strongly affected by conformation. The broad-spectrum suppression and temperature-sensitivity exhibited by some mutants argues that they act through modulation of protein conformation. These findings provide important biological evidence in support of a significant conformational change involving the dimerization helix and the MHR during maturation.
Collapse
Affiliation(s)
- Parvez M Lokhandwala
- Department of Microbiology and Immunology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
37
|
Mortuza GB, Dodding MP, Goldstone DC, Haire LF, Stoye JP, Taylor IA. Structure of B-MLV Capsid Amino-terminal Domain Reveals Key Features of Viral Tropism, Gag Assembly and Core Formation. J Mol Biol 2008; 376:1493-508. [DOI: 10.1016/j.jmb.2007.12.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 11/25/2022]
|
38
|
Ganser-Pornillos BK, Cheng A, Yeager M. Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell 2008; 131:70-9. [PMID: 17923088 DOI: 10.1016/j.cell.2007.08.018] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/19/2007] [Accepted: 08/15/2007] [Indexed: 11/25/2022]
Abstract
The capsids of mature retroviruses perform the essential function of organizing the viral genome for efficient replication. These capsids are modeled as fullerene structures composed of closed hexameric arrays of the viral CA protein, but a high-resolution structure of the lattice has remained elusive. A three-dimensional map of two-dimensional crystals of the R18L mutant of HIV-1 CA was derived by electron cryocrystallography. The docking of high-resolution domain structures into the map yielded the first unambiguous model for full-length HIV-1 CA. Three important protein-protein assembly interfaces are required for capsid formation. Each CA hexamer is composed of an inner ring of six N-terminal domains and an outer ring of C-terminal domains that form dimeric linkers connecting neighboring hexamers. Interactions between the two domains of CA further stabilize the hexamer and provide a structural explanation for the mechanism of action of known HIV-1 assembly inhibitors.
Collapse
Affiliation(s)
- Barbie K Ganser-Pornillos
- The Scripps Research Institute, Department of Cell Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
39
|
Auerbach MR, Brown KR, Singh IR. Mutational analysis of the N-terminal domain of Moloney murine leukemia virus capsid protein. J Virol 2007; 81:12337-47. [PMID: 17855544 PMCID: PMC2168981 DOI: 10.1128/jvi.01286-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Retroviral capsid (CA) proteins contain a structurally conserved N-terminal domain (NTD) consisting of a beta-hairpin and six to seven alpha-helices. To examine the role of this domain in Moloney murine leukemia virus (MoMLV) replication, we analyzed 18 insertional mutations in this region. All mutants were noninfectious. Based on the results of this analysis and our previous studies on additional mutations in this domain, we were able to divide the NTD of MoMLV CA into three functional regions. The first functional region included the region near the N terminus that forms the beta-hairpin and was shown to control normal maturation of virions. The second region included the helix 4/5 loop and was essential for the formation of spherical cores. The third region encompassed most of the NTD except for the above loop. Mutants of this region assembled imperfect cores, as seen by detailed electron microscopy analyses, yet the resulting particles were efficiently released from cells. The mutants were defective at a stage immediately following entry of the core into cells. Despite possessing functional reverse transcriptase machinery, these mutant virions did not initiate reverse transcription in cells. This block could be due to structural defects in the assembling core or failure of an essential host protein to interact with the mutant CA protein, both of which may prevent correct disassembly upon entry of the virus into cells. Future studies are needed to understand the mechanism of these blocks and to target these regions pharmacologically to inhibit retroviral infection at additional stages.
Collapse
Affiliation(s)
- Marcy R Auerbach
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
40
|
Leschonsky B, Ludwig C, Bieler K, Wagner R. Capsid stability and replication of human immunodeficiency virus type 1 are influenced critically by charge and size of Gag residue 183. J Gen Virol 2007; 88:207-216. [PMID: 17170453 DOI: 10.1099/vir.0.81894-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Structural data support a model where - following proteolytic cleavage--the amino-terminal domain of human immunodeficiency virus type 1 (HIV-1) capsid protein refolds into a beta-hairpin/helix tertiary structure that is stabilized by a buried salt bridge forming between the positively charged primary imino group of a proline residue and the negatively charged carboxyl group of a conserved aspartate. In order to evaluate the contribution of either side-chain length or charge to the formation of infectious virus capsids, aspartate 183 was substituted for glutamate or asparagine in the viral context. It was found that both modifications abolished infectivity of the corresponding viruses in permissive T lymphocytes, although none of particle assembly and release, RNA encapsidation, incorporation of Env glycoproteins and packaging of cyclophilin A were impaired. However, whereas biophysical analyses of mutant virions yielded wild-type-like particle sizes and densities, electron microscopy revealed aberrant core morphologies that could be attributed to either increased (D183N) or reduced (D183E) capsid stability. Although the two amino acid substitutions had opposing effects upon core stability, both mutants were shown to exhibit a severe block in early reverse transcription, underscoring the importance of correct salt-bridge formation for early steps of virus replication.
Collapse
Affiliation(s)
- Bernd Leschonsky
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology and Gene Therapy, University of Regensburg, 93053 Regensburg, Germany
| | - Christine Ludwig
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology and Gene Therapy, University of Regensburg, 93053 Regensburg, Germany
| | - Kurt Bieler
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology and Gene Therapy, University of Regensburg, 93053 Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology and Gene Therapy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
41
|
Ulbrich P, Haubova S, Nermut MV, Hunter E, Rumlova M, Ruml T. Distinct roles for nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins. J Virol 2006; 80:7089-99. [PMID: 16809314 PMCID: PMC1489063 DOI: 10.1128/jvi.02694-05] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In contrast to other retroviruses, Mason-Pfizer monkey virus (M-PMV) assembles immature capsids in the cytoplasm. We have compared the ability of minimal assembly-competent domains from M-PMV and human immunodeficiency virus type 1 (HIV-1) to assemble in vitro into virus-like particles in the presence and absence of nucleic acids. A fusion protein comprised of the capsid and nucleocapsid domains of Gag (CANC) and its N-terminally modified mutant (DeltaProCANC) were used to mimic the assembly of the viral core and immature particles, respectively. In contrast to HIV-1, where CANC assembled efficiently into cylindrical structures, the same domains of M-PMV were assembly incompetent. The addition of RNA or oligonucleotides did not complement this defect. In contrast, the M-PMV DeltaProCANC molecule was able to assemble into spherical particles, while that of HIV-1 formed both spheres and cylinders. For M-PMV, the addition of purified RNA increased the efficiency with which DeltaProCANC formed spherical particles both in terms of the overall amount and the numbers of completed spheres. The amount of RNA incorporated was determined, and for both rRNA and MS2-RNA, quantities similar to that of genomic RNA were encapsidated. Oligonucleotides also stimulated assembly; however, they were incorporated into DeltaProCANC spherical particles in trace amounts that could not serve as a stoichiometric structural component for assembly. Thus, oligonucleotides may, through a transient interaction, induce conformational changes that facilitate assembly, while longer RNAs appear to facilitate the complete assembly of spherical particles.
Collapse
Affiliation(s)
- Pavel Ulbrich
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technicka 3, 166 28 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
42
|
Dodding MP, Bock M, Yap MW, Stoye JP. Capsid processing requirements for abrogation of Fv1 and Ref1 restriction. J Virol 2005; 79:10571-7. [PMID: 16051849 PMCID: PMC1182663 DOI: 10.1128/jvi.79.16.10571-10577.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 05/20/2005] [Indexed: 11/20/2022] Open
Abstract
Murine leukemia virus is restricted in mouse cells lines by a host factor known as Fv1 and in human cell lines by Ref1. Genetic evidence indicates that these restriction factors target the virus capsid (CA) protein. Restriction can be overcome by adding virus at a high multiplicity of infection, indicating that the restriction factors can be saturated. Cells preexposed to restricted virus will allow infection by a second virus which would normally be restricted. This phenomenon is known as abrogation; it provides us with a tool with which to study the interaction of virus with restriction factors. We tested the abilities of several Gag processing mutants to abrogate restriction. Our results show that CA must be cleaved from both p12 and nucleocapsid in order for the incoming virion to interact with the restriction factor. Endogenous expression of properly processed CA, however, failed to abrogate restriction. These results suggest that as well as being processed, CA must also be properly assembled in the form of a condensed viral core in order to interact with Fv1 and Ref1. This polymeric structure may contain restriction factor binding sites not present in monomeric CA.
Collapse
Affiliation(s)
- Mark P Dodding
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
43
|
Bouamr F, Cornilescu CC, Goff SP, Tjandra N, Carter CA. Structural and dynamics studies of the D54A mutant of human T cell leukemia virus-1 capsid protein. J Biol Chem 2004; 280:6792-801. [PMID: 15569685 DOI: 10.1074/jbc.m408119200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human T cell leukemia virus and the human immunodeficiency virus share a highly conserved, predominantly helical two-domain mature capsid (CA) protein structure with an N-terminal beta-hairpin. Despite overall structural similarity, differences exist in the backbone dynamic properties of the CA N-terminal domain. Since studies with other retroviruses suggest that the beta-hairpin is critical for formation of a CA-CA interface, we investigated the functional role of the human T cell leukemia virus beta-hairpin by disrupting the salt bridge between Pro(1) and Asp(54) that stabilizes the beta-hairpin. NMR (15)N relaxation data were used to characterize the backbone dynamics of the D54A mutant in the context of the N-terminal domains, compared with the wild-type counterpart. Moreover, the effect of the mutation on proteolytic processing and release of virus-like particles (VLPs) from human cells in culture was determined. Conformational and dynamic changes resulting from the mutation were detected by NMR spectroscopy. The mutation also altered the conformation of mature CA in cells and VLPs, as reflected by differential antibody recognition of the wild-type and mutated CA proteins. In contrast, the mutation did not detectably affect antibody recognition of the CA protein precursor or release of VLPs assembled by the precursor, consistent with the fact that the hairpin cannot form in the precursor molecule. The particle morphology and size were not detectably affected. The results indicate that the beta-hairpin contributes to the overall structure of the mature CA protein and suggest that differences in the backbone dynamics of the beta-hairpin contribute to mature CA structure, possibly introducing flexibility into interface formation during proteolytic maturation.
Collapse
Affiliation(s)
- Fadila Bouamr
- Howard Hughes Medical Institute, New York, New York, USA
| | | | | | | | | |
Collapse
|
44
|
Spidel JL, Craven RC, Wilson CB, Patnaik A, Wang H, Mansky LM, Wills JW. Lysines close to the Rous sarcoma virus late domain critical for budding. J Virol 2004; 78:10606-16. [PMID: 15367628 PMCID: PMC516377 DOI: 10.1128/jvi.78.19.10606-10616.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 05/19/2004] [Indexed: 12/18/2022] Open
Abstract
The release of retroviruses from the plasma membrane requires host factors that are believed to be recruited to the site of budding by the late (L) domain of the virus-encoded Gag protein. The L domain of Rous sarcoma virus (RSV) has been shown to interact with a ubiquitin (Ub) ligase, and budding of this virus is dependent on Ub. RSV is similar to other retroviruses in that it contains approximately 100 molecules of Ub, but it is unique in that none of these molecules has been found to be conjugated to Gag. If transient ubiquitination of RSV Gag is required for budding, then replacement of the target lysine(s) with arginine should prevent the addition of Ub and reduce budding. Based on known sites of ubiquitination in other viruses, the important lysines would likely reside near the L domain. In RSV, there are five lysines located just upstream of the L domain in a region of the matrix (MA) protein that is dispensable for membrane binding, and replacement of these with arginine (mutant 1-5KR) reduced budding 80 to 90%. The block to budding was found to be on the plasma membrane; however, the few virions that were released had normal size, morphology, and infectivity. Budding was restored when any one of the residues was changed back to lysine or when lysines were inserted in novel positions, either within this region of MA or within the downstream p10 sequence. Moreover, the 1-5KR mutant could be rescued into particles by coexpression of budding-competent Gag molecules. These data argue that the phenotype of mutant 1-5KR is not due to a conformational defect. Consistent with the idea that efficient budding requires a specific role for lysines, human T-cell leukemia virus type 1, which does not bud well compared to RSV and lacks lysines close to its L domain, was found to be released at a higher level upon introduction of lysines near its L domain. This report strongly supports the hypothesis that ubiquitination of the RSV Gag protein (and perhaps those of other retroviruses) is needed for efficient budding.
Collapse
Affiliation(s)
- Jared L Spidel
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Dr., P.O. Box 850, Hershey, PA 17033, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Mortuza GB, Haire LF, Stevens A, Smerdon SJ, Stoye JP, Taylor IA. High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 2004; 431:481-5. [PMID: 15386017 DOI: 10.1038/nature02915] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 08/05/2004] [Indexed: 11/08/2022]
Abstract
Retroviruses are the aetiological agents of a range of human diseases including AIDS and T-cell leukaemias. They follow complex life cycles, which are still only partly understood at the molecular level. Maturation of newly formed retroviral particles is an essential step in production of infectious virions, and requires proteolytic cleavage of Gag polyproteins in the immature particle to form the matrix, capsid and nucleocapsid proteins present in the mature virion. Capsid proteins associate to form a dense viral core that may be spherical, cylindrical or conical depending on the genus of the virus. Nonetheless, these assemblies all appear to be composed of a lattice formed from hexagonal rings, each containing six capsid monomers. Here, we describe the X-ray structure of an individual hexagonal assembly from N-tropic murine leukaemia virus (N-MLV). The interface between capsid monomers is generally polar, consistent with weak interactions within the hexamer. Similar architectures are probably crucial for the regulation of capsid assembly and disassembly in all retroviruses. Together, these observations provide new insights into retroviral uncoating and how cellular restriction factors may interfere with viral replication.
Collapse
Affiliation(s)
- Gulnahar B Mortuza
- Division of Protein Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
46
|
Ganser-Pornillos BK, von Schwedler UK, Stray KM, Aiken C, Sundquist WI. Assembly properties of the human immunodeficiency virus type 1 CA protein. J Virol 2004; 78:2545-52. [PMID: 14963157 PMCID: PMC369201 DOI: 10.1128/jvi.78.5.2545-2552.2004] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During retroviral maturation, the CA protein oligomerizes to form a closed capsid that surrounds the viral genome. We have previously identified a series of deleterious surface mutations within human immunodeficiency virus type 1 (HIV-1) CA that alter infectivity, replication, and assembly in vivo. For this study, 27 recombinant CA proteins harboring 34 different mutations were tested for the ability to assemble into helical cylinders in vitro. These cylinders are composed of CA hexamers and are structural models for the mature viral capsid. Mutations that diminished CA assembly clustered within helices 1 and 2 in the N-terminal domain of CA and within the crystallographically defined dimer interface in the CA C-terminal domain. These mutations demonstrate the importance of these regions for CA cylinder production and, by analogy, mature capsid assembly. One CA mutant (R18A) assembled into cylinders, cones, and spheres. We suggest that these capsid shapes occur because the R18A mutation alters the frequency at which pentamers are incorporated into the hexagonal lattice. The fact that a single CA protein can simultaneously form all three known retroviral capsid morphologies supports the idea that these structures are organized on similar lattices and differ only in the distribution of 12 pentamers that allow them to close. In further support of this model, we demonstrate that the considerable morphological variation seen for conical HIV-1 capsids can be recapitulated in idealized capsid models by altering the distribution of pentamers.
Collapse
|
47
|
Bouamr F, Melillo JA, Wang MQ, Nagashima K, de Los Santos M, Rein A, Goff SP. PPPYVEPTAP motif is the late domain of human T-cell leukemia virus type 1 Gag and mediates its functional interaction with cellular proteins Nedd4 and Tsg101 [corrected]. J Virol 2003; 77:11882-95. [PMID: 14581525 PMCID: PMC253756 DOI: 10.1128/jvi.77.22.11882-11895.2003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Accepted: 08/06/2003] [Indexed: 11/20/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) Gag polyprotein contains two adjacent proline-rich motifs (sequence PPPYVEPTAP) in the C terminus of the matrix domain [corrected]. Proline-to-alanine mutations were introduced into either or both motifs of HTLV-1 to determine the effect on the release of HTLV-1 virus-like particles from 293T cells. The release of both single mutants was significantly reduced, whereas a double mutation in both motifs abolished the release of the HTLV-1 particles. Two-hybrid and in vitro binding assays showed that the HTLV-1 Gag polyprotein binds both Tsg101 and Nedd4 proteins. The interaction with HTLV-1 Gag required the central WW domain of Nedd4 and the ubiquitin enzyme variant (UEV) domain of Tsg101. We expressed various fragments of Nedd4 and Tsg101 proteins in 293T cells and tested for their ability to interfere with virion release mediated by the HTLV-1 Gag-Pro polyprotein. Fragments consisting of the N-terminal UEV domain of Tsg101 and the central WW and C-terminal Hect domains of Nedd4 protein all caused transdominant inhibition of HTLV-1 particle release. Similarly, inhibition of the proteasome significantly decreased HTLV-1 particle release. Furthermore, the WW domain overexpression caused an early arrest of HTLV-1 particle morphogenesis before the membrane is deformed into the typical half-shell structure. This result suggests that Nedd4 is involved early in budding of HTLV-1.
Collapse
Affiliation(s)
- Fadila Bouamr
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Rue SM, Roos JW, Amzel LM, Clements JE, Barber SA. Hydrogen bonding at a conserved threonine in lentivirus capsid is required for virus replication. J Virol 2003; 77:8009-18. [PMID: 12829840 PMCID: PMC161920 DOI: 10.1128/jvi.77.14.8009-8018.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The N terminus of the capsid protein (CA) undergoes a considerable conformational change when the human immunodeficiency virus (HIV) protease cleaves it free from the Pr55(Gag) polyprotein. This rearrangement is thought to facilitate the establishment of specific CA-CA interactions that are required for the formation of the mature viral core. Substitution of amino acids that are critical for this refolding of the N terminus is generally detrimental to virus replication and mature virion core morphology. Here, we identify a conserved threonine in simian immunodeficiency virus (SIV) CA, T(47)(CA), that is requisite for viral replication. Replacement of T(47)(CA) in the infectious viral clone SIVmac239 with amino acids with different hydrogen-bonding capabilities and analysis of the effects of these substitutions at key steps in the viral life cycle demonstrate that hydrogen bonding at this position is important for virus infectivity and virion release. In the HIV-based homology model of the mature SIV CA N terminus presented in this study, T(47)(CA) forms several hydrogen bonds with a proximal aspartate, D(50)(CA). This model, coupled with strong phenotypic similarities between viral substitution mutants of each of these two residues in all of the virological assays described herein, indicates that hydrogen bonding between T(47)(CA) and D(50)(CA) is likely required for viral replication. As hydrogen bonding between these two residues is present in HIV CA as well, this interaction presents a potential target for antiviral drug design.
Collapse
Affiliation(s)
- Sarah M Rue
- Department of Comparative Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
49
|
Rumlová M, Ruml T, Pohl J, Pichová I. Specific in vitro cleavage of Mason-Pfizer monkey virus capsid protein: evidence for a potential role of retroviral protease in early stages of infection. Virology 2003; 310:310-8. [PMID: 12781718 DOI: 10.1016/s0042-6822(03)00128-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Processing of Gag polyproteins by viral protease (PR) leads to reorganization of immature retroviral particles and formation of a ribonucleoprotein core. In some retroviruses, such as HIV and RSV, cleavage of a spacer peptide separating capsid and nucleocapsid proteins is essential for the core formation. We show here that no similar spacer peptide is present in the capsid-nucleocapsid (CA-NC) region of Mason-Pfizer monkey virus (M-PMV) and that the CA protein is cleaved in vitro by the PR within the major homology region (MHR) and the NC protein in several sites at the N-terminus. The CA cleavage product was also identified shortly after penetration of M-PMV into COS cells, suggesting that the protease-catalyzed cleavage is involved in core disintegration.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Protein Biochemistry, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
50
|
Cornilescu CC, Bouamr F, Carter C, Tjandra N. Backbone (15)N relaxation analysis of the N-terminal domain of the HTLV-I capsid protein and comparison with the capsid protein of HIV-1. Protein Sci 2003; 12:973-81. [PMID: 12717020 PMCID: PMC2323868 DOI: 10.1110/ps.0235903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2002] [Revised: 01/15/2003] [Accepted: 01/17/2003] [Indexed: 10/27/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-I) is an oncogenic retrovirus that exhibits specific tropism for human T-cells. The capsid (CA) proteins of retroviruses share highly conserved secondary and tertiary structures. However, they can form quaternary structures (assembled cores) that are conical (e.g., the lentivirus subgroup, including HIV) or spherical (e.g., the oncovirus subgroup, including HTLV). The intrinsic features that drive these differences are not understood. So far, only structural studies have been used as a basis for comparison. Dynamics may play a role in particle formation. High-resolution nuclear magnetic resonance (NMR) (15)N relaxation data (T(1), T(1rho), and NOE) have been used to characterize the backbone dynamics of the N-terminal domain (NTD) of the oncovirus HTLV-I and to compare with the CA NTD of HIV-1. Large variations in the (15)N heteronuclear NOEs and transversal relaxation rates for individual residues are consistent with the bundle RMSD of the previously calculated NMR structures. The beta-hairpin and CyP-A loop exhibit different mobility in HTLV-I and HIV-1. The overall hydrodynamic property of the HTLV-I capsid NTD is quite distinct from the HIV-1.
Collapse
Affiliation(s)
- Claudia C Cornilescu
- Laboratory of Biophysical Chemistry, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|